xref: /openbmc/linux/include/linux/usb.h (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 
26 struct usb_device;
27 struct usb_driver;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54  * @urb_list: urbs queued to this endpoint; maintained by usbcore
55  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56  *	with one or more transfer descriptors (TDs) per urb
57  * @ep_dev: ep_device for sysfs info
58  * @extra: descriptors following this endpoint in the configuration
59  * @extralen: how many bytes of "extra" are valid
60  * @enabled: URBs may be submitted to this endpoint
61  * @streams: number of USB-3 streams allocated on the endpoint
62  *
63  * USB requests are always queued to a given endpoint, identified by a
64  * descriptor within an active interface in a given USB configuration.
65  */
66 struct usb_host_endpoint {
67 	struct usb_endpoint_descriptor		desc;
68 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
69 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
70 	struct list_head		urb_list;
71 	void				*hcpriv;
72 	struct ep_device		*ep_dev;	/* For sysfs info */
73 
74 	unsigned char *extra;   /* Extra descriptors */
75 	int extralen;
76 	int enabled;
77 	int streams;
78 };
79 
80 /* host-side wrapper for one interface setting's parsed descriptors */
81 struct usb_host_interface {
82 	struct usb_interface_descriptor	desc;
83 
84 	int extralen;
85 	unsigned char *extra;   /* Extra descriptors */
86 
87 	/* array of desc.bNumEndpoints endpoints associated with this
88 	 * interface setting.  these will be in no particular order.
89 	 */
90 	struct usb_host_endpoint *endpoint;
91 
92 	char *string;		/* iInterface string, if present */
93 };
94 
95 enum usb_interface_condition {
96 	USB_INTERFACE_UNBOUND = 0,
97 	USB_INTERFACE_BINDING,
98 	USB_INTERFACE_BOUND,
99 	USB_INTERFACE_UNBINDING,
100 };
101 
102 int __must_check
103 usb_find_common_endpoints(struct usb_host_interface *alt,
104 		struct usb_endpoint_descriptor **bulk_in,
105 		struct usb_endpoint_descriptor **bulk_out,
106 		struct usb_endpoint_descriptor **int_in,
107 		struct usb_endpoint_descriptor **int_out);
108 
109 int __must_check
110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111 		struct usb_endpoint_descriptor **bulk_in,
112 		struct usb_endpoint_descriptor **bulk_out,
113 		struct usb_endpoint_descriptor **int_in,
114 		struct usb_endpoint_descriptor **int_out);
115 
116 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118 		struct usb_endpoint_descriptor **bulk_in)
119 {
120 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121 }
122 
123 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125 		struct usb_endpoint_descriptor **bulk_out)
126 {
127 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128 }
129 
130 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)131 usb_find_int_in_endpoint(struct usb_host_interface *alt,
132 		struct usb_endpoint_descriptor **int_in)
133 {
134 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135 }
136 
137 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)138 usb_find_int_out_endpoint(struct usb_host_interface *alt,
139 		struct usb_endpoint_descriptor **int_out)
140 {
141 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142 }
143 
144 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146 		struct usb_endpoint_descriptor **bulk_in)
147 {
148 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149 }
150 
151 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153 		struct usb_endpoint_descriptor **bulk_out)
154 {
155 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156 }
157 
158 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160 		struct usb_endpoint_descriptor **int_in)
161 {
162 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163 }
164 
165 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167 		struct usb_endpoint_descriptor **int_out)
168 {
169 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170 }
171 
172 enum usb_wireless_status {
173 	USB_WIRELESS_STATUS_NA = 0,
174 	USB_WIRELESS_STATUS_DISCONNECTED,
175 	USB_WIRELESS_STATUS_CONNECTED,
176 };
177 
178 /**
179  * struct usb_interface - what usb device drivers talk to
180  * @altsetting: array of interface structures, one for each alternate
181  *	setting that may be selected.  Each one includes a set of
182  *	endpoint configurations.  They will be in no particular order.
183  * @cur_altsetting: the current altsetting.
184  * @num_altsetting: number of altsettings defined.
185  * @intf_assoc: interface association descriptor
186  * @minor: the minor number assigned to this interface, if this
187  *	interface is bound to a driver that uses the USB major number.
188  *	If this interface does not use the USB major, this field should
189  *	be unused.  The driver should set this value in the probe()
190  *	function of the driver, after it has been assigned a minor
191  *	number from the USB core by calling usb_register_dev().
192  * @condition: binding state of the interface: not bound, binding
193  *	(in probe()), bound to a driver, or unbinding (in disconnect())
194  * @sysfs_files_created: sysfs attributes exist
195  * @ep_devs_created: endpoint child pseudo-devices exist
196  * @unregistering: flag set when the interface is being unregistered
197  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
198  *	capability during autosuspend.
199  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
200  *	has been deferred.
201  * @needs_binding: flag set when the driver should be re-probed or unbound
202  *	following a reset or suspend operation it doesn't support.
203  * @authorized: This allows to (de)authorize individual interfaces instead
204  *	a whole device in contrast to the device authorization.
205  * @wireless_status: if the USB device uses a receiver/emitter combo, whether
206  *	the emitter is connected.
207  * @wireless_status_work: Used for scheduling wireless status changes
208  *	from atomic context.
209  * @dev: driver model's view of this device
210  * @usb_dev: if an interface is bound to the USB major, this will point
211  *	to the sysfs representation for that device.
212  * @reset_ws: Used for scheduling resets from atomic context.
213  * @resetting_device: USB core reset the device, so use alt setting 0 as
214  *	current; needs bandwidth alloc after reset.
215  *
216  * USB device drivers attach to interfaces on a physical device.  Each
217  * interface encapsulates a single high level function, such as feeding
218  * an audio stream to a speaker or reporting a change in a volume control.
219  * Many USB devices only have one interface.  The protocol used to talk to
220  * an interface's endpoints can be defined in a usb "class" specification,
221  * or by a product's vendor.  The (default) control endpoint is part of
222  * every interface, but is never listed among the interface's descriptors.
223  *
224  * The driver that is bound to the interface can use standard driver model
225  * calls such as dev_get_drvdata() on the dev member of this structure.
226  *
227  * Each interface may have alternate settings.  The initial configuration
228  * of a device sets altsetting 0, but the device driver can change
229  * that setting using usb_set_interface().  Alternate settings are often
230  * used to control the use of periodic endpoints, such as by having
231  * different endpoints use different amounts of reserved USB bandwidth.
232  * All standards-conformant USB devices that use isochronous endpoints
233  * will use them in non-default settings.
234  *
235  * The USB specification says that alternate setting numbers must run from
236  * 0 to one less than the total number of alternate settings.  But some
237  * devices manage to mess this up, and the structures aren't necessarily
238  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
239  * look up an alternate setting in the altsetting array based on its number.
240  */
241 struct usb_interface {
242 	/* array of alternate settings for this interface,
243 	 * stored in no particular order */
244 	struct usb_host_interface *altsetting;
245 
246 	struct usb_host_interface *cur_altsetting;	/* the currently
247 					 * active alternate setting */
248 	unsigned num_altsetting;	/* number of alternate settings */
249 
250 	/* If there is an interface association descriptor then it will list
251 	 * the associated interfaces */
252 	struct usb_interface_assoc_descriptor *intf_assoc;
253 
254 	int minor;			/* minor number this interface is
255 					 * bound to */
256 	enum usb_interface_condition condition;		/* state of binding */
257 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
258 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
259 	unsigned unregistering:1;	/* unregistration is in progress */
260 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
261 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
262 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
263 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
264 	unsigned authorized:1;		/* used for interface authorization */
265 	enum usb_wireless_status wireless_status;
266 	struct work_struct wireless_status_work;
267 
268 	struct device dev;		/* interface specific device info */
269 	struct device *usb_dev;
270 	struct work_struct reset_ws;	/* for resets in atomic context */
271 };
272 
273 #define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
274 
usb_get_intfdata(struct usb_interface * intf)275 static inline void *usb_get_intfdata(struct usb_interface *intf)
276 {
277 	return dev_get_drvdata(&intf->dev);
278 }
279 
280 /**
281  * usb_set_intfdata() - associate driver-specific data with an interface
282  * @intf: USB interface
283  * @data: driver data
284  *
285  * Drivers can use this function in their probe() callbacks to associate
286  * driver-specific data with an interface.
287  *
288  * Note that there is generally no need to clear the driver-data pointer even
289  * if some drivers do so for historical or implementation-specific reasons.
290  */
usb_set_intfdata(struct usb_interface * intf,void * data)291 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
292 {
293 	dev_set_drvdata(&intf->dev, data);
294 }
295 
296 struct usb_interface *usb_get_intf(struct usb_interface *intf);
297 void usb_put_intf(struct usb_interface *intf);
298 
299 /* Hard limit */
300 #define USB_MAXENDPOINTS	30
301 /* this maximum is arbitrary */
302 #define USB_MAXINTERFACES	32
303 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
304 
305 bool usb_check_bulk_endpoints(
306 		const struct usb_interface *intf, const u8 *ep_addrs);
307 bool usb_check_int_endpoints(
308 		const struct usb_interface *intf, const u8 *ep_addrs);
309 
310 /*
311  * USB Resume Timer: Every Host controller driver should drive the resume
312  * signalling on the bus for the amount of time defined by this macro.
313  *
314  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
315  *
316  * Note that the USB Specification states we should drive resume for *at least*
317  * 20 ms, but it doesn't give an upper bound. This creates two possible
318  * situations which we want to avoid:
319  *
320  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
321  * us to fail USB Electrical Tests, thus failing Certification
322  *
323  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
324  * and while we can argue that's against the USB Specification, we don't have
325  * control over which devices a certification laboratory will be using for
326  * certification. If CertLab uses a device which was tested against Windows and
327  * that happens to have relaxed resume signalling rules, we might fall into
328  * situations where we fail interoperability and electrical tests.
329  *
330  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
331  * should cope with both LPJ calibration errors and devices not following every
332  * detail of the USB Specification.
333  */
334 #define USB_RESUME_TIMEOUT	40 /* ms */
335 
336 /**
337  * struct usb_interface_cache - long-term representation of a device interface
338  * @num_altsetting: number of altsettings defined.
339  * @ref: reference counter.
340  * @altsetting: variable-length array of interface structures, one for
341  *	each alternate setting that may be selected.  Each one includes a
342  *	set of endpoint configurations.  They will be in no particular order.
343  *
344  * These structures persist for the lifetime of a usb_device, unlike
345  * struct usb_interface (which persists only as long as its configuration
346  * is installed).  The altsetting arrays can be accessed through these
347  * structures at any time, permitting comparison of configurations and
348  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
349  */
350 struct usb_interface_cache {
351 	unsigned num_altsetting;	/* number of alternate settings */
352 	struct kref ref;		/* reference counter */
353 
354 	/* variable-length array of alternate settings for this interface,
355 	 * stored in no particular order */
356 	struct usb_host_interface altsetting[];
357 };
358 #define	ref_to_usb_interface_cache(r) \
359 		container_of(r, struct usb_interface_cache, ref)
360 #define	altsetting_to_usb_interface_cache(a) \
361 		container_of(a, struct usb_interface_cache, altsetting[0])
362 
363 /**
364  * struct usb_host_config - representation of a device's configuration
365  * @desc: the device's configuration descriptor.
366  * @string: pointer to the cached version of the iConfiguration string, if
367  *	present for this configuration.
368  * @intf_assoc: list of any interface association descriptors in this config
369  * @interface: array of pointers to usb_interface structures, one for each
370  *	interface in the configuration.  The number of interfaces is stored
371  *	in desc.bNumInterfaces.  These pointers are valid only while the
372  *	configuration is active.
373  * @intf_cache: array of pointers to usb_interface_cache structures, one
374  *	for each interface in the configuration.  These structures exist
375  *	for the entire life of the device.
376  * @extra: pointer to buffer containing all extra descriptors associated
377  *	with this configuration (those preceding the first interface
378  *	descriptor).
379  * @extralen: length of the extra descriptors buffer.
380  *
381  * USB devices may have multiple configurations, but only one can be active
382  * at any time.  Each encapsulates a different operational environment;
383  * for example, a dual-speed device would have separate configurations for
384  * full-speed and high-speed operation.  The number of configurations
385  * available is stored in the device descriptor as bNumConfigurations.
386  *
387  * A configuration can contain multiple interfaces.  Each corresponds to
388  * a different function of the USB device, and all are available whenever
389  * the configuration is active.  The USB standard says that interfaces
390  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
391  * of devices get this wrong.  In addition, the interface array is not
392  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
393  * look up an interface entry based on its number.
394  *
395  * Device drivers should not attempt to activate configurations.  The choice
396  * of which configuration to install is a policy decision based on such
397  * considerations as available power, functionality provided, and the user's
398  * desires (expressed through userspace tools).  However, drivers can call
399  * usb_reset_configuration() to reinitialize the current configuration and
400  * all its interfaces.
401  */
402 struct usb_host_config {
403 	struct usb_config_descriptor	desc;
404 
405 	char *string;		/* iConfiguration string, if present */
406 
407 	/* List of any Interface Association Descriptors in this
408 	 * configuration. */
409 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
410 
411 	/* the interfaces associated with this configuration,
412 	 * stored in no particular order */
413 	struct usb_interface *interface[USB_MAXINTERFACES];
414 
415 	/* Interface information available even when this is not the
416 	 * active configuration */
417 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
418 
419 	unsigned char *extra;   /* Extra descriptors */
420 	int extralen;
421 };
422 
423 /* USB2.0 and USB3.0 device BOS descriptor set */
424 struct usb_host_bos {
425 	struct usb_bos_descriptor	*desc;
426 
427 	struct usb_ext_cap_descriptor	*ext_cap;
428 	struct usb_ss_cap_descriptor	*ss_cap;
429 	struct usb_ssp_cap_descriptor	*ssp_cap;
430 	struct usb_ss_container_id_descriptor	*ss_id;
431 	struct usb_ptm_cap_descriptor	*ptm_cap;
432 };
433 
434 int __usb_get_extra_descriptor(char *buffer, unsigned size,
435 	unsigned char type, void **ptr, size_t min);
436 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
437 				__usb_get_extra_descriptor((ifpoint)->extra, \
438 				(ifpoint)->extralen, \
439 				type, (void **)ptr, sizeof(**(ptr)))
440 
441 /* ----------------------------------------------------------------------- */
442 
443 /* USB device number allocation bitmap */
444 struct usb_devmap {
445 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
446 };
447 
448 /*
449  * Allocated per bus (tree of devices) we have:
450  */
451 struct usb_bus {
452 	struct device *controller;	/* host side hardware */
453 	struct device *sysdev;		/* as seen from firmware or bus */
454 	int busnum;			/* Bus number (in order of reg) */
455 	const char *bus_name;		/* stable id (PCI slot_name etc) */
456 	u8 uses_pio_for_control;	/*
457 					 * Does the host controller use PIO
458 					 * for control transfers?
459 					 */
460 	u8 otg_port;			/* 0, or number of OTG/HNP port */
461 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
462 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
463 	unsigned no_stop_on_short:1;    /*
464 					 * Quirk: some controllers don't stop
465 					 * the ep queue on a short transfer
466 					 * with the URB_SHORT_NOT_OK flag set.
467 					 */
468 	unsigned no_sg_constraint:1;	/* no sg constraint */
469 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
470 
471 	int devnum_next;		/* Next open device number in
472 					 * round-robin allocation */
473 	struct mutex devnum_next_mutex; /* devnum_next mutex */
474 
475 	struct usb_devmap devmap;	/* device address allocation map */
476 	struct usb_device *root_hub;	/* Root hub */
477 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
478 
479 	int bandwidth_allocated;	/* on this bus: how much of the time
480 					 * reserved for periodic (intr/iso)
481 					 * requests is used, on average?
482 					 * Units: microseconds/frame.
483 					 * Limits: Full/low speed reserve 90%,
484 					 * while high speed reserves 80%.
485 					 */
486 	int bandwidth_int_reqs;		/* number of Interrupt requests */
487 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
488 
489 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
490 
491 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
492 	struct mon_bus *mon_bus;	/* non-null when associated */
493 	int monitored;			/* non-zero when monitored */
494 #endif
495 };
496 
497 struct usb_dev_state;
498 
499 /* ----------------------------------------------------------------------- */
500 
501 struct usb_tt;
502 
503 enum usb_port_connect_type {
504 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
506 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
507 	USB_PORT_NOT_USED,
508 };
509 
510 /*
511  * USB port quirks.
512  */
513 
514 /* For the given port, prefer the old (faster) enumeration scheme. */
515 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
516 
517 /* Decrease TRSTRCY to 10ms during device enumeration. */
518 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
519 
520 /*
521  * USB 2.0 Link Power Management (LPM) parameters.
522  */
523 struct usb2_lpm_parameters {
524 	/* Best effort service latency indicate how long the host will drive
525 	 * resume on an exit from L1.
526 	 */
527 	unsigned int besl;
528 
529 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530 	 * When the timer counts to zero, the parent hub will initiate a LPM
531 	 * transition to L1.
532 	 */
533 	int timeout;
534 };
535 
536 /*
537  * USB 3.0 Link Power Management (LPM) parameters.
538  *
539  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541  * All three are stored in nanoseconds.
542  */
543 struct usb3_lpm_parameters {
544 	/*
545 	 * Maximum exit latency (MEL) for the host to send a packet to the
546 	 * device (either a Ping for isoc endpoints, or a data packet for
547 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548 	 * in the path to transition the links to U0.
549 	 */
550 	unsigned int mel;
551 	/*
552 	 * Maximum exit latency for a device-initiated LPM transition to bring
553 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
554 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
555 	 */
556 	unsigned int pel;
557 
558 	/*
559 	 * The System Exit Latency (SEL) includes PEL, and three other
560 	 * latencies.  After a device initiates a U0 transition, it will take
561 	 * some time from when the device sends the ERDY to when it will finally
562 	 * receive the data packet.  Basically, SEL should be the worse-case
563 	 * latency from when a device starts initiating a U0 transition to when
564 	 * it will get data.
565 	 */
566 	unsigned int sel;
567 	/*
568 	 * The idle timeout value that is currently programmed into the parent
569 	 * hub for this device.  When the timer counts to zero, the parent hub
570 	 * will initiate an LPM transition to either U1 or U2.
571 	 */
572 	int timeout;
573 };
574 
575 /**
576  * struct usb_device - kernel's representation of a USB device
577  * @devnum: device number; address on a USB bus
578  * @devpath: device ID string for use in messages (e.g., /port/...)
579  * @route: tree topology hex string for use with xHCI
580  * @state: device state: configured, not attached, etc.
581  * @speed: device speed: high/full/low (or error)
582  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584  * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
585  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
586  * @ttport: device port on that tt hub
587  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
588  * @parent: our hub, unless we're the root
589  * @bus: bus we're part of
590  * @ep0: endpoint 0 data (default control pipe)
591  * @dev: generic device interface
592  * @descriptor: USB device descriptor
593  * @bos: USB device BOS descriptor set
594  * @config: all of the device's configs
595  * @actconfig: the active configuration
596  * @ep_in: array of IN endpoints
597  * @ep_out: array of OUT endpoints
598  * @rawdescriptors: raw descriptors for each config
599  * @bus_mA: Current available from the bus
600  * @portnum: parent port number (origin 1)
601  * @level: number of USB hub ancestors
602  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
603  * @can_submit: URBs may be submitted
604  * @persist_enabled:  USB_PERSIST enabled for this device
605  * @reset_in_progress: the device is being reset
606  * @have_langid: whether string_langid is valid
607  * @authorized: policy has said we can use it;
608  *	(user space) policy determines if we authorize this device to be
609  *	used or not. By default, wired USB devices are authorized.
610  *	WUSB devices are not, until we authorize them from user space.
611  *	FIXME -- complete doc
612  * @authenticated: Crypto authentication passed
613  * @lpm_capable: device supports LPM
614  * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
615  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
616  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
617  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
618  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
619  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
620  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
621  * @string_langid: language ID for strings
622  * @product: iProduct string, if present (static)
623  * @manufacturer: iManufacturer string, if present (static)
624  * @serial: iSerialNumber string, if present (static)
625  * @filelist: usbfs files that are open to this device
626  * @maxchild: number of ports if hub
627  * @quirks: quirks of the whole device
628  * @urbnum: number of URBs submitted for the whole device
629  * @active_duration: total time device is not suspended
630  * @connect_time: time device was first connected
631  * @do_remote_wakeup:  remote wakeup should be enabled
632  * @reset_resume: needs reset instead of resume
633  * @port_is_suspended: the upstream port is suspended (L2 or U3)
634  * @slot_id: Slot ID assigned by xHCI
635  * @removable: Device can be physically removed from this port
636  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
637  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
638  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
639  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
640  *	to keep track of the number of functions that require USB 3.0 Link Power
641  *	Management to be disabled for this usb_device.  This count should only
642  *	be manipulated by those functions, with the bandwidth_mutex is held.
643  * @hub_delay: cached value consisting of:
644  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
645  *	Will be used as wValue for SetIsochDelay requests.
646  * @use_generic_driver: ask driver core to reprobe using the generic driver.
647  *
648  * Notes:
649  * Usbcore drivers should not set usbdev->state directly.  Instead use
650  * usb_set_device_state().
651  */
652 struct usb_device {
653 	int		devnum;
654 	char		devpath[16];
655 	u32		route;
656 	enum usb_device_state	state;
657 	enum usb_device_speed	speed;
658 	unsigned int		rx_lanes;
659 	unsigned int		tx_lanes;
660 	enum usb_ssp_rate	ssp_rate;
661 
662 	struct usb_tt	*tt;
663 	int		ttport;
664 
665 	unsigned int toggle[2];
666 
667 	struct usb_device *parent;
668 	struct usb_bus *bus;
669 	struct usb_host_endpoint ep0;
670 
671 	struct device dev;
672 
673 	struct usb_device_descriptor descriptor;
674 	struct usb_host_bos *bos;
675 	struct usb_host_config *config;
676 
677 	struct usb_host_config *actconfig;
678 	struct usb_host_endpoint *ep_in[16];
679 	struct usb_host_endpoint *ep_out[16];
680 
681 	char **rawdescriptors;
682 
683 	unsigned short bus_mA;
684 	u8 portnum;
685 	u8 level;
686 	u8 devaddr;
687 
688 	unsigned can_submit:1;
689 	unsigned persist_enabled:1;
690 	unsigned reset_in_progress:1;
691 	unsigned have_langid:1;
692 	unsigned authorized:1;
693 	unsigned authenticated:1;
694 	unsigned lpm_capable:1;
695 	unsigned lpm_devinit_allow:1;
696 	unsigned usb2_hw_lpm_capable:1;
697 	unsigned usb2_hw_lpm_besl_capable:1;
698 	unsigned usb2_hw_lpm_enabled:1;
699 	unsigned usb2_hw_lpm_allowed:1;
700 	unsigned usb3_lpm_u1_enabled:1;
701 	unsigned usb3_lpm_u2_enabled:1;
702 	int string_langid;
703 
704 	/* static strings from the device */
705 	char *product;
706 	char *manufacturer;
707 	char *serial;
708 
709 	struct list_head filelist;
710 
711 	int maxchild;
712 
713 	u32 quirks;
714 	atomic_t urbnum;
715 
716 	unsigned long active_duration;
717 
718 	unsigned long connect_time;
719 
720 	unsigned do_remote_wakeup:1;
721 	unsigned reset_resume:1;
722 	unsigned port_is_suspended:1;
723 
724 	int slot_id;
725 	struct usb2_lpm_parameters l1_params;
726 	struct usb3_lpm_parameters u1_params;
727 	struct usb3_lpm_parameters u2_params;
728 	unsigned lpm_disable_count;
729 
730 	u16 hub_delay;
731 	unsigned use_generic_driver:1;
732 };
733 
734 #define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
735 
__intf_to_usbdev(struct usb_interface * intf)736 static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
737 {
738 	return to_usb_device(intf->dev.parent);
739 }
__intf_to_usbdev_const(const struct usb_interface * intf)740 static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
741 {
742 	return to_usb_device((const struct device *)intf->dev.parent);
743 }
744 
745 #define interface_to_usbdev(intf)					\
746 	_Generic((intf),						\
747 		 const struct usb_interface *: __intf_to_usbdev_const,	\
748 		 struct usb_interface *: __intf_to_usbdev)(intf)
749 
750 extern struct usb_device *usb_get_dev(struct usb_device *dev);
751 extern void usb_put_dev(struct usb_device *dev);
752 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
753 	int port1);
754 
755 /**
756  * usb_hub_for_each_child - iterate over all child devices on the hub
757  * @hdev:  USB device belonging to the usb hub
758  * @port1: portnum associated with child device
759  * @child: child device pointer
760  */
761 #define usb_hub_for_each_child(hdev, port1, child) \
762 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
763 			port1 <= hdev->maxchild; \
764 			child = usb_hub_find_child(hdev, ++port1)) \
765 		if (!child) continue; else
766 
767 /* USB device locking */
768 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
769 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
770 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
771 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
772 extern int usb_lock_device_for_reset(struct usb_device *udev,
773 				     const struct usb_interface *iface);
774 
775 /* USB port reset for device reinitialization */
776 extern int usb_reset_device(struct usb_device *dev);
777 extern void usb_queue_reset_device(struct usb_interface *dev);
778 
779 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
780 
781 #ifdef CONFIG_ACPI
782 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
783 	bool enable);
784 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
785 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
786 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)787 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
788 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)789 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
790 	{ return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)791 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
792 	{ return 0; }
793 #endif
794 
795 /* USB autosuspend and autoresume */
796 #ifdef CONFIG_PM
797 extern void usb_enable_autosuspend(struct usb_device *udev);
798 extern void usb_disable_autosuspend(struct usb_device *udev);
799 
800 extern int usb_autopm_get_interface(struct usb_interface *intf);
801 extern void usb_autopm_put_interface(struct usb_interface *intf);
802 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
803 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
804 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
805 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
806 
usb_mark_last_busy(struct usb_device * udev)807 static inline void usb_mark_last_busy(struct usb_device *udev)
808 {
809 	pm_runtime_mark_last_busy(&udev->dev);
810 }
811 
812 #else
813 
usb_enable_autosuspend(struct usb_device * udev)814 static inline int usb_enable_autosuspend(struct usb_device *udev)
815 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)816 static inline int usb_disable_autosuspend(struct usb_device *udev)
817 { return 0; }
818 
usb_autopm_get_interface(struct usb_interface * intf)819 static inline int usb_autopm_get_interface(struct usb_interface *intf)
820 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)821 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
822 { return 0; }
823 
usb_autopm_put_interface(struct usb_interface * intf)824 static inline void usb_autopm_put_interface(struct usb_interface *intf)
825 { }
usb_autopm_put_interface_async(struct usb_interface * intf)826 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
827 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)828 static inline void usb_autopm_get_interface_no_resume(
829 		struct usb_interface *intf)
830 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)831 static inline void usb_autopm_put_interface_no_suspend(
832 		struct usb_interface *intf)
833 { }
usb_mark_last_busy(struct usb_device * udev)834 static inline void usb_mark_last_busy(struct usb_device *udev)
835 { }
836 #endif
837 
838 extern int usb_disable_lpm(struct usb_device *udev);
839 extern void usb_enable_lpm(struct usb_device *udev);
840 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
841 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
842 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
843 
844 extern int usb_disable_ltm(struct usb_device *udev);
845 extern void usb_enable_ltm(struct usb_device *udev);
846 
usb_device_supports_ltm(struct usb_device * udev)847 static inline bool usb_device_supports_ltm(struct usb_device *udev)
848 {
849 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
850 		return false;
851 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
852 }
853 
usb_device_no_sg_constraint(struct usb_device * udev)854 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
855 {
856 	return udev && udev->bus && udev->bus->no_sg_constraint;
857 }
858 
859 
860 /*-------------------------------------------------------------------------*/
861 
862 /* for drivers using iso endpoints */
863 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
864 
865 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
866 extern int usb_alloc_streams(struct usb_interface *interface,
867 		struct usb_host_endpoint **eps, unsigned int num_eps,
868 		unsigned int num_streams, gfp_t mem_flags);
869 
870 /* Reverts a group of bulk endpoints back to not using stream IDs. */
871 extern int usb_free_streams(struct usb_interface *interface,
872 		struct usb_host_endpoint **eps, unsigned int num_eps,
873 		gfp_t mem_flags);
874 
875 /* used these for multi-interface device registration */
876 extern int usb_driver_claim_interface(struct usb_driver *driver,
877 			struct usb_interface *iface, void *data);
878 
879 /**
880  * usb_interface_claimed - returns true iff an interface is claimed
881  * @iface: the interface being checked
882  *
883  * Return: %true (nonzero) iff the interface is claimed, else %false
884  * (zero).
885  *
886  * Note:
887  * Callers must own the driver model's usb bus readlock.  So driver
888  * probe() entries don't need extra locking, but other call contexts
889  * may need to explicitly claim that lock.
890  *
891  */
usb_interface_claimed(struct usb_interface * iface)892 static inline int usb_interface_claimed(struct usb_interface *iface)
893 {
894 	return (iface->dev.driver != NULL);
895 }
896 
897 extern void usb_driver_release_interface(struct usb_driver *driver,
898 			struct usb_interface *iface);
899 
900 int usb_set_wireless_status(struct usb_interface *iface,
901 			enum usb_wireless_status status);
902 
903 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
904 					 const struct usb_device_id *id);
905 extern int usb_match_one_id(struct usb_interface *interface,
906 			    const struct usb_device_id *id);
907 
908 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
909 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
910 		int minor);
911 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
912 		unsigned ifnum);
913 extern struct usb_host_interface *usb_altnum_to_altsetting(
914 		const struct usb_interface *intf, unsigned int altnum);
915 extern struct usb_host_interface *usb_find_alt_setting(
916 		struct usb_host_config *config,
917 		unsigned int iface_num,
918 		unsigned int alt_num);
919 
920 /* port claiming functions */
921 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
922 		struct usb_dev_state *owner);
923 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
924 		struct usb_dev_state *owner);
925 
926 /**
927  * usb_make_path - returns stable device path in the usb tree
928  * @dev: the device whose path is being constructed
929  * @buf: where to put the string
930  * @size: how big is "buf"?
931  *
932  * Return: Length of the string (> 0) or negative if size was too small.
933  *
934  * Note:
935  * This identifier is intended to be "stable", reflecting physical paths in
936  * hardware such as physical bus addresses for host controllers or ports on
937  * USB hubs.  That makes it stay the same until systems are physically
938  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
939  * controllers.  Adding and removing devices, including virtual root hubs
940  * in host controller driver modules, does not change these path identifiers;
941  * neither does rebooting or re-enumerating.  These are more useful identifiers
942  * than changeable ("unstable") ones like bus numbers or device addresses.
943  *
944  * With a partial exception for devices connected to USB 2.0 root hubs, these
945  * identifiers are also predictable.  So long as the device tree isn't changed,
946  * plugging any USB device into a given hub port always gives it the same path.
947  * Because of the use of "companion" controllers, devices connected to ports on
948  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
949  * high speed, and a different one if they are full or low speed.
950  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)951 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
952 {
953 	int actual;
954 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
955 			  dev->devpath);
956 	return (actual >= (int)size) ? -1 : actual;
957 }
958 
959 /*-------------------------------------------------------------------------*/
960 
961 #define USB_DEVICE_ID_MATCH_DEVICE \
962 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
963 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
964 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
965 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
966 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
967 #define USB_DEVICE_ID_MATCH_DEV_INFO \
968 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
969 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
970 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
971 #define USB_DEVICE_ID_MATCH_INT_INFO \
972 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
973 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
974 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
975 
976 /**
977  * USB_DEVICE - macro used to describe a specific usb device
978  * @vend: the 16 bit USB Vendor ID
979  * @prod: the 16 bit USB Product ID
980  *
981  * This macro is used to create a struct usb_device_id that matches a
982  * specific device.
983  */
984 #define USB_DEVICE(vend, prod) \
985 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
986 	.idVendor = (vend), \
987 	.idProduct = (prod)
988 /**
989  * USB_DEVICE_VER - describe a specific usb device with a version range
990  * @vend: the 16 bit USB Vendor ID
991  * @prod: the 16 bit USB Product ID
992  * @lo: the bcdDevice_lo value
993  * @hi: the bcdDevice_hi value
994  *
995  * This macro is used to create a struct usb_device_id that matches a
996  * specific device, with a version range.
997  */
998 #define USB_DEVICE_VER(vend, prod, lo, hi) \
999 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
1000 	.idVendor = (vend), \
1001 	.idProduct = (prod), \
1002 	.bcdDevice_lo = (lo), \
1003 	.bcdDevice_hi = (hi)
1004 
1005 /**
1006  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1007  * @vend: the 16 bit USB Vendor ID
1008  * @prod: the 16 bit USB Product ID
1009  * @cl: bInterfaceClass value
1010  *
1011  * This macro is used to create a struct usb_device_id that matches a
1012  * specific interface class of devices.
1013  */
1014 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1015 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1016 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1017 	.idVendor = (vend), \
1018 	.idProduct = (prod), \
1019 	.bInterfaceClass = (cl)
1020 
1021 /**
1022  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1023  * @vend: the 16 bit USB Vendor ID
1024  * @prod: the 16 bit USB Product ID
1025  * @pr: bInterfaceProtocol value
1026  *
1027  * This macro is used to create a struct usb_device_id that matches a
1028  * specific interface protocol of devices.
1029  */
1030 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1031 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1032 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1033 	.idVendor = (vend), \
1034 	.idProduct = (prod), \
1035 	.bInterfaceProtocol = (pr)
1036 
1037 /**
1038  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1039  * @vend: the 16 bit USB Vendor ID
1040  * @prod: the 16 bit USB Product ID
1041  * @num: bInterfaceNumber value
1042  *
1043  * This macro is used to create a struct usb_device_id that matches a
1044  * specific interface number of devices.
1045  */
1046 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1047 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1048 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1049 	.idVendor = (vend), \
1050 	.idProduct = (prod), \
1051 	.bInterfaceNumber = (num)
1052 
1053 /**
1054  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1055  * @cl: bDeviceClass value
1056  * @sc: bDeviceSubClass value
1057  * @pr: bDeviceProtocol value
1058  *
1059  * This macro is used to create a struct usb_device_id that matches a
1060  * specific class of devices.
1061  */
1062 #define USB_DEVICE_INFO(cl, sc, pr) \
1063 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1064 	.bDeviceClass = (cl), \
1065 	.bDeviceSubClass = (sc), \
1066 	.bDeviceProtocol = (pr)
1067 
1068 /**
1069  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1070  * @cl: bInterfaceClass value
1071  * @sc: bInterfaceSubClass value
1072  * @pr: bInterfaceProtocol value
1073  *
1074  * This macro is used to create a struct usb_device_id that matches a
1075  * specific class of interfaces.
1076  */
1077 #define USB_INTERFACE_INFO(cl, sc, pr) \
1078 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1079 	.bInterfaceClass = (cl), \
1080 	.bInterfaceSubClass = (sc), \
1081 	.bInterfaceProtocol = (pr)
1082 
1083 /**
1084  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1085  * @vend: the 16 bit USB Vendor ID
1086  * @prod: the 16 bit USB Product ID
1087  * @cl: bInterfaceClass value
1088  * @sc: bInterfaceSubClass value
1089  * @pr: bInterfaceProtocol value
1090  *
1091  * This macro is used to create a struct usb_device_id that matches a
1092  * specific device with a specific class of interfaces.
1093  *
1094  * This is especially useful when explicitly matching devices that have
1095  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1096  */
1097 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1098 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1099 		| USB_DEVICE_ID_MATCH_DEVICE, \
1100 	.idVendor = (vend), \
1101 	.idProduct = (prod), \
1102 	.bInterfaceClass = (cl), \
1103 	.bInterfaceSubClass = (sc), \
1104 	.bInterfaceProtocol = (pr)
1105 
1106 /**
1107  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1108  * @vend: the 16 bit USB Vendor ID
1109  * @cl: bInterfaceClass value
1110  * @sc: bInterfaceSubClass value
1111  * @pr: bInterfaceProtocol value
1112  *
1113  * This macro is used to create a struct usb_device_id that matches a
1114  * specific vendor with a specific class of interfaces.
1115  *
1116  * This is especially useful when explicitly matching devices that have
1117  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1118  */
1119 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1120 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1121 		| USB_DEVICE_ID_MATCH_VENDOR, \
1122 	.idVendor = (vend), \
1123 	.bInterfaceClass = (cl), \
1124 	.bInterfaceSubClass = (sc), \
1125 	.bInterfaceProtocol = (pr)
1126 
1127 /* ----------------------------------------------------------------------- */
1128 
1129 /* Stuff for dynamic usb ids */
1130 struct usb_dynids {
1131 	spinlock_t lock;
1132 	struct list_head list;
1133 };
1134 
1135 struct usb_dynid {
1136 	struct list_head node;
1137 	struct usb_device_id id;
1138 };
1139 
1140 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1141 				const struct usb_device_id *id_table,
1142 				struct device_driver *driver,
1143 				const char *buf, size_t count);
1144 
1145 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1146 
1147 /**
1148  * struct usbdrv_wrap - wrapper for driver-model structure
1149  * @driver: The driver-model core driver structure.
1150  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1151  */
1152 struct usbdrv_wrap {
1153 	struct device_driver driver;
1154 	int for_devices;
1155 };
1156 
1157 /**
1158  * struct usb_driver - identifies USB interface driver to usbcore
1159  * @name: The driver name should be unique among USB drivers,
1160  *	and should normally be the same as the module name.
1161  * @probe: Called to see if the driver is willing to manage a particular
1162  *	interface on a device.  If it is, probe returns zero and uses
1163  *	usb_set_intfdata() to associate driver-specific data with the
1164  *	interface.  It may also use usb_set_interface() to specify the
1165  *	appropriate altsetting.  If unwilling to manage the interface,
1166  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1167  *	negative errno value.
1168  * @disconnect: Called when the interface is no longer accessible, usually
1169  *	because its device has been (or is being) disconnected or the
1170  *	driver module is being unloaded.
1171  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1172  *	the "usbfs" filesystem.  This lets devices provide ways to
1173  *	expose information to user space regardless of where they
1174  *	do (or don't) show up otherwise in the filesystem.
1175  * @suspend: Called when the device is going to be suspended by the
1176  *	system either from system sleep or runtime suspend context. The
1177  *	return value will be ignored in system sleep context, so do NOT
1178  *	try to continue using the device if suspend fails in this case.
1179  *	Instead, let the resume or reset-resume routine recover from
1180  *	the failure.
1181  * @resume: Called when the device is being resumed by the system.
1182  * @reset_resume: Called when the suspended device has been reset instead
1183  *	of being resumed.
1184  * @pre_reset: Called by usb_reset_device() when the device is about to be
1185  *	reset.  This routine must not return until the driver has no active
1186  *	URBs for the device, and no more URBs may be submitted until the
1187  *	post_reset method is called.
1188  * @post_reset: Called by usb_reset_device() after the device
1189  *	has been reset
1190  * @id_table: USB drivers use ID table to support hotplugging.
1191  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1192  *	or your driver's probe function will never get called.
1193  * @dev_groups: Attributes attached to the device that will be created once it
1194  *	is bound to the driver.
1195  * @dynids: used internally to hold the list of dynamically added device
1196  *	ids for this driver.
1197  * @drvwrap: Driver-model core structure wrapper.
1198  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1199  *	added to this driver by preventing the sysfs file from being created.
1200  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1201  *	for interfaces bound to this driver.
1202  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1203  *	endpoints before calling the driver's disconnect method.
1204  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1205  *	to initiate lower power link state transitions when an idle timeout
1206  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1207  *
1208  * USB interface drivers must provide a name, probe() and disconnect()
1209  * methods, and an id_table.  Other driver fields are optional.
1210  *
1211  * The id_table is used in hotplugging.  It holds a set of descriptors,
1212  * and specialized data may be associated with each entry.  That table
1213  * is used by both user and kernel mode hotplugging support.
1214  *
1215  * The probe() and disconnect() methods are called in a context where
1216  * they can sleep, but they should avoid abusing the privilege.  Most
1217  * work to connect to a device should be done when the device is opened,
1218  * and undone at the last close.  The disconnect code needs to address
1219  * concurrency issues with respect to open() and close() methods, as
1220  * well as forcing all pending I/O requests to complete (by unlinking
1221  * them as necessary, and blocking until the unlinks complete).
1222  */
1223 struct usb_driver {
1224 	const char *name;
1225 
1226 	int (*probe) (struct usb_interface *intf,
1227 		      const struct usb_device_id *id);
1228 
1229 	void (*disconnect) (struct usb_interface *intf);
1230 
1231 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1232 			void *buf);
1233 
1234 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1235 	int (*resume) (struct usb_interface *intf);
1236 	int (*reset_resume)(struct usb_interface *intf);
1237 
1238 	int (*pre_reset)(struct usb_interface *intf);
1239 	int (*post_reset)(struct usb_interface *intf);
1240 
1241 	const struct usb_device_id *id_table;
1242 	const struct attribute_group **dev_groups;
1243 
1244 	struct usb_dynids dynids;
1245 	struct usbdrv_wrap drvwrap;
1246 	unsigned int no_dynamic_id:1;
1247 	unsigned int supports_autosuspend:1;
1248 	unsigned int disable_hub_initiated_lpm:1;
1249 	unsigned int soft_unbind:1;
1250 };
1251 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1252 
1253 /**
1254  * struct usb_device_driver - identifies USB device driver to usbcore
1255  * @name: The driver name should be unique among USB drivers,
1256  *	and should normally be the same as the module name.
1257  * @match: If set, used for better device/driver matching.
1258  * @probe: Called to see if the driver is willing to manage a particular
1259  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1260  *	to associate driver-specific data with the device.  If unwilling
1261  *	to manage the device, return a negative errno value.
1262  * @disconnect: Called when the device is no longer accessible, usually
1263  *	because it has been (or is being) disconnected or the driver's
1264  *	module is being unloaded.
1265  * @suspend: Called when the device is going to be suspended by the system.
1266  * @resume: Called when the device is being resumed by the system.
1267  * @dev_groups: Attributes attached to the device that will be created once it
1268  *	is bound to the driver.
1269  * @drvwrap: Driver-model core structure wrapper.
1270  * @id_table: used with @match() to select better matching driver at
1271  * 	probe() time.
1272  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1273  *	for devices bound to this driver.
1274  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1275  *	resume and suspend functions will be called in addition to the driver's
1276  *	own, so this part of the setup does not need to be replicated.
1277  *
1278  * USB drivers must provide all the fields listed above except drvwrap,
1279  * match, and id_table.
1280  */
1281 struct usb_device_driver {
1282 	const char *name;
1283 
1284 	bool (*match) (struct usb_device *udev);
1285 	int (*probe) (struct usb_device *udev);
1286 	void (*disconnect) (struct usb_device *udev);
1287 
1288 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1289 	int (*resume) (struct usb_device *udev, pm_message_t message);
1290 	const struct attribute_group **dev_groups;
1291 	struct usbdrv_wrap drvwrap;
1292 	const struct usb_device_id *id_table;
1293 	unsigned int supports_autosuspend:1;
1294 	unsigned int generic_subclass:1;
1295 };
1296 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1297 		drvwrap.driver)
1298 
1299 /**
1300  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1301  * @name: the usb class device name for this driver.  Will show up in sysfs.
1302  * @devnode: Callback to provide a naming hint for a possible
1303  *	device node to create.
1304  * @fops: pointer to the struct file_operations of this driver.
1305  * @minor_base: the start of the minor range for this driver.
1306  *
1307  * This structure is used for the usb_register_dev() and
1308  * usb_deregister_dev() functions, to consolidate a number of the
1309  * parameters used for them.
1310  */
1311 struct usb_class_driver {
1312 	char *name;
1313 	char *(*devnode)(const struct device *dev, umode_t *mode);
1314 	const struct file_operations *fops;
1315 	int minor_base;
1316 };
1317 
1318 /*
1319  * use these in module_init()/module_exit()
1320  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1321  */
1322 extern int usb_register_driver(struct usb_driver *, struct module *,
1323 			       const char *);
1324 
1325 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1326 #define usb_register(driver) \
1327 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1328 
1329 extern void usb_deregister(struct usb_driver *);
1330 
1331 /**
1332  * module_usb_driver() - Helper macro for registering a USB driver
1333  * @__usb_driver: usb_driver struct
1334  *
1335  * Helper macro for USB drivers which do not do anything special in module
1336  * init/exit. This eliminates a lot of boilerplate. Each module may only
1337  * use this macro once, and calling it replaces module_init() and module_exit()
1338  */
1339 #define module_usb_driver(__usb_driver) \
1340 	module_driver(__usb_driver, usb_register, \
1341 		       usb_deregister)
1342 
1343 extern int usb_register_device_driver(struct usb_device_driver *,
1344 			struct module *);
1345 extern void usb_deregister_device_driver(struct usb_device_driver *);
1346 
1347 extern int usb_register_dev(struct usb_interface *intf,
1348 			    struct usb_class_driver *class_driver);
1349 extern void usb_deregister_dev(struct usb_interface *intf,
1350 			       struct usb_class_driver *class_driver);
1351 
1352 extern int usb_disabled(void);
1353 
1354 /* ----------------------------------------------------------------------- */
1355 
1356 /*
1357  * URB support, for asynchronous request completions
1358  */
1359 
1360 /*
1361  * urb->transfer_flags:
1362  *
1363  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1364  */
1365 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1366 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1367 					 * slot in the schedule */
1368 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1369 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1370 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1371 					 * needed */
1372 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1373 
1374 /* The following flags are used internally by usbcore and HCDs */
1375 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1376 #define URB_DIR_OUT		0
1377 #define URB_DIR_MASK		URB_DIR_IN
1378 
1379 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1380 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1381 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1382 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1383 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1384 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1385 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1386 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1387 
1388 struct usb_iso_packet_descriptor {
1389 	unsigned int offset;
1390 	unsigned int length;		/* expected length */
1391 	unsigned int actual_length;
1392 	int status;
1393 };
1394 
1395 struct urb;
1396 
1397 struct usb_anchor {
1398 	struct list_head urb_list;
1399 	wait_queue_head_t wait;
1400 	spinlock_t lock;
1401 	atomic_t suspend_wakeups;
1402 	unsigned int poisoned:1;
1403 };
1404 
init_usb_anchor(struct usb_anchor * anchor)1405 static inline void init_usb_anchor(struct usb_anchor *anchor)
1406 {
1407 	memset(anchor, 0, sizeof(*anchor));
1408 	INIT_LIST_HEAD(&anchor->urb_list);
1409 	init_waitqueue_head(&anchor->wait);
1410 	spin_lock_init(&anchor->lock);
1411 }
1412 
1413 typedef void (*usb_complete_t)(struct urb *);
1414 
1415 /**
1416  * struct urb - USB Request Block
1417  * @urb_list: For use by current owner of the URB.
1418  * @anchor_list: membership in the list of an anchor
1419  * @anchor: to anchor URBs to a common mooring
1420  * @ep: Points to the endpoint's data structure.  Will eventually
1421  *	replace @pipe.
1422  * @pipe: Holds endpoint number, direction, type, and more.
1423  *	Create these values with the eight macros available;
1424  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1425  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1426  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1427  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1428  *	is a different endpoint (and pipe) from "out" endpoint two.
1429  *	The current configuration controls the existence, type, and
1430  *	maximum packet size of any given endpoint.
1431  * @stream_id: the endpoint's stream ID for bulk streams
1432  * @dev: Identifies the USB device to perform the request.
1433  * @status: This is read in non-iso completion functions to get the
1434  *	status of the particular request.  ISO requests only use it
1435  *	to tell whether the URB was unlinked; detailed status for
1436  *	each frame is in the fields of the iso_frame-desc.
1437  * @transfer_flags: A variety of flags may be used to affect how URB
1438  *	submission, unlinking, or operation are handled.  Different
1439  *	kinds of URB can use different flags.
1440  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1441  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1442  *	(however, do not leave garbage in transfer_buffer even then).
1443  *	This buffer must be suitable for DMA; allocate it with
1444  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1445  *	of this buffer will be modified.  This buffer is used for the data
1446  *	stage of control transfers.
1447  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1448  *	the device driver is saying that it provided this DMA address,
1449  *	which the host controller driver should use in preference to the
1450  *	transfer_buffer.
1451  * @sg: scatter gather buffer list, the buffer size of each element in
1452  * 	the list (except the last) must be divisible by the endpoint's
1453  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1454  * @num_mapped_sgs: (internal) number of mapped sg entries
1455  * @num_sgs: number of entries in the sg list
1456  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1457  *	be broken up into chunks according to the current maximum packet
1458  *	size for the endpoint, which is a function of the configuration
1459  *	and is encoded in the pipe.  When the length is zero, neither
1460  *	transfer_buffer nor transfer_dma is used.
1461  * @actual_length: This is read in non-iso completion functions, and
1462  *	it tells how many bytes (out of transfer_buffer_length) were
1463  *	transferred.  It will normally be the same as requested, unless
1464  *	either an error was reported or a short read was performed.
1465  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1466  *	short reads be reported as errors.
1467  * @setup_packet: Only used for control transfers, this points to eight bytes
1468  *	of setup data.  Control transfers always start by sending this data
1469  *	to the device.  Then transfer_buffer is read or written, if needed.
1470  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1471  *	this field; setup_packet must point to a valid buffer.
1472  * @start_frame: Returns the initial frame for isochronous transfers.
1473  * @number_of_packets: Lists the number of ISO transfer buffers.
1474  * @interval: Specifies the polling interval for interrupt or isochronous
1475  *	transfers.  The units are frames (milliseconds) for full and low
1476  *	speed devices, and microframes (1/8 millisecond) for highspeed
1477  *	and SuperSpeed devices.
1478  * @error_count: Returns the number of ISO transfers that reported errors.
1479  * @context: For use in completion functions.  This normally points to
1480  *	request-specific driver context.
1481  * @complete: Completion handler. This URB is passed as the parameter to the
1482  *	completion function.  The completion function may then do what
1483  *	it likes with the URB, including resubmitting or freeing it.
1484  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1485  *	collect the transfer status for each buffer.
1486  *
1487  * This structure identifies USB transfer requests.  URBs must be allocated by
1488  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1489  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1490  * are submitted using usb_submit_urb(), and pending requests may be canceled
1491  * using usb_unlink_urb() or usb_kill_urb().
1492  *
1493  * Data Transfer Buffers:
1494  *
1495  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1496  * taken from the general page pool.  That is provided by transfer_buffer
1497  * (control requests also use setup_packet), and host controller drivers
1498  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1499  * mapping operations can be expensive on some platforms (perhaps using a dma
1500  * bounce buffer or talking to an IOMMU),
1501  * although they're cheap on commodity x86 and ppc hardware.
1502  *
1503  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1504  * which tells the host controller driver that no such mapping is needed for
1505  * the transfer_buffer since
1506  * the device driver is DMA-aware.  For example, a device driver might
1507  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1508  * When this transfer flag is provided, host controller drivers will
1509  * attempt to use the dma address found in the transfer_dma
1510  * field rather than determining a dma address themselves.
1511  *
1512  * Note that transfer_buffer must still be set if the controller
1513  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1514  * to root hub. If you have to transfer between highmem zone and the device
1515  * on such controller, create a bounce buffer or bail out with an error.
1516  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1517  * capable, assign NULL to it, so that usbmon knows not to use the value.
1518  * The setup_packet must always be set, so it cannot be located in highmem.
1519  *
1520  * Initialization:
1521  *
1522  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1523  * zero), and complete fields.  All URBs must also initialize
1524  * transfer_buffer and transfer_buffer_length.  They may provide the
1525  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1526  * to be treated as errors; that flag is invalid for write requests.
1527  *
1528  * Bulk URBs may
1529  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1530  * should always terminate with a short packet, even if it means adding an
1531  * extra zero length packet.
1532  *
1533  * Control URBs must provide a valid pointer in the setup_packet field.
1534  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1535  * beforehand.
1536  *
1537  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1538  * or, for highspeed devices, 125 microsecond units)
1539  * to poll for transfers.  After the URB has been submitted, the interval
1540  * field reflects how the transfer was actually scheduled.
1541  * The polling interval may be more frequent than requested.
1542  * For example, some controllers have a maximum interval of 32 milliseconds,
1543  * while others support intervals of up to 1024 milliseconds.
1544  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1545  * endpoints, as well as high speed interrupt endpoints, the encoding of
1546  * the transfer interval in the endpoint descriptor is logarithmic.
1547  * Device drivers must convert that value to linear units themselves.)
1548  *
1549  * If an isochronous endpoint queue isn't already running, the host
1550  * controller will schedule a new URB to start as soon as bandwidth
1551  * utilization allows.  If the queue is running then a new URB will be
1552  * scheduled to start in the first transfer slot following the end of the
1553  * preceding URB, if that slot has not already expired.  If the slot has
1554  * expired (which can happen when IRQ delivery is delayed for a long time),
1555  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1556  * is clear then the URB will be scheduled to start in the expired slot,
1557  * implying that some of its packets will not be transferred; if the flag
1558  * is set then the URB will be scheduled in the first unexpired slot,
1559  * breaking the queue's synchronization.  Upon URB completion, the
1560  * start_frame field will be set to the (micro)frame number in which the
1561  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1562  * and can go from as low as 256 to as high as 65536 frames.
1563  *
1564  * Isochronous URBs have a different data transfer model, in part because
1565  * the quality of service is only "best effort".  Callers provide specially
1566  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1567  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1568  * URBs are normally queued, submitted by drivers to arrange that
1569  * transfers are at least double buffered, and then explicitly resubmitted
1570  * in completion handlers, so
1571  * that data (such as audio or video) streams at as constant a rate as the
1572  * host controller scheduler can support.
1573  *
1574  * Completion Callbacks:
1575  *
1576  * The completion callback is made in_interrupt(), and one of the first
1577  * things that a completion handler should do is check the status field.
1578  * The status field is provided for all URBs.  It is used to report
1579  * unlinked URBs, and status for all non-ISO transfers.  It should not
1580  * be examined before the URB is returned to the completion handler.
1581  *
1582  * The context field is normally used to link URBs back to the relevant
1583  * driver or request state.
1584  *
1585  * When the completion callback is invoked for non-isochronous URBs, the
1586  * actual_length field tells how many bytes were transferred.  This field
1587  * is updated even when the URB terminated with an error or was unlinked.
1588  *
1589  * ISO transfer status is reported in the status and actual_length fields
1590  * of the iso_frame_desc array, and the number of errors is reported in
1591  * error_count.  Completion callbacks for ISO transfers will normally
1592  * (re)submit URBs to ensure a constant transfer rate.
1593  *
1594  * Note that even fields marked "public" should not be touched by the driver
1595  * when the urb is owned by the hcd, that is, since the call to
1596  * usb_submit_urb() till the entry into the completion routine.
1597  */
1598 struct urb {
1599 	/* private: usb core and host controller only fields in the urb */
1600 	struct kref kref;		/* reference count of the URB */
1601 	int unlinked;			/* unlink error code */
1602 	void *hcpriv;			/* private data for host controller */
1603 	atomic_t use_count;		/* concurrent submissions counter */
1604 	atomic_t reject;		/* submissions will fail */
1605 
1606 	/* public: documented fields in the urb that can be used by drivers */
1607 	struct list_head urb_list;	/* list head for use by the urb's
1608 					 * current owner */
1609 	struct list_head anchor_list;	/* the URB may be anchored */
1610 	struct usb_anchor *anchor;
1611 	struct usb_device *dev;		/* (in) pointer to associated device */
1612 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1613 	unsigned int pipe;		/* (in) pipe information */
1614 	unsigned int stream_id;		/* (in) stream ID */
1615 	int status;			/* (return) non-ISO status */
1616 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1617 	void *transfer_buffer;		/* (in) associated data buffer */
1618 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1619 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1620 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1621 	int num_sgs;			/* (in) number of entries in the sg list */
1622 	u32 transfer_buffer_length;	/* (in) data buffer length */
1623 	u32 actual_length;		/* (return) actual transfer length */
1624 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1625 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1626 	int start_frame;		/* (modify) start frame (ISO) */
1627 	int number_of_packets;		/* (in) number of ISO packets */
1628 	int interval;			/* (modify) transfer interval
1629 					 * (INT/ISO) */
1630 	int error_count;		/* (return) number of ISO errors */
1631 	void *context;			/* (in) context for completion */
1632 	usb_complete_t complete;	/* (in) completion routine */
1633 	struct usb_iso_packet_descriptor iso_frame_desc[];
1634 					/* (in) ISO ONLY */
1635 };
1636 
1637 /* ----------------------------------------------------------------------- */
1638 
1639 /**
1640  * usb_fill_control_urb - initializes a control urb
1641  * @urb: pointer to the urb to initialize.
1642  * @dev: pointer to the struct usb_device for this urb.
1643  * @pipe: the endpoint pipe
1644  * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1645  *	suitable for DMA.
1646  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1647  *	suitable for DMA.
1648  * @buffer_length: length of the transfer buffer
1649  * @complete_fn: pointer to the usb_complete_t function
1650  * @context: what to set the urb context to.
1651  *
1652  * Initializes a control urb with the proper information needed to submit
1653  * it to a device.
1654  *
1655  * The transfer buffer and the setup_packet buffer will most likely be filled
1656  * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1657  * allocating it via kmalloc() or equivalent, even for very small buffers.
1658  * If the buffers are embedded in a bigger structure, there is a risk that
1659  * the buffer itself, the previous fields and/or the next fields are corrupted
1660  * due to cache incoherencies; or slowed down if they are evicted from the
1661  * cache. For more information, check &struct urb.
1662  *
1663  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1664 static inline void usb_fill_control_urb(struct urb *urb,
1665 					struct usb_device *dev,
1666 					unsigned int pipe,
1667 					unsigned char *setup_packet,
1668 					void *transfer_buffer,
1669 					int buffer_length,
1670 					usb_complete_t complete_fn,
1671 					void *context)
1672 {
1673 	urb->dev = dev;
1674 	urb->pipe = pipe;
1675 	urb->setup_packet = setup_packet;
1676 	urb->transfer_buffer = transfer_buffer;
1677 	urb->transfer_buffer_length = buffer_length;
1678 	urb->complete = complete_fn;
1679 	urb->context = context;
1680 }
1681 
1682 /**
1683  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1684  * @urb: pointer to the urb to initialize.
1685  * @dev: pointer to the struct usb_device for this urb.
1686  * @pipe: the endpoint pipe
1687  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1688  *	suitable for DMA.
1689  * @buffer_length: length of the transfer buffer
1690  * @complete_fn: pointer to the usb_complete_t function
1691  * @context: what to set the urb context to.
1692  *
1693  * Initializes a bulk urb with the proper information needed to submit it
1694  * to a device.
1695  *
1696  * Refer to usb_fill_control_urb() for a description of the requirements for
1697  * transfer_buffer.
1698  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1699 static inline void usb_fill_bulk_urb(struct urb *urb,
1700 				     struct usb_device *dev,
1701 				     unsigned int pipe,
1702 				     void *transfer_buffer,
1703 				     int buffer_length,
1704 				     usb_complete_t complete_fn,
1705 				     void *context)
1706 {
1707 	urb->dev = dev;
1708 	urb->pipe = pipe;
1709 	urb->transfer_buffer = transfer_buffer;
1710 	urb->transfer_buffer_length = buffer_length;
1711 	urb->complete = complete_fn;
1712 	urb->context = context;
1713 }
1714 
1715 /**
1716  * usb_fill_int_urb - macro to help initialize a interrupt urb
1717  * @urb: pointer to the urb to initialize.
1718  * @dev: pointer to the struct usb_device for this urb.
1719  * @pipe: the endpoint pipe
1720  * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1721  *	suitable for DMA.
1722  * @buffer_length: length of the transfer buffer
1723  * @complete_fn: pointer to the usb_complete_t function
1724  * @context: what to set the urb context to.
1725  * @interval: what to set the urb interval to, encoded like
1726  *	the endpoint descriptor's bInterval value.
1727  *
1728  * Initializes a interrupt urb with the proper information needed to submit
1729  * it to a device.
1730  *
1731  * Refer to usb_fill_control_urb() for a description of the requirements for
1732  * transfer_buffer.
1733  *
1734  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1735  * encoding of the endpoint interval, and express polling intervals in
1736  * microframes (eight per millisecond) rather than in frames (one per
1737  * millisecond).
1738  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1739 static inline void usb_fill_int_urb(struct urb *urb,
1740 				    struct usb_device *dev,
1741 				    unsigned int pipe,
1742 				    void *transfer_buffer,
1743 				    int buffer_length,
1744 				    usb_complete_t complete_fn,
1745 				    void *context,
1746 				    int interval)
1747 {
1748 	urb->dev = dev;
1749 	urb->pipe = pipe;
1750 	urb->transfer_buffer = transfer_buffer;
1751 	urb->transfer_buffer_length = buffer_length;
1752 	urb->complete = complete_fn;
1753 	urb->context = context;
1754 
1755 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1756 		/* make sure interval is within allowed range */
1757 		interval = clamp(interval, 1, 16);
1758 
1759 		urb->interval = 1 << (interval - 1);
1760 	} else {
1761 		urb->interval = interval;
1762 	}
1763 
1764 	urb->start_frame = -1;
1765 }
1766 
1767 extern void usb_init_urb(struct urb *urb);
1768 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1769 extern void usb_free_urb(struct urb *urb);
1770 #define usb_put_urb usb_free_urb
1771 extern struct urb *usb_get_urb(struct urb *urb);
1772 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1773 extern int usb_unlink_urb(struct urb *urb);
1774 extern void usb_kill_urb(struct urb *urb);
1775 extern void usb_poison_urb(struct urb *urb);
1776 extern void usb_unpoison_urb(struct urb *urb);
1777 extern void usb_block_urb(struct urb *urb);
1778 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1779 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1780 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1781 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1782 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1783 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1784 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1785 extern void usb_unanchor_urb(struct urb *urb);
1786 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1787 					 unsigned int timeout);
1788 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1789 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1790 extern int usb_anchor_empty(struct usb_anchor *anchor);
1791 
1792 #define usb_unblock_urb	usb_unpoison_urb
1793 
1794 /**
1795  * usb_urb_dir_in - check if an URB describes an IN transfer
1796  * @urb: URB to be checked
1797  *
1798  * Return: 1 if @urb describes an IN transfer (device-to-host),
1799  * otherwise 0.
1800  */
usb_urb_dir_in(struct urb * urb)1801 static inline int usb_urb_dir_in(struct urb *urb)
1802 {
1803 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1804 }
1805 
1806 /**
1807  * usb_urb_dir_out - check if an URB describes an OUT transfer
1808  * @urb: URB to be checked
1809  *
1810  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1811  * otherwise 0.
1812  */
usb_urb_dir_out(struct urb * urb)1813 static inline int usb_urb_dir_out(struct urb *urb)
1814 {
1815 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1816 }
1817 
1818 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1819 int usb_urb_ep_type_check(const struct urb *urb);
1820 
1821 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1822 	gfp_t mem_flags, dma_addr_t *dma);
1823 void usb_free_coherent(struct usb_device *dev, size_t size,
1824 	void *addr, dma_addr_t dma);
1825 
1826 #if 0
1827 struct urb *usb_buffer_map(struct urb *urb);
1828 void usb_buffer_dmasync(struct urb *urb);
1829 void usb_buffer_unmap(struct urb *urb);
1830 #endif
1831 
1832 struct scatterlist;
1833 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1834 		      struct scatterlist *sg, int nents);
1835 #if 0
1836 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1837 			   struct scatterlist *sg, int n_hw_ents);
1838 #endif
1839 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1840 			 struct scatterlist *sg, int n_hw_ents);
1841 
1842 /*-------------------------------------------------------------------*
1843  *                         SYNCHRONOUS CALL SUPPORT                  *
1844  *-------------------------------------------------------------------*/
1845 
1846 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1847 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1848 	void *data, __u16 size, int timeout);
1849 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1850 	void *data, int len, int *actual_length, int timeout);
1851 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1852 	void *data, int len, int *actual_length,
1853 	int timeout);
1854 
1855 /* wrappers around usb_control_msg() for the most common standard requests */
1856 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1857 			 __u8 requesttype, __u16 value, __u16 index,
1858 			 const void *data, __u16 size, int timeout,
1859 			 gfp_t memflags);
1860 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1861 			 __u8 requesttype, __u16 value, __u16 index,
1862 			 void *data, __u16 size, int timeout,
1863 			 gfp_t memflags);
1864 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1865 	unsigned char descindex, void *buf, int size);
1866 extern int usb_get_status(struct usb_device *dev,
1867 	int recip, int type, int target, void *data);
1868 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1869 static inline int usb_get_std_status(struct usb_device *dev,
1870 	int recip, int target, void *data)
1871 {
1872 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1873 		data);
1874 }
1875 
usb_get_ptm_status(struct usb_device * dev,void * data)1876 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1877 {
1878 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1879 		0, data);
1880 }
1881 
1882 extern int usb_string(struct usb_device *dev, int index,
1883 	char *buf, size_t size);
1884 extern char *usb_cache_string(struct usb_device *udev, int index);
1885 
1886 /* wrappers that also update important state inside usbcore */
1887 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1888 extern int usb_reset_configuration(struct usb_device *dev);
1889 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1890 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1891 
1892 /* this request isn't really synchronous, but it belongs with the others */
1893 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1894 
1895 /* choose and set configuration for device */
1896 extern int usb_choose_configuration(struct usb_device *udev);
1897 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1898 
1899 /*
1900  * timeouts, in milliseconds, used for sending/receiving control messages
1901  * they typically complete within a few frames (msec) after they're issued
1902  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1903  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1904  */
1905 #define USB_CTRL_GET_TIMEOUT	5000
1906 #define USB_CTRL_SET_TIMEOUT	5000
1907 
1908 
1909 /**
1910  * struct usb_sg_request - support for scatter/gather I/O
1911  * @status: zero indicates success, else negative errno
1912  * @bytes: counts bytes transferred.
1913  *
1914  * These requests are initialized using usb_sg_init(), and then are used
1915  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1916  * members of the request object aren't for driver access.
1917  *
1918  * The status and bytecount values are valid only after usb_sg_wait()
1919  * returns.  If the status is zero, then the bytecount matches the total
1920  * from the request.
1921  *
1922  * After an error completion, drivers may need to clear a halt condition
1923  * on the endpoint.
1924  */
1925 struct usb_sg_request {
1926 	int			status;
1927 	size_t			bytes;
1928 
1929 	/* private:
1930 	 * members below are private to usbcore,
1931 	 * and are not provided for driver access!
1932 	 */
1933 	spinlock_t		lock;
1934 
1935 	struct usb_device	*dev;
1936 	int			pipe;
1937 
1938 	int			entries;
1939 	struct urb		**urbs;
1940 
1941 	int			count;
1942 	struct completion	complete;
1943 };
1944 
1945 int usb_sg_init(
1946 	struct usb_sg_request	*io,
1947 	struct usb_device	*dev,
1948 	unsigned		pipe,
1949 	unsigned		period,
1950 	struct scatterlist	*sg,
1951 	int			nents,
1952 	size_t			length,
1953 	gfp_t			mem_flags
1954 );
1955 void usb_sg_cancel(struct usb_sg_request *io);
1956 void usb_sg_wait(struct usb_sg_request *io);
1957 
1958 
1959 /* ----------------------------------------------------------------------- */
1960 
1961 /*
1962  * For various legacy reasons, Linux has a small cookie that's paired with
1963  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1964  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1965  * an unsigned int encoded as:
1966  *
1967  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1968  *					 1 = Device-to-Host [In] ...
1969  *					like endpoint bEndpointAddress)
1970  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1971  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1972  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1973  *					 10 = control, 11 = bulk)
1974  *
1975  * Given the device address and endpoint descriptor, pipes are redundant.
1976  */
1977 
1978 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1979 /* (yet ... they're the values used by usbfs) */
1980 #define PIPE_ISOCHRONOUS		0
1981 #define PIPE_INTERRUPT			1
1982 #define PIPE_CONTROL			2
1983 #define PIPE_BULK			3
1984 
1985 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1986 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1987 
1988 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1989 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1990 
1991 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1992 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1993 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1994 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1995 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1996 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1997 static inline unsigned int __create_pipe(struct usb_device *dev,
1998 		unsigned int endpoint)
1999 {
2000 	return (dev->devnum << 8) | (endpoint << 15);
2001 }
2002 
2003 /* Create various pipes... */
2004 #define usb_sndctrlpipe(dev, endpoint)	\
2005 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
2006 #define usb_rcvctrlpipe(dev, endpoint)	\
2007 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2008 #define usb_sndisocpipe(dev, endpoint)	\
2009 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
2010 #define usb_rcvisocpipe(dev, endpoint)	\
2011 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2012 #define usb_sndbulkpipe(dev, endpoint)	\
2013 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
2014 #define usb_rcvbulkpipe(dev, endpoint)	\
2015 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2016 #define usb_sndintpipe(dev, endpoint)	\
2017 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2018 #define usb_rcvintpipe(dev, endpoint)	\
2019 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2020 
2021 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2022 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2023 {
2024 	struct usb_host_endpoint **eps;
2025 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2026 	return eps[usb_pipeendpoint(pipe)];
2027 }
2028 
usb_maxpacket(struct usb_device * udev,int pipe)2029 static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2030 {
2031 	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2032 
2033 	if (!ep)
2034 		return 0;
2035 
2036 	/* NOTE:  only 0x07ff bits are for packet size... */
2037 	return usb_endpoint_maxp(&ep->desc);
2038 }
2039 
2040 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2041 static inline int usb_translate_errors(int error_code)
2042 {
2043 	switch (error_code) {
2044 	case 0:
2045 	case -ENOMEM:
2046 	case -ENODEV:
2047 	case -EOPNOTSUPP:
2048 		return error_code;
2049 	default:
2050 		return -EIO;
2051 	}
2052 }
2053 
2054 /* Events from the usb core */
2055 #define USB_DEVICE_ADD		0x0001
2056 #define USB_DEVICE_REMOVE	0x0002
2057 #define USB_BUS_ADD		0x0003
2058 #define USB_BUS_REMOVE		0x0004
2059 extern void usb_register_notify(struct notifier_block *nb);
2060 extern void usb_unregister_notify(struct notifier_block *nb);
2061 
2062 /* debugfs stuff */
2063 extern struct dentry *usb_debug_root;
2064 
2065 /* LED triggers */
2066 enum usb_led_event {
2067 	USB_LED_EVENT_HOST = 0,
2068 	USB_LED_EVENT_GADGET = 1,
2069 };
2070 
2071 #ifdef CONFIG_USB_LED_TRIG
2072 extern void usb_led_activity(enum usb_led_event ev);
2073 #else
usb_led_activity(enum usb_led_event ev)2074 static inline void usb_led_activity(enum usb_led_event ev) {}
2075 #endif
2076 
2077 #endif  /* __KERNEL__ */
2078 
2079 #endif
2080