xref: /openbmc/linux/crypto/vmac.c (revision bb29648102335586e9a66289a1d98a0cb392b6e5)
1 /*
2  * VMAC: Message Authentication Code using Universal Hashing
3  *
4  * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
5  *
6  * Copyright (c) 2009, Intel Corporation.
7  * Copyright (c) 2018, Google Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20  * Place - Suite 330, Boston, MA 02111-1307 USA.
21  */
22 
23 /*
24  * Derived from:
25  *	VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
26  *	This implementation is herby placed in the public domain.
27  *	The authors offers no warranty. Use at your own risk.
28  *	Last modified: 17 APR 08, 1700 PDT
29  */
30 
31 #include <asm/unaligned.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/crypto.h>
35 #include <linux/module.h>
36 #include <linux/scatterlist.h>
37 #include <asm/byteorder.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/hash.h>
40 
41 /*
42  * User definable settings.
43  */
44 #define VMAC_TAG_LEN	64
45 #define VMAC_KEY_SIZE	128/* Must be 128, 192 or 256			*/
46 #define VMAC_KEY_LEN	(VMAC_KEY_SIZE/8)
47 #define VMAC_NHBYTES	128/* Must 2^i for any 3 < i < 13 Standard = 128*/
48 
49 /* per-transform (per-key) context */
50 struct vmac_tfm_ctx {
51 	struct crypto_cipher *cipher;
52 	u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
53 	u64 polykey[2*VMAC_TAG_LEN/64];
54 	u64 l3key[2*VMAC_TAG_LEN/64];
55 };
56 
57 /* per-request context */
58 struct vmac_desc_ctx {
59 	union {
60 		u8 partial[VMAC_NHBYTES];	/* partial block */
61 		__le64 partial_words[VMAC_NHBYTES / 8];
62 	};
63 	unsigned int partial_size;	/* size of the partial block */
64 	bool first_block_processed;
65 	u64 polytmp[2*VMAC_TAG_LEN/64];	/* running total of L2-hash */
66 };
67 
68 /*
69  * Constants and masks
70  */
71 #define UINT64_C(x) x##ULL
72 static const u64 p64   = UINT64_C(0xfffffffffffffeff);	/* 2^64 - 257 prime  */
73 static const u64 m62   = UINT64_C(0x3fffffffffffffff);	/* 62-bit mask       */
74 static const u64 m63   = UINT64_C(0x7fffffffffffffff);	/* 63-bit mask       */
75 static const u64 m64   = UINT64_C(0xffffffffffffffff);	/* 64-bit mask       */
76 static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);	/* Poly key mask     */
77 
78 #define pe64_to_cpup le64_to_cpup		/* Prefer little endian */
79 
80 #ifdef __LITTLE_ENDIAN
81 #define INDEX_HIGH 1
82 #define INDEX_LOW 0
83 #else
84 #define INDEX_HIGH 0
85 #define INDEX_LOW 1
86 #endif
87 
88 /*
89  * The following routines are used in this implementation. They are
90  * written via macros to simulate zero-overhead call-by-reference.
91  *
92  * MUL64: 64x64->128-bit multiplication
93  * PMUL64: assumes top bits cleared on inputs
94  * ADD128: 128x128->128-bit addition
95  */
96 
97 #define ADD128(rh, rl, ih, il)						\
98 	do {								\
99 		u64 _il = (il);						\
100 		(rl) += (_il);						\
101 		if ((rl) < (_il))					\
102 			(rh)++;						\
103 		(rh) += (ih);						\
104 	} while (0)
105 
106 #define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2))
107 
108 #define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\
109 	do {								\
110 		u64 _i1 = (i1), _i2 = (i2);				\
111 		u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\
112 		rh = MUL32(_i1>>32, _i2>>32);				\
113 		rl = MUL32(_i1, _i2);					\
114 		ADD128(rh, rl, (m >> 32), (m << 32));			\
115 	} while (0)
116 
117 #define MUL64(rh, rl, i1, i2)						\
118 	do {								\
119 		u64 _i1 = (i1), _i2 = (i2);				\
120 		u64 m1 = MUL32(_i1, _i2>>32);				\
121 		u64 m2 = MUL32(_i1>>32, _i2);				\
122 		rh = MUL32(_i1>>32, _i2>>32);				\
123 		rl = MUL32(_i1, _i2);					\
124 		ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\
125 		ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\
126 	} while (0)
127 
128 /*
129  * For highest performance the L1 NH and L2 polynomial hashes should be
130  * carefully implemented to take advantage of one's target architecture.
131  * Here these two hash functions are defined multiple time; once for
132  * 64-bit architectures, once for 32-bit SSE2 architectures, and once
133  * for the rest (32-bit) architectures.
134  * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
135  * Optionally, nh_vmac_nhbytes can be defined (for multiples of
136  * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
137  * NH computations at once).
138  */
139 
140 #ifdef CONFIG_64BIT
141 
142 #define nh_16(mp, kp, nw, rh, rl)					\
143 	do {								\
144 		int i; u64 th, tl;					\
145 		rh = rl = 0;						\
146 		for (i = 0; i < nw; i += 2) {				\
147 			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
148 				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
149 			ADD128(rh, rl, th, tl);				\
150 		}							\
151 	} while (0)
152 
153 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\
154 	do {								\
155 		int i; u64 th, tl;					\
156 		rh1 = rl1 = rh = rl = 0;				\
157 		for (i = 0; i < nw; i += 2) {				\
158 			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
159 				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
160 			ADD128(rh, rl, th, tl);				\
161 			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
162 				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
163 			ADD128(rh1, rl1, th, tl);			\
164 		}							\
165 	} while (0)
166 
167 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
168 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
169 	do {								\
170 		int i; u64 th, tl;					\
171 		rh = rl = 0;						\
172 		for (i = 0; i < nw; i += 8) {				\
173 			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
174 				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
175 			ADD128(rh, rl, th, tl);				\
176 			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
177 				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
178 			ADD128(rh, rl, th, tl);				\
179 			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
180 				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
181 			ADD128(rh, rl, th, tl);				\
182 			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
183 				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
184 			ADD128(rh, rl, th, tl);				\
185 		}							\
186 	} while (0)
187 
188 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\
189 	do {								\
190 		int i; u64 th, tl;					\
191 		rh1 = rl1 = rh = rl = 0;				\
192 		for (i = 0; i < nw; i += 8) {				\
193 			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
194 				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
195 			ADD128(rh, rl, th, tl);				\
196 			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
197 				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
198 			ADD128(rh1, rl1, th, tl);			\
199 			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
200 				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
201 			ADD128(rh, rl, th, tl);				\
202 			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4],	\
203 				pe64_to_cpup((mp)+i+3)+(kp)[i+5]);	\
204 			ADD128(rh1, rl1, th, tl);			\
205 			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
206 				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
207 			ADD128(rh, rl, th, tl);				\
208 			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6],	\
209 				pe64_to_cpup((mp)+i+5)+(kp)[i+7]);	\
210 			ADD128(rh1, rl1, th, tl);			\
211 			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
212 				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
213 			ADD128(rh, rl, th, tl);				\
214 			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8],	\
215 				pe64_to_cpup((mp)+i+7)+(kp)[i+9]);	\
216 			ADD128(rh1, rl1, th, tl);			\
217 		}							\
218 	} while (0)
219 #endif
220 
221 #define poly_step(ah, al, kh, kl, mh, ml)				\
222 	do {								\
223 		u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\
224 		/* compute ab*cd, put bd into result registers */	\
225 		PMUL64(t3h, t3l, al, kh);				\
226 		PMUL64(t2h, t2l, ah, kl);				\
227 		PMUL64(t1h, t1l, ah, 2*kh);				\
228 		PMUL64(ah, al, al, kl);					\
229 		/* add 2 * ac to result */				\
230 		ADD128(ah, al, t1h, t1l);				\
231 		/* add together ad + bc */				\
232 		ADD128(t2h, t2l, t3h, t3l);				\
233 		/* now (ah,al), (t2l,2*t2h) need summing */		\
234 		/* first add the high registers, carrying into t2h */	\
235 		ADD128(t2h, ah, z, t2l);				\
236 		/* double t2h and add top bit of ah */			\
237 		t2h = 2 * t2h + (ah >> 63);				\
238 		ah &= m63;						\
239 		/* now add the low registers */				\
240 		ADD128(ah, al, mh, ml);					\
241 		ADD128(ah, al, z, t2h);					\
242 	} while (0)
243 
244 #else /* ! CONFIG_64BIT */
245 
246 #ifndef nh_16
247 #define nh_16(mp, kp, nw, rh, rl)					\
248 	do {								\
249 		u64 t1, t2, m1, m2, t;					\
250 		int i;							\
251 		rh = rl = t = 0;					\
252 		for (i = 0; i < nw; i += 2)  {				\
253 			t1 = pe64_to_cpup(mp+i) + kp[i];		\
254 			t2 = pe64_to_cpup(mp+i+1) + kp[i+1];		\
255 			m2 = MUL32(t1 >> 32, t2);			\
256 			m1 = MUL32(t1, t2 >> 32);			\
257 			ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\
258 				MUL32(t1, t2));				\
259 			rh += (u64)(u32)(m1 >> 32)			\
260 				+ (u32)(m2 >> 32);			\
261 			t += (u64)(u32)m1 + (u32)m2;			\
262 		}							\
263 		ADD128(rh, rl, (t >> 32), (t << 32));			\
264 	} while (0)
265 #endif
266 
267 static void poly_step_func(u64 *ahi, u64 *alo,
268 			const u64 *kh, const u64 *kl,
269 			const u64 *mh, const u64 *ml)
270 {
271 #define a0 (*(((u32 *)alo)+INDEX_LOW))
272 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
273 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
274 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
275 #define k0 (*(((u32 *)kl)+INDEX_LOW))
276 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
277 #define k2 (*(((u32 *)kh)+INDEX_LOW))
278 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
279 
280 	u64 p, q, t;
281 	u32 t2;
282 
283 	p = MUL32(a3, k3);
284 	p += p;
285 	p += *(u64 *)mh;
286 	p += MUL32(a0, k2);
287 	p += MUL32(a1, k1);
288 	p += MUL32(a2, k0);
289 	t = (u32)(p);
290 	p >>= 32;
291 	p += MUL32(a0, k3);
292 	p += MUL32(a1, k2);
293 	p += MUL32(a2, k1);
294 	p += MUL32(a3, k0);
295 	t |= ((u64)((u32)p & 0x7fffffff)) << 32;
296 	p >>= 31;
297 	p += (u64)(((u32 *)ml)[INDEX_LOW]);
298 	p += MUL32(a0, k0);
299 	q =  MUL32(a1, k3);
300 	q += MUL32(a2, k2);
301 	q += MUL32(a3, k1);
302 	q += q;
303 	p += q;
304 	t2 = (u32)(p);
305 	p >>= 32;
306 	p += (u64)(((u32 *)ml)[INDEX_HIGH]);
307 	p += MUL32(a0, k1);
308 	p += MUL32(a1, k0);
309 	q =  MUL32(a2, k3);
310 	q += MUL32(a3, k2);
311 	q += q;
312 	p += q;
313 	*(u64 *)(alo) = (p << 32) | t2;
314 	p >>= 32;
315 	*(u64 *)(ahi) = p + t;
316 
317 #undef a0
318 #undef a1
319 #undef a2
320 #undef a3
321 #undef k0
322 #undef k1
323 #undef k2
324 #undef k3
325 }
326 
327 #define poly_step(ah, al, kh, kl, mh, ml)				\
328 	poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
329 
330 #endif  /* end of specialized NH and poly definitions */
331 
332 /* At least nh_16 is defined. Defined others as needed here */
333 #ifndef nh_16_2
334 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\
335 	do { 								\
336 		nh_16(mp, kp, nw, rh, rl);				\
337 		nh_16(mp, ((kp)+2), nw, rh2, rl2);			\
338 	} while (0)
339 #endif
340 #ifndef nh_vmac_nhbytes
341 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
342 	nh_16(mp, kp, nw, rh, rl)
343 #endif
344 #ifndef nh_vmac_nhbytes_2
345 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\
346 	do {								\
347 		nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\
348 		nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\
349 	} while (0)
350 #endif
351 
352 static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
353 {
354 	u64 rh, rl, t, z = 0;
355 
356 	/* fully reduce (p1,p2)+(len,0) mod p127 */
357 	t = p1 >> 63;
358 	p1 &= m63;
359 	ADD128(p1, p2, len, t);
360 	/* At this point, (p1,p2) is at most 2^127+(len<<64) */
361 	t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
362 	ADD128(p1, p2, z, t);
363 	p1 &= m63;
364 
365 	/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
366 	t = p1 + (p2 >> 32);
367 	t += (t >> 32);
368 	t += (u32)t > 0xfffffffeu;
369 	p1 += (t >> 32);
370 	p2 += (p1 << 32);
371 
372 	/* compute (p1+k1)%p64 and (p2+k2)%p64 */
373 	p1 += k1;
374 	p1 += (0 - (p1 < k1)) & 257;
375 	p2 += k2;
376 	p2 += (0 - (p2 < k2)) & 257;
377 
378 	/* compute (p1+k1)*(p2+k2)%p64 */
379 	MUL64(rh, rl, p1, p2);
380 	t = rh >> 56;
381 	ADD128(t, rl, z, rh);
382 	rh <<= 8;
383 	ADD128(t, rl, z, rh);
384 	t += t << 8;
385 	rl += t;
386 	rl += (0 - (rl < t)) & 257;
387 	rl += (0 - (rl > p64-1)) & 257;
388 	return rl;
389 }
390 
391 /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
392 static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
393 			 struct vmac_desc_ctx *dctx,
394 			 const __le64 *mptr, unsigned int blocks)
395 {
396 	const u64 *kptr = tctx->nhkey;
397 	const u64 pkh = tctx->polykey[0];
398 	const u64 pkl = tctx->polykey[1];
399 	u64 ch = dctx->polytmp[0];
400 	u64 cl = dctx->polytmp[1];
401 	u64 rh, rl;
402 
403 	if (!dctx->first_block_processed) {
404 		dctx->first_block_processed = true;
405 		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
406 		rh &= m62;
407 		ADD128(ch, cl, rh, rl);
408 		mptr += (VMAC_NHBYTES/sizeof(u64));
409 		blocks--;
410 	}
411 
412 	while (blocks--) {
413 		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
414 		rh &= m62;
415 		poly_step(ch, cl, pkh, pkl, rh, rl);
416 		mptr += (VMAC_NHBYTES/sizeof(u64));
417 	}
418 
419 	dctx->polytmp[0] = ch;
420 	dctx->polytmp[1] = cl;
421 }
422 
423 static int vmac_setkey(struct crypto_shash *tfm,
424 		       const u8 *key, unsigned int keylen)
425 {
426 	struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
427 	__be64 out[2];
428 	u8 in[16] = { 0 };
429 	unsigned int i;
430 	int err;
431 
432 	if (keylen != VMAC_KEY_LEN) {
433 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
434 		return -EINVAL;
435 	}
436 
437 	err = crypto_cipher_setkey(tctx->cipher, key, keylen);
438 	if (err)
439 		return err;
440 
441 	/* Fill nh key */
442 	in[0] = 0x80;
443 	for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
444 		crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
445 		tctx->nhkey[i] = be64_to_cpu(out[0]);
446 		tctx->nhkey[i+1] = be64_to_cpu(out[1]);
447 		in[15]++;
448 	}
449 
450 	/* Fill poly key */
451 	in[0] = 0xC0;
452 	in[15] = 0;
453 	for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
454 		crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
455 		tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
456 		tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
457 		in[15]++;
458 	}
459 
460 	/* Fill ip key */
461 	in[0] = 0xE0;
462 	in[15] = 0;
463 	for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
464 		do {
465 			crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
466 			tctx->l3key[i] = be64_to_cpu(out[0]);
467 			tctx->l3key[i+1] = be64_to_cpu(out[1]);
468 			in[15]++;
469 		} while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
470 	}
471 
472 	return 0;
473 }
474 
475 static int vmac_init(struct shash_desc *desc)
476 {
477 	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
478 	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
479 
480 	dctx->partial_size = 0;
481 	dctx->first_block_processed = false;
482 	memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
483 	return 0;
484 }
485 
486 static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
487 {
488 	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
489 	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
490 	unsigned int n;
491 
492 	if (dctx->partial_size) {
493 		n = min(len, VMAC_NHBYTES - dctx->partial_size);
494 		memcpy(&dctx->partial[dctx->partial_size], p, n);
495 		dctx->partial_size += n;
496 		p += n;
497 		len -= n;
498 		if (dctx->partial_size == VMAC_NHBYTES) {
499 			vhash_blocks(tctx, dctx, dctx->partial_words, 1);
500 			dctx->partial_size = 0;
501 		}
502 	}
503 
504 	if (len >= VMAC_NHBYTES) {
505 		n = round_down(len, VMAC_NHBYTES);
506 		/* TODO: 'p' may be misaligned here */
507 		vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
508 		p += n;
509 		len -= n;
510 	}
511 
512 	if (len) {
513 		memcpy(dctx->partial, p, len);
514 		dctx->partial_size = len;
515 	}
516 
517 	return 0;
518 }
519 
520 static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
521 		       struct vmac_desc_ctx *dctx)
522 {
523 	unsigned int partial = dctx->partial_size;
524 	u64 ch = dctx->polytmp[0];
525 	u64 cl = dctx->polytmp[1];
526 
527 	/* L1 and L2-hash the final block if needed */
528 	if (partial) {
529 		/* Zero-pad to next 128-bit boundary */
530 		unsigned int n = round_up(partial, 16);
531 		u64 rh, rl;
532 
533 		memset(&dctx->partial[partial], 0, n - partial);
534 		nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
535 		rh &= m62;
536 		if (dctx->first_block_processed)
537 			poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
538 				  rh, rl);
539 		else
540 			ADD128(ch, cl, rh, rl);
541 	}
542 
543 	/* L3-hash the 128-bit output of L2-hash */
544 	return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
545 }
546 
547 static int vmac_final(struct shash_desc *desc, u8 *out)
548 {
549 	const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
550 	struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
551 	static const u8 nonce[16] = {}; /* TODO: this is insecure */
552 	union {
553 		u8 bytes[16];
554 		__be64 pads[2];
555 	} block;
556 	int index;
557 	u64 hash, pad;
558 
559 	/* Finish calculating the VHASH of the message */
560 	hash = vhash_final(tctx, dctx);
561 
562 	/* Generate pseudorandom pad by encrypting the nonce */
563 	memcpy(&block, nonce, 16);
564 	index = block.bytes[15] & 1;
565 	block.bytes[15] &= ~1;
566 	crypto_cipher_encrypt_one(tctx->cipher, block.bytes, block.bytes);
567 	pad = be64_to_cpu(block.pads[index]);
568 
569 	/* The VMAC is the sum of VHASH and the pseudorandom pad */
570 	put_unaligned_le64(hash + pad, out);
571 	return 0;
572 }
573 
574 static int vmac_init_tfm(struct crypto_tfm *tfm)
575 {
576 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
577 	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
578 	struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
579 	struct crypto_cipher *cipher;
580 
581 	cipher = crypto_spawn_cipher(spawn);
582 	if (IS_ERR(cipher))
583 		return PTR_ERR(cipher);
584 
585 	tctx->cipher = cipher;
586 	return 0;
587 }
588 
589 static void vmac_exit_tfm(struct crypto_tfm *tfm)
590 {
591 	struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
592 
593 	crypto_free_cipher(tctx->cipher);
594 }
595 
596 static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
597 {
598 	struct shash_instance *inst;
599 	struct crypto_alg *alg;
600 	int err;
601 
602 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
603 	if (err)
604 		return err;
605 
606 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
607 			CRYPTO_ALG_TYPE_MASK);
608 	if (IS_ERR(alg))
609 		return PTR_ERR(alg);
610 
611 	err = -EINVAL;
612 	if (alg->cra_blocksize != 16)
613 		goto out_put_alg;
614 
615 	inst = shash_alloc_instance("vmac", alg);
616 	err = PTR_ERR(inst);
617 	if (IS_ERR(inst))
618 		goto out_put_alg;
619 
620 	err = crypto_init_spawn(shash_instance_ctx(inst), alg,
621 			shash_crypto_instance(inst),
622 			CRYPTO_ALG_TYPE_MASK);
623 	if (err)
624 		goto out_free_inst;
625 
626 	inst->alg.base.cra_priority = alg->cra_priority;
627 	inst->alg.base.cra_blocksize = alg->cra_blocksize;
628 	inst->alg.base.cra_alignmask = alg->cra_alignmask;
629 
630 	inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
631 	inst->alg.base.cra_init = vmac_init_tfm;
632 	inst->alg.base.cra_exit = vmac_exit_tfm;
633 
634 	inst->alg.descsize = sizeof(struct vmac_desc_ctx);
635 	inst->alg.digestsize = VMAC_TAG_LEN / 8;
636 	inst->alg.init = vmac_init;
637 	inst->alg.update = vmac_update;
638 	inst->alg.final = vmac_final;
639 	inst->alg.setkey = vmac_setkey;
640 
641 	err = shash_register_instance(tmpl, inst);
642 	if (err) {
643 out_free_inst:
644 		shash_free_instance(shash_crypto_instance(inst));
645 	}
646 
647 out_put_alg:
648 	crypto_mod_put(alg);
649 	return err;
650 }
651 
652 static struct crypto_template vmac_tmpl = {
653 	.name = "vmac",
654 	.create = vmac_create,
655 	.free = shash_free_instance,
656 	.module = THIS_MODULE,
657 };
658 
659 static int __init vmac_module_init(void)
660 {
661 	return crypto_register_template(&vmac_tmpl);
662 }
663 
664 static void __exit vmac_module_exit(void)
665 {
666 	crypto_unregister_template(&vmac_tmpl);
667 }
668 
669 module_init(vmac_module_init);
670 module_exit(vmac_module_exit);
671 
672 MODULE_LICENSE("GPL");
673 MODULE_DESCRIPTION("VMAC hash algorithm");
674 MODULE_ALIAS_CRYPTO("vmac");
675