1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25
26 struct usb_device;
27 struct usb_driver;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 * with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66 struct usb_host_endpoint {
67 struct usb_endpoint_descriptor desc;
68 struct usb_ss_ep_comp_descriptor ss_ep_comp;
69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
70 struct list_head urb_list;
71 void *hcpriv;
72 struct ep_device *ep_dev; /* For sysfs info */
73
74 unsigned char *extra; /* Extra descriptors */
75 int extralen;
76 int enabled;
77 int streams;
78 };
79
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 struct usb_interface_descriptor desc;
83
84 int extralen;
85 unsigned char *extra; /* Extra descriptors */
86
87 /* array of desc.bNumEndpoints endpoints associated with this
88 * interface setting. these will be in no particular order.
89 */
90 struct usb_host_endpoint *endpoint;
91
92 char *string; /* iInterface string, if present */
93 };
94
95 enum usb_interface_condition {
96 USB_INTERFACE_UNBOUND = 0,
97 USB_INTERFACE_BINDING,
98 USB_INTERFACE_BOUND,
99 USB_INTERFACE_UNBINDING,
100 };
101
102 int __must_check
103 usb_find_common_endpoints(struct usb_host_interface *alt,
104 struct usb_endpoint_descriptor **bulk_in,
105 struct usb_endpoint_descriptor **bulk_out,
106 struct usb_endpoint_descriptor **int_in,
107 struct usb_endpoint_descriptor **int_out);
108
109 int __must_check
110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111 struct usb_endpoint_descriptor **bulk_in,
112 struct usb_endpoint_descriptor **bulk_out,
113 struct usb_endpoint_descriptor **int_in,
114 struct usb_endpoint_descriptor **int_out);
115
116 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118 struct usb_endpoint_descriptor **bulk_in)
119 {
120 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121 }
122
123 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125 struct usb_endpoint_descriptor **bulk_out)
126 {
127 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128 }
129
130 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)131 usb_find_int_in_endpoint(struct usb_host_interface *alt,
132 struct usb_endpoint_descriptor **int_in)
133 {
134 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135 }
136
137 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)138 usb_find_int_out_endpoint(struct usb_host_interface *alt,
139 struct usb_endpoint_descriptor **int_out)
140 {
141 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142 }
143
144 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146 struct usb_endpoint_descriptor **bulk_in)
147 {
148 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149 }
150
151 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153 struct usb_endpoint_descriptor **bulk_out)
154 {
155 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156 }
157
158 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160 struct usb_endpoint_descriptor **int_in)
161 {
162 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163 }
164
165 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167 struct usb_endpoint_descriptor **int_out)
168 {
169 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170 }
171
172 enum usb_wireless_status {
173 USB_WIRELESS_STATUS_NA = 0,
174 USB_WIRELESS_STATUS_DISCONNECTED,
175 USB_WIRELESS_STATUS_CONNECTED,
176 };
177
178 /**
179 * struct usb_interface - what usb device drivers talk to
180 * @altsetting: array of interface structures, one for each alternate
181 * setting that may be selected. Each one includes a set of
182 * endpoint configurations. They will be in no particular order.
183 * @cur_altsetting: the current altsetting.
184 * @num_altsetting: number of altsettings defined.
185 * @intf_assoc: interface association descriptor
186 * @minor: the minor number assigned to this interface, if this
187 * interface is bound to a driver that uses the USB major number.
188 * If this interface does not use the USB major, this field should
189 * be unused. The driver should set this value in the probe()
190 * function of the driver, after it has been assigned a minor
191 * number from the USB core by calling usb_register_dev().
192 * @condition: binding state of the interface: not bound, binding
193 * (in probe()), bound to a driver, or unbinding (in disconnect())
194 * @sysfs_files_created: sysfs attributes exist
195 * @ep_devs_created: endpoint child pseudo-devices exist
196 * @unregistering: flag set when the interface is being unregistered
197 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
198 * capability during autosuspend.
199 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
200 * has been deferred.
201 * @needs_binding: flag set when the driver should be re-probed or unbound
202 * following a reset or suspend operation it doesn't support.
203 * @authorized: This allows to (de)authorize individual interfaces instead
204 * a whole device in contrast to the device authorization.
205 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
206 * the emitter is connected.
207 * @wireless_status_work: Used for scheduling wireless status changes
208 * from atomic context.
209 * @dev: driver model's view of this device
210 * @usb_dev: if an interface is bound to the USB major, this will point
211 * to the sysfs representation for that device.
212 * @reset_ws: Used for scheduling resets from atomic context.
213 * @resetting_device: USB core reset the device, so use alt setting 0 as
214 * current; needs bandwidth alloc after reset.
215 *
216 * USB device drivers attach to interfaces on a physical device. Each
217 * interface encapsulates a single high level function, such as feeding
218 * an audio stream to a speaker or reporting a change in a volume control.
219 * Many USB devices only have one interface. The protocol used to talk to
220 * an interface's endpoints can be defined in a usb "class" specification,
221 * or by a product's vendor. The (default) control endpoint is part of
222 * every interface, but is never listed among the interface's descriptors.
223 *
224 * The driver that is bound to the interface can use standard driver model
225 * calls such as dev_get_drvdata() on the dev member of this structure.
226 *
227 * Each interface may have alternate settings. The initial configuration
228 * of a device sets altsetting 0, but the device driver can change
229 * that setting using usb_set_interface(). Alternate settings are often
230 * used to control the use of periodic endpoints, such as by having
231 * different endpoints use different amounts of reserved USB bandwidth.
232 * All standards-conformant USB devices that use isochronous endpoints
233 * will use them in non-default settings.
234 *
235 * The USB specification says that alternate setting numbers must run from
236 * 0 to one less than the total number of alternate settings. But some
237 * devices manage to mess this up, and the structures aren't necessarily
238 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
239 * look up an alternate setting in the altsetting array based on its number.
240 */
241 struct usb_interface {
242 /* array of alternate settings for this interface,
243 * stored in no particular order */
244 struct usb_host_interface *altsetting;
245
246 struct usb_host_interface *cur_altsetting; /* the currently
247 * active alternate setting */
248 unsigned num_altsetting; /* number of alternate settings */
249
250 /* If there is an interface association descriptor then it will list
251 * the associated interfaces */
252 struct usb_interface_assoc_descriptor *intf_assoc;
253
254 int minor; /* minor number this interface is
255 * bound to */
256 enum usb_interface_condition condition; /* state of binding */
257 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
258 unsigned ep_devs_created:1; /* endpoint "devices" exist */
259 unsigned unregistering:1; /* unregistration is in progress */
260 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
261 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
262 unsigned needs_binding:1; /* needs delayed unbind/rebind */
263 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
264 unsigned authorized:1; /* used for interface authorization */
265 enum usb_wireless_status wireless_status;
266 struct work_struct wireless_status_work;
267
268 struct device dev; /* interface specific device info */
269 struct device *usb_dev;
270 struct work_struct reset_ws; /* for resets in atomic context */
271 };
272
273 #define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
274
usb_get_intfdata(struct usb_interface * intf)275 static inline void *usb_get_intfdata(struct usb_interface *intf)
276 {
277 return dev_get_drvdata(&intf->dev);
278 }
279
280 /**
281 * usb_set_intfdata() - associate driver-specific data with an interface
282 * @intf: USB interface
283 * @data: driver data
284 *
285 * Drivers can use this function in their probe() callbacks to associate
286 * driver-specific data with an interface.
287 *
288 * Note that there is generally no need to clear the driver-data pointer even
289 * if some drivers do so for historical or implementation-specific reasons.
290 */
usb_set_intfdata(struct usb_interface * intf,void * data)291 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
292 {
293 dev_set_drvdata(&intf->dev, data);
294 }
295
296 struct usb_interface *usb_get_intf(struct usb_interface *intf);
297 void usb_put_intf(struct usb_interface *intf);
298
299 /* Hard limit */
300 #define USB_MAXENDPOINTS 30
301 /* this maximum is arbitrary */
302 #define USB_MAXINTERFACES 32
303 #define USB_MAXIADS (USB_MAXINTERFACES/2)
304
305 bool usb_check_bulk_endpoints(
306 const struct usb_interface *intf, const u8 *ep_addrs);
307 bool usb_check_int_endpoints(
308 const struct usb_interface *intf, const u8 *ep_addrs);
309
310 /*
311 * USB Resume Timer: Every Host controller driver should drive the resume
312 * signalling on the bus for the amount of time defined by this macro.
313 *
314 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
315 *
316 * Note that the USB Specification states we should drive resume for *at least*
317 * 20 ms, but it doesn't give an upper bound. This creates two possible
318 * situations which we want to avoid:
319 *
320 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
321 * us to fail USB Electrical Tests, thus failing Certification
322 *
323 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
324 * and while we can argue that's against the USB Specification, we don't have
325 * control over which devices a certification laboratory will be using for
326 * certification. If CertLab uses a device which was tested against Windows and
327 * that happens to have relaxed resume signalling rules, we might fall into
328 * situations where we fail interoperability and electrical tests.
329 *
330 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
331 * should cope with both LPJ calibration errors and devices not following every
332 * detail of the USB Specification.
333 */
334 #define USB_RESUME_TIMEOUT 40 /* ms */
335
336 /**
337 * struct usb_interface_cache - long-term representation of a device interface
338 * @num_altsetting: number of altsettings defined.
339 * @ref: reference counter.
340 * @altsetting: variable-length array of interface structures, one for
341 * each alternate setting that may be selected. Each one includes a
342 * set of endpoint configurations. They will be in no particular order.
343 *
344 * These structures persist for the lifetime of a usb_device, unlike
345 * struct usb_interface (which persists only as long as its configuration
346 * is installed). The altsetting arrays can be accessed through these
347 * structures at any time, permitting comparison of configurations and
348 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
349 */
350 struct usb_interface_cache {
351 unsigned num_altsetting; /* number of alternate settings */
352 struct kref ref; /* reference counter */
353
354 /* variable-length array of alternate settings for this interface,
355 * stored in no particular order */
356 struct usb_host_interface altsetting[];
357 };
358 #define ref_to_usb_interface_cache(r) \
359 container_of(r, struct usb_interface_cache, ref)
360 #define altsetting_to_usb_interface_cache(a) \
361 container_of(a, struct usb_interface_cache, altsetting[0])
362
363 /**
364 * struct usb_host_config - representation of a device's configuration
365 * @desc: the device's configuration descriptor.
366 * @string: pointer to the cached version of the iConfiguration string, if
367 * present for this configuration.
368 * @intf_assoc: list of any interface association descriptors in this config
369 * @interface: array of pointers to usb_interface structures, one for each
370 * interface in the configuration. The number of interfaces is stored
371 * in desc.bNumInterfaces. These pointers are valid only while the
372 * configuration is active.
373 * @intf_cache: array of pointers to usb_interface_cache structures, one
374 * for each interface in the configuration. These structures exist
375 * for the entire life of the device.
376 * @extra: pointer to buffer containing all extra descriptors associated
377 * with this configuration (those preceding the first interface
378 * descriptor).
379 * @extralen: length of the extra descriptors buffer.
380 *
381 * USB devices may have multiple configurations, but only one can be active
382 * at any time. Each encapsulates a different operational environment;
383 * for example, a dual-speed device would have separate configurations for
384 * full-speed and high-speed operation. The number of configurations
385 * available is stored in the device descriptor as bNumConfigurations.
386 *
387 * A configuration can contain multiple interfaces. Each corresponds to
388 * a different function of the USB device, and all are available whenever
389 * the configuration is active. The USB standard says that interfaces
390 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
391 * of devices get this wrong. In addition, the interface array is not
392 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
393 * look up an interface entry based on its number.
394 *
395 * Device drivers should not attempt to activate configurations. The choice
396 * of which configuration to install is a policy decision based on such
397 * considerations as available power, functionality provided, and the user's
398 * desires (expressed through userspace tools). However, drivers can call
399 * usb_reset_configuration() to reinitialize the current configuration and
400 * all its interfaces.
401 */
402 struct usb_host_config {
403 struct usb_config_descriptor desc;
404
405 char *string; /* iConfiguration string, if present */
406
407 /* List of any Interface Association Descriptors in this
408 * configuration. */
409 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
410
411 /* the interfaces associated with this configuration,
412 * stored in no particular order */
413 struct usb_interface *interface[USB_MAXINTERFACES];
414
415 /* Interface information available even when this is not the
416 * active configuration */
417 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
418
419 unsigned char *extra; /* Extra descriptors */
420 int extralen;
421 };
422
423 /* USB2.0 and USB3.0 device BOS descriptor set */
424 struct usb_host_bos {
425 struct usb_bos_descriptor *desc;
426
427 struct usb_ext_cap_descriptor *ext_cap;
428 struct usb_ss_cap_descriptor *ss_cap;
429 struct usb_ssp_cap_descriptor *ssp_cap;
430 struct usb_ss_container_id_descriptor *ss_id;
431 struct usb_ptm_cap_descriptor *ptm_cap;
432 };
433
434 int __usb_get_extra_descriptor(char *buffer, unsigned size,
435 unsigned char type, void **ptr, size_t min);
436 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
437 __usb_get_extra_descriptor((ifpoint)->extra, \
438 (ifpoint)->extralen, \
439 type, (void **)ptr, sizeof(**(ptr)))
440
441 /* ----------------------------------------------------------------------- */
442
443 /* USB device number allocation bitmap */
444 struct usb_devmap {
445 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
446 };
447
448 /*
449 * Allocated per bus (tree of devices) we have:
450 */
451 struct usb_bus {
452 struct device *controller; /* host side hardware */
453 struct device *sysdev; /* as seen from firmware or bus */
454 int busnum; /* Bus number (in order of reg) */
455 const char *bus_name; /* stable id (PCI slot_name etc) */
456 u8 uses_pio_for_control; /*
457 * Does the host controller use PIO
458 * for control transfers?
459 */
460 u8 otg_port; /* 0, or number of OTG/HNP port */
461 unsigned is_b_host:1; /* true during some HNP roleswitches */
462 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
463 unsigned no_stop_on_short:1; /*
464 * Quirk: some controllers don't stop
465 * the ep queue on a short transfer
466 * with the URB_SHORT_NOT_OK flag set.
467 */
468 unsigned no_sg_constraint:1; /* no sg constraint */
469 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
470
471 int devnum_next; /* Next open device number in
472 * round-robin allocation */
473 struct mutex devnum_next_mutex; /* devnum_next mutex */
474
475 struct usb_devmap devmap; /* device address allocation map */
476 struct usb_device *root_hub; /* Root hub */
477 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
478
479 int bandwidth_allocated; /* on this bus: how much of the time
480 * reserved for periodic (intr/iso)
481 * requests is used, on average?
482 * Units: microseconds/frame.
483 * Limits: Full/low speed reserve 90%,
484 * while high speed reserves 80%.
485 */
486 int bandwidth_int_reqs; /* number of Interrupt requests */
487 int bandwidth_isoc_reqs; /* number of Isoc. requests */
488
489 unsigned resuming_ports; /* bit array: resuming root-hub ports */
490
491 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
492 struct mon_bus *mon_bus; /* non-null when associated */
493 int monitored; /* non-zero when monitored */
494 #endif
495 };
496
497 struct usb_dev_state;
498
499 /* ----------------------------------------------------------------------- */
500
501 struct usb_tt;
502
503 enum usb_port_connect_type {
504 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505 USB_PORT_CONNECT_TYPE_HOT_PLUG,
506 USB_PORT_CONNECT_TYPE_HARD_WIRED,
507 USB_PORT_NOT_USED,
508 };
509
510 /*
511 * USB port quirks.
512 */
513
514 /* For the given port, prefer the old (faster) enumeration scheme. */
515 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
516
517 /* Decrease TRSTRCY to 10ms during device enumeration. */
518 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
519
520 /*
521 * USB 2.0 Link Power Management (LPM) parameters.
522 */
523 struct usb2_lpm_parameters {
524 /* Best effort service latency indicate how long the host will drive
525 * resume on an exit from L1.
526 */
527 unsigned int besl;
528
529 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530 * When the timer counts to zero, the parent hub will initiate a LPM
531 * transition to L1.
532 */
533 int timeout;
534 };
535
536 /*
537 * USB 3.0 Link Power Management (LPM) parameters.
538 *
539 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541 * All three are stored in nanoseconds.
542 */
543 struct usb3_lpm_parameters {
544 /*
545 * Maximum exit latency (MEL) for the host to send a packet to the
546 * device (either a Ping for isoc endpoints, or a data packet for
547 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548 * in the path to transition the links to U0.
549 */
550 unsigned int mel;
551 /*
552 * Maximum exit latency for a device-initiated LPM transition to bring
553 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
554 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
555 */
556 unsigned int pel;
557
558 /*
559 * The System Exit Latency (SEL) includes PEL, and three other
560 * latencies. After a device initiates a U0 transition, it will take
561 * some time from when the device sends the ERDY to when it will finally
562 * receive the data packet. Basically, SEL should be the worse-case
563 * latency from when a device starts initiating a U0 transition to when
564 * it will get data.
565 */
566 unsigned int sel;
567 /*
568 * The idle timeout value that is currently programmed into the parent
569 * hub for this device. When the timer counts to zero, the parent hub
570 * will initiate an LPM transition to either U1 or U2.
571 */
572 int timeout;
573 };
574
575 /**
576 * struct usb_device - kernel's representation of a USB device
577 * @devnum: device number; address on a USB bus
578 * @devpath: device ID string for use in messages (e.g., /port/...)
579 * @route: tree topology hex string for use with xHCI
580 * @state: device state: configured, not attached, etc.
581 * @speed: device speed: high/full/low (or error)
582 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
585 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
586 * @ttport: device port on that tt hub
587 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
588 * @parent: our hub, unless we're the root
589 * @bus: bus we're part of
590 * @ep0: endpoint 0 data (default control pipe)
591 * @dev: generic device interface
592 * @descriptor: USB device descriptor
593 * @bos: USB device BOS descriptor set
594 * @config: all of the device's configs
595 * @actconfig: the active configuration
596 * @ep_in: array of IN endpoints
597 * @ep_out: array of OUT endpoints
598 * @rawdescriptors: raw descriptors for each config
599 * @bus_mA: Current available from the bus
600 * @portnum: parent port number (origin 1)
601 * @level: number of USB hub ancestors
602 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
603 * @can_submit: URBs may be submitted
604 * @persist_enabled: USB_PERSIST enabled for this device
605 * @reset_in_progress: the device is being reset
606 * @have_langid: whether string_langid is valid
607 * @authorized: policy has said we can use it;
608 * (user space) policy determines if we authorize this device to be
609 * used or not. By default, wired USB devices are authorized.
610 * WUSB devices are not, until we authorize them from user space.
611 * FIXME -- complete doc
612 * @authenticated: Crypto authentication passed
613 * @lpm_capable: device supports LPM
614 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
615 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
616 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
617 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
618 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
619 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
620 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
621 * @string_langid: language ID for strings
622 * @product: iProduct string, if present (static)
623 * @manufacturer: iManufacturer string, if present (static)
624 * @serial: iSerialNumber string, if present (static)
625 * @filelist: usbfs files that are open to this device
626 * @maxchild: number of ports if hub
627 * @quirks: quirks of the whole device
628 * @urbnum: number of URBs submitted for the whole device
629 * @active_duration: total time device is not suspended
630 * @connect_time: time device was first connected
631 * @do_remote_wakeup: remote wakeup should be enabled
632 * @reset_resume: needs reset instead of resume
633 * @port_is_suspended: the upstream port is suspended (L2 or U3)
634 * @slot_id: Slot ID assigned by xHCI
635 * @removable: Device can be physically removed from this port
636 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
637 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
638 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
639 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
640 * to keep track of the number of functions that require USB 3.0 Link Power
641 * Management to be disabled for this usb_device. This count should only
642 * be manipulated by those functions, with the bandwidth_mutex is held.
643 * @hub_delay: cached value consisting of:
644 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
645 * Will be used as wValue for SetIsochDelay requests.
646 * @use_generic_driver: ask driver core to reprobe using the generic driver.
647 *
648 * Notes:
649 * Usbcore drivers should not set usbdev->state directly. Instead use
650 * usb_set_device_state().
651 */
652 struct usb_device {
653 int devnum;
654 char devpath[16];
655 u32 route;
656 enum usb_device_state state;
657 enum usb_device_speed speed;
658 unsigned int rx_lanes;
659 unsigned int tx_lanes;
660 enum usb_ssp_rate ssp_rate;
661
662 struct usb_tt *tt;
663 int ttport;
664
665 unsigned int toggle[2];
666
667 struct usb_device *parent;
668 struct usb_bus *bus;
669 struct usb_host_endpoint ep0;
670
671 struct device dev;
672
673 struct usb_device_descriptor descriptor;
674 struct usb_host_bos *bos;
675 struct usb_host_config *config;
676
677 struct usb_host_config *actconfig;
678 struct usb_host_endpoint *ep_in[16];
679 struct usb_host_endpoint *ep_out[16];
680
681 char **rawdescriptors;
682
683 unsigned short bus_mA;
684 u8 portnum;
685 u8 level;
686 u8 devaddr;
687
688 unsigned can_submit:1;
689 unsigned persist_enabled:1;
690 unsigned reset_in_progress:1;
691 unsigned have_langid:1;
692 unsigned authorized:1;
693 unsigned authenticated:1;
694 unsigned lpm_capable:1;
695 unsigned lpm_devinit_allow:1;
696 unsigned usb2_hw_lpm_capable:1;
697 unsigned usb2_hw_lpm_besl_capable:1;
698 unsigned usb2_hw_lpm_enabled:1;
699 unsigned usb2_hw_lpm_allowed:1;
700 unsigned usb3_lpm_u1_enabled:1;
701 unsigned usb3_lpm_u2_enabled:1;
702 int string_langid;
703
704 /* static strings from the device */
705 char *product;
706 char *manufacturer;
707 char *serial;
708
709 struct list_head filelist;
710
711 int maxchild;
712
713 u32 quirks;
714 atomic_t urbnum;
715
716 unsigned long active_duration;
717
718 unsigned long connect_time;
719
720 unsigned do_remote_wakeup:1;
721 unsigned reset_resume:1;
722 unsigned port_is_suspended:1;
723
724 int slot_id;
725 struct usb2_lpm_parameters l1_params;
726 struct usb3_lpm_parameters u1_params;
727 struct usb3_lpm_parameters u2_params;
728 unsigned lpm_disable_count;
729
730 u16 hub_delay;
731 unsigned use_generic_driver:1;
732 };
733
734 #define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
735
__intf_to_usbdev(struct usb_interface * intf)736 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
737 {
738 return to_usb_device(intf->dev.parent);
739 }
__intf_to_usbdev_const(const struct usb_interface * intf)740 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
741 {
742 return to_usb_device((const struct device *)intf->dev.parent);
743 }
744
745 #define interface_to_usbdev(intf) \
746 _Generic((intf), \
747 const struct usb_interface *: __intf_to_usbdev_const, \
748 struct usb_interface *: __intf_to_usbdev)(intf)
749
750 extern struct usb_device *usb_get_dev(struct usb_device *dev);
751 extern void usb_put_dev(struct usb_device *dev);
752 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
753 int port1);
754
755 /**
756 * usb_hub_for_each_child - iterate over all child devices on the hub
757 * @hdev: USB device belonging to the usb hub
758 * @port1: portnum associated with child device
759 * @child: child device pointer
760 */
761 #define usb_hub_for_each_child(hdev, port1, child) \
762 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
763 port1 <= hdev->maxchild; \
764 child = usb_hub_find_child(hdev, ++port1)) \
765 if (!child) continue; else
766
767 /* USB device locking */
768 #define usb_lock_device(udev) device_lock(&(udev)->dev)
769 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
770 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
771 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
772 extern int usb_lock_device_for_reset(struct usb_device *udev,
773 const struct usb_interface *iface);
774
775 /* USB port reset for device reinitialization */
776 extern int usb_reset_device(struct usb_device *dev);
777 extern void usb_queue_reset_device(struct usb_interface *dev);
778
779 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
780
781 #ifdef CONFIG_ACPI
782 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
783 bool enable);
784 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
785 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
786 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)787 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
788 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)789 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
790 { return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)791 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
792 { return 0; }
793 #endif
794
795 /* USB autosuspend and autoresume */
796 #ifdef CONFIG_PM
797 extern void usb_enable_autosuspend(struct usb_device *udev);
798 extern void usb_disable_autosuspend(struct usb_device *udev);
799
800 extern int usb_autopm_get_interface(struct usb_interface *intf);
801 extern void usb_autopm_put_interface(struct usb_interface *intf);
802 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
803 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
804 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
805 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
806
usb_mark_last_busy(struct usb_device * udev)807 static inline void usb_mark_last_busy(struct usb_device *udev)
808 {
809 pm_runtime_mark_last_busy(&udev->dev);
810 }
811
812 #else
813
usb_enable_autosuspend(struct usb_device * udev)814 static inline int usb_enable_autosuspend(struct usb_device *udev)
815 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)816 static inline int usb_disable_autosuspend(struct usb_device *udev)
817 { return 0; }
818
usb_autopm_get_interface(struct usb_interface * intf)819 static inline int usb_autopm_get_interface(struct usb_interface *intf)
820 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)821 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
822 { return 0; }
823
usb_autopm_put_interface(struct usb_interface * intf)824 static inline void usb_autopm_put_interface(struct usb_interface *intf)
825 { }
usb_autopm_put_interface_async(struct usb_interface * intf)826 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
827 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)828 static inline void usb_autopm_get_interface_no_resume(
829 struct usb_interface *intf)
830 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)831 static inline void usb_autopm_put_interface_no_suspend(
832 struct usb_interface *intf)
833 { }
usb_mark_last_busy(struct usb_device * udev)834 static inline void usb_mark_last_busy(struct usb_device *udev)
835 { }
836 #endif
837
838 extern int usb_disable_lpm(struct usb_device *udev);
839 extern void usb_enable_lpm(struct usb_device *udev);
840 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
841 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
842 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
843
844 extern int usb_disable_ltm(struct usb_device *udev);
845 extern void usb_enable_ltm(struct usb_device *udev);
846
usb_device_supports_ltm(struct usb_device * udev)847 static inline bool usb_device_supports_ltm(struct usb_device *udev)
848 {
849 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
850 return false;
851 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
852 }
853
usb_device_no_sg_constraint(struct usb_device * udev)854 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
855 {
856 return udev && udev->bus && udev->bus->no_sg_constraint;
857 }
858
859
860 /*-------------------------------------------------------------------------*/
861
862 /* for drivers using iso endpoints */
863 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
864
865 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
866 extern int usb_alloc_streams(struct usb_interface *interface,
867 struct usb_host_endpoint **eps, unsigned int num_eps,
868 unsigned int num_streams, gfp_t mem_flags);
869
870 /* Reverts a group of bulk endpoints back to not using stream IDs. */
871 extern int usb_free_streams(struct usb_interface *interface,
872 struct usb_host_endpoint **eps, unsigned int num_eps,
873 gfp_t mem_flags);
874
875 /* used these for multi-interface device registration */
876 extern int usb_driver_claim_interface(struct usb_driver *driver,
877 struct usb_interface *iface, void *data);
878
879 /**
880 * usb_interface_claimed - returns true iff an interface is claimed
881 * @iface: the interface being checked
882 *
883 * Return: %true (nonzero) iff the interface is claimed, else %false
884 * (zero).
885 *
886 * Note:
887 * Callers must own the driver model's usb bus readlock. So driver
888 * probe() entries don't need extra locking, but other call contexts
889 * may need to explicitly claim that lock.
890 *
891 */
usb_interface_claimed(struct usb_interface * iface)892 static inline int usb_interface_claimed(struct usb_interface *iface)
893 {
894 return (iface->dev.driver != NULL);
895 }
896
897 extern void usb_driver_release_interface(struct usb_driver *driver,
898 struct usb_interface *iface);
899
900 int usb_set_wireless_status(struct usb_interface *iface,
901 enum usb_wireless_status status);
902
903 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
904 const struct usb_device_id *id);
905 extern int usb_match_one_id(struct usb_interface *interface,
906 const struct usb_device_id *id);
907
908 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
909 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
910 int minor);
911 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
912 unsigned ifnum);
913 extern struct usb_host_interface *usb_altnum_to_altsetting(
914 const struct usb_interface *intf, unsigned int altnum);
915 extern struct usb_host_interface *usb_find_alt_setting(
916 struct usb_host_config *config,
917 unsigned int iface_num,
918 unsigned int alt_num);
919
920 /* port claiming functions */
921 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
922 struct usb_dev_state *owner);
923 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
924 struct usb_dev_state *owner);
925
926 /**
927 * usb_make_path - returns stable device path in the usb tree
928 * @dev: the device whose path is being constructed
929 * @buf: where to put the string
930 * @size: how big is "buf"?
931 *
932 * Return: Length of the string (> 0) or negative if size was too small.
933 *
934 * Note:
935 * This identifier is intended to be "stable", reflecting physical paths in
936 * hardware such as physical bus addresses for host controllers or ports on
937 * USB hubs. That makes it stay the same until systems are physically
938 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
939 * controllers. Adding and removing devices, including virtual root hubs
940 * in host controller driver modules, does not change these path identifiers;
941 * neither does rebooting or re-enumerating. These are more useful identifiers
942 * than changeable ("unstable") ones like bus numbers or device addresses.
943 *
944 * With a partial exception for devices connected to USB 2.0 root hubs, these
945 * identifiers are also predictable. So long as the device tree isn't changed,
946 * plugging any USB device into a given hub port always gives it the same path.
947 * Because of the use of "companion" controllers, devices connected to ports on
948 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
949 * high speed, and a different one if they are full or low speed.
950 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)951 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
952 {
953 int actual;
954 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
955 dev->devpath);
956 return (actual >= (int)size) ? -1 : actual;
957 }
958
959 /*-------------------------------------------------------------------------*/
960
961 #define USB_DEVICE_ID_MATCH_DEVICE \
962 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
963 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
964 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
965 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
966 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
967 #define USB_DEVICE_ID_MATCH_DEV_INFO \
968 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
969 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
970 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
971 #define USB_DEVICE_ID_MATCH_INT_INFO \
972 (USB_DEVICE_ID_MATCH_INT_CLASS | \
973 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
974 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
975
976 /**
977 * USB_DEVICE - macro used to describe a specific usb device
978 * @vend: the 16 bit USB Vendor ID
979 * @prod: the 16 bit USB Product ID
980 *
981 * This macro is used to create a struct usb_device_id that matches a
982 * specific device.
983 */
984 #define USB_DEVICE(vend, prod) \
985 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
986 .idVendor = (vend), \
987 .idProduct = (prod)
988 /**
989 * USB_DEVICE_VER - describe a specific usb device with a version range
990 * @vend: the 16 bit USB Vendor ID
991 * @prod: the 16 bit USB Product ID
992 * @lo: the bcdDevice_lo value
993 * @hi: the bcdDevice_hi value
994 *
995 * This macro is used to create a struct usb_device_id that matches a
996 * specific device, with a version range.
997 */
998 #define USB_DEVICE_VER(vend, prod, lo, hi) \
999 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1000 .idVendor = (vend), \
1001 .idProduct = (prod), \
1002 .bcdDevice_lo = (lo), \
1003 .bcdDevice_hi = (hi)
1004
1005 /**
1006 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1007 * @vend: the 16 bit USB Vendor ID
1008 * @prod: the 16 bit USB Product ID
1009 * @cl: bInterfaceClass value
1010 *
1011 * This macro is used to create a struct usb_device_id that matches a
1012 * specific interface class of devices.
1013 */
1014 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1015 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1016 USB_DEVICE_ID_MATCH_INT_CLASS, \
1017 .idVendor = (vend), \
1018 .idProduct = (prod), \
1019 .bInterfaceClass = (cl)
1020
1021 /**
1022 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1023 * @vend: the 16 bit USB Vendor ID
1024 * @prod: the 16 bit USB Product ID
1025 * @pr: bInterfaceProtocol value
1026 *
1027 * This macro is used to create a struct usb_device_id that matches a
1028 * specific interface protocol of devices.
1029 */
1030 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1031 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1032 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1033 .idVendor = (vend), \
1034 .idProduct = (prod), \
1035 .bInterfaceProtocol = (pr)
1036
1037 /**
1038 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1039 * @vend: the 16 bit USB Vendor ID
1040 * @prod: the 16 bit USB Product ID
1041 * @num: bInterfaceNumber value
1042 *
1043 * This macro is used to create a struct usb_device_id that matches a
1044 * specific interface number of devices.
1045 */
1046 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1047 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1048 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1049 .idVendor = (vend), \
1050 .idProduct = (prod), \
1051 .bInterfaceNumber = (num)
1052
1053 /**
1054 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1055 * @cl: bDeviceClass value
1056 * @sc: bDeviceSubClass value
1057 * @pr: bDeviceProtocol value
1058 *
1059 * This macro is used to create a struct usb_device_id that matches a
1060 * specific class of devices.
1061 */
1062 #define USB_DEVICE_INFO(cl, sc, pr) \
1063 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1064 .bDeviceClass = (cl), \
1065 .bDeviceSubClass = (sc), \
1066 .bDeviceProtocol = (pr)
1067
1068 /**
1069 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1070 * @cl: bInterfaceClass value
1071 * @sc: bInterfaceSubClass value
1072 * @pr: bInterfaceProtocol value
1073 *
1074 * This macro is used to create a struct usb_device_id that matches a
1075 * specific class of interfaces.
1076 */
1077 #define USB_INTERFACE_INFO(cl, sc, pr) \
1078 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1079 .bInterfaceClass = (cl), \
1080 .bInterfaceSubClass = (sc), \
1081 .bInterfaceProtocol = (pr)
1082
1083 /**
1084 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1085 * @vend: the 16 bit USB Vendor ID
1086 * @prod: the 16 bit USB Product ID
1087 * @cl: bInterfaceClass value
1088 * @sc: bInterfaceSubClass value
1089 * @pr: bInterfaceProtocol value
1090 *
1091 * This macro is used to create a struct usb_device_id that matches a
1092 * specific device with a specific class of interfaces.
1093 *
1094 * This is especially useful when explicitly matching devices that have
1095 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1096 */
1097 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1098 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1099 | USB_DEVICE_ID_MATCH_DEVICE, \
1100 .idVendor = (vend), \
1101 .idProduct = (prod), \
1102 .bInterfaceClass = (cl), \
1103 .bInterfaceSubClass = (sc), \
1104 .bInterfaceProtocol = (pr)
1105
1106 /**
1107 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1108 * @vend: the 16 bit USB Vendor ID
1109 * @cl: bInterfaceClass value
1110 * @sc: bInterfaceSubClass value
1111 * @pr: bInterfaceProtocol value
1112 *
1113 * This macro is used to create a struct usb_device_id that matches a
1114 * specific vendor with a specific class of interfaces.
1115 *
1116 * This is especially useful when explicitly matching devices that have
1117 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1118 */
1119 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1120 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1121 | USB_DEVICE_ID_MATCH_VENDOR, \
1122 .idVendor = (vend), \
1123 .bInterfaceClass = (cl), \
1124 .bInterfaceSubClass = (sc), \
1125 .bInterfaceProtocol = (pr)
1126
1127 /* ----------------------------------------------------------------------- */
1128
1129 /* Stuff for dynamic usb ids */
1130 struct usb_dynids {
1131 spinlock_t lock;
1132 struct list_head list;
1133 };
1134
1135 struct usb_dynid {
1136 struct list_head node;
1137 struct usb_device_id id;
1138 };
1139
1140 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1141 const struct usb_device_id *id_table,
1142 struct device_driver *driver,
1143 const char *buf, size_t count);
1144
1145 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1146
1147 /**
1148 * struct usbdrv_wrap - wrapper for driver-model structure
1149 * @driver: The driver-model core driver structure.
1150 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1151 */
1152 struct usbdrv_wrap {
1153 struct device_driver driver;
1154 int for_devices;
1155 };
1156
1157 /**
1158 * struct usb_driver - identifies USB interface driver to usbcore
1159 * @name: The driver name should be unique among USB drivers,
1160 * and should normally be the same as the module name.
1161 * @probe: Called to see if the driver is willing to manage a particular
1162 * interface on a device. If it is, probe returns zero and uses
1163 * usb_set_intfdata() to associate driver-specific data with the
1164 * interface. It may also use usb_set_interface() to specify the
1165 * appropriate altsetting. If unwilling to manage the interface,
1166 * return -ENODEV, if genuine IO errors occurred, an appropriate
1167 * negative errno value.
1168 * @disconnect: Called when the interface is no longer accessible, usually
1169 * because its device has been (or is being) disconnected or the
1170 * driver module is being unloaded.
1171 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1172 * the "usbfs" filesystem. This lets devices provide ways to
1173 * expose information to user space regardless of where they
1174 * do (or don't) show up otherwise in the filesystem.
1175 * @suspend: Called when the device is going to be suspended by the
1176 * system either from system sleep or runtime suspend context. The
1177 * return value will be ignored in system sleep context, so do NOT
1178 * try to continue using the device if suspend fails in this case.
1179 * Instead, let the resume or reset-resume routine recover from
1180 * the failure.
1181 * @resume: Called when the device is being resumed by the system.
1182 * @reset_resume: Called when the suspended device has been reset instead
1183 * of being resumed.
1184 * @pre_reset: Called by usb_reset_device() when the device is about to be
1185 * reset. This routine must not return until the driver has no active
1186 * URBs for the device, and no more URBs may be submitted until the
1187 * post_reset method is called.
1188 * @post_reset: Called by usb_reset_device() after the device
1189 * has been reset
1190 * @id_table: USB drivers use ID table to support hotplugging.
1191 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1192 * or your driver's probe function will never get called.
1193 * @dev_groups: Attributes attached to the device that will be created once it
1194 * is bound to the driver.
1195 * @dynids: used internally to hold the list of dynamically added device
1196 * ids for this driver.
1197 * @drvwrap: Driver-model core structure wrapper.
1198 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1199 * added to this driver by preventing the sysfs file from being created.
1200 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1201 * for interfaces bound to this driver.
1202 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1203 * endpoints before calling the driver's disconnect method.
1204 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1205 * to initiate lower power link state transitions when an idle timeout
1206 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1207 *
1208 * USB interface drivers must provide a name, probe() and disconnect()
1209 * methods, and an id_table. Other driver fields are optional.
1210 *
1211 * The id_table is used in hotplugging. It holds a set of descriptors,
1212 * and specialized data may be associated with each entry. That table
1213 * is used by both user and kernel mode hotplugging support.
1214 *
1215 * The probe() and disconnect() methods are called in a context where
1216 * they can sleep, but they should avoid abusing the privilege. Most
1217 * work to connect to a device should be done when the device is opened,
1218 * and undone at the last close. The disconnect code needs to address
1219 * concurrency issues with respect to open() and close() methods, as
1220 * well as forcing all pending I/O requests to complete (by unlinking
1221 * them as necessary, and blocking until the unlinks complete).
1222 */
1223 struct usb_driver {
1224 const char *name;
1225
1226 int (*probe) (struct usb_interface *intf,
1227 const struct usb_device_id *id);
1228
1229 void (*disconnect) (struct usb_interface *intf);
1230
1231 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1232 void *buf);
1233
1234 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1235 int (*resume) (struct usb_interface *intf);
1236 int (*reset_resume)(struct usb_interface *intf);
1237
1238 int (*pre_reset)(struct usb_interface *intf);
1239 int (*post_reset)(struct usb_interface *intf);
1240
1241 const struct usb_device_id *id_table;
1242 const struct attribute_group **dev_groups;
1243
1244 struct usb_dynids dynids;
1245 struct usbdrv_wrap drvwrap;
1246 unsigned int no_dynamic_id:1;
1247 unsigned int supports_autosuspend:1;
1248 unsigned int disable_hub_initiated_lpm:1;
1249 unsigned int soft_unbind:1;
1250 };
1251 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1252
1253 /**
1254 * struct usb_device_driver - identifies USB device driver to usbcore
1255 * @name: The driver name should be unique among USB drivers,
1256 * and should normally be the same as the module name.
1257 * @match: If set, used for better device/driver matching.
1258 * @probe: Called to see if the driver is willing to manage a particular
1259 * device. If it is, probe returns zero and uses dev_set_drvdata()
1260 * to associate driver-specific data with the device. If unwilling
1261 * to manage the device, return a negative errno value.
1262 * @disconnect: Called when the device is no longer accessible, usually
1263 * because it has been (or is being) disconnected or the driver's
1264 * module is being unloaded.
1265 * @suspend: Called when the device is going to be suspended by the system.
1266 * @resume: Called when the device is being resumed by the system.
1267 * @dev_groups: Attributes attached to the device that will be created once it
1268 * is bound to the driver.
1269 * @drvwrap: Driver-model core structure wrapper.
1270 * @id_table: used with @match() to select better matching driver at
1271 * probe() time.
1272 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1273 * for devices bound to this driver.
1274 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1275 * resume and suspend functions will be called in addition to the driver's
1276 * own, so this part of the setup does not need to be replicated.
1277 *
1278 * USB drivers must provide all the fields listed above except drvwrap,
1279 * match, and id_table.
1280 */
1281 struct usb_device_driver {
1282 const char *name;
1283
1284 bool (*match) (struct usb_device *udev);
1285 int (*probe) (struct usb_device *udev);
1286 void (*disconnect) (struct usb_device *udev);
1287
1288 int (*suspend) (struct usb_device *udev, pm_message_t message);
1289 int (*resume) (struct usb_device *udev, pm_message_t message);
1290 const struct attribute_group **dev_groups;
1291 struct usbdrv_wrap drvwrap;
1292 const struct usb_device_id *id_table;
1293 unsigned int supports_autosuspend:1;
1294 unsigned int generic_subclass:1;
1295 };
1296 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1297 drvwrap.driver)
1298
1299 /**
1300 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1301 * @name: the usb class device name for this driver. Will show up in sysfs.
1302 * @devnode: Callback to provide a naming hint for a possible
1303 * device node to create.
1304 * @fops: pointer to the struct file_operations of this driver.
1305 * @minor_base: the start of the minor range for this driver.
1306 *
1307 * This structure is used for the usb_register_dev() and
1308 * usb_deregister_dev() functions, to consolidate a number of the
1309 * parameters used for them.
1310 */
1311 struct usb_class_driver {
1312 char *name;
1313 char *(*devnode)(const struct device *dev, umode_t *mode);
1314 const struct file_operations *fops;
1315 int minor_base;
1316 };
1317
1318 /*
1319 * use these in module_init()/module_exit()
1320 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1321 */
1322 extern int usb_register_driver(struct usb_driver *, struct module *,
1323 const char *);
1324
1325 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1326 #define usb_register(driver) \
1327 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1328
1329 extern void usb_deregister(struct usb_driver *);
1330
1331 /**
1332 * module_usb_driver() - Helper macro for registering a USB driver
1333 * @__usb_driver: usb_driver struct
1334 *
1335 * Helper macro for USB drivers which do not do anything special in module
1336 * init/exit. This eliminates a lot of boilerplate. Each module may only
1337 * use this macro once, and calling it replaces module_init() and module_exit()
1338 */
1339 #define module_usb_driver(__usb_driver) \
1340 module_driver(__usb_driver, usb_register, \
1341 usb_deregister)
1342
1343 extern int usb_register_device_driver(struct usb_device_driver *,
1344 struct module *);
1345 extern void usb_deregister_device_driver(struct usb_device_driver *);
1346
1347 extern int usb_register_dev(struct usb_interface *intf,
1348 struct usb_class_driver *class_driver);
1349 extern void usb_deregister_dev(struct usb_interface *intf,
1350 struct usb_class_driver *class_driver);
1351
1352 extern int usb_disabled(void);
1353
1354 /* ----------------------------------------------------------------------- */
1355
1356 /*
1357 * URB support, for asynchronous request completions
1358 */
1359
1360 /*
1361 * urb->transfer_flags:
1362 *
1363 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1364 */
1365 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1366 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1367 * slot in the schedule */
1368 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1369 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1370 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1371 * needed */
1372 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1373
1374 /* The following flags are used internally by usbcore and HCDs */
1375 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1376 #define URB_DIR_OUT 0
1377 #define URB_DIR_MASK URB_DIR_IN
1378
1379 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1380 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1381 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1382 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1383 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1384 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1385 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1386 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1387
1388 struct usb_iso_packet_descriptor {
1389 unsigned int offset;
1390 unsigned int length; /* expected length */
1391 unsigned int actual_length;
1392 int status;
1393 };
1394
1395 struct urb;
1396
1397 struct usb_anchor {
1398 struct list_head urb_list;
1399 wait_queue_head_t wait;
1400 spinlock_t lock;
1401 atomic_t suspend_wakeups;
1402 unsigned int poisoned:1;
1403 };
1404
init_usb_anchor(struct usb_anchor * anchor)1405 static inline void init_usb_anchor(struct usb_anchor *anchor)
1406 {
1407 memset(anchor, 0, sizeof(*anchor));
1408 INIT_LIST_HEAD(&anchor->urb_list);
1409 init_waitqueue_head(&anchor->wait);
1410 spin_lock_init(&anchor->lock);
1411 }
1412
1413 typedef void (*usb_complete_t)(struct urb *);
1414
1415 /**
1416 * struct urb - USB Request Block
1417 * @urb_list: For use by current owner of the URB.
1418 * @anchor_list: membership in the list of an anchor
1419 * @anchor: to anchor URBs to a common mooring
1420 * @ep: Points to the endpoint's data structure. Will eventually
1421 * replace @pipe.
1422 * @pipe: Holds endpoint number, direction, type, and more.
1423 * Create these values with the eight macros available;
1424 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1425 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1426 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1427 * numbers range from zero to fifteen. Note that "in" endpoint two
1428 * is a different endpoint (and pipe) from "out" endpoint two.
1429 * The current configuration controls the existence, type, and
1430 * maximum packet size of any given endpoint.
1431 * @stream_id: the endpoint's stream ID for bulk streams
1432 * @dev: Identifies the USB device to perform the request.
1433 * @status: This is read in non-iso completion functions to get the
1434 * status of the particular request. ISO requests only use it
1435 * to tell whether the URB was unlinked; detailed status for
1436 * each frame is in the fields of the iso_frame-desc.
1437 * @transfer_flags: A variety of flags may be used to affect how URB
1438 * submission, unlinking, or operation are handled. Different
1439 * kinds of URB can use different flags.
1440 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1441 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1442 * (however, do not leave garbage in transfer_buffer even then).
1443 * This buffer must be suitable for DMA; allocate it with
1444 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1445 * of this buffer will be modified. This buffer is used for the data
1446 * stage of control transfers.
1447 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1448 * the device driver is saying that it provided this DMA address,
1449 * which the host controller driver should use in preference to the
1450 * transfer_buffer.
1451 * @sg: scatter gather buffer list, the buffer size of each element in
1452 * the list (except the last) must be divisible by the endpoint's
1453 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1454 * @num_mapped_sgs: (internal) number of mapped sg entries
1455 * @num_sgs: number of entries in the sg list
1456 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1457 * be broken up into chunks according to the current maximum packet
1458 * size for the endpoint, which is a function of the configuration
1459 * and is encoded in the pipe. When the length is zero, neither
1460 * transfer_buffer nor transfer_dma is used.
1461 * @actual_length: This is read in non-iso completion functions, and
1462 * it tells how many bytes (out of transfer_buffer_length) were
1463 * transferred. It will normally be the same as requested, unless
1464 * either an error was reported or a short read was performed.
1465 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1466 * short reads be reported as errors.
1467 * @setup_packet: Only used for control transfers, this points to eight bytes
1468 * of setup data. Control transfers always start by sending this data
1469 * to the device. Then transfer_buffer is read or written, if needed.
1470 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1471 * this field; setup_packet must point to a valid buffer.
1472 * @start_frame: Returns the initial frame for isochronous transfers.
1473 * @number_of_packets: Lists the number of ISO transfer buffers.
1474 * @interval: Specifies the polling interval for interrupt or isochronous
1475 * transfers. The units are frames (milliseconds) for full and low
1476 * speed devices, and microframes (1/8 millisecond) for highspeed
1477 * and SuperSpeed devices.
1478 * @error_count: Returns the number of ISO transfers that reported errors.
1479 * @context: For use in completion functions. This normally points to
1480 * request-specific driver context.
1481 * @complete: Completion handler. This URB is passed as the parameter to the
1482 * completion function. The completion function may then do what
1483 * it likes with the URB, including resubmitting or freeing it.
1484 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1485 * collect the transfer status for each buffer.
1486 *
1487 * This structure identifies USB transfer requests. URBs must be allocated by
1488 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1489 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1490 * are submitted using usb_submit_urb(), and pending requests may be canceled
1491 * using usb_unlink_urb() or usb_kill_urb().
1492 *
1493 * Data Transfer Buffers:
1494 *
1495 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1496 * taken from the general page pool. That is provided by transfer_buffer
1497 * (control requests also use setup_packet), and host controller drivers
1498 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1499 * mapping operations can be expensive on some platforms (perhaps using a dma
1500 * bounce buffer or talking to an IOMMU),
1501 * although they're cheap on commodity x86 and ppc hardware.
1502 *
1503 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1504 * which tells the host controller driver that no such mapping is needed for
1505 * the transfer_buffer since
1506 * the device driver is DMA-aware. For example, a device driver might
1507 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1508 * When this transfer flag is provided, host controller drivers will
1509 * attempt to use the dma address found in the transfer_dma
1510 * field rather than determining a dma address themselves.
1511 *
1512 * Note that transfer_buffer must still be set if the controller
1513 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1514 * to root hub. If you have to transfer between highmem zone and the device
1515 * on such controller, create a bounce buffer or bail out with an error.
1516 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1517 * capable, assign NULL to it, so that usbmon knows not to use the value.
1518 * The setup_packet must always be set, so it cannot be located in highmem.
1519 *
1520 * Initialization:
1521 *
1522 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1523 * zero), and complete fields. All URBs must also initialize
1524 * transfer_buffer and transfer_buffer_length. They may provide the
1525 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1526 * to be treated as errors; that flag is invalid for write requests.
1527 *
1528 * Bulk URBs may
1529 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1530 * should always terminate with a short packet, even if it means adding an
1531 * extra zero length packet.
1532 *
1533 * Control URBs must provide a valid pointer in the setup_packet field.
1534 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1535 * beforehand.
1536 *
1537 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1538 * or, for highspeed devices, 125 microsecond units)
1539 * to poll for transfers. After the URB has been submitted, the interval
1540 * field reflects how the transfer was actually scheduled.
1541 * The polling interval may be more frequent than requested.
1542 * For example, some controllers have a maximum interval of 32 milliseconds,
1543 * while others support intervals of up to 1024 milliseconds.
1544 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1545 * endpoints, as well as high speed interrupt endpoints, the encoding of
1546 * the transfer interval in the endpoint descriptor is logarithmic.
1547 * Device drivers must convert that value to linear units themselves.)
1548 *
1549 * If an isochronous endpoint queue isn't already running, the host
1550 * controller will schedule a new URB to start as soon as bandwidth
1551 * utilization allows. If the queue is running then a new URB will be
1552 * scheduled to start in the first transfer slot following the end of the
1553 * preceding URB, if that slot has not already expired. If the slot has
1554 * expired (which can happen when IRQ delivery is delayed for a long time),
1555 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1556 * is clear then the URB will be scheduled to start in the expired slot,
1557 * implying that some of its packets will not be transferred; if the flag
1558 * is set then the URB will be scheduled in the first unexpired slot,
1559 * breaking the queue's synchronization. Upon URB completion, the
1560 * start_frame field will be set to the (micro)frame number in which the
1561 * transfer was scheduled. Ranges for frame counter values are HC-specific
1562 * and can go from as low as 256 to as high as 65536 frames.
1563 *
1564 * Isochronous URBs have a different data transfer model, in part because
1565 * the quality of service is only "best effort". Callers provide specially
1566 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1567 * at the end. Each such packet is an individual ISO transfer. Isochronous
1568 * URBs are normally queued, submitted by drivers to arrange that
1569 * transfers are at least double buffered, and then explicitly resubmitted
1570 * in completion handlers, so
1571 * that data (such as audio or video) streams at as constant a rate as the
1572 * host controller scheduler can support.
1573 *
1574 * Completion Callbacks:
1575 *
1576 * The completion callback is made in_interrupt(), and one of the first
1577 * things that a completion handler should do is check the status field.
1578 * The status field is provided for all URBs. It is used to report
1579 * unlinked URBs, and status for all non-ISO transfers. It should not
1580 * be examined before the URB is returned to the completion handler.
1581 *
1582 * The context field is normally used to link URBs back to the relevant
1583 * driver or request state.
1584 *
1585 * When the completion callback is invoked for non-isochronous URBs, the
1586 * actual_length field tells how many bytes were transferred. This field
1587 * is updated even when the URB terminated with an error or was unlinked.
1588 *
1589 * ISO transfer status is reported in the status and actual_length fields
1590 * of the iso_frame_desc array, and the number of errors is reported in
1591 * error_count. Completion callbacks for ISO transfers will normally
1592 * (re)submit URBs to ensure a constant transfer rate.
1593 *
1594 * Note that even fields marked "public" should not be touched by the driver
1595 * when the urb is owned by the hcd, that is, since the call to
1596 * usb_submit_urb() till the entry into the completion routine.
1597 */
1598 struct urb {
1599 /* private: usb core and host controller only fields in the urb */
1600 struct kref kref; /* reference count of the URB */
1601 int unlinked; /* unlink error code */
1602 void *hcpriv; /* private data for host controller */
1603 atomic_t use_count; /* concurrent submissions counter */
1604 atomic_t reject; /* submissions will fail */
1605
1606 /* public: documented fields in the urb that can be used by drivers */
1607 struct list_head urb_list; /* list head for use by the urb's
1608 * current owner */
1609 struct list_head anchor_list; /* the URB may be anchored */
1610 struct usb_anchor *anchor;
1611 struct usb_device *dev; /* (in) pointer to associated device */
1612 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1613 unsigned int pipe; /* (in) pipe information */
1614 unsigned int stream_id; /* (in) stream ID */
1615 int status; /* (return) non-ISO status */
1616 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1617 void *transfer_buffer; /* (in) associated data buffer */
1618 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1619 struct scatterlist *sg; /* (in) scatter gather buffer list */
1620 int num_mapped_sgs; /* (internal) mapped sg entries */
1621 int num_sgs; /* (in) number of entries in the sg list */
1622 u32 transfer_buffer_length; /* (in) data buffer length */
1623 u32 actual_length; /* (return) actual transfer length */
1624 unsigned char *setup_packet; /* (in) setup packet (control only) */
1625 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1626 int start_frame; /* (modify) start frame (ISO) */
1627 int number_of_packets; /* (in) number of ISO packets */
1628 int interval; /* (modify) transfer interval
1629 * (INT/ISO) */
1630 int error_count; /* (return) number of ISO errors */
1631 void *context; /* (in) context for completion */
1632 usb_complete_t complete; /* (in) completion routine */
1633 struct usb_iso_packet_descriptor iso_frame_desc[];
1634 /* (in) ISO ONLY */
1635 };
1636
1637 /* ----------------------------------------------------------------------- */
1638
1639 /**
1640 * usb_fill_control_urb - initializes a control urb
1641 * @urb: pointer to the urb to initialize.
1642 * @dev: pointer to the struct usb_device for this urb.
1643 * @pipe: the endpoint pipe
1644 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1645 * suitable for DMA.
1646 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1647 * suitable for DMA.
1648 * @buffer_length: length of the transfer buffer
1649 * @complete_fn: pointer to the usb_complete_t function
1650 * @context: what to set the urb context to.
1651 *
1652 * Initializes a control urb with the proper information needed to submit
1653 * it to a device.
1654 *
1655 * The transfer buffer and the setup_packet buffer will most likely be filled
1656 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1657 * allocating it via kmalloc() or equivalent, even for very small buffers.
1658 * If the buffers are embedded in a bigger structure, there is a risk that
1659 * the buffer itself, the previous fields and/or the next fields are corrupted
1660 * due to cache incoherencies; or slowed down if they are evicted from the
1661 * cache. For more information, check &struct urb.
1662 *
1663 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1664 static inline void usb_fill_control_urb(struct urb *urb,
1665 struct usb_device *dev,
1666 unsigned int pipe,
1667 unsigned char *setup_packet,
1668 void *transfer_buffer,
1669 int buffer_length,
1670 usb_complete_t complete_fn,
1671 void *context)
1672 {
1673 urb->dev = dev;
1674 urb->pipe = pipe;
1675 urb->setup_packet = setup_packet;
1676 urb->transfer_buffer = transfer_buffer;
1677 urb->transfer_buffer_length = buffer_length;
1678 urb->complete = complete_fn;
1679 urb->context = context;
1680 }
1681
1682 /**
1683 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1684 * @urb: pointer to the urb to initialize.
1685 * @dev: pointer to the struct usb_device for this urb.
1686 * @pipe: the endpoint pipe
1687 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1688 * suitable for DMA.
1689 * @buffer_length: length of the transfer buffer
1690 * @complete_fn: pointer to the usb_complete_t function
1691 * @context: what to set the urb context to.
1692 *
1693 * Initializes a bulk urb with the proper information needed to submit it
1694 * to a device.
1695 *
1696 * Refer to usb_fill_control_urb() for a description of the requirements for
1697 * transfer_buffer.
1698 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1699 static inline void usb_fill_bulk_urb(struct urb *urb,
1700 struct usb_device *dev,
1701 unsigned int pipe,
1702 void *transfer_buffer,
1703 int buffer_length,
1704 usb_complete_t complete_fn,
1705 void *context)
1706 {
1707 urb->dev = dev;
1708 urb->pipe = pipe;
1709 urb->transfer_buffer = transfer_buffer;
1710 urb->transfer_buffer_length = buffer_length;
1711 urb->complete = complete_fn;
1712 urb->context = context;
1713 }
1714
1715 /**
1716 * usb_fill_int_urb - macro to help initialize a interrupt urb
1717 * @urb: pointer to the urb to initialize.
1718 * @dev: pointer to the struct usb_device for this urb.
1719 * @pipe: the endpoint pipe
1720 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1721 * suitable for DMA.
1722 * @buffer_length: length of the transfer buffer
1723 * @complete_fn: pointer to the usb_complete_t function
1724 * @context: what to set the urb context to.
1725 * @interval: what to set the urb interval to, encoded like
1726 * the endpoint descriptor's bInterval value.
1727 *
1728 * Initializes a interrupt urb with the proper information needed to submit
1729 * it to a device.
1730 *
1731 * Refer to usb_fill_control_urb() for a description of the requirements for
1732 * transfer_buffer.
1733 *
1734 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1735 * encoding of the endpoint interval, and express polling intervals in
1736 * microframes (eight per millisecond) rather than in frames (one per
1737 * millisecond).
1738 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1739 static inline void usb_fill_int_urb(struct urb *urb,
1740 struct usb_device *dev,
1741 unsigned int pipe,
1742 void *transfer_buffer,
1743 int buffer_length,
1744 usb_complete_t complete_fn,
1745 void *context,
1746 int interval)
1747 {
1748 urb->dev = dev;
1749 urb->pipe = pipe;
1750 urb->transfer_buffer = transfer_buffer;
1751 urb->transfer_buffer_length = buffer_length;
1752 urb->complete = complete_fn;
1753 urb->context = context;
1754
1755 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1756 /* make sure interval is within allowed range */
1757 interval = clamp(interval, 1, 16);
1758
1759 urb->interval = 1 << (interval - 1);
1760 } else {
1761 urb->interval = interval;
1762 }
1763
1764 urb->start_frame = -1;
1765 }
1766
1767 extern void usb_init_urb(struct urb *urb);
1768 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1769 extern void usb_free_urb(struct urb *urb);
1770 #define usb_put_urb usb_free_urb
1771 extern struct urb *usb_get_urb(struct urb *urb);
1772 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1773 extern int usb_unlink_urb(struct urb *urb);
1774 extern void usb_kill_urb(struct urb *urb);
1775 extern void usb_poison_urb(struct urb *urb);
1776 extern void usb_unpoison_urb(struct urb *urb);
1777 extern void usb_block_urb(struct urb *urb);
1778 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1779 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1780 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1781 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1782 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1783 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1784 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1785 extern void usb_unanchor_urb(struct urb *urb);
1786 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1787 unsigned int timeout);
1788 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1789 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1790 extern int usb_anchor_empty(struct usb_anchor *anchor);
1791
1792 #define usb_unblock_urb usb_unpoison_urb
1793
1794 /**
1795 * usb_urb_dir_in - check if an URB describes an IN transfer
1796 * @urb: URB to be checked
1797 *
1798 * Return: 1 if @urb describes an IN transfer (device-to-host),
1799 * otherwise 0.
1800 */
usb_urb_dir_in(struct urb * urb)1801 static inline int usb_urb_dir_in(struct urb *urb)
1802 {
1803 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1804 }
1805
1806 /**
1807 * usb_urb_dir_out - check if an URB describes an OUT transfer
1808 * @urb: URB to be checked
1809 *
1810 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1811 * otherwise 0.
1812 */
usb_urb_dir_out(struct urb * urb)1813 static inline int usb_urb_dir_out(struct urb *urb)
1814 {
1815 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1816 }
1817
1818 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1819 int usb_urb_ep_type_check(const struct urb *urb);
1820
1821 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1822 gfp_t mem_flags, dma_addr_t *dma);
1823 void usb_free_coherent(struct usb_device *dev, size_t size,
1824 void *addr, dma_addr_t dma);
1825
1826 #if 0
1827 struct urb *usb_buffer_map(struct urb *urb);
1828 void usb_buffer_dmasync(struct urb *urb);
1829 void usb_buffer_unmap(struct urb *urb);
1830 #endif
1831
1832 struct scatterlist;
1833 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1834 struct scatterlist *sg, int nents);
1835 #if 0
1836 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1837 struct scatterlist *sg, int n_hw_ents);
1838 #endif
1839 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1840 struct scatterlist *sg, int n_hw_ents);
1841
1842 /*-------------------------------------------------------------------*
1843 * SYNCHRONOUS CALL SUPPORT *
1844 *-------------------------------------------------------------------*/
1845
1846 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1847 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1848 void *data, __u16 size, int timeout);
1849 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1850 void *data, int len, int *actual_length, int timeout);
1851 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1852 void *data, int len, int *actual_length,
1853 int timeout);
1854
1855 /* wrappers around usb_control_msg() for the most common standard requests */
1856 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1857 __u8 requesttype, __u16 value, __u16 index,
1858 const void *data, __u16 size, int timeout,
1859 gfp_t memflags);
1860 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1861 __u8 requesttype, __u16 value, __u16 index,
1862 void *data, __u16 size, int timeout,
1863 gfp_t memflags);
1864 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1865 unsigned char descindex, void *buf, int size);
1866 extern int usb_get_status(struct usb_device *dev,
1867 int recip, int type, int target, void *data);
1868
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1869 static inline int usb_get_std_status(struct usb_device *dev,
1870 int recip, int target, void *data)
1871 {
1872 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1873 data);
1874 }
1875
usb_get_ptm_status(struct usb_device * dev,void * data)1876 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1877 {
1878 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1879 0, data);
1880 }
1881
1882 extern int usb_string(struct usb_device *dev, int index,
1883 char *buf, size_t size);
1884 extern char *usb_cache_string(struct usb_device *udev, int index);
1885
1886 /* wrappers that also update important state inside usbcore */
1887 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1888 extern int usb_reset_configuration(struct usb_device *dev);
1889 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1890 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1891
1892 /* this request isn't really synchronous, but it belongs with the others */
1893 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1894
1895 /* choose and set configuration for device */
1896 extern int usb_choose_configuration(struct usb_device *udev);
1897 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1898
1899 /*
1900 * timeouts, in milliseconds, used for sending/receiving control messages
1901 * they typically complete within a few frames (msec) after they're issued
1902 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1903 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1904 */
1905 #define USB_CTRL_GET_TIMEOUT 5000
1906 #define USB_CTRL_SET_TIMEOUT 5000
1907
1908
1909 /**
1910 * struct usb_sg_request - support for scatter/gather I/O
1911 * @status: zero indicates success, else negative errno
1912 * @bytes: counts bytes transferred.
1913 *
1914 * These requests are initialized using usb_sg_init(), and then are used
1915 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1916 * members of the request object aren't for driver access.
1917 *
1918 * The status and bytecount values are valid only after usb_sg_wait()
1919 * returns. If the status is zero, then the bytecount matches the total
1920 * from the request.
1921 *
1922 * After an error completion, drivers may need to clear a halt condition
1923 * on the endpoint.
1924 */
1925 struct usb_sg_request {
1926 int status;
1927 size_t bytes;
1928
1929 /* private:
1930 * members below are private to usbcore,
1931 * and are not provided for driver access!
1932 */
1933 spinlock_t lock;
1934
1935 struct usb_device *dev;
1936 int pipe;
1937
1938 int entries;
1939 struct urb **urbs;
1940
1941 int count;
1942 struct completion complete;
1943 };
1944
1945 int usb_sg_init(
1946 struct usb_sg_request *io,
1947 struct usb_device *dev,
1948 unsigned pipe,
1949 unsigned period,
1950 struct scatterlist *sg,
1951 int nents,
1952 size_t length,
1953 gfp_t mem_flags
1954 );
1955 void usb_sg_cancel(struct usb_sg_request *io);
1956 void usb_sg_wait(struct usb_sg_request *io);
1957
1958
1959 /* ----------------------------------------------------------------------- */
1960
1961 /*
1962 * For various legacy reasons, Linux has a small cookie that's paired with
1963 * a struct usb_device to identify an endpoint queue. Queue characteristics
1964 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1965 * an unsigned int encoded as:
1966 *
1967 * - direction: bit 7 (0 = Host-to-Device [Out],
1968 * 1 = Device-to-Host [In] ...
1969 * like endpoint bEndpointAddress)
1970 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1971 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1972 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1973 * 10 = control, 11 = bulk)
1974 *
1975 * Given the device address and endpoint descriptor, pipes are redundant.
1976 */
1977
1978 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1979 /* (yet ... they're the values used by usbfs) */
1980 #define PIPE_ISOCHRONOUS 0
1981 #define PIPE_INTERRUPT 1
1982 #define PIPE_CONTROL 2
1983 #define PIPE_BULK 3
1984
1985 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1986 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1987
1988 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1989 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1990
1991 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1992 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1993 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1994 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1995 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1996
__create_pipe(struct usb_device * dev,unsigned int endpoint)1997 static inline unsigned int __create_pipe(struct usb_device *dev,
1998 unsigned int endpoint)
1999 {
2000 return (dev->devnum << 8) | (endpoint << 15);
2001 }
2002
2003 /* Create various pipes... */
2004 #define usb_sndctrlpipe(dev, endpoint) \
2005 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2006 #define usb_rcvctrlpipe(dev, endpoint) \
2007 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2008 #define usb_sndisocpipe(dev, endpoint) \
2009 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2010 #define usb_rcvisocpipe(dev, endpoint) \
2011 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2012 #define usb_sndbulkpipe(dev, endpoint) \
2013 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2014 #define usb_rcvbulkpipe(dev, endpoint) \
2015 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2016 #define usb_sndintpipe(dev, endpoint) \
2017 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2018 #define usb_rcvintpipe(dev, endpoint) \
2019 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2020
2021 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2022 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2023 {
2024 struct usb_host_endpoint **eps;
2025 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2026 return eps[usb_pipeendpoint(pipe)];
2027 }
2028
usb_maxpacket(struct usb_device * udev,int pipe)2029 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2030 {
2031 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2032
2033 if (!ep)
2034 return 0;
2035
2036 /* NOTE: only 0x07ff bits are for packet size... */
2037 return usb_endpoint_maxp(&ep->desc);
2038 }
2039
2040 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2041 static inline int usb_translate_errors(int error_code)
2042 {
2043 switch (error_code) {
2044 case 0:
2045 case -ENOMEM:
2046 case -ENODEV:
2047 case -EOPNOTSUPP:
2048 return error_code;
2049 default:
2050 return -EIO;
2051 }
2052 }
2053
2054 /* Events from the usb core */
2055 #define USB_DEVICE_ADD 0x0001
2056 #define USB_DEVICE_REMOVE 0x0002
2057 #define USB_BUS_ADD 0x0003
2058 #define USB_BUS_REMOVE 0x0004
2059 extern void usb_register_notify(struct notifier_block *nb);
2060 extern void usb_unregister_notify(struct notifier_block *nb);
2061
2062 /* debugfs stuff */
2063 extern struct dentry *usb_debug_root;
2064
2065 /* LED triggers */
2066 enum usb_led_event {
2067 USB_LED_EVENT_HOST = 0,
2068 USB_LED_EVENT_GADGET = 1,
2069 };
2070
2071 #ifdef CONFIG_USB_LED_TRIG
2072 extern void usb_led_activity(enum usb_led_event ev);
2073 #else
usb_led_activity(enum usb_led_event ev)2074 static inline void usb_led_activity(enum usb_led_event ev) {}
2075 #endif
2076
2077 #endif /* __KERNEL__ */
2078
2079 #endif
2080