1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18 * ice tracepoint functions. This must be done exactly once across the
19 * ice driver.
20 */
21 #define CREATE_TRACE_POINTS
22 #include "ice_trace.h"
23 #include "ice_eswitch.h"
24 #include "ice_tc_lib.h"
25 #include "ice_vsi_vlan_ops.h"
26 #include <net/xdp_sock_drv.h>
27
28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
29 static const char ice_driver_string[] = DRV_SUMMARY;
30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
31
32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
35
36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
37 MODULE_DESCRIPTION(DRV_SUMMARY);
38 MODULE_LICENSE("GPL v2");
39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
40
41 static int debug = -1;
42 module_param(debug, int, 0644);
43 #ifndef CONFIG_DYNAMIC_DEBUG
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
45 #else
46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
47 #endif /* !CONFIG_DYNAMIC_DEBUG */
48
49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
50 EXPORT_SYMBOL(ice_xdp_locking_key);
51
52 /**
53 * ice_hw_to_dev - Get device pointer from the hardware structure
54 * @hw: pointer to the device HW structure
55 *
56 * Used to access the device pointer from compilation units which can't easily
57 * include the definition of struct ice_pf without leading to circular header
58 * dependencies.
59 */
ice_hw_to_dev(struct ice_hw * hw)60 struct device *ice_hw_to_dev(struct ice_hw *hw)
61 {
62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
63
64 return &pf->pdev->dev;
65 }
66
67 static struct workqueue_struct *ice_wq;
68 struct workqueue_struct *ice_lag_wq;
69 static const struct net_device_ops ice_netdev_safe_mode_ops;
70 static const struct net_device_ops ice_netdev_ops;
71
72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
73
74 static void ice_vsi_release_all(struct ice_pf *pf);
75
76 static int ice_rebuild_channels(struct ice_pf *pf);
77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
78
79 static int
80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
81 void *cb_priv, enum tc_setup_type type, void *type_data,
82 void *data,
83 void (*cleanup)(struct flow_block_cb *block_cb));
84
netif_is_ice(const struct net_device * dev)85 bool netif_is_ice(const struct net_device *dev)
86 {
87 return dev && (dev->netdev_ops == &ice_netdev_ops ||
88 dev->netdev_ops == &ice_netdev_safe_mode_ops);
89 }
90
91 /**
92 * ice_get_tx_pending - returns number of Tx descriptors not processed
93 * @ring: the ring of descriptors
94 */
ice_get_tx_pending(struct ice_tx_ring * ring)95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 u16 head, tail;
98
99 head = ring->next_to_clean;
100 tail = ring->next_to_use;
101
102 if (head != tail)
103 return (head < tail) ?
104 tail - head : (tail + ring->count - head);
105 return 0;
106 }
107
108 /**
109 * ice_check_for_hang_subtask - check for and recover hung queues
110 * @pf: pointer to PF struct
111 */
ice_check_for_hang_subtask(struct ice_pf * pf)112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 struct ice_vsi *vsi = NULL;
115 struct ice_hw *hw;
116 unsigned int i;
117 int packets;
118 u32 v;
119
120 ice_for_each_vsi(pf, v)
121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 vsi = pf->vsi[v];
123 break;
124 }
125
126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 return;
128
129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 return;
131
132 hw = &vsi->back->hw;
133
134 ice_for_each_txq(vsi, i) {
135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 struct ice_ring_stats *ring_stats;
137
138 if (!tx_ring)
139 continue;
140 if (ice_ring_ch_enabled(tx_ring))
141 continue;
142
143 ring_stats = tx_ring->ring_stats;
144 if (!ring_stats)
145 continue;
146
147 if (tx_ring->desc) {
148 /* If packet counter has not changed the queue is
149 * likely stalled, so force an interrupt for this
150 * queue.
151 *
152 * prev_pkt would be negative if there was no
153 * pending work.
154 */
155 packets = ring_stats->stats.pkts & INT_MAX;
156 if (ring_stats->tx_stats.prev_pkt == packets) {
157 /* Trigger sw interrupt to revive the queue */
158 ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 continue;
160 }
161
162 /* Memory barrier between read of packet count and call
163 * to ice_get_tx_pending()
164 */
165 smp_rmb();
166 ring_stats->tx_stats.prev_pkt =
167 ice_get_tx_pending(tx_ring) ? packets : -1;
168 }
169 }
170 }
171
172 /**
173 * ice_init_mac_fltr - Set initial MAC filters
174 * @pf: board private structure
175 *
176 * Set initial set of MAC filters for PF VSI; configure filters for permanent
177 * address and broadcast address. If an error is encountered, netdevice will be
178 * unregistered.
179 */
ice_init_mac_fltr(struct ice_pf * pf)180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 struct ice_vsi *vsi;
183 u8 *perm_addr;
184
185 vsi = ice_get_main_vsi(pf);
186 if (!vsi)
187 return -EINVAL;
188
189 perm_addr = vsi->port_info->mac.perm_addr;
190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192
193 /**
194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195 * @netdev: the net device on which the sync is happening
196 * @addr: MAC address to sync
197 *
198 * This is a callback function which is called by the in kernel device sync
199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201 * MAC filters from the hardware.
202 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 struct ice_netdev_priv *np = netdev_priv(netdev);
206 struct ice_vsi *vsi = np->vsi;
207
208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 ICE_FWD_TO_VSI))
210 return -EINVAL;
211
212 return 0;
213 }
214
215 /**
216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217 * @netdev: the net device on which the unsync is happening
218 * @addr: MAC address to unsync
219 *
220 * This is a callback function which is called by the in kernel device unsync
221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223 * delete the MAC filters from the hardware.
224 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 struct ice_netdev_priv *np = netdev_priv(netdev);
228 struct ice_vsi *vsi = np->vsi;
229
230 /* Under some circumstances, we might receive a request to delete our
231 * own device address from our uc list. Because we store the device
232 * address in the VSI's MAC filter list, we need to ignore such
233 * requests and not delete our device address from this list.
234 */
235 if (ether_addr_equal(addr, netdev->dev_addr))
236 return 0;
237
238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 ICE_FWD_TO_VSI))
240 return -EINVAL;
241
242 return 0;
243 }
244
245 /**
246 * ice_vsi_fltr_changed - check if filter state changed
247 * @vsi: VSI to be checked
248 *
249 * returns true if filter state has changed, false otherwise.
250 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256
257 /**
258 * ice_set_promisc - Enable promiscuous mode for a given PF
259 * @vsi: the VSI being configured
260 * @promisc_m: mask of promiscuous config bits
261 *
262 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 int status;
266
267 if (vsi->type != ICE_VSI_PF)
268 return 0;
269
270 if (ice_vsi_has_non_zero_vlans(vsi)) {
271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 promisc_m);
274 } else {
275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 promisc_m, 0);
277 }
278 if (status && status != -EEXIST)
279 return status;
280
281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 vsi->vsi_num, promisc_m);
283 return 0;
284 }
285
286 /**
287 * ice_clear_promisc - Disable promiscuous mode for a given PF
288 * @vsi: the VSI being configured
289 * @promisc_m: mask of promiscuous config bits
290 *
291 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 int status;
295
296 if (vsi->type != ICE_VSI_PF)
297 return 0;
298
299 if (ice_vsi_has_non_zero_vlans(vsi)) {
300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 promisc_m);
303 } else {
304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 promisc_m, 0);
306 }
307
308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 vsi->vsi_num, promisc_m);
310 return status;
311 }
312
313 /**
314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315 * @vsi: ptr to the VSI
316 *
317 * Push any outstanding VSI filter changes through the AdminQ.
318 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 struct device *dev = ice_pf_to_dev(vsi->back);
323 struct net_device *netdev = vsi->netdev;
324 bool promisc_forced_on = false;
325 struct ice_pf *pf = vsi->back;
326 struct ice_hw *hw = &pf->hw;
327 u32 changed_flags = 0;
328 int err;
329
330 if (!vsi->netdev)
331 return -EINVAL;
332
333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 usleep_range(1000, 2000);
335
336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 vsi->current_netdev_flags = vsi->netdev->flags;
338
339 INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341
342 if (ice_vsi_fltr_changed(vsi)) {
343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345
346 /* grab the netdev's addr_list_lock */
347 netif_addr_lock_bh(netdev);
348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 ice_add_mac_to_unsync_list);
350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 ice_add_mac_to_unsync_list);
352 /* our temp lists are populated. release lock */
353 netif_addr_unlock_bh(netdev);
354 }
355
356 /* Remove MAC addresses in the unsync list */
357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 if (err) {
360 netdev_err(netdev, "Failed to delete MAC filters\n");
361 /* if we failed because of alloc failures, just bail */
362 if (err == -ENOMEM)
363 goto out;
364 }
365
366 /* Add MAC addresses in the sync list */
367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 /* If filter is added successfully or already exists, do not go into
370 * 'if' condition and report it as error. Instead continue processing
371 * rest of the function.
372 */
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Failed to add MAC filters\n");
375 /* If there is no more space for new umac filters, VSI
376 * should go into promiscuous mode. There should be some
377 * space reserved for promiscuous filters.
378 */
379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 vsi->state)) {
382 promisc_forced_on = true;
383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 vsi->vsi_num);
385 } else {
386 goto out;
387 }
388 }
389 err = 0;
390 /* check for changes in promiscuous modes */
391 if (changed_flags & IFF_ALLMULTI) {
392 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 if (err) {
395 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 goto out_promisc;
397 }
398 } else {
399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 if (err) {
402 vsi->current_netdev_flags |= IFF_ALLMULTI;
403 goto out_promisc;
404 }
405 }
406 }
407
408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 if (vsi->current_netdev_flags & IFF_PROMISC) {
412 /* Apply Rx filter rule to get traffic from wire */
413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 err = ice_set_dflt_vsi(vsi);
415 if (err && err != -EEXIST) {
416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 err, vsi->vsi_num);
418 vsi->current_netdev_flags &=
419 ~IFF_PROMISC;
420 goto out_promisc;
421 }
422 err = 0;
423 vlan_ops->dis_rx_filtering(vsi);
424
425 /* promiscuous mode implies allmulticast so
426 * that VSIs that are in promiscuous mode are
427 * subscribed to multicast packets coming to
428 * the port
429 */
430 err = ice_set_promisc(vsi,
431 ICE_MCAST_PROMISC_BITS);
432 if (err)
433 goto out_promisc;
434 }
435 } else {
436 /* Clear Rx filter to remove traffic from wire */
437 if (ice_is_vsi_dflt_vsi(vsi)) {
438 err = ice_clear_dflt_vsi(vsi);
439 if (err) {
440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 err, vsi->vsi_num);
442 vsi->current_netdev_flags |=
443 IFF_PROMISC;
444 goto out_promisc;
445 }
446 if (vsi->netdev->features &
447 NETIF_F_HW_VLAN_CTAG_FILTER)
448 vlan_ops->ena_rx_filtering(vsi);
449 }
450
451 /* disable allmulti here, but only if allmulti is not
452 * still enabled for the netdev
453 */
454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 err = ice_clear_promisc(vsi,
456 ICE_MCAST_PROMISC_BITS);
457 if (err) {
458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 err, vsi->vsi_num);
460 }
461 }
462 }
463 }
464 goto exit;
465
466 out_promisc:
467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 goto exit;
469 out:
470 /* if something went wrong then set the changed flag so we try again */
471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 clear_bit(ICE_CFG_BUSY, vsi->state);
475 return err;
476 }
477
478 /**
479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480 * @pf: board private structure
481 */
ice_sync_fltr_subtask(struct ice_pf * pf)482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 int v;
485
486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 return;
488
489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490
491 ice_for_each_vsi(pf, v)
492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 ice_vsi_sync_fltr(pf->vsi[v])) {
494 /* come back and try again later */
495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 break;
497 }
498 }
499
500 /**
501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502 * @pf: the PF
503 * @locked: is the rtnl_lock already held
504 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 int node;
508 int v;
509
510 ice_for_each_vsi(pf, v)
511 if (pf->vsi[v])
512 ice_dis_vsi(pf->vsi[v], locked);
513
514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 pf->pf_agg_node[node].num_vsis = 0;
516
517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 pf->vf_agg_node[node].num_vsis = 0;
519 }
520
521 /**
522 * ice_prepare_for_reset - prep for reset
523 * @pf: board private structure
524 * @reset_type: reset type requested
525 *
526 * Inform or close all dependent features in prep for reset.
527 */
528 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)529 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
530 {
531 struct ice_hw *hw = &pf->hw;
532 struct ice_vsi *vsi;
533 struct ice_vf *vf;
534 unsigned int bkt;
535
536 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
537
538 /* already prepared for reset */
539 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
540 return;
541
542 synchronize_irq(pf->oicr_irq.virq);
543
544 ice_unplug_aux_dev(pf);
545
546 /* Notify VFs of impending reset */
547 if (ice_check_sq_alive(hw, &hw->mailboxq))
548 ice_vc_notify_reset(pf);
549
550 /* Disable VFs until reset is completed */
551 mutex_lock(&pf->vfs.table_lock);
552 ice_for_each_vf(pf, bkt, vf)
553 ice_set_vf_state_dis(vf);
554 mutex_unlock(&pf->vfs.table_lock);
555
556 if (ice_is_eswitch_mode_switchdev(pf)) {
557 rtnl_lock();
558 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
559 rtnl_unlock();
560 }
561
562 /* release ADQ specific HW and SW resources */
563 vsi = ice_get_main_vsi(pf);
564 if (!vsi)
565 goto skip;
566
567 /* to be on safe side, reset orig_rss_size so that normal flow
568 * of deciding rss_size can take precedence
569 */
570 vsi->orig_rss_size = 0;
571
572 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
573 if (reset_type == ICE_RESET_PFR) {
574 vsi->old_ena_tc = vsi->all_enatc;
575 vsi->old_numtc = vsi->all_numtc;
576 } else {
577 ice_remove_q_channels(vsi, true);
578
579 /* for other reset type, do not support channel rebuild
580 * hence reset needed info
581 */
582 vsi->old_ena_tc = 0;
583 vsi->all_enatc = 0;
584 vsi->old_numtc = 0;
585 vsi->all_numtc = 0;
586 vsi->req_txq = 0;
587 vsi->req_rxq = 0;
588 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
589 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
590 }
591 }
592
593 if (vsi->netdev)
594 netif_device_detach(vsi->netdev);
595 skip:
596
597 /* clear SW filtering DB */
598 ice_clear_hw_tbls(hw);
599 /* disable the VSIs and their queues that are not already DOWN */
600 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
601 ice_pf_dis_all_vsi(pf, false);
602
603 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
604 ice_ptp_prepare_for_reset(pf);
605
606 if (ice_is_feature_supported(pf, ICE_F_GNSS))
607 ice_gnss_exit(pf);
608
609 if (hw->port_info)
610 ice_sched_clear_port(hw->port_info);
611
612 ice_shutdown_all_ctrlq(hw);
613
614 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
615 }
616
617 /**
618 * ice_do_reset - Initiate one of many types of resets
619 * @pf: board private structure
620 * @reset_type: reset type requested before this function was called.
621 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)622 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
623 {
624 struct device *dev = ice_pf_to_dev(pf);
625 struct ice_hw *hw = &pf->hw;
626
627 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
628
629 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
630 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
631 reset_type = ICE_RESET_CORER;
632 }
633
634 ice_prepare_for_reset(pf, reset_type);
635
636 /* trigger the reset */
637 if (ice_reset(hw, reset_type)) {
638 dev_err(dev, "reset %d failed\n", reset_type);
639 set_bit(ICE_RESET_FAILED, pf->state);
640 clear_bit(ICE_RESET_OICR_RECV, pf->state);
641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
642 clear_bit(ICE_PFR_REQ, pf->state);
643 clear_bit(ICE_CORER_REQ, pf->state);
644 clear_bit(ICE_GLOBR_REQ, pf->state);
645 wake_up(&pf->reset_wait_queue);
646 return;
647 }
648
649 /* PFR is a bit of a special case because it doesn't result in an OICR
650 * interrupt. So for PFR, rebuild after the reset and clear the reset-
651 * associated state bits.
652 */
653 if (reset_type == ICE_RESET_PFR) {
654 pf->pfr_count++;
655 ice_rebuild(pf, reset_type);
656 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
657 clear_bit(ICE_PFR_REQ, pf->state);
658 wake_up(&pf->reset_wait_queue);
659 ice_reset_all_vfs(pf);
660 }
661 }
662
663 /**
664 * ice_reset_subtask - Set up for resetting the device and driver
665 * @pf: board private structure
666 */
ice_reset_subtask(struct ice_pf * pf)667 static void ice_reset_subtask(struct ice_pf *pf)
668 {
669 enum ice_reset_req reset_type = ICE_RESET_INVAL;
670
671 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
672 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
673 * of reset is pending and sets bits in pf->state indicating the reset
674 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
675 * prepare for pending reset if not already (for PF software-initiated
676 * global resets the software should already be prepared for it as
677 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
678 * by firmware or software on other PFs, that bit is not set so prepare
679 * for the reset now), poll for reset done, rebuild and return.
680 */
681 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
682 /* Perform the largest reset requested */
683 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
684 reset_type = ICE_RESET_CORER;
685 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
686 reset_type = ICE_RESET_GLOBR;
687 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
688 reset_type = ICE_RESET_EMPR;
689 /* return if no valid reset type requested */
690 if (reset_type == ICE_RESET_INVAL)
691 return;
692 ice_prepare_for_reset(pf, reset_type);
693
694 /* make sure we are ready to rebuild */
695 if (ice_check_reset(&pf->hw)) {
696 set_bit(ICE_RESET_FAILED, pf->state);
697 } else {
698 /* done with reset. start rebuild */
699 pf->hw.reset_ongoing = false;
700 ice_rebuild(pf, reset_type);
701 /* clear bit to resume normal operations, but
702 * ICE_NEEDS_RESTART bit is set in case rebuild failed
703 */
704 clear_bit(ICE_RESET_OICR_RECV, pf->state);
705 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
706 clear_bit(ICE_PFR_REQ, pf->state);
707 clear_bit(ICE_CORER_REQ, pf->state);
708 clear_bit(ICE_GLOBR_REQ, pf->state);
709 wake_up(&pf->reset_wait_queue);
710 ice_reset_all_vfs(pf);
711 }
712
713 return;
714 }
715
716 /* No pending resets to finish processing. Check for new resets */
717 if (test_bit(ICE_PFR_REQ, pf->state)) {
718 reset_type = ICE_RESET_PFR;
719 if (pf->lag && pf->lag->bonded) {
720 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
721 reset_type = ICE_RESET_CORER;
722 }
723 }
724 if (test_bit(ICE_CORER_REQ, pf->state))
725 reset_type = ICE_RESET_CORER;
726 if (test_bit(ICE_GLOBR_REQ, pf->state))
727 reset_type = ICE_RESET_GLOBR;
728 /* If no valid reset type requested just return */
729 if (reset_type == ICE_RESET_INVAL)
730 return;
731
732 /* reset if not already down or busy */
733 if (!test_bit(ICE_DOWN, pf->state) &&
734 !test_bit(ICE_CFG_BUSY, pf->state)) {
735 ice_do_reset(pf, reset_type);
736 }
737 }
738
739 /**
740 * ice_print_topo_conflict - print topology conflict message
741 * @vsi: the VSI whose topology status is being checked
742 */
ice_print_topo_conflict(struct ice_vsi * vsi)743 static void ice_print_topo_conflict(struct ice_vsi *vsi)
744 {
745 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
746 case ICE_AQ_LINK_TOPO_CONFLICT:
747 case ICE_AQ_LINK_MEDIA_CONFLICT:
748 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
749 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
750 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
751 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
752 break;
753 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
754 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
755 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
756 else
757 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
758 break;
759 default:
760 break;
761 }
762 }
763
764 /**
765 * ice_print_link_msg - print link up or down message
766 * @vsi: the VSI whose link status is being queried
767 * @isup: boolean for if the link is now up or down
768 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)769 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
770 {
771 struct ice_aqc_get_phy_caps_data *caps;
772 const char *an_advertised;
773 const char *fec_req;
774 const char *speed;
775 const char *fec;
776 const char *fc;
777 const char *an;
778 int status;
779
780 if (!vsi)
781 return;
782
783 if (vsi->current_isup == isup)
784 return;
785
786 vsi->current_isup = isup;
787
788 if (!isup) {
789 netdev_info(vsi->netdev, "NIC Link is Down\n");
790 return;
791 }
792
793 switch (vsi->port_info->phy.link_info.link_speed) {
794 case ICE_AQ_LINK_SPEED_100GB:
795 speed = "100 G";
796 break;
797 case ICE_AQ_LINK_SPEED_50GB:
798 speed = "50 G";
799 break;
800 case ICE_AQ_LINK_SPEED_40GB:
801 speed = "40 G";
802 break;
803 case ICE_AQ_LINK_SPEED_25GB:
804 speed = "25 G";
805 break;
806 case ICE_AQ_LINK_SPEED_20GB:
807 speed = "20 G";
808 break;
809 case ICE_AQ_LINK_SPEED_10GB:
810 speed = "10 G";
811 break;
812 case ICE_AQ_LINK_SPEED_5GB:
813 speed = "5 G";
814 break;
815 case ICE_AQ_LINK_SPEED_2500MB:
816 speed = "2.5 G";
817 break;
818 case ICE_AQ_LINK_SPEED_1000MB:
819 speed = "1 G";
820 break;
821 case ICE_AQ_LINK_SPEED_100MB:
822 speed = "100 M";
823 break;
824 default:
825 speed = "Unknown ";
826 break;
827 }
828
829 switch (vsi->port_info->fc.current_mode) {
830 case ICE_FC_FULL:
831 fc = "Rx/Tx";
832 break;
833 case ICE_FC_TX_PAUSE:
834 fc = "Tx";
835 break;
836 case ICE_FC_RX_PAUSE:
837 fc = "Rx";
838 break;
839 case ICE_FC_NONE:
840 fc = "None";
841 break;
842 default:
843 fc = "Unknown";
844 break;
845 }
846
847 /* Get FEC mode based on negotiated link info */
848 switch (vsi->port_info->phy.link_info.fec_info) {
849 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
850 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
851 fec = "RS-FEC";
852 break;
853 case ICE_AQ_LINK_25G_KR_FEC_EN:
854 fec = "FC-FEC/BASE-R";
855 break;
856 default:
857 fec = "NONE";
858 break;
859 }
860
861 /* check if autoneg completed, might be false due to not supported */
862 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
863 an = "True";
864 else
865 an = "False";
866
867 /* Get FEC mode requested based on PHY caps last SW configuration */
868 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
869 if (!caps) {
870 fec_req = "Unknown";
871 an_advertised = "Unknown";
872 goto done;
873 }
874
875 status = ice_aq_get_phy_caps(vsi->port_info, false,
876 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
877 if (status)
878 netdev_info(vsi->netdev, "Get phy capability failed.\n");
879
880 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
881
882 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
883 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
884 fec_req = "RS-FEC";
885 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
886 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
887 fec_req = "FC-FEC/BASE-R";
888 else
889 fec_req = "NONE";
890
891 kfree(caps);
892
893 done:
894 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
895 speed, fec_req, fec, an_advertised, an, fc);
896 ice_print_topo_conflict(vsi);
897 }
898
899 /**
900 * ice_vsi_link_event - update the VSI's netdev
901 * @vsi: the VSI on which the link event occurred
902 * @link_up: whether or not the VSI needs to be set up or down
903 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)904 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
905 {
906 if (!vsi)
907 return;
908
909 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
910 return;
911
912 if (vsi->type == ICE_VSI_PF) {
913 if (link_up == netif_carrier_ok(vsi->netdev))
914 return;
915
916 if (link_up) {
917 netif_carrier_on(vsi->netdev);
918 netif_tx_wake_all_queues(vsi->netdev);
919 } else {
920 netif_carrier_off(vsi->netdev);
921 netif_tx_stop_all_queues(vsi->netdev);
922 }
923 }
924 }
925
926 /**
927 * ice_set_dflt_mib - send a default config MIB to the FW
928 * @pf: private PF struct
929 *
930 * This function sends a default configuration MIB to the FW.
931 *
932 * If this function errors out at any point, the driver is still able to
933 * function. The main impact is that LFC may not operate as expected.
934 * Therefore an error state in this function should be treated with a DBG
935 * message and continue on with driver rebuild/reenable.
936 */
ice_set_dflt_mib(struct ice_pf * pf)937 static void ice_set_dflt_mib(struct ice_pf *pf)
938 {
939 struct device *dev = ice_pf_to_dev(pf);
940 u8 mib_type, *buf, *lldpmib = NULL;
941 u16 len, typelen, offset = 0;
942 struct ice_lldp_org_tlv *tlv;
943 struct ice_hw *hw = &pf->hw;
944 u32 ouisubtype;
945
946 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
947 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
948 if (!lldpmib) {
949 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
950 __func__);
951 return;
952 }
953
954 /* Add ETS CFG TLV */
955 tlv = (struct ice_lldp_org_tlv *)lldpmib;
956 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
957 ICE_IEEE_ETS_TLV_LEN);
958 tlv->typelen = htons(typelen);
959 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
960 ICE_IEEE_SUBTYPE_ETS_CFG);
961 tlv->ouisubtype = htonl(ouisubtype);
962
963 buf = tlv->tlvinfo;
964 buf[0] = 0;
965
966 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
967 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
968 * Octets 13 - 20 are TSA values - leave as zeros
969 */
970 buf[5] = 0x64;
971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
972 offset += len + 2;
973 tlv = (struct ice_lldp_org_tlv *)
974 ((char *)tlv + sizeof(tlv->typelen) + len);
975
976 /* Add ETS REC TLV */
977 buf = tlv->tlvinfo;
978 tlv->typelen = htons(typelen);
979
980 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
981 ICE_IEEE_SUBTYPE_ETS_REC);
982 tlv->ouisubtype = htonl(ouisubtype);
983
984 /* First octet of buf is reserved
985 * Octets 1 - 4 map UP to TC - all UPs map to zero
986 * Octets 5 - 12 are BW values - set TC 0 to 100%.
987 * Octets 13 - 20 are TSA value - leave as zeros
988 */
989 buf[5] = 0x64;
990 offset += len + 2;
991 tlv = (struct ice_lldp_org_tlv *)
992 ((char *)tlv + sizeof(tlv->typelen) + len);
993
994 /* Add PFC CFG TLV */
995 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
996 ICE_IEEE_PFC_TLV_LEN);
997 tlv->typelen = htons(typelen);
998
999 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1000 ICE_IEEE_SUBTYPE_PFC_CFG);
1001 tlv->ouisubtype = htonl(ouisubtype);
1002
1003 /* Octet 1 left as all zeros - PFC disabled */
1004 buf[0] = 0x08;
1005 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1006 offset += len + 2;
1007
1008 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1009 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1010
1011 kfree(lldpmib);
1012 }
1013
1014 /**
1015 * ice_check_phy_fw_load - check if PHY FW load failed
1016 * @pf: pointer to PF struct
1017 * @link_cfg_err: bitmap from the link info structure
1018 *
1019 * check if external PHY FW load failed and print an error message if it did
1020 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1021 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1022 {
1023 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1024 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1025 return;
1026 }
1027
1028 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1029 return;
1030
1031 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1032 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1033 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1034 }
1035 }
1036
1037 /**
1038 * ice_check_module_power
1039 * @pf: pointer to PF struct
1040 * @link_cfg_err: bitmap from the link info structure
1041 *
1042 * check module power level returned by a previous call to aq_get_link_info
1043 * and print error messages if module power level is not supported
1044 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1045 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1046 {
1047 /* if module power level is supported, clear the flag */
1048 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1049 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1050 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1051 return;
1052 }
1053
1054 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1055 * above block didn't clear this bit, there's nothing to do
1056 */
1057 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1058 return;
1059
1060 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1061 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1062 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1064 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1065 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1066 }
1067 }
1068
1069 /**
1070 * ice_check_link_cfg_err - check if link configuration failed
1071 * @pf: pointer to the PF struct
1072 * @link_cfg_err: bitmap from the link info structure
1073 *
1074 * print if any link configuration failure happens due to the value in the
1075 * link_cfg_err parameter in the link info structure
1076 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1077 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1078 {
1079 ice_check_module_power(pf, link_cfg_err);
1080 ice_check_phy_fw_load(pf, link_cfg_err);
1081 }
1082
1083 /**
1084 * ice_link_event - process the link event
1085 * @pf: PF that the link event is associated with
1086 * @pi: port_info for the port that the link event is associated with
1087 * @link_up: true if the physical link is up and false if it is down
1088 * @link_speed: current link speed received from the link event
1089 *
1090 * Returns 0 on success and negative on failure
1091 */
1092 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1093 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1094 u16 link_speed)
1095 {
1096 struct device *dev = ice_pf_to_dev(pf);
1097 struct ice_phy_info *phy_info;
1098 struct ice_vsi *vsi;
1099 u16 old_link_speed;
1100 bool old_link;
1101 int status;
1102
1103 phy_info = &pi->phy;
1104 phy_info->link_info_old = phy_info->link_info;
1105
1106 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1107 old_link_speed = phy_info->link_info_old.link_speed;
1108
1109 /* update the link info structures and re-enable link events,
1110 * don't bail on failure due to other book keeping needed
1111 */
1112 status = ice_update_link_info(pi);
1113 if (status)
1114 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1115 pi->lport, status,
1116 ice_aq_str(pi->hw->adminq.sq_last_status));
1117
1118 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1119
1120 /* Check if the link state is up after updating link info, and treat
1121 * this event as an UP event since the link is actually UP now.
1122 */
1123 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1124 link_up = true;
1125
1126 vsi = ice_get_main_vsi(pf);
1127 if (!vsi || !vsi->port_info)
1128 return -EINVAL;
1129
1130 /* turn off PHY if media was removed */
1131 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1132 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1133 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1134 ice_set_link(vsi, false);
1135 }
1136
1137 /* if the old link up/down and speed is the same as the new */
1138 if (link_up == old_link && link_speed == old_link_speed)
1139 return 0;
1140
1141 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1142
1143 if (ice_is_dcb_active(pf)) {
1144 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1145 ice_dcb_rebuild(pf);
1146 } else {
1147 if (link_up)
1148 ice_set_dflt_mib(pf);
1149 }
1150 ice_vsi_link_event(vsi, link_up);
1151 ice_print_link_msg(vsi, link_up);
1152
1153 ice_vc_notify_link_state(pf);
1154
1155 return 0;
1156 }
1157
1158 /**
1159 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1160 * @pf: board private structure
1161 */
ice_watchdog_subtask(struct ice_pf * pf)1162 static void ice_watchdog_subtask(struct ice_pf *pf)
1163 {
1164 int i;
1165
1166 /* if interface is down do nothing */
1167 if (test_bit(ICE_DOWN, pf->state) ||
1168 test_bit(ICE_CFG_BUSY, pf->state))
1169 return;
1170
1171 /* make sure we don't do these things too often */
1172 if (time_before(jiffies,
1173 pf->serv_tmr_prev + pf->serv_tmr_period))
1174 return;
1175
1176 pf->serv_tmr_prev = jiffies;
1177
1178 /* Update the stats for active netdevs so the network stack
1179 * can look at updated numbers whenever it cares to
1180 */
1181 ice_update_pf_stats(pf);
1182 ice_for_each_vsi(pf, i)
1183 if (pf->vsi[i] && pf->vsi[i]->netdev)
1184 ice_update_vsi_stats(pf->vsi[i]);
1185 }
1186
1187 /**
1188 * ice_init_link_events - enable/initialize link events
1189 * @pi: pointer to the port_info instance
1190 *
1191 * Returns -EIO on failure, 0 on success
1192 */
ice_init_link_events(struct ice_port_info * pi)1193 static int ice_init_link_events(struct ice_port_info *pi)
1194 {
1195 u16 mask;
1196
1197 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1198 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1199 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1200
1201 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1202 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1203 pi->lport);
1204 return -EIO;
1205 }
1206
1207 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 return 0;
1214 }
1215
1216 /**
1217 * ice_handle_link_event - handle link event via ARQ
1218 * @pf: PF that the link event is associated with
1219 * @event: event structure containing link status info
1220 */
1221 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1222 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1223 {
1224 struct ice_aqc_get_link_status_data *link_data;
1225 struct ice_port_info *port_info;
1226 int status;
1227
1228 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1229 port_info = pf->hw.port_info;
1230 if (!port_info)
1231 return -EINVAL;
1232
1233 status = ice_link_event(pf, port_info,
1234 !!(link_data->link_info & ICE_AQ_LINK_UP),
1235 le16_to_cpu(link_data->link_speed));
1236 if (status)
1237 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1238 status);
1239
1240 return status;
1241 }
1242
1243 /**
1244 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1245 * @pf: pointer to the PF private structure
1246 * @task: intermediate helper storage and identifier for waiting
1247 * @opcode: the opcode to wait for
1248 *
1249 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1250 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1251 *
1252 * Calls are separated to allow caller registering for event before sending
1253 * the command, which mitigates a race between registering and FW responding.
1254 *
1255 * To obtain only the descriptor contents, pass an task->event with null
1256 * msg_buf. If the complete data buffer is desired, allocate the
1257 * task->event.msg_buf with enough space ahead of time.
1258 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1259 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1260 u16 opcode)
1261 {
1262 INIT_HLIST_NODE(&task->entry);
1263 task->opcode = opcode;
1264 task->state = ICE_AQ_TASK_WAITING;
1265
1266 spin_lock_bh(&pf->aq_wait_lock);
1267 hlist_add_head(&task->entry, &pf->aq_wait_list);
1268 spin_unlock_bh(&pf->aq_wait_lock);
1269 }
1270
1271 /**
1272 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1273 * @pf: pointer to the PF private structure
1274 * @task: ptr prepared by ice_aq_prep_for_event()
1275 * @timeout: how long to wait, in jiffies
1276 *
1277 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1278 * current thread will be put to sleep until the specified event occurs or
1279 * until the given timeout is reached.
1280 *
1281 * Returns: zero on success, or a negative error code on failure.
1282 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1283 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1284 unsigned long timeout)
1285 {
1286 enum ice_aq_task_state *state = &task->state;
1287 struct device *dev = ice_pf_to_dev(pf);
1288 unsigned long start = jiffies;
1289 long ret;
1290 int err;
1291
1292 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1293 *state != ICE_AQ_TASK_WAITING,
1294 timeout);
1295 switch (*state) {
1296 case ICE_AQ_TASK_NOT_PREPARED:
1297 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1298 err = -EINVAL;
1299 break;
1300 case ICE_AQ_TASK_WAITING:
1301 err = ret < 0 ? ret : -ETIMEDOUT;
1302 break;
1303 case ICE_AQ_TASK_CANCELED:
1304 err = ret < 0 ? ret : -ECANCELED;
1305 break;
1306 case ICE_AQ_TASK_COMPLETE:
1307 err = ret < 0 ? ret : 0;
1308 break;
1309 default:
1310 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1311 err = -EINVAL;
1312 break;
1313 }
1314
1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1316 jiffies_to_msecs(jiffies - start),
1317 jiffies_to_msecs(timeout),
1318 task->opcode);
1319
1320 spin_lock_bh(&pf->aq_wait_lock);
1321 hlist_del(&task->entry);
1322 spin_unlock_bh(&pf->aq_wait_lock);
1323
1324 return err;
1325 }
1326
1327 /**
1328 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1329 * @pf: pointer to the PF private structure
1330 * @opcode: the opcode of the event
1331 * @event: the event to check
1332 *
1333 * Loops over the current list of pending threads waiting for an AdminQ event.
1334 * For each matching task, copy the contents of the event into the task
1335 * structure and wake up the thread.
1336 *
1337 * If multiple threads wait for the same opcode, they will all be woken up.
1338 *
1339 * Note that event->msg_buf will only be duplicated if the event has a buffer
1340 * with enough space already allocated. Otherwise, only the descriptor and
1341 * message length will be copied.
1342 *
1343 * Returns: true if an event was found, false otherwise
1344 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1345 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1346 struct ice_rq_event_info *event)
1347 {
1348 struct ice_rq_event_info *task_ev;
1349 struct ice_aq_task *task;
1350 bool found = false;
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1354 if (task->state != ICE_AQ_TASK_WAITING)
1355 continue;
1356 if (task->opcode != opcode)
1357 continue;
1358
1359 task_ev = &task->event;
1360 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1361 task_ev->msg_len = event->msg_len;
1362
1363 /* Only copy the data buffer if a destination was set */
1364 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1365 memcpy(task_ev->msg_buf, event->msg_buf,
1366 event->buf_len);
1367 task_ev->buf_len = event->buf_len;
1368 }
1369
1370 task->state = ICE_AQ_TASK_COMPLETE;
1371 found = true;
1372 }
1373 spin_unlock_bh(&pf->aq_wait_lock);
1374
1375 if (found)
1376 wake_up(&pf->aq_wait_queue);
1377 }
1378
1379 /**
1380 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1381 * @pf: the PF private structure
1382 *
1383 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1384 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1385 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1386 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1387 {
1388 struct ice_aq_task *task;
1389
1390 spin_lock_bh(&pf->aq_wait_lock);
1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1392 task->state = ICE_AQ_TASK_CANCELED;
1393 spin_unlock_bh(&pf->aq_wait_lock);
1394
1395 wake_up(&pf->aq_wait_queue);
1396 }
1397
1398 #define ICE_MBX_OVERFLOW_WATERMARK 64
1399
1400 /**
1401 * __ice_clean_ctrlq - helper function to clean controlq rings
1402 * @pf: ptr to struct ice_pf
1403 * @q_type: specific Control queue type
1404 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1405 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1406 {
1407 struct device *dev = ice_pf_to_dev(pf);
1408 struct ice_rq_event_info event;
1409 struct ice_hw *hw = &pf->hw;
1410 struct ice_ctl_q_info *cq;
1411 u16 pending, i = 0;
1412 const char *qtype;
1413 u32 oldval, val;
1414
1415 /* Do not clean control queue if/when PF reset fails */
1416 if (test_bit(ICE_RESET_FAILED, pf->state))
1417 return 0;
1418
1419 switch (q_type) {
1420 case ICE_CTL_Q_ADMIN:
1421 cq = &hw->adminq;
1422 qtype = "Admin";
1423 break;
1424 case ICE_CTL_Q_SB:
1425 cq = &hw->sbq;
1426 qtype = "Sideband";
1427 break;
1428 case ICE_CTL_Q_MAILBOX:
1429 cq = &hw->mailboxq;
1430 qtype = "Mailbox";
1431 /* we are going to try to detect a malicious VF, so set the
1432 * state to begin detection
1433 */
1434 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1435 break;
1436 default:
1437 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1438 return 0;
1439 }
1440
1441 /* check for error indications - PF_xx_AxQLEN register layout for
1442 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1443 */
1444 val = rd32(hw, cq->rq.len);
1445 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1446 PF_FW_ARQLEN_ARQCRIT_M)) {
1447 oldval = val;
1448 if (val & PF_FW_ARQLEN_ARQVFE_M)
1449 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1450 qtype);
1451 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1452 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1453 qtype);
1454 }
1455 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1456 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1457 qtype);
1458 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1459 PF_FW_ARQLEN_ARQCRIT_M);
1460 if (oldval != val)
1461 wr32(hw, cq->rq.len, val);
1462 }
1463
1464 val = rd32(hw, cq->sq.len);
1465 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1466 PF_FW_ATQLEN_ATQCRIT_M)) {
1467 oldval = val;
1468 if (val & PF_FW_ATQLEN_ATQVFE_M)
1469 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1470 qtype);
1471 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1472 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1473 qtype);
1474 }
1475 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1476 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1477 qtype);
1478 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1479 PF_FW_ATQLEN_ATQCRIT_M);
1480 if (oldval != val)
1481 wr32(hw, cq->sq.len, val);
1482 }
1483
1484 event.buf_len = cq->rq_buf_size;
1485 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1486 if (!event.msg_buf)
1487 return 0;
1488
1489 do {
1490 struct ice_mbx_data data = {};
1491 u16 opcode;
1492 int ret;
1493
1494 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1495 if (ret == -EALREADY)
1496 break;
1497 if (ret) {
1498 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1499 ret);
1500 break;
1501 }
1502
1503 opcode = le16_to_cpu(event.desc.opcode);
1504
1505 /* Notify any thread that might be waiting for this event */
1506 ice_aq_check_events(pf, opcode, &event);
1507
1508 switch (opcode) {
1509 case ice_aqc_opc_get_link_status:
1510 if (ice_handle_link_event(pf, &event))
1511 dev_err(dev, "Could not handle link event\n");
1512 break;
1513 case ice_aqc_opc_event_lan_overflow:
1514 ice_vf_lan_overflow_event(pf, &event);
1515 break;
1516 case ice_mbx_opc_send_msg_to_pf:
1517 data.num_msg_proc = i;
1518 data.num_pending_arq = pending;
1519 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1520 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1521
1522 ice_vc_process_vf_msg(pf, &event, &data);
1523 break;
1524 case ice_aqc_opc_fw_logging:
1525 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1526 break;
1527 case ice_aqc_opc_lldp_set_mib_change:
1528 ice_dcb_process_lldp_set_mib_change(pf, &event);
1529 break;
1530 default:
1531 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1532 qtype, opcode);
1533 break;
1534 }
1535 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1536
1537 kfree(event.msg_buf);
1538
1539 return pending && (i == ICE_DFLT_IRQ_WORK);
1540 }
1541
1542 /**
1543 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1544 * @hw: pointer to hardware info
1545 * @cq: control queue information
1546 *
1547 * returns true if there are pending messages in a queue, false if there aren't
1548 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1549 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1550 {
1551 u16 ntu;
1552
1553 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1554 return cq->rq.next_to_clean != ntu;
1555 }
1556
1557 /**
1558 * ice_clean_adminq_subtask - clean the AdminQ rings
1559 * @pf: board private structure
1560 */
ice_clean_adminq_subtask(struct ice_pf * pf)1561 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1562 {
1563 struct ice_hw *hw = &pf->hw;
1564
1565 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1566 return;
1567
1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1569 return;
1570
1571 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1572
1573 /* There might be a situation where new messages arrive to a control
1574 * queue between processing the last message and clearing the
1575 * EVENT_PENDING bit. So before exiting, check queue head again (using
1576 * ice_ctrlq_pending) and process new messages if any.
1577 */
1578 if (ice_ctrlq_pending(hw, &hw->adminq))
1579 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1580
1581 ice_flush(hw);
1582 }
1583
1584 /**
1585 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1586 * @pf: board private structure
1587 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1588 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1589 {
1590 struct ice_hw *hw = &pf->hw;
1591
1592 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1593 return;
1594
1595 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1596 return;
1597
1598 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1599
1600 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1601 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1602
1603 ice_flush(hw);
1604 }
1605
1606 /**
1607 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1608 * @pf: board private structure
1609 */
ice_clean_sbq_subtask(struct ice_pf * pf)1610 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1611 {
1612 struct ice_hw *hw = &pf->hw;
1613
1614 /* Nothing to do here if sideband queue is not supported */
1615 if (!ice_is_sbq_supported(hw)) {
1616 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1617 return;
1618 }
1619
1620 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1621 return;
1622
1623 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1624 return;
1625
1626 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1627
1628 if (ice_ctrlq_pending(hw, &hw->sbq))
1629 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1630
1631 ice_flush(hw);
1632 }
1633
1634 /**
1635 * ice_service_task_schedule - schedule the service task to wake up
1636 * @pf: board private structure
1637 *
1638 * If not already scheduled, this puts the task into the work queue.
1639 */
ice_service_task_schedule(struct ice_pf * pf)1640 void ice_service_task_schedule(struct ice_pf *pf)
1641 {
1642 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1643 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1644 !test_bit(ICE_NEEDS_RESTART, pf->state))
1645 queue_work(ice_wq, &pf->serv_task);
1646 }
1647
1648 /**
1649 * ice_service_task_complete - finish up the service task
1650 * @pf: board private structure
1651 */
ice_service_task_complete(struct ice_pf * pf)1652 static void ice_service_task_complete(struct ice_pf *pf)
1653 {
1654 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1655
1656 /* force memory (pf->state) to sync before next service task */
1657 smp_mb__before_atomic();
1658 clear_bit(ICE_SERVICE_SCHED, pf->state);
1659 }
1660
1661 /**
1662 * ice_service_task_stop - stop service task and cancel works
1663 * @pf: board private structure
1664 *
1665 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1666 * 1 otherwise.
1667 */
ice_service_task_stop(struct ice_pf * pf)1668 static int ice_service_task_stop(struct ice_pf *pf)
1669 {
1670 int ret;
1671
1672 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1673
1674 if (pf->serv_tmr.function)
1675 del_timer_sync(&pf->serv_tmr);
1676 if (pf->serv_task.func)
1677 cancel_work_sync(&pf->serv_task);
1678
1679 clear_bit(ICE_SERVICE_SCHED, pf->state);
1680 return ret;
1681 }
1682
1683 /**
1684 * ice_service_task_restart - restart service task and schedule works
1685 * @pf: board private structure
1686 *
1687 * This function is needed for suspend and resume works (e.g WoL scenario)
1688 */
ice_service_task_restart(struct ice_pf * pf)1689 static void ice_service_task_restart(struct ice_pf *pf)
1690 {
1691 clear_bit(ICE_SERVICE_DIS, pf->state);
1692 ice_service_task_schedule(pf);
1693 }
1694
1695 /**
1696 * ice_service_timer - timer callback to schedule service task
1697 * @t: pointer to timer_list
1698 */
ice_service_timer(struct timer_list * t)1699 static void ice_service_timer(struct timer_list *t)
1700 {
1701 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1702
1703 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1704 ice_service_task_schedule(pf);
1705 }
1706
1707 /**
1708 * ice_handle_mdd_event - handle malicious driver detect event
1709 * @pf: pointer to the PF structure
1710 *
1711 * Called from service task. OICR interrupt handler indicates MDD event.
1712 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1713 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1714 * disable the queue, the PF can be configured to reset the VF using ethtool
1715 * private flag mdd-auto-reset-vf.
1716 */
ice_handle_mdd_event(struct ice_pf * pf)1717 static void ice_handle_mdd_event(struct ice_pf *pf)
1718 {
1719 struct device *dev = ice_pf_to_dev(pf);
1720 struct ice_hw *hw = &pf->hw;
1721 struct ice_vf *vf;
1722 unsigned int bkt;
1723 u32 reg;
1724
1725 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1726 /* Since the VF MDD event logging is rate limited, check if
1727 * there are pending MDD events.
1728 */
1729 ice_print_vfs_mdd_events(pf);
1730 return;
1731 }
1732
1733 /* find what triggered an MDD event */
1734 reg = rd32(hw, GL_MDET_TX_PQM);
1735 if (reg & GL_MDET_TX_PQM_VALID_M) {
1736 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1737 GL_MDET_TX_PQM_PF_NUM_S;
1738 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1739 GL_MDET_TX_PQM_VF_NUM_S;
1740 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1741 GL_MDET_TX_PQM_MAL_TYPE_S;
1742 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1743 GL_MDET_TX_PQM_QNUM_S);
1744
1745 if (netif_msg_tx_err(pf))
1746 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1747 event, queue, pf_num, vf_num);
1748 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1749 }
1750
1751 reg = rd32(hw, GL_MDET_TX_TCLAN);
1752 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1753 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1754 GL_MDET_TX_TCLAN_PF_NUM_S;
1755 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1756 GL_MDET_TX_TCLAN_VF_NUM_S;
1757 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1758 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1759 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1760 GL_MDET_TX_TCLAN_QNUM_S);
1761
1762 if (netif_msg_tx_err(pf))
1763 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1764 event, queue, pf_num, vf_num);
1765 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1766 }
1767
1768 reg = rd32(hw, GL_MDET_RX);
1769 if (reg & GL_MDET_RX_VALID_M) {
1770 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1771 GL_MDET_RX_PF_NUM_S;
1772 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1773 GL_MDET_RX_VF_NUM_S;
1774 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1775 GL_MDET_RX_MAL_TYPE_S;
1776 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1777 GL_MDET_RX_QNUM_S);
1778
1779 if (netif_msg_rx_err(pf))
1780 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1781 event, queue, pf_num, vf_num);
1782 wr32(hw, GL_MDET_RX, 0xffffffff);
1783 }
1784
1785 /* check to see if this PF caused an MDD event */
1786 reg = rd32(hw, PF_MDET_TX_PQM);
1787 if (reg & PF_MDET_TX_PQM_VALID_M) {
1788 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1789 if (netif_msg_tx_err(pf))
1790 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1791 }
1792
1793 reg = rd32(hw, PF_MDET_TX_TCLAN);
1794 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1795 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1796 if (netif_msg_tx_err(pf))
1797 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1798 }
1799
1800 reg = rd32(hw, PF_MDET_RX);
1801 if (reg & PF_MDET_RX_VALID_M) {
1802 wr32(hw, PF_MDET_RX, 0xFFFF);
1803 if (netif_msg_rx_err(pf))
1804 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1805 }
1806
1807 /* Check to see if one of the VFs caused an MDD event, and then
1808 * increment counters and set print pending
1809 */
1810 mutex_lock(&pf->vfs.table_lock);
1811 ice_for_each_vf(pf, bkt, vf) {
1812 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1813 if (reg & VP_MDET_TX_PQM_VALID_M) {
1814 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1815 vf->mdd_tx_events.count++;
1816 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1817 if (netif_msg_tx_err(pf))
1818 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1819 vf->vf_id);
1820 }
1821
1822 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1823 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1824 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1825 vf->mdd_tx_events.count++;
1826 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1827 if (netif_msg_tx_err(pf))
1828 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1829 vf->vf_id);
1830 }
1831
1832 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1833 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1834 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1835 vf->mdd_tx_events.count++;
1836 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1837 if (netif_msg_tx_err(pf))
1838 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1839 vf->vf_id);
1840 }
1841
1842 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1843 if (reg & VP_MDET_RX_VALID_M) {
1844 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1845 vf->mdd_rx_events.count++;
1846 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1847 if (netif_msg_rx_err(pf))
1848 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1849 vf->vf_id);
1850
1851 /* Since the queue is disabled on VF Rx MDD events, the
1852 * PF can be configured to reset the VF through ethtool
1853 * private flag mdd-auto-reset-vf.
1854 */
1855 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1856 /* VF MDD event counters will be cleared by
1857 * reset, so print the event prior to reset.
1858 */
1859 ice_print_vf_rx_mdd_event(vf);
1860 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1861 }
1862 }
1863 }
1864 mutex_unlock(&pf->vfs.table_lock);
1865
1866 ice_print_vfs_mdd_events(pf);
1867 }
1868
1869 /**
1870 * ice_force_phys_link_state - Force the physical link state
1871 * @vsi: VSI to force the physical link state to up/down
1872 * @link_up: true/false indicates to set the physical link to up/down
1873 *
1874 * Force the physical link state by getting the current PHY capabilities from
1875 * hardware and setting the PHY config based on the determined capabilities. If
1876 * link changes a link event will be triggered because both the Enable Automatic
1877 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1878 *
1879 * Returns 0 on success, negative on failure
1880 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1881 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1882 {
1883 struct ice_aqc_get_phy_caps_data *pcaps;
1884 struct ice_aqc_set_phy_cfg_data *cfg;
1885 struct ice_port_info *pi;
1886 struct device *dev;
1887 int retcode;
1888
1889 if (!vsi || !vsi->port_info || !vsi->back)
1890 return -EINVAL;
1891 if (vsi->type != ICE_VSI_PF)
1892 return 0;
1893
1894 dev = ice_pf_to_dev(vsi->back);
1895
1896 pi = vsi->port_info;
1897
1898 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1899 if (!pcaps)
1900 return -ENOMEM;
1901
1902 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1903 NULL);
1904 if (retcode) {
1905 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1906 vsi->vsi_num, retcode);
1907 retcode = -EIO;
1908 goto out;
1909 }
1910
1911 /* No change in link */
1912 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1913 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1914 goto out;
1915
1916 /* Use the current user PHY configuration. The current user PHY
1917 * configuration is initialized during probe from PHY capabilities
1918 * software mode, and updated on set PHY configuration.
1919 */
1920 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1921 if (!cfg) {
1922 retcode = -ENOMEM;
1923 goto out;
1924 }
1925
1926 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1927 if (link_up)
1928 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1929 else
1930 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1931
1932 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1933 if (retcode) {
1934 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1935 vsi->vsi_num, retcode);
1936 retcode = -EIO;
1937 }
1938
1939 kfree(cfg);
1940 out:
1941 kfree(pcaps);
1942 return retcode;
1943 }
1944
1945 /**
1946 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1947 * @pi: port info structure
1948 *
1949 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1950 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1951 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1952 {
1953 struct ice_aqc_get_phy_caps_data *pcaps;
1954 struct ice_pf *pf = pi->hw->back;
1955 int err;
1956
1957 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1958 if (!pcaps)
1959 return -ENOMEM;
1960
1961 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1962 pcaps, NULL);
1963
1964 if (err) {
1965 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1966 goto out;
1967 }
1968
1969 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1970 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1971
1972 out:
1973 kfree(pcaps);
1974 return err;
1975 }
1976
1977 /**
1978 * ice_init_link_dflt_override - Initialize link default override
1979 * @pi: port info structure
1980 *
1981 * Initialize link default override and PHY total port shutdown during probe
1982 */
ice_init_link_dflt_override(struct ice_port_info * pi)1983 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1984 {
1985 struct ice_link_default_override_tlv *ldo;
1986 struct ice_pf *pf = pi->hw->back;
1987
1988 ldo = &pf->link_dflt_override;
1989 if (ice_get_link_default_override(ldo, pi))
1990 return;
1991
1992 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1993 return;
1994
1995 /* Enable Total Port Shutdown (override/replace link-down-on-close
1996 * ethtool private flag) for ports with Port Disable bit set.
1997 */
1998 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1999 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2000 }
2001
2002 /**
2003 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2004 * @pi: port info structure
2005 *
2006 * If default override is enabled, initialize the user PHY cfg speed and FEC
2007 * settings using the default override mask from the NVM.
2008 *
2009 * The PHY should only be configured with the default override settings the
2010 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2011 * is used to indicate that the user PHY cfg default override is initialized
2012 * and the PHY has not been configured with the default override settings. The
2013 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2014 * configured.
2015 *
2016 * This function should be called only if the FW doesn't support default
2017 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2018 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2019 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2020 {
2021 struct ice_link_default_override_tlv *ldo;
2022 struct ice_aqc_set_phy_cfg_data *cfg;
2023 struct ice_phy_info *phy = &pi->phy;
2024 struct ice_pf *pf = pi->hw->back;
2025
2026 ldo = &pf->link_dflt_override;
2027
2028 /* If link default override is enabled, use to mask NVM PHY capabilities
2029 * for speed and FEC default configuration.
2030 */
2031 cfg = &phy->curr_user_phy_cfg;
2032
2033 if (ldo->phy_type_low || ldo->phy_type_high) {
2034 cfg->phy_type_low = pf->nvm_phy_type_lo &
2035 cpu_to_le64(ldo->phy_type_low);
2036 cfg->phy_type_high = pf->nvm_phy_type_hi &
2037 cpu_to_le64(ldo->phy_type_high);
2038 }
2039 cfg->link_fec_opt = ldo->fec_options;
2040 phy->curr_user_fec_req = ICE_FEC_AUTO;
2041
2042 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2043 }
2044
2045 /**
2046 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2047 * @pi: port info structure
2048 *
2049 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2050 * mode to default. The PHY defaults are from get PHY capabilities topology
2051 * with media so call when media is first available. An error is returned if
2052 * called when media is not available. The PHY initialization completed state is
2053 * set here.
2054 *
2055 * These configurations are used when setting PHY
2056 * configuration. The user PHY configuration is updated on set PHY
2057 * configuration. Returns 0 on success, negative on failure
2058 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2059 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2060 {
2061 struct ice_aqc_get_phy_caps_data *pcaps;
2062 struct ice_phy_info *phy = &pi->phy;
2063 struct ice_pf *pf = pi->hw->back;
2064 int err;
2065
2066 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2067 return -EIO;
2068
2069 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2070 if (!pcaps)
2071 return -ENOMEM;
2072
2073 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2074 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2075 pcaps, NULL);
2076 else
2077 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2078 pcaps, NULL);
2079 if (err) {
2080 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2081 goto err_out;
2082 }
2083
2084 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2085
2086 /* check if lenient mode is supported and enabled */
2087 if (ice_fw_supports_link_override(pi->hw) &&
2088 !(pcaps->module_compliance_enforcement &
2089 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2090 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2091
2092 /* if the FW supports default PHY configuration mode, then the driver
2093 * does not have to apply link override settings. If not,
2094 * initialize user PHY configuration with link override values
2095 */
2096 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2097 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2098 ice_init_phy_cfg_dflt_override(pi);
2099 goto out;
2100 }
2101 }
2102
2103 /* if link default override is not enabled, set user flow control and
2104 * FEC settings based on what get_phy_caps returned
2105 */
2106 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2107 pcaps->link_fec_options);
2108 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2109
2110 out:
2111 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2112 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2113 err_out:
2114 kfree(pcaps);
2115 return err;
2116 }
2117
2118 /**
2119 * ice_configure_phy - configure PHY
2120 * @vsi: VSI of PHY
2121 *
2122 * Set the PHY configuration. If the current PHY configuration is the same as
2123 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2124 * configure the based get PHY capabilities for topology with media.
2125 */
ice_configure_phy(struct ice_vsi * vsi)2126 static int ice_configure_phy(struct ice_vsi *vsi)
2127 {
2128 struct device *dev = ice_pf_to_dev(vsi->back);
2129 struct ice_port_info *pi = vsi->port_info;
2130 struct ice_aqc_get_phy_caps_data *pcaps;
2131 struct ice_aqc_set_phy_cfg_data *cfg;
2132 struct ice_phy_info *phy = &pi->phy;
2133 struct ice_pf *pf = vsi->back;
2134 int err;
2135
2136 /* Ensure we have media as we cannot configure a medialess port */
2137 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2138 return -ENOMEDIUM;
2139
2140 ice_print_topo_conflict(vsi);
2141
2142 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2143 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2144 return -EPERM;
2145
2146 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2147 return ice_force_phys_link_state(vsi, true);
2148
2149 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2150 if (!pcaps)
2151 return -ENOMEM;
2152
2153 /* Get current PHY config */
2154 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2155 NULL);
2156 if (err) {
2157 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2158 vsi->vsi_num, err);
2159 goto done;
2160 }
2161
2162 /* If PHY enable link is configured and configuration has not changed,
2163 * there's nothing to do
2164 */
2165 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2166 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2167 goto done;
2168
2169 /* Use PHY topology as baseline for configuration */
2170 memset(pcaps, 0, sizeof(*pcaps));
2171 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2172 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2173 pcaps, NULL);
2174 else
2175 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2176 pcaps, NULL);
2177 if (err) {
2178 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2179 vsi->vsi_num, err);
2180 goto done;
2181 }
2182
2183 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2184 if (!cfg) {
2185 err = -ENOMEM;
2186 goto done;
2187 }
2188
2189 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2190
2191 /* Speed - If default override pending, use curr_user_phy_cfg set in
2192 * ice_init_phy_user_cfg_ldo.
2193 */
2194 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2195 vsi->back->state)) {
2196 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2197 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2198 } else {
2199 u64 phy_low = 0, phy_high = 0;
2200
2201 ice_update_phy_type(&phy_low, &phy_high,
2202 pi->phy.curr_user_speed_req);
2203 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2204 cfg->phy_type_high = pcaps->phy_type_high &
2205 cpu_to_le64(phy_high);
2206 }
2207
2208 /* Can't provide what was requested; use PHY capabilities */
2209 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2210 cfg->phy_type_low = pcaps->phy_type_low;
2211 cfg->phy_type_high = pcaps->phy_type_high;
2212 }
2213
2214 /* FEC */
2215 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2216
2217 /* Can't provide what was requested; use PHY capabilities */
2218 if (cfg->link_fec_opt !=
2219 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2220 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2221 cfg->link_fec_opt = pcaps->link_fec_options;
2222 }
2223
2224 /* Flow Control - always supported; no need to check against
2225 * capabilities
2226 */
2227 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2228
2229 /* Enable link and link update */
2230 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2231
2232 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2233 if (err)
2234 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2235 vsi->vsi_num, err);
2236
2237 kfree(cfg);
2238 done:
2239 kfree(pcaps);
2240 return err;
2241 }
2242
2243 /**
2244 * ice_check_media_subtask - Check for media
2245 * @pf: pointer to PF struct
2246 *
2247 * If media is available, then initialize PHY user configuration if it is not
2248 * been, and configure the PHY if the interface is up.
2249 */
ice_check_media_subtask(struct ice_pf * pf)2250 static void ice_check_media_subtask(struct ice_pf *pf)
2251 {
2252 struct ice_port_info *pi;
2253 struct ice_vsi *vsi;
2254 int err;
2255
2256 /* No need to check for media if it's already present */
2257 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2258 return;
2259
2260 vsi = ice_get_main_vsi(pf);
2261 if (!vsi)
2262 return;
2263
2264 /* Refresh link info and check if media is present */
2265 pi = vsi->port_info;
2266 err = ice_update_link_info(pi);
2267 if (err)
2268 return;
2269
2270 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2271
2272 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2273 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2274 ice_init_phy_user_cfg(pi);
2275
2276 /* PHY settings are reset on media insertion, reconfigure
2277 * PHY to preserve settings.
2278 */
2279 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2280 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2281 return;
2282
2283 err = ice_configure_phy(vsi);
2284 if (!err)
2285 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2286
2287 /* A Link Status Event will be generated; the event handler
2288 * will complete bringing the interface up
2289 */
2290 }
2291 }
2292
2293 /**
2294 * ice_service_task - manage and run subtasks
2295 * @work: pointer to work_struct contained by the PF struct
2296 */
ice_service_task(struct work_struct * work)2297 static void ice_service_task(struct work_struct *work)
2298 {
2299 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2300 unsigned long start_time = jiffies;
2301
2302 /* subtasks */
2303
2304 /* process reset requests first */
2305 ice_reset_subtask(pf);
2306
2307 /* bail if a reset/recovery cycle is pending or rebuild failed */
2308 if (ice_is_reset_in_progress(pf->state) ||
2309 test_bit(ICE_SUSPENDED, pf->state) ||
2310 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2311 ice_service_task_complete(pf);
2312 return;
2313 }
2314
2315 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2316 struct iidc_event *event;
2317
2318 event = kzalloc(sizeof(*event), GFP_KERNEL);
2319 if (event) {
2320 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2321 /* report the entire OICR value to AUX driver */
2322 swap(event->reg, pf->oicr_err_reg);
2323 ice_send_event_to_aux(pf, event);
2324 kfree(event);
2325 }
2326 }
2327
2328 /* unplug aux dev per request, if an unplug request came in
2329 * while processing a plug request, this will handle it
2330 */
2331 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2332 ice_unplug_aux_dev(pf);
2333
2334 /* Plug aux device per request */
2335 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2336 ice_plug_aux_dev(pf);
2337
2338 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2339 struct iidc_event *event;
2340
2341 event = kzalloc(sizeof(*event), GFP_KERNEL);
2342 if (event) {
2343 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2344 ice_send_event_to_aux(pf, event);
2345 kfree(event);
2346 }
2347 }
2348
2349 ice_clean_adminq_subtask(pf);
2350 ice_check_media_subtask(pf);
2351 ice_check_for_hang_subtask(pf);
2352 ice_sync_fltr_subtask(pf);
2353 ice_handle_mdd_event(pf);
2354 ice_watchdog_subtask(pf);
2355
2356 if (ice_is_safe_mode(pf)) {
2357 ice_service_task_complete(pf);
2358 return;
2359 }
2360
2361 ice_process_vflr_event(pf);
2362 ice_clean_mailboxq_subtask(pf);
2363 ice_clean_sbq_subtask(pf);
2364 ice_sync_arfs_fltrs(pf);
2365 ice_flush_fdir_ctx(pf);
2366
2367 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2368 ice_service_task_complete(pf);
2369
2370 /* If the tasks have taken longer than one service timer period
2371 * or there is more work to be done, reset the service timer to
2372 * schedule the service task now.
2373 */
2374 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2375 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2376 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2377 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2378 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2379 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2380 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2381 mod_timer(&pf->serv_tmr, jiffies);
2382 }
2383
2384 /**
2385 * ice_set_ctrlq_len - helper function to set controlq length
2386 * @hw: pointer to the HW instance
2387 */
ice_set_ctrlq_len(struct ice_hw * hw)2388 static void ice_set_ctrlq_len(struct ice_hw *hw)
2389 {
2390 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2391 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2392 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2393 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2394 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2395 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2396 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2397 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2398 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2399 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2400 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2401 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2402 }
2403
2404 /**
2405 * ice_schedule_reset - schedule a reset
2406 * @pf: board private structure
2407 * @reset: reset being requested
2408 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2409 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2410 {
2411 struct device *dev = ice_pf_to_dev(pf);
2412
2413 /* bail out if earlier reset has failed */
2414 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2415 dev_dbg(dev, "earlier reset has failed\n");
2416 return -EIO;
2417 }
2418 /* bail if reset/recovery already in progress */
2419 if (ice_is_reset_in_progress(pf->state)) {
2420 dev_dbg(dev, "Reset already in progress\n");
2421 return -EBUSY;
2422 }
2423
2424 switch (reset) {
2425 case ICE_RESET_PFR:
2426 set_bit(ICE_PFR_REQ, pf->state);
2427 break;
2428 case ICE_RESET_CORER:
2429 set_bit(ICE_CORER_REQ, pf->state);
2430 break;
2431 case ICE_RESET_GLOBR:
2432 set_bit(ICE_GLOBR_REQ, pf->state);
2433 break;
2434 default:
2435 return -EINVAL;
2436 }
2437
2438 ice_service_task_schedule(pf);
2439 return 0;
2440 }
2441
2442 /**
2443 * ice_irq_affinity_notify - Callback for affinity changes
2444 * @notify: context as to what irq was changed
2445 * @mask: the new affinity mask
2446 *
2447 * This is a callback function used by the irq_set_affinity_notifier function
2448 * so that we may register to receive changes to the irq affinity masks.
2449 */
2450 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2451 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2452 const cpumask_t *mask)
2453 {
2454 struct ice_q_vector *q_vector =
2455 container_of(notify, struct ice_q_vector, affinity_notify);
2456
2457 cpumask_copy(&q_vector->affinity_mask, mask);
2458 }
2459
2460 /**
2461 * ice_irq_affinity_release - Callback for affinity notifier release
2462 * @ref: internal core kernel usage
2463 *
2464 * This is a callback function used by the irq_set_affinity_notifier function
2465 * to inform the current notification subscriber that they will no longer
2466 * receive notifications.
2467 */
ice_irq_affinity_release(struct kref __always_unused * ref)2468 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2469
2470 /**
2471 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2472 * @vsi: the VSI being configured
2473 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2474 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2475 {
2476 struct ice_hw *hw = &vsi->back->hw;
2477 int i;
2478
2479 ice_for_each_q_vector(vsi, i)
2480 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2481
2482 ice_flush(hw);
2483 return 0;
2484 }
2485
2486 /**
2487 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2488 * @vsi: the VSI being configured
2489 * @basename: name for the vector
2490 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2491 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2492 {
2493 int q_vectors = vsi->num_q_vectors;
2494 struct ice_pf *pf = vsi->back;
2495 struct device *dev;
2496 int rx_int_idx = 0;
2497 int tx_int_idx = 0;
2498 int vector, err;
2499 int irq_num;
2500
2501 dev = ice_pf_to_dev(pf);
2502 for (vector = 0; vector < q_vectors; vector++) {
2503 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2504
2505 irq_num = q_vector->irq.virq;
2506
2507 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2508 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2509 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2510 tx_int_idx++;
2511 } else if (q_vector->rx.rx_ring) {
2512 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2513 "%s-%s-%d", basename, "rx", rx_int_idx++);
2514 } else if (q_vector->tx.tx_ring) {
2515 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2516 "%s-%s-%d", basename, "tx", tx_int_idx++);
2517 } else {
2518 /* skip this unused q_vector */
2519 continue;
2520 }
2521 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2522 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2523 IRQF_SHARED, q_vector->name,
2524 q_vector);
2525 else
2526 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2527 0, q_vector->name, q_vector);
2528 if (err) {
2529 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2530 err);
2531 goto free_q_irqs;
2532 }
2533
2534 /* register for affinity change notifications */
2535 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2536 struct irq_affinity_notify *affinity_notify;
2537
2538 affinity_notify = &q_vector->affinity_notify;
2539 affinity_notify->notify = ice_irq_affinity_notify;
2540 affinity_notify->release = ice_irq_affinity_release;
2541 irq_set_affinity_notifier(irq_num, affinity_notify);
2542 }
2543
2544 /* assign the mask for this irq */
2545 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2546 }
2547
2548 err = ice_set_cpu_rx_rmap(vsi);
2549 if (err) {
2550 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2551 vsi->vsi_num, ERR_PTR(err));
2552 goto free_q_irqs;
2553 }
2554
2555 vsi->irqs_ready = true;
2556 return 0;
2557
2558 free_q_irqs:
2559 while (vector--) {
2560 irq_num = vsi->q_vectors[vector]->irq.virq;
2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2562 irq_set_affinity_notifier(irq_num, NULL);
2563 irq_set_affinity_hint(irq_num, NULL);
2564 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2565 }
2566 return err;
2567 }
2568
2569 /**
2570 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2571 * @vsi: VSI to setup Tx rings used by XDP
2572 *
2573 * Return 0 on success and negative value on error
2574 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2575 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2576 {
2577 struct device *dev = ice_pf_to_dev(vsi->back);
2578 struct ice_tx_desc *tx_desc;
2579 int i, j;
2580
2581 ice_for_each_xdp_txq(vsi, i) {
2582 u16 xdp_q_idx = vsi->alloc_txq + i;
2583 struct ice_ring_stats *ring_stats;
2584 struct ice_tx_ring *xdp_ring;
2585
2586 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2587 if (!xdp_ring)
2588 goto free_xdp_rings;
2589
2590 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2591 if (!ring_stats) {
2592 ice_free_tx_ring(xdp_ring);
2593 goto free_xdp_rings;
2594 }
2595
2596 xdp_ring->ring_stats = ring_stats;
2597 xdp_ring->q_index = xdp_q_idx;
2598 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2599 xdp_ring->vsi = vsi;
2600 xdp_ring->netdev = NULL;
2601 xdp_ring->dev = dev;
2602 xdp_ring->count = vsi->num_tx_desc;
2603 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2604 if (ice_setup_tx_ring(xdp_ring))
2605 goto free_xdp_rings;
2606 ice_set_ring_xdp(xdp_ring);
2607 spin_lock_init(&xdp_ring->tx_lock);
2608 for (j = 0; j < xdp_ring->count; j++) {
2609 tx_desc = ICE_TX_DESC(xdp_ring, j);
2610 tx_desc->cmd_type_offset_bsz = 0;
2611 }
2612 }
2613
2614 return 0;
2615
2616 free_xdp_rings:
2617 for (; i >= 0; i--) {
2618 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2619 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2620 vsi->xdp_rings[i]->ring_stats = NULL;
2621 ice_free_tx_ring(vsi->xdp_rings[i]);
2622 }
2623 }
2624 return -ENOMEM;
2625 }
2626
2627 /**
2628 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2629 * @vsi: VSI to set the bpf prog on
2630 * @prog: the bpf prog pointer
2631 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2632 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2633 {
2634 struct bpf_prog *old_prog;
2635 int i;
2636
2637 old_prog = xchg(&vsi->xdp_prog, prog);
2638 ice_for_each_rxq(vsi, i)
2639 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2640
2641 if (old_prog)
2642 bpf_prog_put(old_prog);
2643 }
2644
2645 /**
2646 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2647 * @vsi: VSI to bring up Tx rings used by XDP
2648 * @prog: bpf program that will be assigned to VSI
2649 * @cfg_type: create from scratch or restore the existing configuration
2650 *
2651 * Return 0 on success and negative value on error
2652 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2653 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2654 enum ice_xdp_cfg cfg_type)
2655 {
2656 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2657 int xdp_rings_rem = vsi->num_xdp_txq;
2658 struct ice_pf *pf = vsi->back;
2659 struct ice_qs_cfg xdp_qs_cfg = {
2660 .qs_mutex = &pf->avail_q_mutex,
2661 .pf_map = pf->avail_txqs,
2662 .pf_map_size = pf->max_pf_txqs,
2663 .q_count = vsi->num_xdp_txq,
2664 .scatter_count = ICE_MAX_SCATTER_TXQS,
2665 .vsi_map = vsi->txq_map,
2666 .vsi_map_offset = vsi->alloc_txq,
2667 .mapping_mode = ICE_VSI_MAP_CONTIG
2668 };
2669 struct device *dev;
2670 int i, v_idx;
2671 int status;
2672
2673 dev = ice_pf_to_dev(pf);
2674 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2675 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2676 if (!vsi->xdp_rings)
2677 return -ENOMEM;
2678
2679 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2680 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2681 goto err_map_xdp;
2682
2683 if (static_key_enabled(&ice_xdp_locking_key))
2684 netdev_warn(vsi->netdev,
2685 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2686
2687 if (ice_xdp_alloc_setup_rings(vsi))
2688 goto clear_xdp_rings;
2689
2690 /* follow the logic from ice_vsi_map_rings_to_vectors */
2691 ice_for_each_q_vector(vsi, v_idx) {
2692 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2693 int xdp_rings_per_v, q_id, q_base;
2694
2695 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2696 vsi->num_q_vectors - v_idx);
2697 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2698
2699 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2700 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2701
2702 xdp_ring->q_vector = q_vector;
2703 xdp_ring->next = q_vector->tx.tx_ring;
2704 q_vector->tx.tx_ring = xdp_ring;
2705 }
2706 xdp_rings_rem -= xdp_rings_per_v;
2707 }
2708
2709 ice_for_each_rxq(vsi, i) {
2710 if (static_key_enabled(&ice_xdp_locking_key)) {
2711 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2712 } else {
2713 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2714 struct ice_tx_ring *ring;
2715
2716 ice_for_each_tx_ring(ring, q_vector->tx) {
2717 if (ice_ring_is_xdp(ring)) {
2718 vsi->rx_rings[i]->xdp_ring = ring;
2719 break;
2720 }
2721 }
2722 }
2723 ice_tx_xsk_pool(vsi, i);
2724 }
2725
2726 /* omit the scheduler update if in reset path; XDP queues will be
2727 * taken into account at the end of ice_vsi_rebuild, where
2728 * ice_cfg_vsi_lan is being called
2729 */
2730 if (cfg_type == ICE_XDP_CFG_PART)
2731 return 0;
2732
2733 /* tell the Tx scheduler that right now we have
2734 * additional queues
2735 */
2736 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2737 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2738
2739 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2740 max_txqs);
2741 if (status) {
2742 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2743 status);
2744 goto clear_xdp_rings;
2745 }
2746
2747 /* assign the prog only when it's not already present on VSI;
2748 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2749 * VSI rebuild that happens under ethtool -L can expose us to
2750 * the bpf_prog refcount issues as we would be swapping same
2751 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2752 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2753 * this is not harmful as dev_xdp_install bumps the refcount
2754 * before calling the op exposed by the driver;
2755 */
2756 if (!ice_is_xdp_ena_vsi(vsi))
2757 ice_vsi_assign_bpf_prog(vsi, prog);
2758
2759 return 0;
2760 clear_xdp_rings:
2761 ice_for_each_xdp_txq(vsi, i)
2762 if (vsi->xdp_rings[i]) {
2763 kfree_rcu(vsi->xdp_rings[i], rcu);
2764 vsi->xdp_rings[i] = NULL;
2765 }
2766
2767 err_map_xdp:
2768 mutex_lock(&pf->avail_q_mutex);
2769 ice_for_each_xdp_txq(vsi, i) {
2770 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2771 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2772 }
2773 mutex_unlock(&pf->avail_q_mutex);
2774
2775 devm_kfree(dev, vsi->xdp_rings);
2776 return -ENOMEM;
2777 }
2778
2779 /**
2780 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2781 * @vsi: VSI to remove XDP rings
2782 * @cfg_type: disable XDP permanently or allow it to be restored later
2783 *
2784 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2785 * resources
2786 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2787 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2788 {
2789 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2790 struct ice_pf *pf = vsi->back;
2791 int i, v_idx;
2792
2793 /* q_vectors are freed in reset path so there's no point in detaching
2794 * rings
2795 */
2796 if (cfg_type == ICE_XDP_CFG_PART)
2797 goto free_qmap;
2798
2799 ice_for_each_q_vector(vsi, v_idx) {
2800 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2801 struct ice_tx_ring *ring;
2802
2803 ice_for_each_tx_ring(ring, q_vector->tx)
2804 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2805 break;
2806
2807 /* restore the value of last node prior to XDP setup */
2808 q_vector->tx.tx_ring = ring;
2809 }
2810
2811 free_qmap:
2812 mutex_lock(&pf->avail_q_mutex);
2813 ice_for_each_xdp_txq(vsi, i) {
2814 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2815 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2816 }
2817 mutex_unlock(&pf->avail_q_mutex);
2818
2819 ice_for_each_xdp_txq(vsi, i)
2820 if (vsi->xdp_rings[i]) {
2821 if (vsi->xdp_rings[i]->desc) {
2822 synchronize_rcu();
2823 ice_free_tx_ring(vsi->xdp_rings[i]);
2824 }
2825 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2826 vsi->xdp_rings[i]->ring_stats = NULL;
2827 kfree_rcu(vsi->xdp_rings[i], rcu);
2828 vsi->xdp_rings[i] = NULL;
2829 }
2830
2831 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2832 vsi->xdp_rings = NULL;
2833
2834 if (static_key_enabled(&ice_xdp_locking_key))
2835 static_branch_dec(&ice_xdp_locking_key);
2836
2837 if (cfg_type == ICE_XDP_CFG_PART)
2838 return 0;
2839
2840 ice_vsi_assign_bpf_prog(vsi, NULL);
2841
2842 /* notify Tx scheduler that we destroyed XDP queues and bring
2843 * back the old number of child nodes
2844 */
2845 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2846 max_txqs[i] = vsi->num_txq;
2847
2848 /* change number of XDP Tx queues to 0 */
2849 vsi->num_xdp_txq = 0;
2850
2851 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2852 max_txqs);
2853 }
2854
2855 /**
2856 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2857 * @vsi: VSI to schedule napi on
2858 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2859 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2860 {
2861 int i;
2862
2863 ice_for_each_rxq(vsi, i) {
2864 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2865
2866 if (rx_ring->xsk_pool)
2867 napi_schedule(&rx_ring->q_vector->napi);
2868 }
2869 }
2870
2871 /**
2872 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2873 * @vsi: VSI to determine the count of XDP Tx qs
2874 *
2875 * returns 0 if Tx qs count is higher than at least half of CPU count,
2876 * -ENOMEM otherwise
2877 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2878 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2879 {
2880 u16 avail = ice_get_avail_txq_count(vsi->back);
2881 u16 cpus = num_possible_cpus();
2882
2883 if (avail < cpus / 2)
2884 return -ENOMEM;
2885
2886 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2887
2888 if (vsi->num_xdp_txq < cpus)
2889 static_branch_inc(&ice_xdp_locking_key);
2890
2891 return 0;
2892 }
2893
2894 /**
2895 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2896 * @vsi: Pointer to VSI structure
2897 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2898 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2899 {
2900 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2901 return ICE_RXBUF_1664;
2902 else
2903 return ICE_RXBUF_3072;
2904 }
2905
2906 /**
2907 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2908 * @vsi: VSI to setup XDP for
2909 * @prog: XDP program
2910 * @extack: netlink extended ack
2911 */
2912 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2913 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2914 struct netlink_ext_ack *extack)
2915 {
2916 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2917 int ret = 0, xdp_ring_err = 0;
2918 bool if_running;
2919
2920 if (prog && !prog->aux->xdp_has_frags) {
2921 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2922 NL_SET_ERR_MSG_MOD(extack,
2923 "MTU is too large for linear frames and XDP prog does not support frags");
2924 return -EOPNOTSUPP;
2925 }
2926 }
2927
2928 /* hot swap progs and avoid toggling link */
2929 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2930 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2931 ice_vsi_assign_bpf_prog(vsi, prog);
2932 return 0;
2933 }
2934
2935 if_running = netif_running(vsi->netdev) &&
2936 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
2937
2938 /* need to stop netdev while setting up the program for Rx rings */
2939 if (if_running) {
2940 ret = ice_down(vsi);
2941 if (ret) {
2942 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2943 return ret;
2944 }
2945 }
2946
2947 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2948 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2949 if (xdp_ring_err) {
2950 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2951 } else {
2952 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
2953 ICE_XDP_CFG_FULL);
2954 if (xdp_ring_err)
2955 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2956 }
2957 xdp_features_set_redirect_target(vsi->netdev, true);
2958 /* reallocate Rx queues that are used for zero-copy */
2959 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2960 if (xdp_ring_err)
2961 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2962 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2963 xdp_features_clear_redirect_target(vsi->netdev);
2964 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
2965 if (xdp_ring_err)
2966 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2967 /* reallocate Rx queues that were used for zero-copy */
2968 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2969 if (xdp_ring_err)
2970 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2971 }
2972
2973 if (if_running)
2974 ret = ice_up(vsi);
2975
2976 if (!ret && prog)
2977 ice_vsi_rx_napi_schedule(vsi);
2978
2979 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2980 }
2981
2982 /**
2983 * ice_xdp_safe_mode - XDP handler for safe mode
2984 * @dev: netdevice
2985 * @xdp: XDP command
2986 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2987 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2988 struct netdev_bpf *xdp)
2989 {
2990 NL_SET_ERR_MSG_MOD(xdp->extack,
2991 "Please provide working DDP firmware package in order to use XDP\n"
2992 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2993 return -EOPNOTSUPP;
2994 }
2995
2996 /**
2997 * ice_xdp - implements XDP handler
2998 * @dev: netdevice
2999 * @xdp: XDP command
3000 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3001 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3002 {
3003 struct ice_netdev_priv *np = netdev_priv(dev);
3004 struct ice_vsi *vsi = np->vsi;
3005 int ret;
3006
3007 if (vsi->type != ICE_VSI_PF) {
3008 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3009 return -EINVAL;
3010 }
3011
3012 mutex_lock(&vsi->xdp_state_lock);
3013
3014 switch (xdp->command) {
3015 case XDP_SETUP_PROG:
3016 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3017 break;
3018 case XDP_SETUP_XSK_POOL:
3019 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3020 break;
3021 default:
3022 ret = -EINVAL;
3023 }
3024
3025 mutex_unlock(&vsi->xdp_state_lock);
3026 return ret;
3027 }
3028
3029 /**
3030 * ice_ena_misc_vector - enable the non-queue interrupts
3031 * @pf: board private structure
3032 */
ice_ena_misc_vector(struct ice_pf * pf)3033 static void ice_ena_misc_vector(struct ice_pf *pf)
3034 {
3035 struct ice_hw *hw = &pf->hw;
3036 u32 val;
3037
3038 /* Disable anti-spoof detection interrupt to prevent spurious event
3039 * interrupts during a function reset. Anti-spoof functionally is
3040 * still supported.
3041 */
3042 val = rd32(hw, GL_MDCK_TX_TDPU);
3043 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3044 wr32(hw, GL_MDCK_TX_TDPU, val);
3045
3046 /* clear things first */
3047 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3048 rd32(hw, PFINT_OICR); /* read to clear */
3049
3050 val = (PFINT_OICR_ECC_ERR_M |
3051 PFINT_OICR_MAL_DETECT_M |
3052 PFINT_OICR_GRST_M |
3053 PFINT_OICR_PCI_EXCEPTION_M |
3054 PFINT_OICR_VFLR_M |
3055 PFINT_OICR_HMC_ERR_M |
3056 PFINT_OICR_PE_PUSH_M |
3057 PFINT_OICR_PE_CRITERR_M);
3058
3059 wr32(hw, PFINT_OICR_ENA, val);
3060
3061 /* SW_ITR_IDX = 0, but don't change INTENA */
3062 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3063 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3064 }
3065
3066 /**
3067 * ice_misc_intr - misc interrupt handler
3068 * @irq: interrupt number
3069 * @data: pointer to a q_vector
3070 */
ice_misc_intr(int __always_unused irq,void * data)3071 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3072 {
3073 struct ice_pf *pf = (struct ice_pf *)data;
3074 struct ice_hw *hw = &pf->hw;
3075 struct device *dev;
3076 u32 oicr, ena_mask;
3077
3078 dev = ice_pf_to_dev(pf);
3079 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3080 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3081 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3082
3083 oicr = rd32(hw, PFINT_OICR);
3084 ena_mask = rd32(hw, PFINT_OICR_ENA);
3085
3086 if (oicr & PFINT_OICR_SWINT_M) {
3087 ena_mask &= ~PFINT_OICR_SWINT_M;
3088 pf->sw_int_count++;
3089 }
3090
3091 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3092 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3093 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3094 }
3095 if (oicr & PFINT_OICR_VFLR_M) {
3096 /* disable any further VFLR event notifications */
3097 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3098 u32 reg = rd32(hw, PFINT_OICR_ENA);
3099
3100 reg &= ~PFINT_OICR_VFLR_M;
3101 wr32(hw, PFINT_OICR_ENA, reg);
3102 } else {
3103 ena_mask &= ~PFINT_OICR_VFLR_M;
3104 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3105 }
3106 }
3107
3108 if (oicr & PFINT_OICR_GRST_M) {
3109 u32 reset;
3110
3111 /* we have a reset warning */
3112 ena_mask &= ~PFINT_OICR_GRST_M;
3113 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3114 GLGEN_RSTAT_RESET_TYPE_S;
3115
3116 if (reset == ICE_RESET_CORER)
3117 pf->corer_count++;
3118 else if (reset == ICE_RESET_GLOBR)
3119 pf->globr_count++;
3120 else if (reset == ICE_RESET_EMPR)
3121 pf->empr_count++;
3122 else
3123 dev_dbg(dev, "Invalid reset type %d\n", reset);
3124
3125 /* If a reset cycle isn't already in progress, we set a bit in
3126 * pf->state so that the service task can start a reset/rebuild.
3127 */
3128 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3129 if (reset == ICE_RESET_CORER)
3130 set_bit(ICE_CORER_RECV, pf->state);
3131 else if (reset == ICE_RESET_GLOBR)
3132 set_bit(ICE_GLOBR_RECV, pf->state);
3133 else
3134 set_bit(ICE_EMPR_RECV, pf->state);
3135
3136 /* There are couple of different bits at play here.
3137 * hw->reset_ongoing indicates whether the hardware is
3138 * in reset. This is set to true when a reset interrupt
3139 * is received and set back to false after the driver
3140 * has determined that the hardware is out of reset.
3141 *
3142 * ICE_RESET_OICR_RECV in pf->state indicates
3143 * that a post reset rebuild is required before the
3144 * driver is operational again. This is set above.
3145 *
3146 * As this is the start of the reset/rebuild cycle, set
3147 * both to indicate that.
3148 */
3149 hw->reset_ongoing = true;
3150 }
3151 }
3152
3153 if (oicr & PFINT_OICR_TSYN_TX_M) {
3154 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3155 if (!hw->reset_ongoing)
3156 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3157 }
3158
3159 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3160 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3161 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3162
3163 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3164
3165 if (hw->func_caps.ts_func_info.src_tmr_owned) {
3166 /* Save EVENTs from GLTSYN register */
3167 pf->ptp.ext_ts_irq |= gltsyn_stat &
3168 (GLTSYN_STAT_EVENT0_M |
3169 GLTSYN_STAT_EVENT1_M |
3170 GLTSYN_STAT_EVENT2_M);
3171
3172 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3173 }
3174 }
3175
3176 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3177 if (oicr & ICE_AUX_CRIT_ERR) {
3178 pf->oicr_err_reg |= oicr;
3179 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3180 ena_mask &= ~ICE_AUX_CRIT_ERR;
3181 }
3182
3183 /* Report any remaining unexpected interrupts */
3184 oicr &= ena_mask;
3185 if (oicr) {
3186 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3187 /* If a critical error is pending there is no choice but to
3188 * reset the device.
3189 */
3190 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3191 PFINT_OICR_ECC_ERR_M)) {
3192 set_bit(ICE_PFR_REQ, pf->state);
3193 }
3194 }
3195
3196 return IRQ_WAKE_THREAD;
3197 }
3198
3199 /**
3200 * ice_misc_intr_thread_fn - misc interrupt thread function
3201 * @irq: interrupt number
3202 * @data: pointer to a q_vector
3203 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3204 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3205 {
3206 struct ice_pf *pf = data;
3207 struct ice_hw *hw;
3208
3209 hw = &pf->hw;
3210
3211 if (ice_is_reset_in_progress(pf->state))
3212 return IRQ_HANDLED;
3213
3214 ice_service_task_schedule(pf);
3215
3216 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3217 ice_ptp_extts_event(pf);
3218
3219 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3220 /* Process outstanding Tx timestamps. If there is more work,
3221 * re-arm the interrupt to trigger again.
3222 */
3223 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3224 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3225 ice_flush(hw);
3226 }
3227 }
3228
3229 ice_irq_dynamic_ena(hw, NULL, NULL);
3230
3231 return IRQ_HANDLED;
3232 }
3233
3234 /**
3235 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3236 * @hw: pointer to HW structure
3237 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3238 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3239 {
3240 /* disable Admin queue Interrupt causes */
3241 wr32(hw, PFINT_FW_CTL,
3242 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3243
3244 /* disable Mailbox queue Interrupt causes */
3245 wr32(hw, PFINT_MBX_CTL,
3246 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3247
3248 wr32(hw, PFINT_SB_CTL,
3249 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3250
3251 /* disable Control queue Interrupt causes */
3252 wr32(hw, PFINT_OICR_CTL,
3253 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3254
3255 ice_flush(hw);
3256 }
3257
3258 /**
3259 * ice_free_irq_msix_misc - Unroll misc vector setup
3260 * @pf: board private structure
3261 */
ice_free_irq_msix_misc(struct ice_pf * pf)3262 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3263 {
3264 int misc_irq_num = pf->oicr_irq.virq;
3265 struct ice_hw *hw = &pf->hw;
3266
3267 ice_dis_ctrlq_interrupts(hw);
3268
3269 /* disable OICR interrupt */
3270 wr32(hw, PFINT_OICR_ENA, 0);
3271 ice_flush(hw);
3272
3273 synchronize_irq(misc_irq_num);
3274 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3275
3276 ice_free_irq(pf, pf->oicr_irq);
3277 }
3278
3279 /**
3280 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3281 * @hw: pointer to HW structure
3282 * @reg_idx: HW vector index to associate the control queue interrupts with
3283 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3284 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3285 {
3286 u32 val;
3287
3288 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3289 PFINT_OICR_CTL_CAUSE_ENA_M);
3290 wr32(hw, PFINT_OICR_CTL, val);
3291
3292 /* enable Admin queue Interrupt causes */
3293 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3294 PFINT_FW_CTL_CAUSE_ENA_M);
3295 wr32(hw, PFINT_FW_CTL, val);
3296
3297 /* enable Mailbox queue Interrupt causes */
3298 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3299 PFINT_MBX_CTL_CAUSE_ENA_M);
3300 wr32(hw, PFINT_MBX_CTL, val);
3301
3302 /* This enables Sideband queue Interrupt causes */
3303 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3304 PFINT_SB_CTL_CAUSE_ENA_M);
3305 wr32(hw, PFINT_SB_CTL, val);
3306
3307 ice_flush(hw);
3308 }
3309
3310 /**
3311 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3312 * @pf: board private structure
3313 *
3314 * This sets up the handler for MSIX 0, which is used to manage the
3315 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3316 * when in MSI or Legacy interrupt mode.
3317 */
ice_req_irq_msix_misc(struct ice_pf * pf)3318 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3319 {
3320 struct device *dev = ice_pf_to_dev(pf);
3321 struct ice_hw *hw = &pf->hw;
3322 struct msi_map oicr_irq;
3323 int err = 0;
3324
3325 if (!pf->int_name[0])
3326 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3327 dev_driver_string(dev), dev_name(dev));
3328
3329 /* Do not request IRQ but do enable OICR interrupt since settings are
3330 * lost during reset. Note that this function is called only during
3331 * rebuild path and not while reset is in progress.
3332 */
3333 if (ice_is_reset_in_progress(pf->state))
3334 goto skip_req_irq;
3335
3336 /* reserve one vector in irq_tracker for misc interrupts */
3337 oicr_irq = ice_alloc_irq(pf, false);
3338 if (oicr_irq.index < 0)
3339 return oicr_irq.index;
3340
3341 pf->oicr_irq = oicr_irq;
3342 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3343 ice_misc_intr_thread_fn, 0,
3344 pf->int_name, pf);
3345 if (err) {
3346 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3347 pf->int_name, err);
3348 ice_free_irq(pf, pf->oicr_irq);
3349 return err;
3350 }
3351
3352 skip_req_irq:
3353 ice_ena_misc_vector(pf);
3354
3355 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3356 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3357 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3358
3359 ice_flush(hw);
3360 ice_irq_dynamic_ena(hw, NULL, NULL);
3361
3362 return 0;
3363 }
3364
3365 /**
3366 * ice_napi_add - register NAPI handler for the VSI
3367 * @vsi: VSI for which NAPI handler is to be registered
3368 *
3369 * This function is only called in the driver's load path. Registering the NAPI
3370 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3371 * reset/rebuild, etc.)
3372 */
ice_napi_add(struct ice_vsi * vsi)3373 static void ice_napi_add(struct ice_vsi *vsi)
3374 {
3375 int v_idx;
3376
3377 if (!vsi->netdev)
3378 return;
3379
3380 ice_for_each_q_vector(vsi, v_idx)
3381 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3382 ice_napi_poll);
3383 }
3384
3385 /**
3386 * ice_set_ops - set netdev and ethtools ops for the given netdev
3387 * @vsi: the VSI associated with the new netdev
3388 */
ice_set_ops(struct ice_vsi * vsi)3389 static void ice_set_ops(struct ice_vsi *vsi)
3390 {
3391 struct net_device *netdev = vsi->netdev;
3392 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3393
3394 if (ice_is_safe_mode(pf)) {
3395 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3396 ice_set_ethtool_safe_mode_ops(netdev);
3397 return;
3398 }
3399
3400 netdev->netdev_ops = &ice_netdev_ops;
3401 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3402 ice_set_ethtool_ops(netdev);
3403
3404 if (vsi->type != ICE_VSI_PF)
3405 return;
3406
3407 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3408 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3409 NETDEV_XDP_ACT_RX_SG;
3410 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3411 }
3412
3413 /**
3414 * ice_set_netdev_features - set features for the given netdev
3415 * @netdev: netdev instance
3416 */
ice_set_netdev_features(struct net_device * netdev)3417 static void ice_set_netdev_features(struct net_device *netdev)
3418 {
3419 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3420 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3421 netdev_features_t csumo_features;
3422 netdev_features_t vlano_features;
3423 netdev_features_t dflt_features;
3424 netdev_features_t tso_features;
3425
3426 if (ice_is_safe_mode(pf)) {
3427 /* safe mode */
3428 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3429 netdev->hw_features = netdev->features;
3430 return;
3431 }
3432
3433 dflt_features = NETIF_F_SG |
3434 NETIF_F_HIGHDMA |
3435 NETIF_F_NTUPLE |
3436 NETIF_F_RXHASH;
3437
3438 csumo_features = NETIF_F_RXCSUM |
3439 NETIF_F_IP_CSUM |
3440 NETIF_F_SCTP_CRC |
3441 NETIF_F_IPV6_CSUM;
3442
3443 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3444 NETIF_F_HW_VLAN_CTAG_TX |
3445 NETIF_F_HW_VLAN_CTAG_RX;
3446
3447 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3448 if (is_dvm_ena)
3449 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3450
3451 tso_features = NETIF_F_TSO |
3452 NETIF_F_TSO_ECN |
3453 NETIF_F_TSO6 |
3454 NETIF_F_GSO_GRE |
3455 NETIF_F_GSO_UDP_TUNNEL |
3456 NETIF_F_GSO_GRE_CSUM |
3457 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3458 NETIF_F_GSO_PARTIAL |
3459 NETIF_F_GSO_IPXIP4 |
3460 NETIF_F_GSO_IPXIP6 |
3461 NETIF_F_GSO_UDP_L4;
3462
3463 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3464 NETIF_F_GSO_GRE_CSUM;
3465 /* set features that user can change */
3466 netdev->hw_features = dflt_features | csumo_features |
3467 vlano_features | tso_features;
3468
3469 /* add support for HW_CSUM on packets with MPLS header */
3470 netdev->mpls_features = NETIF_F_HW_CSUM |
3471 NETIF_F_TSO |
3472 NETIF_F_TSO6;
3473
3474 /* enable features */
3475 netdev->features |= netdev->hw_features;
3476
3477 netdev->hw_features |= NETIF_F_HW_TC;
3478 netdev->hw_features |= NETIF_F_LOOPBACK;
3479
3480 /* encap and VLAN devices inherit default, csumo and tso features */
3481 netdev->hw_enc_features |= dflt_features | csumo_features |
3482 tso_features;
3483 netdev->vlan_features |= dflt_features | csumo_features |
3484 tso_features;
3485
3486 /* advertise support but don't enable by default since only one type of
3487 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3488 * type turns on the other has to be turned off. This is enforced by the
3489 * ice_fix_features() ndo callback.
3490 */
3491 if (is_dvm_ena)
3492 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3493 NETIF_F_HW_VLAN_STAG_TX;
3494
3495 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3496 * be changed at runtime
3497 */
3498 netdev->hw_features |= NETIF_F_RXFCS;
3499
3500 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3501 }
3502
3503 /**
3504 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3505 * @lut: Lookup table
3506 * @rss_table_size: Lookup table size
3507 * @rss_size: Range of queue number for hashing
3508 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3509 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3510 {
3511 u16 i;
3512
3513 for (i = 0; i < rss_table_size; i++)
3514 lut[i] = i % rss_size;
3515 }
3516
3517 /**
3518 * ice_pf_vsi_setup - Set up a PF VSI
3519 * @pf: board private structure
3520 * @pi: pointer to the port_info instance
3521 *
3522 * Returns pointer to the successfully allocated VSI software struct
3523 * on success, otherwise returns NULL on failure.
3524 */
3525 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3526 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3527 {
3528 struct ice_vsi_cfg_params params = {};
3529
3530 params.type = ICE_VSI_PF;
3531 params.pi = pi;
3532 params.flags = ICE_VSI_FLAG_INIT;
3533
3534 return ice_vsi_setup(pf, ¶ms);
3535 }
3536
3537 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3538 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3539 struct ice_channel *ch)
3540 {
3541 struct ice_vsi_cfg_params params = {};
3542
3543 params.type = ICE_VSI_CHNL;
3544 params.pi = pi;
3545 params.ch = ch;
3546 params.flags = ICE_VSI_FLAG_INIT;
3547
3548 return ice_vsi_setup(pf, ¶ms);
3549 }
3550
3551 /**
3552 * ice_ctrl_vsi_setup - Set up a control VSI
3553 * @pf: board private structure
3554 * @pi: pointer to the port_info instance
3555 *
3556 * Returns pointer to the successfully allocated VSI software struct
3557 * on success, otherwise returns NULL on failure.
3558 */
3559 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3560 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3561 {
3562 struct ice_vsi_cfg_params params = {};
3563
3564 params.type = ICE_VSI_CTRL;
3565 params.pi = pi;
3566 params.flags = ICE_VSI_FLAG_INIT;
3567
3568 return ice_vsi_setup(pf, ¶ms);
3569 }
3570
3571 /**
3572 * ice_lb_vsi_setup - Set up a loopback VSI
3573 * @pf: board private structure
3574 * @pi: pointer to the port_info instance
3575 *
3576 * Returns pointer to the successfully allocated VSI software struct
3577 * on success, otherwise returns NULL on failure.
3578 */
3579 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3580 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3581 {
3582 struct ice_vsi_cfg_params params = {};
3583
3584 params.type = ICE_VSI_LB;
3585 params.pi = pi;
3586 params.flags = ICE_VSI_FLAG_INIT;
3587
3588 return ice_vsi_setup(pf, ¶ms);
3589 }
3590
3591 /**
3592 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3593 * @netdev: network interface to be adjusted
3594 * @proto: VLAN TPID
3595 * @vid: VLAN ID to be added
3596 *
3597 * net_device_ops implementation for adding VLAN IDs
3598 */
3599 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3600 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3601 {
3602 struct ice_netdev_priv *np = netdev_priv(netdev);
3603 struct ice_vsi_vlan_ops *vlan_ops;
3604 struct ice_vsi *vsi = np->vsi;
3605 struct ice_vlan vlan;
3606 int ret;
3607
3608 /* VLAN 0 is added by default during load/reset */
3609 if (!vid)
3610 return 0;
3611
3612 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3613 usleep_range(1000, 2000);
3614
3615 /* Add multicast promisc rule for the VLAN ID to be added if
3616 * all-multicast is currently enabled.
3617 */
3618 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3619 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3620 ICE_MCAST_VLAN_PROMISC_BITS,
3621 vid);
3622 if (ret)
3623 goto finish;
3624 }
3625
3626 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3627
3628 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3629 * packets aren't pruned by the device's internal switch on Rx
3630 */
3631 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3632 ret = vlan_ops->add_vlan(vsi, &vlan);
3633 if (ret)
3634 goto finish;
3635
3636 /* If all-multicast is currently enabled and this VLAN ID is only one
3637 * besides VLAN-0 we have to update look-up type of multicast promisc
3638 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3639 */
3640 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3641 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3642 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3643 ICE_MCAST_PROMISC_BITS, 0);
3644 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3645 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3646 }
3647
3648 finish:
3649 clear_bit(ICE_CFG_BUSY, vsi->state);
3650
3651 return ret;
3652 }
3653
3654 /**
3655 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3656 * @netdev: network interface to be adjusted
3657 * @proto: VLAN TPID
3658 * @vid: VLAN ID to be removed
3659 *
3660 * net_device_ops implementation for removing VLAN IDs
3661 */
3662 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3663 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3664 {
3665 struct ice_netdev_priv *np = netdev_priv(netdev);
3666 struct ice_vsi_vlan_ops *vlan_ops;
3667 struct ice_vsi *vsi = np->vsi;
3668 struct ice_vlan vlan;
3669 int ret;
3670
3671 /* don't allow removal of VLAN 0 */
3672 if (!vid)
3673 return 0;
3674
3675 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3676 usleep_range(1000, 2000);
3677
3678 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3679 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3680 if (ret) {
3681 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3682 vsi->vsi_num);
3683 vsi->current_netdev_flags |= IFF_ALLMULTI;
3684 }
3685
3686 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3687
3688 /* Make sure VLAN delete is successful before updating VLAN
3689 * information
3690 */
3691 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3692 ret = vlan_ops->del_vlan(vsi, &vlan);
3693 if (ret)
3694 goto finish;
3695
3696 /* Remove multicast promisc rule for the removed VLAN ID if
3697 * all-multicast is enabled.
3698 */
3699 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3700 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3701 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3702
3703 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3704 /* Update look-up type of multicast promisc rule for VLAN 0
3705 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3706 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3707 */
3708 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3709 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3710 ICE_MCAST_VLAN_PROMISC_BITS,
3711 0);
3712 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3713 ICE_MCAST_PROMISC_BITS, 0);
3714 }
3715 }
3716
3717 finish:
3718 clear_bit(ICE_CFG_BUSY, vsi->state);
3719
3720 return ret;
3721 }
3722
3723 /**
3724 * ice_rep_indr_tc_block_unbind
3725 * @cb_priv: indirection block private data
3726 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3727 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3728 {
3729 struct ice_indr_block_priv *indr_priv = cb_priv;
3730
3731 list_del(&indr_priv->list);
3732 kfree(indr_priv);
3733 }
3734
3735 /**
3736 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3737 * @vsi: VSI struct which has the netdev
3738 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3739 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3740 {
3741 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3742
3743 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3744 ice_rep_indr_tc_block_unbind);
3745 }
3746
3747 /**
3748 * ice_tc_indir_block_register - Register TC indirect block notifications
3749 * @vsi: VSI struct which has the netdev
3750 *
3751 * Returns 0 on success, negative value on failure
3752 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3753 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3754 {
3755 struct ice_netdev_priv *np;
3756
3757 if (!vsi || !vsi->netdev)
3758 return -EINVAL;
3759
3760 np = netdev_priv(vsi->netdev);
3761
3762 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3763 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3764 }
3765
3766 /**
3767 * ice_get_avail_q_count - Get count of queues in use
3768 * @pf_qmap: bitmap to get queue use count from
3769 * @lock: pointer to a mutex that protects access to pf_qmap
3770 * @size: size of the bitmap
3771 */
3772 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3773 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3774 {
3775 unsigned long bit;
3776 u16 count = 0;
3777
3778 mutex_lock(lock);
3779 for_each_clear_bit(bit, pf_qmap, size)
3780 count++;
3781 mutex_unlock(lock);
3782
3783 return count;
3784 }
3785
3786 /**
3787 * ice_get_avail_txq_count - Get count of Tx queues in use
3788 * @pf: pointer to an ice_pf instance
3789 */
ice_get_avail_txq_count(struct ice_pf * pf)3790 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3791 {
3792 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3793 pf->max_pf_txqs);
3794 }
3795
3796 /**
3797 * ice_get_avail_rxq_count - Get count of Rx queues in use
3798 * @pf: pointer to an ice_pf instance
3799 */
ice_get_avail_rxq_count(struct ice_pf * pf)3800 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3801 {
3802 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3803 pf->max_pf_rxqs);
3804 }
3805
3806 /**
3807 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3808 * @pf: board private structure to initialize
3809 */
ice_deinit_pf(struct ice_pf * pf)3810 static void ice_deinit_pf(struct ice_pf *pf)
3811 {
3812 ice_service_task_stop(pf);
3813 mutex_destroy(&pf->lag_mutex);
3814 mutex_destroy(&pf->adev_mutex);
3815 mutex_destroy(&pf->sw_mutex);
3816 mutex_destroy(&pf->tc_mutex);
3817 mutex_destroy(&pf->avail_q_mutex);
3818 mutex_destroy(&pf->vfs.table_lock);
3819
3820 if (pf->avail_txqs) {
3821 bitmap_free(pf->avail_txqs);
3822 pf->avail_txqs = NULL;
3823 }
3824
3825 if (pf->avail_rxqs) {
3826 bitmap_free(pf->avail_rxqs);
3827 pf->avail_rxqs = NULL;
3828 }
3829
3830 if (pf->ptp.clock)
3831 ptp_clock_unregister(pf->ptp.clock);
3832 }
3833
3834 /**
3835 * ice_set_pf_caps - set PFs capability flags
3836 * @pf: pointer to the PF instance
3837 */
ice_set_pf_caps(struct ice_pf * pf)3838 static void ice_set_pf_caps(struct ice_pf *pf)
3839 {
3840 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3841
3842 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3843 if (func_caps->common_cap.rdma)
3844 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3845 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3846 if (func_caps->common_cap.dcb)
3847 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3848 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3849 if (func_caps->common_cap.sr_iov_1_1) {
3850 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3851 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3852 ICE_MAX_SRIOV_VFS);
3853 }
3854 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3855 if (func_caps->common_cap.rss_table_size)
3856 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3857
3858 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3859 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3860 u16 unused;
3861
3862 /* ctrl_vsi_idx will be set to a valid value when flow director
3863 * is setup by ice_init_fdir
3864 */
3865 pf->ctrl_vsi_idx = ICE_NO_VSI;
3866 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3867 /* force guaranteed filter pool for PF */
3868 ice_alloc_fd_guar_item(&pf->hw, &unused,
3869 func_caps->fd_fltr_guar);
3870 /* force shared filter pool for PF */
3871 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3872 func_caps->fd_fltr_best_effort);
3873 }
3874
3875 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3876 if (func_caps->common_cap.ieee_1588)
3877 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3878
3879 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3880 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3881 }
3882
3883 /**
3884 * ice_init_pf - Initialize general software structures (struct ice_pf)
3885 * @pf: board private structure to initialize
3886 */
ice_init_pf(struct ice_pf * pf)3887 static int ice_init_pf(struct ice_pf *pf)
3888 {
3889 ice_set_pf_caps(pf);
3890
3891 mutex_init(&pf->sw_mutex);
3892 mutex_init(&pf->tc_mutex);
3893 mutex_init(&pf->adev_mutex);
3894 mutex_init(&pf->lag_mutex);
3895
3896 INIT_HLIST_HEAD(&pf->aq_wait_list);
3897 spin_lock_init(&pf->aq_wait_lock);
3898 init_waitqueue_head(&pf->aq_wait_queue);
3899
3900 init_waitqueue_head(&pf->reset_wait_queue);
3901
3902 /* setup service timer and periodic service task */
3903 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3904 pf->serv_tmr_period = HZ;
3905 INIT_WORK(&pf->serv_task, ice_service_task);
3906 clear_bit(ICE_SERVICE_SCHED, pf->state);
3907
3908 mutex_init(&pf->avail_q_mutex);
3909 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3910 if (!pf->avail_txqs)
3911 return -ENOMEM;
3912
3913 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3914 if (!pf->avail_rxqs) {
3915 bitmap_free(pf->avail_txqs);
3916 pf->avail_txqs = NULL;
3917 return -ENOMEM;
3918 }
3919
3920 mutex_init(&pf->vfs.table_lock);
3921 hash_init(pf->vfs.table);
3922 ice_mbx_init_snapshot(&pf->hw);
3923
3924 return 0;
3925 }
3926
3927 /**
3928 * ice_is_wol_supported - check if WoL is supported
3929 * @hw: pointer to hardware info
3930 *
3931 * Check if WoL is supported based on the HW configuration.
3932 * Returns true if NVM supports and enables WoL for this port, false otherwise
3933 */
ice_is_wol_supported(struct ice_hw * hw)3934 bool ice_is_wol_supported(struct ice_hw *hw)
3935 {
3936 u16 wol_ctrl;
3937
3938 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3939 * word) indicates WoL is not supported on the corresponding PF ID.
3940 */
3941 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3942 return false;
3943
3944 return !(BIT(hw->port_info->lport) & wol_ctrl);
3945 }
3946
3947 /**
3948 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3949 * @vsi: VSI being changed
3950 * @new_rx: new number of Rx queues
3951 * @new_tx: new number of Tx queues
3952 * @locked: is adev device_lock held
3953 *
3954 * Only change the number of queues if new_tx, or new_rx is non-0.
3955 *
3956 * Returns 0 on success.
3957 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)3958 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3959 {
3960 struct ice_pf *pf = vsi->back;
3961 int i, err = 0, timeout = 50;
3962
3963 if (!new_rx && !new_tx)
3964 return -EINVAL;
3965
3966 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3967 timeout--;
3968 if (!timeout)
3969 return -EBUSY;
3970 usleep_range(1000, 2000);
3971 }
3972
3973 if (new_tx)
3974 vsi->req_txq = (u16)new_tx;
3975 if (new_rx)
3976 vsi->req_rxq = (u16)new_rx;
3977
3978 /* set for the next time the netdev is started */
3979 if (!netif_running(vsi->netdev)) {
3980 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3981 if (err)
3982 goto rebuild_err;
3983 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3984 goto done;
3985 }
3986
3987 ice_vsi_close(vsi);
3988 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3989 if (err)
3990 goto rebuild_err;
3991
3992 ice_for_each_traffic_class(i) {
3993 if (vsi->tc_cfg.ena_tc & BIT(i))
3994 netdev_set_tc_queue(vsi->netdev,
3995 vsi->tc_cfg.tc_info[i].netdev_tc,
3996 vsi->tc_cfg.tc_info[i].qcount_tx,
3997 vsi->tc_cfg.tc_info[i].qoffset);
3998 }
3999 ice_pf_dcb_recfg(pf, locked);
4000 ice_vsi_open(vsi);
4001 goto done;
4002
4003 rebuild_err:
4004 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4005 err);
4006 done:
4007 clear_bit(ICE_CFG_BUSY, pf->state);
4008 return err;
4009 }
4010
4011 /**
4012 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4013 * @pf: PF to configure
4014 *
4015 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4016 * VSI can still Tx/Rx VLAN tagged packets.
4017 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4018 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4019 {
4020 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4021 struct ice_vsi_ctx *ctxt;
4022 struct ice_hw *hw;
4023 int status;
4024
4025 if (!vsi)
4026 return;
4027
4028 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4029 if (!ctxt)
4030 return;
4031
4032 hw = &pf->hw;
4033 ctxt->info = vsi->info;
4034
4035 ctxt->info.valid_sections =
4036 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4037 ICE_AQ_VSI_PROP_SECURITY_VALID |
4038 ICE_AQ_VSI_PROP_SW_VALID);
4039
4040 /* disable VLAN anti-spoof */
4041 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4042 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4043
4044 /* disable VLAN pruning and keep all other settings */
4045 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4046
4047 /* allow all VLANs on Tx and don't strip on Rx */
4048 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4049 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4050
4051 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4052 if (status) {
4053 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4054 status, ice_aq_str(hw->adminq.sq_last_status));
4055 } else {
4056 vsi->info.sec_flags = ctxt->info.sec_flags;
4057 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4058 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4059 }
4060
4061 kfree(ctxt);
4062 }
4063
4064 /**
4065 * ice_log_pkg_init - log result of DDP package load
4066 * @hw: pointer to hardware info
4067 * @state: state of package load
4068 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4069 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4070 {
4071 struct ice_pf *pf = hw->back;
4072 struct device *dev;
4073
4074 dev = ice_pf_to_dev(pf);
4075
4076 switch (state) {
4077 case ICE_DDP_PKG_SUCCESS:
4078 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4079 hw->active_pkg_name,
4080 hw->active_pkg_ver.major,
4081 hw->active_pkg_ver.minor,
4082 hw->active_pkg_ver.update,
4083 hw->active_pkg_ver.draft);
4084 break;
4085 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4086 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4087 hw->active_pkg_name,
4088 hw->active_pkg_ver.major,
4089 hw->active_pkg_ver.minor,
4090 hw->active_pkg_ver.update,
4091 hw->active_pkg_ver.draft);
4092 break;
4093 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4094 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4095 hw->active_pkg_name,
4096 hw->active_pkg_ver.major,
4097 hw->active_pkg_ver.minor,
4098 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4099 break;
4100 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4101 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4102 hw->active_pkg_name,
4103 hw->active_pkg_ver.major,
4104 hw->active_pkg_ver.minor,
4105 hw->active_pkg_ver.update,
4106 hw->active_pkg_ver.draft,
4107 hw->pkg_name,
4108 hw->pkg_ver.major,
4109 hw->pkg_ver.minor,
4110 hw->pkg_ver.update,
4111 hw->pkg_ver.draft);
4112 break;
4113 case ICE_DDP_PKG_FW_MISMATCH:
4114 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4115 break;
4116 case ICE_DDP_PKG_INVALID_FILE:
4117 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4118 break;
4119 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4120 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4121 break;
4122 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4123 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4124 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4125 break;
4126 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4127 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4128 break;
4129 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4130 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4131 break;
4132 case ICE_DDP_PKG_LOAD_ERROR:
4133 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4134 /* poll for reset to complete */
4135 if (ice_check_reset(hw))
4136 dev_err(dev, "Error resetting device. Please reload the driver\n");
4137 break;
4138 case ICE_DDP_PKG_ERR:
4139 default:
4140 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4141 break;
4142 }
4143 }
4144
4145 /**
4146 * ice_load_pkg - load/reload the DDP Package file
4147 * @firmware: firmware structure when firmware requested or NULL for reload
4148 * @pf: pointer to the PF instance
4149 *
4150 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4151 * initialize HW tables.
4152 */
4153 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4154 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4155 {
4156 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4157 struct device *dev = ice_pf_to_dev(pf);
4158 struct ice_hw *hw = &pf->hw;
4159
4160 /* Load DDP Package */
4161 if (firmware && !hw->pkg_copy) {
4162 state = ice_copy_and_init_pkg(hw, firmware->data,
4163 firmware->size);
4164 ice_log_pkg_init(hw, state);
4165 } else if (!firmware && hw->pkg_copy) {
4166 /* Reload package during rebuild after CORER/GLOBR reset */
4167 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4168 ice_log_pkg_init(hw, state);
4169 } else {
4170 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4171 }
4172
4173 if (!ice_is_init_pkg_successful(state)) {
4174 /* Safe Mode */
4175 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4176 return;
4177 }
4178
4179 /* Successful download package is the precondition for advanced
4180 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4181 */
4182 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4183 }
4184
4185 /**
4186 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4187 * @pf: pointer to the PF structure
4188 *
4189 * There is no error returned here because the driver should be able to handle
4190 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4191 * specifically with Tx.
4192 */
ice_verify_cacheline_size(struct ice_pf * pf)4193 static void ice_verify_cacheline_size(struct ice_pf *pf)
4194 {
4195 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4196 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4197 ICE_CACHE_LINE_BYTES);
4198 }
4199
4200 /**
4201 * ice_send_version - update firmware with driver version
4202 * @pf: PF struct
4203 *
4204 * Returns 0 on success, else error code
4205 */
ice_send_version(struct ice_pf * pf)4206 static int ice_send_version(struct ice_pf *pf)
4207 {
4208 struct ice_driver_ver dv;
4209
4210 dv.major_ver = 0xff;
4211 dv.minor_ver = 0xff;
4212 dv.build_ver = 0xff;
4213 dv.subbuild_ver = 0;
4214 strscpy((char *)dv.driver_string, UTS_RELEASE,
4215 sizeof(dv.driver_string));
4216 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4217 }
4218
4219 /**
4220 * ice_init_fdir - Initialize flow director VSI and configuration
4221 * @pf: pointer to the PF instance
4222 *
4223 * returns 0 on success, negative on error
4224 */
ice_init_fdir(struct ice_pf * pf)4225 static int ice_init_fdir(struct ice_pf *pf)
4226 {
4227 struct device *dev = ice_pf_to_dev(pf);
4228 struct ice_vsi *ctrl_vsi;
4229 int err;
4230
4231 /* Side Band Flow Director needs to have a control VSI.
4232 * Allocate it and store it in the PF.
4233 */
4234 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4235 if (!ctrl_vsi) {
4236 dev_dbg(dev, "could not create control VSI\n");
4237 return -ENOMEM;
4238 }
4239
4240 err = ice_vsi_open_ctrl(ctrl_vsi);
4241 if (err) {
4242 dev_dbg(dev, "could not open control VSI\n");
4243 goto err_vsi_open;
4244 }
4245
4246 mutex_init(&pf->hw.fdir_fltr_lock);
4247
4248 err = ice_fdir_create_dflt_rules(pf);
4249 if (err)
4250 goto err_fdir_rule;
4251
4252 return 0;
4253
4254 err_fdir_rule:
4255 ice_fdir_release_flows(&pf->hw);
4256 ice_vsi_close(ctrl_vsi);
4257 err_vsi_open:
4258 ice_vsi_release(ctrl_vsi);
4259 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4260 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4261 pf->ctrl_vsi_idx = ICE_NO_VSI;
4262 }
4263 return err;
4264 }
4265
ice_deinit_fdir(struct ice_pf * pf)4266 static void ice_deinit_fdir(struct ice_pf *pf)
4267 {
4268 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4269
4270 if (!vsi)
4271 return;
4272
4273 ice_vsi_manage_fdir(vsi, false);
4274 ice_vsi_release(vsi);
4275 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4276 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4277 pf->ctrl_vsi_idx = ICE_NO_VSI;
4278 }
4279
4280 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4281 }
4282
4283 /**
4284 * ice_get_opt_fw_name - return optional firmware file name or NULL
4285 * @pf: pointer to the PF instance
4286 */
ice_get_opt_fw_name(struct ice_pf * pf)4287 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4288 {
4289 /* Optional firmware name same as default with additional dash
4290 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4291 */
4292 struct pci_dev *pdev = pf->pdev;
4293 char *opt_fw_filename;
4294 u64 dsn;
4295
4296 /* Determine the name of the optional file using the DSN (two
4297 * dwords following the start of the DSN Capability).
4298 */
4299 dsn = pci_get_dsn(pdev);
4300 if (!dsn)
4301 return NULL;
4302
4303 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4304 if (!opt_fw_filename)
4305 return NULL;
4306
4307 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4308 ICE_DDP_PKG_PATH, dsn);
4309
4310 return opt_fw_filename;
4311 }
4312
4313 /**
4314 * ice_request_fw - Device initialization routine
4315 * @pf: pointer to the PF instance
4316 */
ice_request_fw(struct ice_pf * pf)4317 static void ice_request_fw(struct ice_pf *pf)
4318 {
4319 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4320 const struct firmware *firmware = NULL;
4321 struct device *dev = ice_pf_to_dev(pf);
4322 int err = 0;
4323
4324 /* optional device-specific DDP (if present) overrides the default DDP
4325 * package file. kernel logs a debug message if the file doesn't exist,
4326 * and warning messages for other errors.
4327 */
4328 if (opt_fw_filename) {
4329 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4330 if (err) {
4331 kfree(opt_fw_filename);
4332 goto dflt_pkg_load;
4333 }
4334
4335 /* request for firmware was successful. Download to device */
4336 ice_load_pkg(firmware, pf);
4337 kfree(opt_fw_filename);
4338 release_firmware(firmware);
4339 return;
4340 }
4341
4342 dflt_pkg_load:
4343 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4344 if (err) {
4345 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4346 return;
4347 }
4348
4349 /* request for firmware was successful. Download to device */
4350 ice_load_pkg(firmware, pf);
4351 release_firmware(firmware);
4352 }
4353
4354 /**
4355 * ice_print_wake_reason - show the wake up cause in the log
4356 * @pf: pointer to the PF struct
4357 */
ice_print_wake_reason(struct ice_pf * pf)4358 static void ice_print_wake_reason(struct ice_pf *pf)
4359 {
4360 u32 wus = pf->wakeup_reason;
4361 const char *wake_str;
4362
4363 /* if no wake event, nothing to print */
4364 if (!wus)
4365 return;
4366
4367 if (wus & PFPM_WUS_LNKC_M)
4368 wake_str = "Link\n";
4369 else if (wus & PFPM_WUS_MAG_M)
4370 wake_str = "Magic Packet\n";
4371 else if (wus & PFPM_WUS_MNG_M)
4372 wake_str = "Management\n";
4373 else if (wus & PFPM_WUS_FW_RST_WK_M)
4374 wake_str = "Firmware Reset\n";
4375 else
4376 wake_str = "Unknown\n";
4377
4378 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4379 }
4380
4381 /**
4382 * ice_register_netdev - register netdev
4383 * @vsi: pointer to the VSI struct
4384 */
ice_register_netdev(struct ice_vsi * vsi)4385 static int ice_register_netdev(struct ice_vsi *vsi)
4386 {
4387 int err;
4388
4389 if (!vsi || !vsi->netdev)
4390 return -EIO;
4391
4392 err = register_netdev(vsi->netdev);
4393 if (err)
4394 return err;
4395
4396 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4397 netif_carrier_off(vsi->netdev);
4398 netif_tx_stop_all_queues(vsi->netdev);
4399
4400 return 0;
4401 }
4402
ice_unregister_netdev(struct ice_vsi * vsi)4403 static void ice_unregister_netdev(struct ice_vsi *vsi)
4404 {
4405 if (!vsi || !vsi->netdev)
4406 return;
4407
4408 unregister_netdev(vsi->netdev);
4409 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4410 }
4411
4412 /**
4413 * ice_cfg_netdev - Allocate, configure and register a netdev
4414 * @vsi: the VSI associated with the new netdev
4415 *
4416 * Returns 0 on success, negative value on failure
4417 */
ice_cfg_netdev(struct ice_vsi * vsi)4418 static int ice_cfg_netdev(struct ice_vsi *vsi)
4419 {
4420 struct ice_netdev_priv *np;
4421 struct net_device *netdev;
4422 u8 mac_addr[ETH_ALEN];
4423
4424 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4425 vsi->alloc_rxq);
4426 if (!netdev)
4427 return -ENOMEM;
4428
4429 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4430 vsi->netdev = netdev;
4431 np = netdev_priv(netdev);
4432 np->vsi = vsi;
4433
4434 ice_set_netdev_features(netdev);
4435 ice_set_ops(vsi);
4436
4437 if (vsi->type == ICE_VSI_PF) {
4438 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4439 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4440 eth_hw_addr_set(netdev, mac_addr);
4441 }
4442
4443 netdev->priv_flags |= IFF_UNICAST_FLT;
4444
4445 /* Setup netdev TC information */
4446 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4447
4448 netdev->max_mtu = ICE_MAX_MTU;
4449
4450 return 0;
4451 }
4452
ice_decfg_netdev(struct ice_vsi * vsi)4453 static void ice_decfg_netdev(struct ice_vsi *vsi)
4454 {
4455 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4456 free_netdev(vsi->netdev);
4457 vsi->netdev = NULL;
4458 }
4459
ice_start_eth(struct ice_vsi * vsi)4460 static int ice_start_eth(struct ice_vsi *vsi)
4461 {
4462 int err;
4463
4464 err = ice_init_mac_fltr(vsi->back);
4465 if (err)
4466 return err;
4467
4468 err = ice_vsi_open(vsi);
4469 if (err)
4470 ice_fltr_remove_all(vsi);
4471
4472 return err;
4473 }
4474
ice_stop_eth(struct ice_vsi * vsi)4475 static void ice_stop_eth(struct ice_vsi *vsi)
4476 {
4477 ice_fltr_remove_all(vsi);
4478 ice_vsi_close(vsi);
4479 }
4480
ice_init_eth(struct ice_pf * pf)4481 static int ice_init_eth(struct ice_pf *pf)
4482 {
4483 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4484 int err;
4485
4486 if (!vsi)
4487 return -EINVAL;
4488
4489 /* init channel list */
4490 INIT_LIST_HEAD(&vsi->ch_list);
4491
4492 err = ice_cfg_netdev(vsi);
4493 if (err)
4494 return err;
4495 /* Setup DCB netlink interface */
4496 ice_dcbnl_setup(vsi);
4497
4498 err = ice_init_mac_fltr(pf);
4499 if (err)
4500 goto err_init_mac_fltr;
4501
4502 err = ice_devlink_create_pf_port(pf);
4503 if (err)
4504 goto err_devlink_create_pf_port;
4505
4506 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4507
4508 err = ice_register_netdev(vsi);
4509 if (err)
4510 goto err_register_netdev;
4511
4512 err = ice_tc_indir_block_register(vsi);
4513 if (err)
4514 goto err_tc_indir_block_register;
4515
4516 ice_napi_add(vsi);
4517
4518 return 0;
4519
4520 err_tc_indir_block_register:
4521 ice_unregister_netdev(vsi);
4522 err_register_netdev:
4523 ice_devlink_destroy_pf_port(pf);
4524 err_devlink_create_pf_port:
4525 err_init_mac_fltr:
4526 ice_decfg_netdev(vsi);
4527 return err;
4528 }
4529
ice_deinit_eth(struct ice_pf * pf)4530 static void ice_deinit_eth(struct ice_pf *pf)
4531 {
4532 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4533
4534 if (!vsi)
4535 return;
4536
4537 ice_vsi_close(vsi);
4538 ice_unregister_netdev(vsi);
4539 ice_devlink_destroy_pf_port(pf);
4540 ice_tc_indir_block_unregister(vsi);
4541 ice_decfg_netdev(vsi);
4542 }
4543
4544 /**
4545 * ice_wait_for_fw - wait for full FW readiness
4546 * @hw: pointer to the hardware structure
4547 * @timeout: milliseconds that can elapse before timing out
4548 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)4549 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4550 {
4551 int fw_loading;
4552 u32 elapsed = 0;
4553
4554 while (elapsed <= timeout) {
4555 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4556
4557 /* firmware was not yet loaded, we have to wait more */
4558 if (fw_loading) {
4559 elapsed += 100;
4560 msleep(100);
4561 continue;
4562 }
4563 return 0;
4564 }
4565
4566 return -ETIMEDOUT;
4567 }
4568
ice_init_dev(struct ice_pf * pf)4569 static int ice_init_dev(struct ice_pf *pf)
4570 {
4571 struct device *dev = ice_pf_to_dev(pf);
4572 struct ice_hw *hw = &pf->hw;
4573 int err;
4574
4575 err = ice_init_hw(hw);
4576 if (err) {
4577 dev_err(dev, "ice_init_hw failed: %d\n", err);
4578 return err;
4579 }
4580
4581 /* Some cards require longer initialization times
4582 * due to necessity of loading FW from an external source.
4583 * This can take even half a minute.
4584 */
4585 if (ice_is_pf_c827(hw)) {
4586 err = ice_wait_for_fw(hw, 30000);
4587 if (err) {
4588 dev_err(dev, "ice_wait_for_fw timed out");
4589 return err;
4590 }
4591 }
4592
4593 ice_init_feature_support(pf);
4594
4595 ice_request_fw(pf);
4596
4597 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4598 * set in pf->state, which will cause ice_is_safe_mode to return
4599 * true
4600 */
4601 if (ice_is_safe_mode(pf)) {
4602 /* we already got function/device capabilities but these don't
4603 * reflect what the driver needs to do in safe mode. Instead of
4604 * adding conditional logic everywhere to ignore these
4605 * device/function capabilities, override them.
4606 */
4607 ice_set_safe_mode_caps(hw);
4608 }
4609
4610 err = ice_init_pf(pf);
4611 if (err) {
4612 dev_err(dev, "ice_init_pf failed: %d\n", err);
4613 goto err_init_pf;
4614 }
4615
4616 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4617 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4618 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4619 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4620 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4621 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4622 pf->hw.tnl.valid_count[TNL_VXLAN];
4623 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4624 UDP_TUNNEL_TYPE_VXLAN;
4625 }
4626 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4627 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4628 pf->hw.tnl.valid_count[TNL_GENEVE];
4629 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4630 UDP_TUNNEL_TYPE_GENEVE;
4631 }
4632
4633 err = ice_init_interrupt_scheme(pf);
4634 if (err) {
4635 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4636 err = -EIO;
4637 goto err_init_interrupt_scheme;
4638 }
4639
4640 /* In case of MSIX we are going to setup the misc vector right here
4641 * to handle admin queue events etc. In case of legacy and MSI
4642 * the misc functionality and queue processing is combined in
4643 * the same vector and that gets setup at open.
4644 */
4645 err = ice_req_irq_msix_misc(pf);
4646 if (err) {
4647 dev_err(dev, "setup of misc vector failed: %d\n", err);
4648 goto err_req_irq_msix_misc;
4649 }
4650
4651 return 0;
4652
4653 err_req_irq_msix_misc:
4654 ice_clear_interrupt_scheme(pf);
4655 err_init_interrupt_scheme:
4656 ice_deinit_pf(pf);
4657 err_init_pf:
4658 ice_deinit_hw(hw);
4659 return err;
4660 }
4661
ice_deinit_dev(struct ice_pf * pf)4662 static void ice_deinit_dev(struct ice_pf *pf)
4663 {
4664 ice_free_irq_msix_misc(pf);
4665 ice_deinit_pf(pf);
4666 ice_deinit_hw(&pf->hw);
4667
4668 /* Service task is already stopped, so call reset directly. */
4669 ice_reset(&pf->hw, ICE_RESET_PFR);
4670 pci_wait_for_pending_transaction(pf->pdev);
4671 ice_clear_interrupt_scheme(pf);
4672 }
4673
ice_init_features(struct ice_pf * pf)4674 static void ice_init_features(struct ice_pf *pf)
4675 {
4676 struct device *dev = ice_pf_to_dev(pf);
4677
4678 if (ice_is_safe_mode(pf))
4679 return;
4680
4681 /* initialize DDP driven features */
4682 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4683 ice_ptp_init(pf);
4684
4685 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4686 ice_gnss_init(pf);
4687
4688 /* Note: Flow director init failure is non-fatal to load */
4689 if (ice_init_fdir(pf))
4690 dev_err(dev, "could not initialize flow director\n");
4691
4692 /* Note: DCB init failure is non-fatal to load */
4693 if (ice_init_pf_dcb(pf, false)) {
4694 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4695 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4696 } else {
4697 ice_cfg_lldp_mib_change(&pf->hw, true);
4698 }
4699
4700 if (ice_init_lag(pf))
4701 dev_warn(dev, "Failed to init link aggregation support\n");
4702 }
4703
ice_deinit_features(struct ice_pf * pf)4704 static void ice_deinit_features(struct ice_pf *pf)
4705 {
4706 if (ice_is_safe_mode(pf))
4707 return;
4708
4709 ice_deinit_lag(pf);
4710 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4711 ice_cfg_lldp_mib_change(&pf->hw, false);
4712 ice_deinit_fdir(pf);
4713 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4714 ice_gnss_exit(pf);
4715 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4716 ice_ptp_release(pf);
4717 }
4718
ice_init_wakeup(struct ice_pf * pf)4719 static void ice_init_wakeup(struct ice_pf *pf)
4720 {
4721 /* Save wakeup reason register for later use */
4722 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4723
4724 /* check for a power management event */
4725 ice_print_wake_reason(pf);
4726
4727 /* clear wake status, all bits */
4728 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4729
4730 /* Disable WoL at init, wait for user to enable */
4731 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4732 }
4733
ice_init_link(struct ice_pf * pf)4734 static int ice_init_link(struct ice_pf *pf)
4735 {
4736 struct device *dev = ice_pf_to_dev(pf);
4737 int err;
4738
4739 err = ice_init_link_events(pf->hw.port_info);
4740 if (err) {
4741 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4742 return err;
4743 }
4744
4745 /* not a fatal error if this fails */
4746 err = ice_init_nvm_phy_type(pf->hw.port_info);
4747 if (err)
4748 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4749
4750 /* not a fatal error if this fails */
4751 err = ice_update_link_info(pf->hw.port_info);
4752 if (err)
4753 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4754
4755 ice_init_link_dflt_override(pf->hw.port_info);
4756
4757 ice_check_link_cfg_err(pf,
4758 pf->hw.port_info->phy.link_info.link_cfg_err);
4759
4760 /* if media available, initialize PHY settings */
4761 if (pf->hw.port_info->phy.link_info.link_info &
4762 ICE_AQ_MEDIA_AVAILABLE) {
4763 /* not a fatal error if this fails */
4764 err = ice_init_phy_user_cfg(pf->hw.port_info);
4765 if (err)
4766 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4767
4768 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4769 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4770
4771 if (vsi)
4772 ice_configure_phy(vsi);
4773 }
4774 } else {
4775 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4776 }
4777
4778 return err;
4779 }
4780
ice_init_pf_sw(struct ice_pf * pf)4781 static int ice_init_pf_sw(struct ice_pf *pf)
4782 {
4783 bool dvm = ice_is_dvm_ena(&pf->hw);
4784 struct ice_vsi *vsi;
4785 int err;
4786
4787 /* create switch struct for the switch element created by FW on boot */
4788 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4789 if (!pf->first_sw)
4790 return -ENOMEM;
4791
4792 if (pf->hw.evb_veb)
4793 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4794 else
4795 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4796
4797 pf->first_sw->pf = pf;
4798
4799 /* record the sw_id available for later use */
4800 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4801
4802 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4803 if (err)
4804 goto err_aq_set_port_params;
4805
4806 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4807 if (!vsi) {
4808 err = -ENOMEM;
4809 goto err_pf_vsi_setup;
4810 }
4811
4812 return 0;
4813
4814 err_pf_vsi_setup:
4815 err_aq_set_port_params:
4816 kfree(pf->first_sw);
4817 return err;
4818 }
4819
ice_deinit_pf_sw(struct ice_pf * pf)4820 static void ice_deinit_pf_sw(struct ice_pf *pf)
4821 {
4822 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4823
4824 if (!vsi)
4825 return;
4826
4827 ice_vsi_release(vsi);
4828 kfree(pf->first_sw);
4829 }
4830
ice_alloc_vsis(struct ice_pf * pf)4831 static int ice_alloc_vsis(struct ice_pf *pf)
4832 {
4833 struct device *dev = ice_pf_to_dev(pf);
4834
4835 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4836 if (!pf->num_alloc_vsi)
4837 return -EIO;
4838
4839 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4840 dev_warn(dev,
4841 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4842 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4843 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4844 }
4845
4846 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4847 GFP_KERNEL);
4848 if (!pf->vsi)
4849 return -ENOMEM;
4850
4851 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4852 sizeof(*pf->vsi_stats), GFP_KERNEL);
4853 if (!pf->vsi_stats) {
4854 devm_kfree(dev, pf->vsi);
4855 return -ENOMEM;
4856 }
4857
4858 return 0;
4859 }
4860
ice_dealloc_vsis(struct ice_pf * pf)4861 static void ice_dealloc_vsis(struct ice_pf *pf)
4862 {
4863 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4864 pf->vsi_stats = NULL;
4865
4866 pf->num_alloc_vsi = 0;
4867 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4868 pf->vsi = NULL;
4869 }
4870
ice_init_devlink(struct ice_pf * pf)4871 static int ice_init_devlink(struct ice_pf *pf)
4872 {
4873 int err;
4874
4875 err = ice_devlink_register_params(pf);
4876 if (err)
4877 return err;
4878
4879 ice_devlink_init_regions(pf);
4880 ice_devlink_register(pf);
4881
4882 return 0;
4883 }
4884
ice_deinit_devlink(struct ice_pf * pf)4885 static void ice_deinit_devlink(struct ice_pf *pf)
4886 {
4887 ice_devlink_unregister(pf);
4888 ice_devlink_destroy_regions(pf);
4889 ice_devlink_unregister_params(pf);
4890 }
4891
ice_init(struct ice_pf * pf)4892 static int ice_init(struct ice_pf *pf)
4893 {
4894 int err;
4895
4896 err = ice_init_dev(pf);
4897 if (err)
4898 return err;
4899
4900 err = ice_alloc_vsis(pf);
4901 if (err)
4902 goto err_alloc_vsis;
4903
4904 err = ice_init_pf_sw(pf);
4905 if (err)
4906 goto err_init_pf_sw;
4907
4908 ice_init_wakeup(pf);
4909
4910 err = ice_init_link(pf);
4911 if (err)
4912 goto err_init_link;
4913
4914 err = ice_send_version(pf);
4915 if (err)
4916 goto err_init_link;
4917
4918 ice_verify_cacheline_size(pf);
4919
4920 if (ice_is_safe_mode(pf))
4921 ice_set_safe_mode_vlan_cfg(pf);
4922 else
4923 /* print PCI link speed and width */
4924 pcie_print_link_status(pf->pdev);
4925
4926 /* ready to go, so clear down state bit */
4927 clear_bit(ICE_DOWN, pf->state);
4928 clear_bit(ICE_SERVICE_DIS, pf->state);
4929
4930 /* since everything is good, start the service timer */
4931 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4932
4933 return 0;
4934
4935 err_init_link:
4936 ice_deinit_pf_sw(pf);
4937 err_init_pf_sw:
4938 ice_dealloc_vsis(pf);
4939 err_alloc_vsis:
4940 ice_deinit_dev(pf);
4941 return err;
4942 }
4943
ice_deinit(struct ice_pf * pf)4944 static void ice_deinit(struct ice_pf *pf)
4945 {
4946 set_bit(ICE_SERVICE_DIS, pf->state);
4947 set_bit(ICE_DOWN, pf->state);
4948
4949 ice_deinit_pf_sw(pf);
4950 ice_dealloc_vsis(pf);
4951 ice_deinit_dev(pf);
4952 }
4953
4954 /**
4955 * ice_load - load pf by init hw and starting VSI
4956 * @pf: pointer to the pf instance
4957 */
ice_load(struct ice_pf * pf)4958 int ice_load(struct ice_pf *pf)
4959 {
4960 struct ice_vsi_cfg_params params = {};
4961 struct ice_vsi *vsi;
4962 int err;
4963
4964 err = ice_init_dev(pf);
4965 if (err)
4966 return err;
4967
4968 vsi = ice_get_main_vsi(pf);
4969
4970 params = ice_vsi_to_params(vsi);
4971 params.flags = ICE_VSI_FLAG_INIT;
4972
4973 rtnl_lock();
4974 err = ice_vsi_cfg(vsi, ¶ms);
4975 if (err)
4976 goto err_vsi_cfg;
4977
4978 err = ice_start_eth(ice_get_main_vsi(pf));
4979 if (err)
4980 goto err_start_eth;
4981 rtnl_unlock();
4982
4983 err = ice_init_rdma(pf);
4984 if (err)
4985 goto err_init_rdma;
4986
4987 ice_init_features(pf);
4988 ice_service_task_restart(pf);
4989
4990 clear_bit(ICE_DOWN, pf->state);
4991
4992 return 0;
4993
4994 err_init_rdma:
4995 ice_vsi_close(ice_get_main_vsi(pf));
4996 rtnl_lock();
4997 err_start_eth:
4998 ice_vsi_decfg(ice_get_main_vsi(pf));
4999 err_vsi_cfg:
5000 rtnl_unlock();
5001 ice_deinit_dev(pf);
5002 return err;
5003 }
5004
5005 /**
5006 * ice_unload - unload pf by stopping VSI and deinit hw
5007 * @pf: pointer to the pf instance
5008 */
ice_unload(struct ice_pf * pf)5009 void ice_unload(struct ice_pf *pf)
5010 {
5011 ice_deinit_features(pf);
5012 ice_deinit_rdma(pf);
5013 rtnl_lock();
5014 ice_stop_eth(ice_get_main_vsi(pf));
5015 ice_vsi_decfg(ice_get_main_vsi(pf));
5016 rtnl_unlock();
5017 ice_deinit_dev(pf);
5018 }
5019
5020 /**
5021 * ice_probe - Device initialization routine
5022 * @pdev: PCI device information struct
5023 * @ent: entry in ice_pci_tbl
5024 *
5025 * Returns 0 on success, negative on failure
5026 */
5027 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5028 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5029 {
5030 struct device *dev = &pdev->dev;
5031 struct ice_pf *pf;
5032 struct ice_hw *hw;
5033 int err;
5034
5035 if (pdev->is_virtfn) {
5036 dev_err(dev, "can't probe a virtual function\n");
5037 return -EINVAL;
5038 }
5039
5040 /* when under a kdump kernel initiate a reset before enabling the
5041 * device in order to clear out any pending DMA transactions. These
5042 * transactions can cause some systems to machine check when doing
5043 * the pcim_enable_device() below.
5044 */
5045 if (is_kdump_kernel()) {
5046 pci_save_state(pdev);
5047 pci_clear_master(pdev);
5048 err = pcie_flr(pdev);
5049 if (err)
5050 return err;
5051 pci_restore_state(pdev);
5052 }
5053
5054 /* this driver uses devres, see
5055 * Documentation/driver-api/driver-model/devres.rst
5056 */
5057 err = pcim_enable_device(pdev);
5058 if (err)
5059 return err;
5060
5061 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5062 if (err) {
5063 dev_err(dev, "BAR0 I/O map error %d\n", err);
5064 return err;
5065 }
5066
5067 pf = ice_allocate_pf(dev);
5068 if (!pf)
5069 return -ENOMEM;
5070
5071 /* initialize Auxiliary index to invalid value */
5072 pf->aux_idx = -1;
5073
5074 /* set up for high or low DMA */
5075 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5076 if (err) {
5077 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5078 return err;
5079 }
5080
5081 pci_set_master(pdev);
5082
5083 pf->pdev = pdev;
5084 pci_set_drvdata(pdev, pf);
5085 set_bit(ICE_DOWN, pf->state);
5086 /* Disable service task until DOWN bit is cleared */
5087 set_bit(ICE_SERVICE_DIS, pf->state);
5088
5089 hw = &pf->hw;
5090 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5091 pci_save_state(pdev);
5092
5093 hw->back = pf;
5094 hw->port_info = NULL;
5095 hw->vendor_id = pdev->vendor;
5096 hw->device_id = pdev->device;
5097 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5098 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5099 hw->subsystem_device_id = pdev->subsystem_device;
5100 hw->bus.device = PCI_SLOT(pdev->devfn);
5101 hw->bus.func = PCI_FUNC(pdev->devfn);
5102 ice_set_ctrlq_len(hw);
5103
5104 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5105
5106 #ifndef CONFIG_DYNAMIC_DEBUG
5107 if (debug < -1)
5108 hw->debug_mask = debug;
5109 #endif
5110
5111 err = ice_init(pf);
5112 if (err)
5113 goto err_init;
5114
5115 err = ice_init_eth(pf);
5116 if (err)
5117 goto err_init_eth;
5118
5119 err = ice_init_rdma(pf);
5120 if (err)
5121 goto err_init_rdma;
5122
5123 err = ice_init_devlink(pf);
5124 if (err)
5125 goto err_init_devlink;
5126
5127 ice_init_features(pf);
5128
5129 return 0;
5130
5131 err_init_devlink:
5132 ice_deinit_rdma(pf);
5133 err_init_rdma:
5134 ice_deinit_eth(pf);
5135 err_init_eth:
5136 ice_deinit(pf);
5137 err_init:
5138 pci_disable_device(pdev);
5139 return err;
5140 }
5141
5142 /**
5143 * ice_set_wake - enable or disable Wake on LAN
5144 * @pf: pointer to the PF struct
5145 *
5146 * Simple helper for WoL control
5147 */
ice_set_wake(struct ice_pf * pf)5148 static void ice_set_wake(struct ice_pf *pf)
5149 {
5150 struct ice_hw *hw = &pf->hw;
5151 bool wol = pf->wol_ena;
5152
5153 /* clear wake state, otherwise new wake events won't fire */
5154 wr32(hw, PFPM_WUS, U32_MAX);
5155
5156 /* enable / disable APM wake up, no RMW needed */
5157 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5158
5159 /* set magic packet filter enabled */
5160 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5161 }
5162
5163 /**
5164 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5165 * @pf: pointer to the PF struct
5166 *
5167 * Issue firmware command to enable multicast magic wake, making
5168 * sure that any locally administered address (LAA) is used for
5169 * wake, and that PF reset doesn't undo the LAA.
5170 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5171 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5172 {
5173 struct device *dev = ice_pf_to_dev(pf);
5174 struct ice_hw *hw = &pf->hw;
5175 u8 mac_addr[ETH_ALEN];
5176 struct ice_vsi *vsi;
5177 int status;
5178 u8 flags;
5179
5180 if (!pf->wol_ena)
5181 return;
5182
5183 vsi = ice_get_main_vsi(pf);
5184 if (!vsi)
5185 return;
5186
5187 /* Get current MAC address in case it's an LAA */
5188 if (vsi->netdev)
5189 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5190 else
5191 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5192
5193 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5194 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5195 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5196
5197 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5198 if (status)
5199 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5200 status, ice_aq_str(hw->adminq.sq_last_status));
5201 }
5202
5203 /**
5204 * ice_remove - Device removal routine
5205 * @pdev: PCI device information struct
5206 */
ice_remove(struct pci_dev * pdev)5207 static void ice_remove(struct pci_dev *pdev)
5208 {
5209 struct ice_pf *pf = pci_get_drvdata(pdev);
5210 int i;
5211
5212 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5213 if (!ice_is_reset_in_progress(pf->state))
5214 break;
5215 msleep(100);
5216 }
5217
5218 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5219 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5220 ice_free_vfs(pf);
5221 }
5222
5223 ice_service_task_stop(pf);
5224 ice_aq_cancel_waiting_tasks(pf);
5225 set_bit(ICE_DOWN, pf->state);
5226
5227 if (!ice_is_safe_mode(pf))
5228 ice_remove_arfs(pf);
5229 ice_deinit_features(pf);
5230 ice_deinit_devlink(pf);
5231 ice_deinit_rdma(pf);
5232 ice_deinit_eth(pf);
5233 ice_deinit(pf);
5234
5235 ice_vsi_release_all(pf);
5236
5237 ice_setup_mc_magic_wake(pf);
5238 ice_set_wake(pf);
5239
5240 pci_disable_device(pdev);
5241 }
5242
5243 /**
5244 * ice_shutdown - PCI callback for shutting down device
5245 * @pdev: PCI device information struct
5246 */
ice_shutdown(struct pci_dev * pdev)5247 static void ice_shutdown(struct pci_dev *pdev)
5248 {
5249 struct ice_pf *pf = pci_get_drvdata(pdev);
5250
5251 ice_remove(pdev);
5252
5253 if (system_state == SYSTEM_POWER_OFF) {
5254 pci_wake_from_d3(pdev, pf->wol_ena);
5255 pci_set_power_state(pdev, PCI_D3hot);
5256 }
5257 }
5258
5259 #ifdef CONFIG_PM
5260 /**
5261 * ice_prepare_for_shutdown - prep for PCI shutdown
5262 * @pf: board private structure
5263 *
5264 * Inform or close all dependent features in prep for PCI device shutdown
5265 */
ice_prepare_for_shutdown(struct ice_pf * pf)5266 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5267 {
5268 struct ice_hw *hw = &pf->hw;
5269 u32 v;
5270
5271 /* Notify VFs of impending reset */
5272 if (ice_check_sq_alive(hw, &hw->mailboxq))
5273 ice_vc_notify_reset(pf);
5274
5275 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5276
5277 /* disable the VSIs and their queues that are not already DOWN */
5278 ice_pf_dis_all_vsi(pf, false);
5279
5280 ice_for_each_vsi(pf, v)
5281 if (pf->vsi[v])
5282 pf->vsi[v]->vsi_num = 0;
5283
5284 ice_shutdown_all_ctrlq(hw);
5285 }
5286
5287 /**
5288 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5289 * @pf: board private structure to reinitialize
5290 *
5291 * This routine reinitialize interrupt scheme that was cleared during
5292 * power management suspend callback.
5293 *
5294 * This should be called during resume routine to re-allocate the q_vectors
5295 * and reacquire interrupts.
5296 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5297 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5298 {
5299 struct device *dev = ice_pf_to_dev(pf);
5300 int ret, v;
5301
5302 /* Since we clear MSIX flag during suspend, we need to
5303 * set it back during resume...
5304 */
5305
5306 ret = ice_init_interrupt_scheme(pf);
5307 if (ret) {
5308 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5309 return ret;
5310 }
5311
5312 /* Remap vectors and rings, after successful re-init interrupts */
5313 ice_for_each_vsi(pf, v) {
5314 if (!pf->vsi[v])
5315 continue;
5316
5317 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5318 if (ret)
5319 goto err_reinit;
5320 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5321 }
5322
5323 ret = ice_req_irq_msix_misc(pf);
5324 if (ret) {
5325 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5326 ret);
5327 goto err_reinit;
5328 }
5329
5330 return 0;
5331
5332 err_reinit:
5333 while (v--)
5334 if (pf->vsi[v])
5335 ice_vsi_free_q_vectors(pf->vsi[v]);
5336
5337 return ret;
5338 }
5339
5340 /**
5341 * ice_suspend
5342 * @dev: generic device information structure
5343 *
5344 * Power Management callback to quiesce the device and prepare
5345 * for D3 transition.
5346 */
ice_suspend(struct device * dev)5347 static int __maybe_unused ice_suspend(struct device *dev)
5348 {
5349 struct pci_dev *pdev = to_pci_dev(dev);
5350 struct ice_pf *pf;
5351 int disabled, v;
5352
5353 pf = pci_get_drvdata(pdev);
5354
5355 if (!ice_pf_state_is_nominal(pf)) {
5356 dev_err(dev, "Device is not ready, no need to suspend it\n");
5357 return -EBUSY;
5358 }
5359
5360 /* Stop watchdog tasks until resume completion.
5361 * Even though it is most likely that the service task is
5362 * disabled if the device is suspended or down, the service task's
5363 * state is controlled by a different state bit, and we should
5364 * store and honor whatever state that bit is in at this point.
5365 */
5366 disabled = ice_service_task_stop(pf);
5367
5368 ice_deinit_rdma(pf);
5369
5370 /* Already suspended?, then there is nothing to do */
5371 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5372 if (!disabled)
5373 ice_service_task_restart(pf);
5374 return 0;
5375 }
5376
5377 if (test_bit(ICE_DOWN, pf->state) ||
5378 ice_is_reset_in_progress(pf->state)) {
5379 dev_err(dev, "can't suspend device in reset or already down\n");
5380 if (!disabled)
5381 ice_service_task_restart(pf);
5382 return 0;
5383 }
5384
5385 ice_setup_mc_magic_wake(pf);
5386
5387 ice_prepare_for_shutdown(pf);
5388
5389 ice_set_wake(pf);
5390
5391 /* Free vectors, clear the interrupt scheme and release IRQs
5392 * for proper hibernation, especially with large number of CPUs.
5393 * Otherwise hibernation might fail when mapping all the vectors back
5394 * to CPU0.
5395 */
5396 ice_free_irq_msix_misc(pf);
5397 ice_for_each_vsi(pf, v) {
5398 if (!pf->vsi[v])
5399 continue;
5400 ice_vsi_free_q_vectors(pf->vsi[v]);
5401 }
5402 ice_clear_interrupt_scheme(pf);
5403
5404 pci_save_state(pdev);
5405 pci_wake_from_d3(pdev, pf->wol_ena);
5406 pci_set_power_state(pdev, PCI_D3hot);
5407 return 0;
5408 }
5409
5410 /**
5411 * ice_resume - PM callback for waking up from D3
5412 * @dev: generic device information structure
5413 */
ice_resume(struct device * dev)5414 static int __maybe_unused ice_resume(struct device *dev)
5415 {
5416 struct pci_dev *pdev = to_pci_dev(dev);
5417 enum ice_reset_req reset_type;
5418 struct ice_pf *pf;
5419 struct ice_hw *hw;
5420 int ret;
5421
5422 pci_set_power_state(pdev, PCI_D0);
5423 pci_restore_state(pdev);
5424 pci_save_state(pdev);
5425
5426 if (!pci_device_is_present(pdev))
5427 return -ENODEV;
5428
5429 ret = pci_enable_device_mem(pdev);
5430 if (ret) {
5431 dev_err(dev, "Cannot enable device after suspend\n");
5432 return ret;
5433 }
5434
5435 pf = pci_get_drvdata(pdev);
5436 hw = &pf->hw;
5437
5438 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5439 ice_print_wake_reason(pf);
5440
5441 /* We cleared the interrupt scheme when we suspended, so we need to
5442 * restore it now to resume device functionality.
5443 */
5444 ret = ice_reinit_interrupt_scheme(pf);
5445 if (ret)
5446 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5447
5448 ret = ice_init_rdma(pf);
5449 if (ret)
5450 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5451 ret);
5452
5453 clear_bit(ICE_DOWN, pf->state);
5454 /* Now perform PF reset and rebuild */
5455 reset_type = ICE_RESET_PFR;
5456 /* re-enable service task for reset, but allow reset to schedule it */
5457 clear_bit(ICE_SERVICE_DIS, pf->state);
5458
5459 if (ice_schedule_reset(pf, reset_type))
5460 dev_err(dev, "Reset during resume failed.\n");
5461
5462 clear_bit(ICE_SUSPENDED, pf->state);
5463 ice_service_task_restart(pf);
5464
5465 /* Restart the service task */
5466 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5467
5468 return 0;
5469 }
5470 #endif /* CONFIG_PM */
5471
5472 /**
5473 * ice_pci_err_detected - warning that PCI error has been detected
5474 * @pdev: PCI device information struct
5475 * @err: the type of PCI error
5476 *
5477 * Called to warn that something happened on the PCI bus and the error handling
5478 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5479 */
5480 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5481 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5482 {
5483 struct ice_pf *pf = pci_get_drvdata(pdev);
5484
5485 if (!pf) {
5486 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5487 __func__, err);
5488 return PCI_ERS_RESULT_DISCONNECT;
5489 }
5490
5491 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5492 ice_service_task_stop(pf);
5493
5494 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5495 set_bit(ICE_PFR_REQ, pf->state);
5496 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5497 }
5498 }
5499
5500 return PCI_ERS_RESULT_NEED_RESET;
5501 }
5502
5503 /**
5504 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5505 * @pdev: PCI device information struct
5506 *
5507 * Called to determine if the driver can recover from the PCI slot reset by
5508 * using a register read to determine if the device is recoverable.
5509 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5510 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5511 {
5512 struct ice_pf *pf = pci_get_drvdata(pdev);
5513 pci_ers_result_t result;
5514 int err;
5515 u32 reg;
5516
5517 err = pci_enable_device_mem(pdev);
5518 if (err) {
5519 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5520 err);
5521 result = PCI_ERS_RESULT_DISCONNECT;
5522 } else {
5523 pci_set_master(pdev);
5524 pci_restore_state(pdev);
5525 pci_save_state(pdev);
5526 pci_wake_from_d3(pdev, false);
5527
5528 /* Check for life */
5529 reg = rd32(&pf->hw, GLGEN_RTRIG);
5530 if (!reg)
5531 result = PCI_ERS_RESULT_RECOVERED;
5532 else
5533 result = PCI_ERS_RESULT_DISCONNECT;
5534 }
5535
5536 return result;
5537 }
5538
5539 /**
5540 * ice_pci_err_resume - restart operations after PCI error recovery
5541 * @pdev: PCI device information struct
5542 *
5543 * Called to allow the driver to bring things back up after PCI error and/or
5544 * reset recovery have finished
5545 */
ice_pci_err_resume(struct pci_dev * pdev)5546 static void ice_pci_err_resume(struct pci_dev *pdev)
5547 {
5548 struct ice_pf *pf = pci_get_drvdata(pdev);
5549
5550 if (!pf) {
5551 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5552 __func__);
5553 return;
5554 }
5555
5556 if (test_bit(ICE_SUSPENDED, pf->state)) {
5557 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5558 __func__);
5559 return;
5560 }
5561
5562 ice_restore_all_vfs_msi_state(pdev);
5563
5564 ice_do_reset(pf, ICE_RESET_PFR);
5565 ice_service_task_restart(pf);
5566 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5567 }
5568
5569 /**
5570 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5571 * @pdev: PCI device information struct
5572 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5573 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5574 {
5575 struct ice_pf *pf = pci_get_drvdata(pdev);
5576
5577 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5578 ice_service_task_stop(pf);
5579
5580 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5581 set_bit(ICE_PFR_REQ, pf->state);
5582 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5583 }
5584 }
5585 }
5586
5587 /**
5588 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5589 * @pdev: PCI device information struct
5590 */
ice_pci_err_reset_done(struct pci_dev * pdev)5591 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5592 {
5593 ice_pci_err_resume(pdev);
5594 }
5595
5596 /* ice_pci_tbl - PCI Device ID Table
5597 *
5598 * Wildcard entries (PCI_ANY_ID) should come last
5599 * Last entry must be all 0s
5600 *
5601 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5602 * Class, Class Mask, private data (not used) }
5603 */
5604 static const struct pci_device_id ice_pci_tbl[] = {
5605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5607 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5608 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5609 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5610 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5611 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5612 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5616 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5617 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5618 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5619 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5620 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5621 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5624 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5625 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5626 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5627 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5628 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5629 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5630 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5631 /* required last entry */
5632 { 0, }
5633 };
5634 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5635
5636 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5637
5638 static const struct pci_error_handlers ice_pci_err_handler = {
5639 .error_detected = ice_pci_err_detected,
5640 .slot_reset = ice_pci_err_slot_reset,
5641 .reset_prepare = ice_pci_err_reset_prepare,
5642 .reset_done = ice_pci_err_reset_done,
5643 .resume = ice_pci_err_resume
5644 };
5645
5646 static struct pci_driver ice_driver = {
5647 .name = KBUILD_MODNAME,
5648 .id_table = ice_pci_tbl,
5649 .probe = ice_probe,
5650 .remove = ice_remove,
5651 #ifdef CONFIG_PM
5652 .driver.pm = &ice_pm_ops,
5653 #endif /* CONFIG_PM */
5654 .shutdown = ice_shutdown,
5655 .sriov_configure = ice_sriov_configure,
5656 .err_handler = &ice_pci_err_handler
5657 };
5658
5659 /**
5660 * ice_module_init - Driver registration routine
5661 *
5662 * ice_module_init is the first routine called when the driver is
5663 * loaded. All it does is register with the PCI subsystem.
5664 */
ice_module_init(void)5665 static int __init ice_module_init(void)
5666 {
5667 int status = -ENOMEM;
5668
5669 pr_info("%s\n", ice_driver_string);
5670 pr_info("%s\n", ice_copyright);
5671
5672 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5673 if (!ice_wq) {
5674 pr_err("Failed to create workqueue\n");
5675 return status;
5676 }
5677
5678 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5679 if (!ice_lag_wq) {
5680 pr_err("Failed to create LAG workqueue\n");
5681 goto err_dest_wq;
5682 }
5683
5684 status = pci_register_driver(&ice_driver);
5685 if (status) {
5686 pr_err("failed to register PCI driver, err %d\n", status);
5687 goto err_dest_lag_wq;
5688 }
5689
5690 return 0;
5691
5692 err_dest_lag_wq:
5693 destroy_workqueue(ice_lag_wq);
5694 err_dest_wq:
5695 destroy_workqueue(ice_wq);
5696 return status;
5697 }
5698 module_init(ice_module_init);
5699
5700 /**
5701 * ice_module_exit - Driver exit cleanup routine
5702 *
5703 * ice_module_exit is called just before the driver is removed
5704 * from memory.
5705 */
ice_module_exit(void)5706 static void __exit ice_module_exit(void)
5707 {
5708 pci_unregister_driver(&ice_driver);
5709 destroy_workqueue(ice_wq);
5710 destroy_workqueue(ice_lag_wq);
5711 pr_info("module unloaded\n");
5712 }
5713 module_exit(ice_module_exit);
5714
5715 /**
5716 * ice_set_mac_address - NDO callback to set MAC address
5717 * @netdev: network interface device structure
5718 * @pi: pointer to an address structure
5719 *
5720 * Returns 0 on success, negative on failure
5721 */
ice_set_mac_address(struct net_device * netdev,void * pi)5722 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5723 {
5724 struct ice_netdev_priv *np = netdev_priv(netdev);
5725 struct ice_vsi *vsi = np->vsi;
5726 struct ice_pf *pf = vsi->back;
5727 struct ice_hw *hw = &pf->hw;
5728 struct sockaddr *addr = pi;
5729 u8 old_mac[ETH_ALEN];
5730 u8 flags = 0;
5731 u8 *mac;
5732 int err;
5733
5734 mac = (u8 *)addr->sa_data;
5735
5736 if (!is_valid_ether_addr(mac))
5737 return -EADDRNOTAVAIL;
5738
5739 if (test_bit(ICE_DOWN, pf->state) ||
5740 ice_is_reset_in_progress(pf->state)) {
5741 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5742 mac);
5743 return -EBUSY;
5744 }
5745
5746 if (ice_chnl_dmac_fltr_cnt(pf)) {
5747 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5748 mac);
5749 return -EAGAIN;
5750 }
5751
5752 netif_addr_lock_bh(netdev);
5753 ether_addr_copy(old_mac, netdev->dev_addr);
5754 /* change the netdev's MAC address */
5755 eth_hw_addr_set(netdev, mac);
5756 netif_addr_unlock_bh(netdev);
5757
5758 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5759 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5760 if (err && err != -ENOENT) {
5761 err = -EADDRNOTAVAIL;
5762 goto err_update_filters;
5763 }
5764
5765 /* Add filter for new MAC. If filter exists, return success */
5766 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5767 if (err == -EEXIST) {
5768 /* Although this MAC filter is already present in hardware it's
5769 * possible in some cases (e.g. bonding) that dev_addr was
5770 * modified outside of the driver and needs to be restored back
5771 * to this value.
5772 */
5773 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5774
5775 return 0;
5776 } else if (err) {
5777 /* error if the new filter addition failed */
5778 err = -EADDRNOTAVAIL;
5779 }
5780
5781 err_update_filters:
5782 if (err) {
5783 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5784 mac);
5785 netif_addr_lock_bh(netdev);
5786 eth_hw_addr_set(netdev, old_mac);
5787 netif_addr_unlock_bh(netdev);
5788 return err;
5789 }
5790
5791 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5792 netdev->dev_addr);
5793
5794 /* write new MAC address to the firmware */
5795 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5796 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5797 if (err) {
5798 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5799 mac, err);
5800 }
5801 return 0;
5802 }
5803
5804 /**
5805 * ice_set_rx_mode - NDO callback to set the netdev filters
5806 * @netdev: network interface device structure
5807 */
ice_set_rx_mode(struct net_device * netdev)5808 static void ice_set_rx_mode(struct net_device *netdev)
5809 {
5810 struct ice_netdev_priv *np = netdev_priv(netdev);
5811 struct ice_vsi *vsi = np->vsi;
5812
5813 if (!vsi || ice_is_switchdev_running(vsi->back))
5814 return;
5815
5816 /* Set the flags to synchronize filters
5817 * ndo_set_rx_mode may be triggered even without a change in netdev
5818 * flags
5819 */
5820 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5821 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5822 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5823
5824 /* schedule our worker thread which will take care of
5825 * applying the new filter changes
5826 */
5827 ice_service_task_schedule(vsi->back);
5828 }
5829
5830 /**
5831 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5832 * @netdev: network interface device structure
5833 * @queue_index: Queue ID
5834 * @maxrate: maximum bandwidth in Mbps
5835 */
5836 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5837 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5838 {
5839 struct ice_netdev_priv *np = netdev_priv(netdev);
5840 struct ice_vsi *vsi = np->vsi;
5841 u16 q_handle;
5842 int status;
5843 u8 tc;
5844
5845 /* Validate maxrate requested is within permitted range */
5846 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5847 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5848 maxrate, queue_index);
5849 return -EINVAL;
5850 }
5851
5852 q_handle = vsi->tx_rings[queue_index]->q_handle;
5853 tc = ice_dcb_get_tc(vsi, queue_index);
5854
5855 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5856 if (!vsi) {
5857 netdev_err(netdev, "Invalid VSI for given queue %d\n",
5858 queue_index);
5859 return -EINVAL;
5860 }
5861
5862 /* Set BW back to default, when user set maxrate to 0 */
5863 if (!maxrate)
5864 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5865 q_handle, ICE_MAX_BW);
5866 else
5867 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5868 q_handle, ICE_MAX_BW, maxrate * 1000);
5869 if (status)
5870 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5871 status);
5872
5873 return status;
5874 }
5875
5876 /**
5877 * ice_fdb_add - add an entry to the hardware database
5878 * @ndm: the input from the stack
5879 * @tb: pointer to array of nladdr (unused)
5880 * @dev: the net device pointer
5881 * @addr: the MAC address entry being added
5882 * @vid: VLAN ID
5883 * @flags: instructions from stack about fdb operation
5884 * @extack: netlink extended ack
5885 */
5886 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5887 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5888 struct net_device *dev, const unsigned char *addr, u16 vid,
5889 u16 flags, struct netlink_ext_ack __always_unused *extack)
5890 {
5891 int err;
5892
5893 if (vid) {
5894 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5895 return -EINVAL;
5896 }
5897 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5898 netdev_err(dev, "FDB only supports static addresses\n");
5899 return -EINVAL;
5900 }
5901
5902 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5903 err = dev_uc_add_excl(dev, addr);
5904 else if (is_multicast_ether_addr(addr))
5905 err = dev_mc_add_excl(dev, addr);
5906 else
5907 err = -EINVAL;
5908
5909 /* Only return duplicate errors if NLM_F_EXCL is set */
5910 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5911 err = 0;
5912
5913 return err;
5914 }
5915
5916 /**
5917 * ice_fdb_del - delete an entry from the hardware database
5918 * @ndm: the input from the stack
5919 * @tb: pointer to array of nladdr (unused)
5920 * @dev: the net device pointer
5921 * @addr: the MAC address entry being added
5922 * @vid: VLAN ID
5923 * @extack: netlink extended ack
5924 */
5925 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)5926 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5927 struct net_device *dev, const unsigned char *addr,
5928 __always_unused u16 vid, struct netlink_ext_ack *extack)
5929 {
5930 int err;
5931
5932 if (ndm->ndm_state & NUD_PERMANENT) {
5933 netdev_err(dev, "FDB only supports static addresses\n");
5934 return -EINVAL;
5935 }
5936
5937 if (is_unicast_ether_addr(addr))
5938 err = dev_uc_del(dev, addr);
5939 else if (is_multicast_ether_addr(addr))
5940 err = dev_mc_del(dev, addr);
5941 else
5942 err = -EINVAL;
5943
5944 return err;
5945 }
5946
5947 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5948 NETIF_F_HW_VLAN_CTAG_TX | \
5949 NETIF_F_HW_VLAN_STAG_RX | \
5950 NETIF_F_HW_VLAN_STAG_TX)
5951
5952 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5953 NETIF_F_HW_VLAN_STAG_RX)
5954
5955 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5956 NETIF_F_HW_VLAN_STAG_FILTER)
5957
5958 /**
5959 * ice_fix_features - fix the netdev features flags based on device limitations
5960 * @netdev: ptr to the netdev that flags are being fixed on
5961 * @features: features that need to be checked and possibly fixed
5962 *
5963 * Make sure any fixups are made to features in this callback. This enables the
5964 * driver to not have to check unsupported configurations throughout the driver
5965 * because that's the responsiblity of this callback.
5966 *
5967 * Single VLAN Mode (SVM) Supported Features:
5968 * NETIF_F_HW_VLAN_CTAG_FILTER
5969 * NETIF_F_HW_VLAN_CTAG_RX
5970 * NETIF_F_HW_VLAN_CTAG_TX
5971 *
5972 * Double VLAN Mode (DVM) Supported Features:
5973 * NETIF_F_HW_VLAN_CTAG_FILTER
5974 * NETIF_F_HW_VLAN_CTAG_RX
5975 * NETIF_F_HW_VLAN_CTAG_TX
5976 *
5977 * NETIF_F_HW_VLAN_STAG_FILTER
5978 * NETIF_HW_VLAN_STAG_RX
5979 * NETIF_HW_VLAN_STAG_TX
5980 *
5981 * Features that need fixing:
5982 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5983 * These are mutually exlusive as the VSI context cannot support multiple
5984 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5985 * is not done, then default to clearing the requested STAG offload
5986 * settings.
5987 *
5988 * All supported filtering has to be enabled or disabled together. For
5989 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5990 * together. If this is not done, then default to VLAN filtering disabled.
5991 * These are mutually exclusive as there is currently no way to
5992 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5993 * prune rules.
5994 */
5995 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)5996 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5997 {
5998 struct ice_netdev_priv *np = netdev_priv(netdev);
5999 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6000 bool cur_ctag, cur_stag, req_ctag, req_stag;
6001
6002 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6003 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6004 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6005
6006 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6007 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6008 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6009
6010 if (req_vlan_fltr != cur_vlan_fltr) {
6011 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6012 if (req_ctag && req_stag) {
6013 features |= NETIF_VLAN_FILTERING_FEATURES;
6014 } else if (!req_ctag && !req_stag) {
6015 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6016 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6017 (!cur_stag && req_stag && !cur_ctag)) {
6018 features |= NETIF_VLAN_FILTERING_FEATURES;
6019 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6020 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6021 (cur_stag && !req_stag && cur_ctag)) {
6022 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6023 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6024 }
6025 } else {
6026 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6027 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6028
6029 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6030 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6031 }
6032 }
6033
6034 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6035 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6036 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6037 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6038 NETIF_F_HW_VLAN_STAG_TX);
6039 }
6040
6041 if (!(netdev->features & NETIF_F_RXFCS) &&
6042 (features & NETIF_F_RXFCS) &&
6043 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6044 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6045 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6046 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6047 }
6048
6049 return features;
6050 }
6051
6052 /**
6053 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6054 * @vsi: PF's VSI
6055 * @features: features used to determine VLAN offload settings
6056 *
6057 * First, determine the vlan_ethertype based on the VLAN offload bits in
6058 * features. Then determine if stripping and insertion should be enabled or
6059 * disabled. Finally enable or disable VLAN stripping and insertion.
6060 */
6061 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6062 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6063 {
6064 bool enable_stripping = true, enable_insertion = true;
6065 struct ice_vsi_vlan_ops *vlan_ops;
6066 int strip_err = 0, insert_err = 0;
6067 u16 vlan_ethertype = 0;
6068
6069 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6070
6071 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6072 vlan_ethertype = ETH_P_8021AD;
6073 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6074 vlan_ethertype = ETH_P_8021Q;
6075
6076 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6077 enable_stripping = false;
6078 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6079 enable_insertion = false;
6080
6081 if (enable_stripping)
6082 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6083 else
6084 strip_err = vlan_ops->dis_stripping(vsi);
6085
6086 if (enable_insertion)
6087 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6088 else
6089 insert_err = vlan_ops->dis_insertion(vsi);
6090
6091 if (strip_err || insert_err)
6092 return -EIO;
6093
6094 return 0;
6095 }
6096
6097 /**
6098 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6099 * @vsi: PF's VSI
6100 * @features: features used to determine VLAN filtering settings
6101 *
6102 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6103 * features.
6104 */
6105 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6106 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6107 {
6108 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6109 int err = 0;
6110
6111 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6112 * if either bit is set
6113 */
6114 if (features &
6115 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6116 err = vlan_ops->ena_rx_filtering(vsi);
6117 else
6118 err = vlan_ops->dis_rx_filtering(vsi);
6119
6120 return err;
6121 }
6122
6123 /**
6124 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6125 * @netdev: ptr to the netdev being adjusted
6126 * @features: the feature set that the stack is suggesting
6127 *
6128 * Only update VLAN settings if the requested_vlan_features are different than
6129 * the current_vlan_features.
6130 */
6131 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6132 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6133 {
6134 netdev_features_t current_vlan_features, requested_vlan_features;
6135 struct ice_netdev_priv *np = netdev_priv(netdev);
6136 struct ice_vsi *vsi = np->vsi;
6137 int err;
6138
6139 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6140 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6141 if (current_vlan_features ^ requested_vlan_features) {
6142 if ((features & NETIF_F_RXFCS) &&
6143 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6144 dev_err(ice_pf_to_dev(vsi->back),
6145 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6146 return -EIO;
6147 }
6148
6149 err = ice_set_vlan_offload_features(vsi, features);
6150 if (err)
6151 return err;
6152 }
6153
6154 current_vlan_features = netdev->features &
6155 NETIF_VLAN_FILTERING_FEATURES;
6156 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6157 if (current_vlan_features ^ requested_vlan_features) {
6158 err = ice_set_vlan_filtering_features(vsi, features);
6159 if (err)
6160 return err;
6161 }
6162
6163 return 0;
6164 }
6165
6166 /**
6167 * ice_set_loopback - turn on/off loopback mode on underlying PF
6168 * @vsi: ptr to VSI
6169 * @ena: flag to indicate the on/off setting
6170 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6171 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6172 {
6173 bool if_running = netif_running(vsi->netdev);
6174 int ret;
6175
6176 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6177 ret = ice_down(vsi);
6178 if (ret) {
6179 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6180 return ret;
6181 }
6182 }
6183 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6184 if (ret)
6185 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6186 if (if_running)
6187 ret = ice_up(vsi);
6188
6189 return ret;
6190 }
6191
6192 /**
6193 * ice_set_features - set the netdev feature flags
6194 * @netdev: ptr to the netdev being adjusted
6195 * @features: the feature set that the stack is suggesting
6196 */
6197 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6198 ice_set_features(struct net_device *netdev, netdev_features_t features)
6199 {
6200 netdev_features_t changed = netdev->features ^ features;
6201 struct ice_netdev_priv *np = netdev_priv(netdev);
6202 struct ice_vsi *vsi = np->vsi;
6203 struct ice_pf *pf = vsi->back;
6204 int ret = 0;
6205
6206 /* Don't set any netdev advanced features with device in Safe Mode */
6207 if (ice_is_safe_mode(pf)) {
6208 dev_err(ice_pf_to_dev(pf),
6209 "Device is in Safe Mode - not enabling advanced netdev features\n");
6210 return ret;
6211 }
6212
6213 /* Do not change setting during reset */
6214 if (ice_is_reset_in_progress(pf->state)) {
6215 dev_err(ice_pf_to_dev(pf),
6216 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6217 return -EBUSY;
6218 }
6219
6220 /* Multiple features can be changed in one call so keep features in
6221 * separate if/else statements to guarantee each feature is checked
6222 */
6223 if (changed & NETIF_F_RXHASH)
6224 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6225
6226 ret = ice_set_vlan_features(netdev, features);
6227 if (ret)
6228 return ret;
6229
6230 /* Turn on receive of FCS aka CRC, and after setting this
6231 * flag the packet data will have the 4 byte CRC appended
6232 */
6233 if (changed & NETIF_F_RXFCS) {
6234 if ((features & NETIF_F_RXFCS) &&
6235 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6236 dev_err(ice_pf_to_dev(vsi->back),
6237 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6238 return -EIO;
6239 }
6240
6241 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6242 ret = ice_down_up(vsi);
6243 if (ret)
6244 return ret;
6245 }
6246
6247 if (changed & NETIF_F_NTUPLE) {
6248 bool ena = !!(features & NETIF_F_NTUPLE);
6249
6250 ice_vsi_manage_fdir(vsi, ena);
6251 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6252 }
6253
6254 /* don't turn off hw_tc_offload when ADQ is already enabled */
6255 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6256 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6257 return -EACCES;
6258 }
6259
6260 if (changed & NETIF_F_HW_TC) {
6261 bool ena = !!(features & NETIF_F_HW_TC);
6262
6263 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6264 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6265 }
6266
6267 if (changed & NETIF_F_LOOPBACK)
6268 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6269
6270 return ret;
6271 }
6272
6273 /**
6274 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6275 * @vsi: VSI to setup VLAN properties for
6276 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6277 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6278 {
6279 int err;
6280
6281 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6282 if (err)
6283 return err;
6284
6285 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6286 if (err)
6287 return err;
6288
6289 return ice_vsi_add_vlan_zero(vsi);
6290 }
6291
6292 /**
6293 * ice_vsi_cfg_lan - Setup the VSI lan related config
6294 * @vsi: the VSI being configured
6295 *
6296 * Return 0 on success and negative value on error
6297 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6298 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6299 {
6300 int err;
6301
6302 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6303 ice_set_rx_mode(vsi->netdev);
6304
6305 err = ice_vsi_vlan_setup(vsi);
6306 if (err)
6307 return err;
6308 }
6309 ice_vsi_cfg_dcb_rings(vsi);
6310
6311 err = ice_vsi_cfg_lan_txqs(vsi);
6312 if (!err && ice_is_xdp_ena_vsi(vsi))
6313 err = ice_vsi_cfg_xdp_txqs(vsi);
6314 if (!err)
6315 err = ice_vsi_cfg_rxqs(vsi);
6316
6317 return err;
6318 }
6319
6320 /* THEORY OF MODERATION:
6321 * The ice driver hardware works differently than the hardware that DIMLIB was
6322 * originally made for. ice hardware doesn't have packet count limits that
6323 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6324 * which is hard-coded to a limit of 250,000 ints/second.
6325 * If not using dynamic moderation, the INTRL value can be modified
6326 * by ethtool rx-usecs-high.
6327 */
6328 struct ice_dim {
6329 /* the throttle rate for interrupts, basically worst case delay before
6330 * an initial interrupt fires, value is stored in microseconds.
6331 */
6332 u16 itr;
6333 };
6334
6335 /* Make a different profile for Rx that doesn't allow quite so aggressive
6336 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6337 * second.
6338 */
6339 static const struct ice_dim rx_profile[] = {
6340 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6341 {8}, /* 125,000 ints/s */
6342 {16}, /* 62,500 ints/s */
6343 {62}, /* 16,129 ints/s */
6344 {126} /* 7,936 ints/s */
6345 };
6346
6347 /* The transmit profile, which has the same sorts of values
6348 * as the previous struct
6349 */
6350 static const struct ice_dim tx_profile[] = {
6351 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6352 {8}, /* 125,000 ints/s */
6353 {40}, /* 16,125 ints/s */
6354 {128}, /* 7,812 ints/s */
6355 {256} /* 3,906 ints/s */
6356 };
6357
ice_tx_dim_work(struct work_struct * work)6358 static void ice_tx_dim_work(struct work_struct *work)
6359 {
6360 struct ice_ring_container *rc;
6361 struct dim *dim;
6362 u16 itr;
6363
6364 dim = container_of(work, struct dim, work);
6365 rc = dim->priv;
6366
6367 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6368
6369 /* look up the values in our local table */
6370 itr = tx_profile[dim->profile_ix].itr;
6371
6372 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6373 ice_write_itr(rc, itr);
6374
6375 dim->state = DIM_START_MEASURE;
6376 }
6377
ice_rx_dim_work(struct work_struct * work)6378 static void ice_rx_dim_work(struct work_struct *work)
6379 {
6380 struct ice_ring_container *rc;
6381 struct dim *dim;
6382 u16 itr;
6383
6384 dim = container_of(work, struct dim, work);
6385 rc = dim->priv;
6386
6387 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6388
6389 /* look up the values in our local table */
6390 itr = rx_profile[dim->profile_ix].itr;
6391
6392 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6393 ice_write_itr(rc, itr);
6394
6395 dim->state = DIM_START_MEASURE;
6396 }
6397
6398 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6399
6400 /**
6401 * ice_init_moderation - set up interrupt moderation
6402 * @q_vector: the vector containing rings to be configured
6403 *
6404 * Set up interrupt moderation registers, with the intent to do the right thing
6405 * when called from reset or from probe, and whether or not dynamic moderation
6406 * is enabled or not. Take special care to write all the registers in both
6407 * dynamic moderation mode or not in order to make sure hardware is in a known
6408 * state.
6409 */
ice_init_moderation(struct ice_q_vector * q_vector)6410 static void ice_init_moderation(struct ice_q_vector *q_vector)
6411 {
6412 struct ice_ring_container *rc;
6413 bool tx_dynamic, rx_dynamic;
6414
6415 rc = &q_vector->tx;
6416 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6417 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6418 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6419 rc->dim.priv = rc;
6420 tx_dynamic = ITR_IS_DYNAMIC(rc);
6421
6422 /* set the initial TX ITR to match the above */
6423 ice_write_itr(rc, tx_dynamic ?
6424 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6425
6426 rc = &q_vector->rx;
6427 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6428 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6429 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6430 rc->dim.priv = rc;
6431 rx_dynamic = ITR_IS_DYNAMIC(rc);
6432
6433 /* set the initial RX ITR to match the above */
6434 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6435 rc->itr_setting);
6436
6437 ice_set_q_vector_intrl(q_vector);
6438 }
6439
6440 /**
6441 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6442 * @vsi: the VSI being configured
6443 */
ice_napi_enable_all(struct ice_vsi * vsi)6444 static void ice_napi_enable_all(struct ice_vsi *vsi)
6445 {
6446 int q_idx;
6447
6448 if (!vsi->netdev)
6449 return;
6450
6451 ice_for_each_q_vector(vsi, q_idx) {
6452 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6453
6454 ice_init_moderation(q_vector);
6455
6456 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6457 napi_enable(&q_vector->napi);
6458 }
6459 }
6460
6461 /**
6462 * ice_up_complete - Finish the last steps of bringing up a connection
6463 * @vsi: The VSI being configured
6464 *
6465 * Return 0 on success and negative value on error
6466 */
ice_up_complete(struct ice_vsi * vsi)6467 static int ice_up_complete(struct ice_vsi *vsi)
6468 {
6469 struct ice_pf *pf = vsi->back;
6470 int err;
6471
6472 ice_vsi_cfg_msix(vsi);
6473
6474 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6475 * Tx queue group list was configured and the context bits were
6476 * programmed using ice_vsi_cfg_txqs
6477 */
6478 err = ice_vsi_start_all_rx_rings(vsi);
6479 if (err)
6480 return err;
6481
6482 clear_bit(ICE_VSI_DOWN, vsi->state);
6483 ice_napi_enable_all(vsi);
6484 ice_vsi_ena_irq(vsi);
6485
6486 if (vsi->port_info &&
6487 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6488 vsi->netdev && vsi->type == ICE_VSI_PF) {
6489 ice_print_link_msg(vsi, true);
6490 netif_tx_start_all_queues(vsi->netdev);
6491 netif_carrier_on(vsi->netdev);
6492 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6493 }
6494
6495 /* Perform an initial read of the statistics registers now to
6496 * set the baseline so counters are ready when interface is up
6497 */
6498 ice_update_eth_stats(vsi);
6499
6500 if (vsi->type == ICE_VSI_PF)
6501 ice_service_task_schedule(pf);
6502
6503 return 0;
6504 }
6505
6506 /**
6507 * ice_up - Bring the connection back up after being down
6508 * @vsi: VSI being configured
6509 */
ice_up(struct ice_vsi * vsi)6510 int ice_up(struct ice_vsi *vsi)
6511 {
6512 int err;
6513
6514 err = ice_vsi_cfg_lan(vsi);
6515 if (!err)
6516 err = ice_up_complete(vsi);
6517
6518 return err;
6519 }
6520
6521 /**
6522 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6523 * @syncp: pointer to u64_stats_sync
6524 * @stats: stats that pkts and bytes count will be taken from
6525 * @pkts: packets stats counter
6526 * @bytes: bytes stats counter
6527 *
6528 * This function fetches stats from the ring considering the atomic operations
6529 * that needs to be performed to read u64 values in 32 bit machine.
6530 */
6531 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6532 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6533 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6534 {
6535 unsigned int start;
6536
6537 do {
6538 start = u64_stats_fetch_begin(syncp);
6539 *pkts = stats.pkts;
6540 *bytes = stats.bytes;
6541 } while (u64_stats_fetch_retry(syncp, start));
6542 }
6543
6544 /**
6545 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6546 * @vsi: the VSI to be updated
6547 * @vsi_stats: the stats struct to be updated
6548 * @rings: rings to work on
6549 * @count: number of rings
6550 */
6551 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6552 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6553 struct rtnl_link_stats64 *vsi_stats,
6554 struct ice_tx_ring **rings, u16 count)
6555 {
6556 u16 i;
6557
6558 for (i = 0; i < count; i++) {
6559 struct ice_tx_ring *ring;
6560 u64 pkts = 0, bytes = 0;
6561
6562 ring = READ_ONCE(rings[i]);
6563 if (!ring || !ring->ring_stats)
6564 continue;
6565 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6566 ring->ring_stats->stats, &pkts,
6567 &bytes);
6568 vsi_stats->tx_packets += pkts;
6569 vsi_stats->tx_bytes += bytes;
6570 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6571 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6572 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6573 }
6574 }
6575
6576 /**
6577 * ice_update_vsi_ring_stats - Update VSI stats counters
6578 * @vsi: the VSI to be updated
6579 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6580 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6581 {
6582 struct rtnl_link_stats64 *net_stats, *stats_prev;
6583 struct rtnl_link_stats64 *vsi_stats;
6584 struct ice_pf *pf = vsi->back;
6585 u64 pkts, bytes;
6586 int i;
6587
6588 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6589 if (!vsi_stats)
6590 return;
6591
6592 /* reset non-netdev (extended) stats */
6593 vsi->tx_restart = 0;
6594 vsi->tx_busy = 0;
6595 vsi->tx_linearize = 0;
6596 vsi->rx_buf_failed = 0;
6597 vsi->rx_page_failed = 0;
6598
6599 rcu_read_lock();
6600
6601 /* update Tx rings counters */
6602 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6603 vsi->num_txq);
6604
6605 /* update Rx rings counters */
6606 ice_for_each_rxq(vsi, i) {
6607 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6608 struct ice_ring_stats *ring_stats;
6609
6610 ring_stats = ring->ring_stats;
6611 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6612 ring_stats->stats, &pkts,
6613 &bytes);
6614 vsi_stats->rx_packets += pkts;
6615 vsi_stats->rx_bytes += bytes;
6616 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6617 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6618 }
6619
6620 /* update XDP Tx rings counters */
6621 if (ice_is_xdp_ena_vsi(vsi))
6622 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6623 vsi->num_xdp_txq);
6624
6625 rcu_read_unlock();
6626
6627 net_stats = &vsi->net_stats;
6628 stats_prev = &vsi->net_stats_prev;
6629
6630 /* Update netdev counters, but keep in mind that values could start at
6631 * random value after PF reset. And as we increase the reported stat by
6632 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6633 * let's skip this round.
6634 */
6635 if (likely(pf->stat_prev_loaded)) {
6636 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6637 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6638 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6639 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6640 }
6641
6642 stats_prev->tx_packets = vsi_stats->tx_packets;
6643 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6644 stats_prev->rx_packets = vsi_stats->rx_packets;
6645 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6646
6647 kfree(vsi_stats);
6648 }
6649
6650 /**
6651 * ice_update_vsi_stats - Update VSI stats counters
6652 * @vsi: the VSI to be updated
6653 */
ice_update_vsi_stats(struct ice_vsi * vsi)6654 void ice_update_vsi_stats(struct ice_vsi *vsi)
6655 {
6656 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6657 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6658 struct ice_pf *pf = vsi->back;
6659
6660 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6661 test_bit(ICE_CFG_BUSY, pf->state))
6662 return;
6663
6664 /* get stats as recorded by Tx/Rx rings */
6665 ice_update_vsi_ring_stats(vsi);
6666
6667 /* get VSI stats as recorded by the hardware */
6668 ice_update_eth_stats(vsi);
6669
6670 cur_ns->tx_errors = cur_es->tx_errors;
6671 cur_ns->rx_dropped = cur_es->rx_discards;
6672 cur_ns->tx_dropped = cur_es->tx_discards;
6673 cur_ns->multicast = cur_es->rx_multicast;
6674
6675 /* update some more netdev stats if this is main VSI */
6676 if (vsi->type == ICE_VSI_PF) {
6677 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6678 cur_ns->rx_errors = pf->stats.crc_errors +
6679 pf->stats.illegal_bytes +
6680 pf->stats.rx_len_errors +
6681 pf->stats.rx_undersize +
6682 pf->hw_csum_rx_error +
6683 pf->stats.rx_jabber +
6684 pf->stats.rx_fragments +
6685 pf->stats.rx_oversize;
6686 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6687 /* record drops from the port level */
6688 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6689 }
6690 }
6691
6692 /**
6693 * ice_update_pf_stats - Update PF port stats counters
6694 * @pf: PF whose stats needs to be updated
6695 */
ice_update_pf_stats(struct ice_pf * pf)6696 void ice_update_pf_stats(struct ice_pf *pf)
6697 {
6698 struct ice_hw_port_stats *prev_ps, *cur_ps;
6699 struct ice_hw *hw = &pf->hw;
6700 u16 fd_ctr_base;
6701 u8 port;
6702
6703 port = hw->port_info->lport;
6704 prev_ps = &pf->stats_prev;
6705 cur_ps = &pf->stats;
6706
6707 if (ice_is_reset_in_progress(pf->state))
6708 pf->stat_prev_loaded = false;
6709
6710 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6711 &prev_ps->eth.rx_bytes,
6712 &cur_ps->eth.rx_bytes);
6713
6714 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6715 &prev_ps->eth.rx_unicast,
6716 &cur_ps->eth.rx_unicast);
6717
6718 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6719 &prev_ps->eth.rx_multicast,
6720 &cur_ps->eth.rx_multicast);
6721
6722 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6723 &prev_ps->eth.rx_broadcast,
6724 &cur_ps->eth.rx_broadcast);
6725
6726 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6727 &prev_ps->eth.rx_discards,
6728 &cur_ps->eth.rx_discards);
6729
6730 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6731 &prev_ps->eth.tx_bytes,
6732 &cur_ps->eth.tx_bytes);
6733
6734 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6735 &prev_ps->eth.tx_unicast,
6736 &cur_ps->eth.tx_unicast);
6737
6738 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6739 &prev_ps->eth.tx_multicast,
6740 &cur_ps->eth.tx_multicast);
6741
6742 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6743 &prev_ps->eth.tx_broadcast,
6744 &cur_ps->eth.tx_broadcast);
6745
6746 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6747 &prev_ps->tx_dropped_link_down,
6748 &cur_ps->tx_dropped_link_down);
6749
6750 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6751 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6752
6753 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6754 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6755
6756 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6757 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6758
6759 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6760 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6761
6762 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6763 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6764
6765 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6766 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6767
6768 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6769 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6770
6771 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6772 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6773
6774 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6775 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6776
6777 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6778 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6779
6780 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6781 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6782
6783 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6784 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6785
6786 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6787 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6788
6789 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6790 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6791
6792 fd_ctr_base = hw->fd_ctr_base;
6793
6794 ice_stat_update40(hw,
6795 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6796 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6797 &cur_ps->fd_sb_match);
6798 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6799 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6800
6801 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6802 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6803
6804 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6805 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6806
6807 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6808 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6809
6810 ice_update_dcb_stats(pf);
6811
6812 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6813 &prev_ps->crc_errors, &cur_ps->crc_errors);
6814
6815 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6816 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6817
6818 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6819 &prev_ps->mac_local_faults,
6820 &cur_ps->mac_local_faults);
6821
6822 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6823 &prev_ps->mac_remote_faults,
6824 &cur_ps->mac_remote_faults);
6825
6826 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6827 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6828
6829 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6830 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6831
6832 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6833 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6834
6835 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6836 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6837
6838 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6839 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6840
6841 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6842
6843 pf->stat_prev_loaded = true;
6844 }
6845
6846 /**
6847 * ice_get_stats64 - get statistics for network device structure
6848 * @netdev: network interface device structure
6849 * @stats: main device statistics structure
6850 */
6851 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6852 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6853 {
6854 struct ice_netdev_priv *np = netdev_priv(netdev);
6855 struct rtnl_link_stats64 *vsi_stats;
6856 struct ice_vsi *vsi = np->vsi;
6857
6858 vsi_stats = &vsi->net_stats;
6859
6860 if (!vsi->num_txq || !vsi->num_rxq)
6861 return;
6862
6863 /* netdev packet/byte stats come from ring counter. These are obtained
6864 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6865 * But, only call the update routine and read the registers if VSI is
6866 * not down.
6867 */
6868 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6869 ice_update_vsi_ring_stats(vsi);
6870 stats->tx_packets = vsi_stats->tx_packets;
6871 stats->tx_bytes = vsi_stats->tx_bytes;
6872 stats->rx_packets = vsi_stats->rx_packets;
6873 stats->rx_bytes = vsi_stats->rx_bytes;
6874
6875 /* The rest of the stats can be read from the hardware but instead we
6876 * just return values that the watchdog task has already obtained from
6877 * the hardware.
6878 */
6879 stats->multicast = vsi_stats->multicast;
6880 stats->tx_errors = vsi_stats->tx_errors;
6881 stats->tx_dropped = vsi_stats->tx_dropped;
6882 stats->rx_errors = vsi_stats->rx_errors;
6883 stats->rx_dropped = vsi_stats->rx_dropped;
6884 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6885 stats->rx_length_errors = vsi_stats->rx_length_errors;
6886 }
6887
6888 /**
6889 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6890 * @vsi: VSI having NAPI disabled
6891 */
ice_napi_disable_all(struct ice_vsi * vsi)6892 static void ice_napi_disable_all(struct ice_vsi *vsi)
6893 {
6894 int q_idx;
6895
6896 if (!vsi->netdev)
6897 return;
6898
6899 ice_for_each_q_vector(vsi, q_idx) {
6900 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6901
6902 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6903 napi_disable(&q_vector->napi);
6904
6905 cancel_work_sync(&q_vector->tx.dim.work);
6906 cancel_work_sync(&q_vector->rx.dim.work);
6907 }
6908 }
6909
6910 /**
6911 * ice_down - Shutdown the connection
6912 * @vsi: The VSI being stopped
6913 *
6914 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6915 */
ice_down(struct ice_vsi * vsi)6916 int ice_down(struct ice_vsi *vsi)
6917 {
6918 int i, tx_err, rx_err, vlan_err = 0;
6919
6920 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6921
6922 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6923 vlan_err = ice_vsi_del_vlan_zero(vsi);
6924 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6925 netif_carrier_off(vsi->netdev);
6926 netif_tx_disable(vsi->netdev);
6927 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6928 ice_eswitch_stop_all_tx_queues(vsi->back);
6929 }
6930
6931 ice_vsi_dis_irq(vsi);
6932
6933 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6934 if (tx_err)
6935 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6936 vsi->vsi_num, tx_err);
6937 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6938 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6939 if (tx_err)
6940 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6941 vsi->vsi_num, tx_err);
6942 }
6943
6944 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6945 if (rx_err)
6946 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6947 vsi->vsi_num, rx_err);
6948
6949 ice_napi_disable_all(vsi);
6950
6951 ice_for_each_txq(vsi, i)
6952 ice_clean_tx_ring(vsi->tx_rings[i]);
6953
6954 if (ice_is_xdp_ena_vsi(vsi))
6955 ice_for_each_xdp_txq(vsi, i)
6956 ice_clean_tx_ring(vsi->xdp_rings[i]);
6957
6958 ice_for_each_rxq(vsi, i)
6959 ice_clean_rx_ring(vsi->rx_rings[i]);
6960
6961 if (tx_err || rx_err || vlan_err) {
6962 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6963 vsi->vsi_num, vsi->vsw->sw_id);
6964 return -EIO;
6965 }
6966
6967 return 0;
6968 }
6969
6970 /**
6971 * ice_down_up - shutdown the VSI connection and bring it up
6972 * @vsi: the VSI to be reconnected
6973 */
ice_down_up(struct ice_vsi * vsi)6974 int ice_down_up(struct ice_vsi *vsi)
6975 {
6976 int ret;
6977
6978 /* if DOWN already set, nothing to do */
6979 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6980 return 0;
6981
6982 ret = ice_down(vsi);
6983 if (ret)
6984 return ret;
6985
6986 ret = ice_up(vsi);
6987 if (ret) {
6988 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6989 return ret;
6990 }
6991
6992 return 0;
6993 }
6994
6995 /**
6996 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6997 * @vsi: VSI having resources allocated
6998 *
6999 * Return 0 on success, negative on failure
7000 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7001 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7002 {
7003 int i, err = 0;
7004
7005 if (!vsi->num_txq) {
7006 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7007 vsi->vsi_num);
7008 return -EINVAL;
7009 }
7010
7011 ice_for_each_txq(vsi, i) {
7012 struct ice_tx_ring *ring = vsi->tx_rings[i];
7013
7014 if (!ring)
7015 return -EINVAL;
7016
7017 if (vsi->netdev)
7018 ring->netdev = vsi->netdev;
7019 err = ice_setup_tx_ring(ring);
7020 if (err)
7021 break;
7022 }
7023
7024 return err;
7025 }
7026
7027 /**
7028 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7029 * @vsi: VSI having resources allocated
7030 *
7031 * Return 0 on success, negative on failure
7032 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7033 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7034 {
7035 int i, err = 0;
7036
7037 if (!vsi->num_rxq) {
7038 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7039 vsi->vsi_num);
7040 return -EINVAL;
7041 }
7042
7043 ice_for_each_rxq(vsi, i) {
7044 struct ice_rx_ring *ring = vsi->rx_rings[i];
7045
7046 if (!ring)
7047 return -EINVAL;
7048
7049 if (vsi->netdev)
7050 ring->netdev = vsi->netdev;
7051 err = ice_setup_rx_ring(ring);
7052 if (err)
7053 break;
7054 }
7055
7056 return err;
7057 }
7058
7059 /**
7060 * ice_vsi_open_ctrl - open control VSI for use
7061 * @vsi: the VSI to open
7062 *
7063 * Initialization of the Control VSI
7064 *
7065 * Returns 0 on success, negative value on error
7066 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7067 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7068 {
7069 char int_name[ICE_INT_NAME_STR_LEN];
7070 struct ice_pf *pf = vsi->back;
7071 struct device *dev;
7072 int err;
7073
7074 dev = ice_pf_to_dev(pf);
7075 /* allocate descriptors */
7076 err = ice_vsi_setup_tx_rings(vsi);
7077 if (err)
7078 goto err_setup_tx;
7079
7080 err = ice_vsi_setup_rx_rings(vsi);
7081 if (err)
7082 goto err_setup_rx;
7083
7084 err = ice_vsi_cfg_lan(vsi);
7085 if (err)
7086 goto err_setup_rx;
7087
7088 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7089 dev_driver_string(dev), dev_name(dev));
7090 err = ice_vsi_req_irq_msix(vsi, int_name);
7091 if (err)
7092 goto err_setup_rx;
7093
7094 ice_vsi_cfg_msix(vsi);
7095
7096 err = ice_vsi_start_all_rx_rings(vsi);
7097 if (err)
7098 goto err_up_complete;
7099
7100 clear_bit(ICE_VSI_DOWN, vsi->state);
7101 ice_vsi_ena_irq(vsi);
7102
7103 return 0;
7104
7105 err_up_complete:
7106 ice_down(vsi);
7107 err_setup_rx:
7108 ice_vsi_free_rx_rings(vsi);
7109 err_setup_tx:
7110 ice_vsi_free_tx_rings(vsi);
7111
7112 return err;
7113 }
7114
7115 /**
7116 * ice_vsi_open - Called when a network interface is made active
7117 * @vsi: the VSI to open
7118 *
7119 * Initialization of the VSI
7120 *
7121 * Returns 0 on success, negative value on error
7122 */
ice_vsi_open(struct ice_vsi * vsi)7123 int ice_vsi_open(struct ice_vsi *vsi)
7124 {
7125 char int_name[ICE_INT_NAME_STR_LEN];
7126 struct ice_pf *pf = vsi->back;
7127 int err;
7128
7129 /* allocate descriptors */
7130 err = ice_vsi_setup_tx_rings(vsi);
7131 if (err)
7132 goto err_setup_tx;
7133
7134 err = ice_vsi_setup_rx_rings(vsi);
7135 if (err)
7136 goto err_setup_rx;
7137
7138 err = ice_vsi_cfg_lan(vsi);
7139 if (err)
7140 goto err_setup_rx;
7141
7142 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7143 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7144 err = ice_vsi_req_irq_msix(vsi, int_name);
7145 if (err)
7146 goto err_setup_rx;
7147
7148 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7149
7150 if (vsi->type == ICE_VSI_PF) {
7151 /* Notify the stack of the actual queue counts. */
7152 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7153 if (err)
7154 goto err_set_qs;
7155
7156 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7157 if (err)
7158 goto err_set_qs;
7159 }
7160
7161 err = ice_up_complete(vsi);
7162 if (err)
7163 goto err_up_complete;
7164
7165 return 0;
7166
7167 err_up_complete:
7168 ice_down(vsi);
7169 err_set_qs:
7170 ice_vsi_free_irq(vsi);
7171 err_setup_rx:
7172 ice_vsi_free_rx_rings(vsi);
7173 err_setup_tx:
7174 ice_vsi_free_tx_rings(vsi);
7175
7176 return err;
7177 }
7178
7179 /**
7180 * ice_vsi_release_all - Delete all VSIs
7181 * @pf: PF from which all VSIs are being removed
7182 */
ice_vsi_release_all(struct ice_pf * pf)7183 static void ice_vsi_release_all(struct ice_pf *pf)
7184 {
7185 int err, i;
7186
7187 if (!pf->vsi)
7188 return;
7189
7190 ice_for_each_vsi(pf, i) {
7191 if (!pf->vsi[i])
7192 continue;
7193
7194 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7195 continue;
7196
7197 err = ice_vsi_release(pf->vsi[i]);
7198 if (err)
7199 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7200 i, err, pf->vsi[i]->vsi_num);
7201 }
7202 }
7203
7204 /**
7205 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7206 * @pf: pointer to the PF instance
7207 * @type: VSI type to rebuild
7208 *
7209 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7210 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7211 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7212 {
7213 struct device *dev = ice_pf_to_dev(pf);
7214 int i, err;
7215
7216 ice_for_each_vsi(pf, i) {
7217 struct ice_vsi *vsi = pf->vsi[i];
7218
7219 if (!vsi || vsi->type != type)
7220 continue;
7221
7222 /* rebuild the VSI */
7223 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7224 if (err) {
7225 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7226 err, vsi->idx, ice_vsi_type_str(type));
7227 return err;
7228 }
7229
7230 /* replay filters for the VSI */
7231 err = ice_replay_vsi(&pf->hw, vsi->idx);
7232 if (err) {
7233 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7234 err, vsi->idx, ice_vsi_type_str(type));
7235 return err;
7236 }
7237
7238 /* Re-map HW VSI number, using VSI handle that has been
7239 * previously validated in ice_replay_vsi() call above
7240 */
7241 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7242
7243 /* enable the VSI */
7244 err = ice_ena_vsi(vsi, false);
7245 if (err) {
7246 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7247 err, vsi->idx, ice_vsi_type_str(type));
7248 return err;
7249 }
7250
7251 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7252 ice_vsi_type_str(type));
7253 }
7254
7255 return 0;
7256 }
7257
7258 /**
7259 * ice_update_pf_netdev_link - Update PF netdev link status
7260 * @pf: pointer to the PF instance
7261 */
ice_update_pf_netdev_link(struct ice_pf * pf)7262 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7263 {
7264 bool link_up;
7265 int i;
7266
7267 ice_for_each_vsi(pf, i) {
7268 struct ice_vsi *vsi = pf->vsi[i];
7269
7270 if (!vsi || vsi->type != ICE_VSI_PF)
7271 return;
7272
7273 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7274 if (link_up) {
7275 netif_carrier_on(pf->vsi[i]->netdev);
7276 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7277 } else {
7278 netif_carrier_off(pf->vsi[i]->netdev);
7279 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7280 }
7281 }
7282 }
7283
7284 /**
7285 * ice_rebuild - rebuild after reset
7286 * @pf: PF to rebuild
7287 * @reset_type: type of reset
7288 *
7289 * Do not rebuild VF VSI in this flow because that is already handled via
7290 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7291 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7292 * to reset/rebuild all the VF VSI twice.
7293 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7294 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7295 {
7296 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7297 struct device *dev = ice_pf_to_dev(pf);
7298 struct ice_hw *hw = &pf->hw;
7299 bool dvm;
7300 int err;
7301
7302 if (test_bit(ICE_DOWN, pf->state))
7303 goto clear_recovery;
7304
7305 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7306
7307 #define ICE_EMP_RESET_SLEEP_MS 5000
7308 if (reset_type == ICE_RESET_EMPR) {
7309 /* If an EMP reset has occurred, any previously pending flash
7310 * update will have completed. We no longer know whether or
7311 * not the NVM update EMP reset is restricted.
7312 */
7313 pf->fw_emp_reset_disabled = false;
7314
7315 msleep(ICE_EMP_RESET_SLEEP_MS);
7316 }
7317
7318 err = ice_init_all_ctrlq(hw);
7319 if (err) {
7320 dev_err(dev, "control queues init failed %d\n", err);
7321 goto err_init_ctrlq;
7322 }
7323
7324 /* if DDP was previously loaded successfully */
7325 if (!ice_is_safe_mode(pf)) {
7326 /* reload the SW DB of filter tables */
7327 if (reset_type == ICE_RESET_PFR)
7328 ice_fill_blk_tbls(hw);
7329 else
7330 /* Reload DDP Package after CORER/GLOBR reset */
7331 ice_load_pkg(NULL, pf);
7332 }
7333
7334 err = ice_clear_pf_cfg(hw);
7335 if (err) {
7336 dev_err(dev, "clear PF configuration failed %d\n", err);
7337 goto err_init_ctrlq;
7338 }
7339
7340 ice_clear_pxe_mode(hw);
7341
7342 err = ice_init_nvm(hw);
7343 if (err) {
7344 dev_err(dev, "ice_init_nvm failed %d\n", err);
7345 goto err_init_ctrlq;
7346 }
7347
7348 err = ice_get_caps(hw);
7349 if (err) {
7350 dev_err(dev, "ice_get_caps failed %d\n", err);
7351 goto err_init_ctrlq;
7352 }
7353
7354 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7355 if (err) {
7356 dev_err(dev, "set_mac_cfg failed %d\n", err);
7357 goto err_init_ctrlq;
7358 }
7359
7360 dvm = ice_is_dvm_ena(hw);
7361
7362 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7363 if (err)
7364 goto err_init_ctrlq;
7365
7366 err = ice_sched_init_port(hw->port_info);
7367 if (err)
7368 goto err_sched_init_port;
7369
7370 /* start misc vector */
7371 err = ice_req_irq_msix_misc(pf);
7372 if (err) {
7373 dev_err(dev, "misc vector setup failed: %d\n", err);
7374 goto err_sched_init_port;
7375 }
7376
7377 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7378 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7379 if (!rd32(hw, PFQF_FD_SIZE)) {
7380 u16 unused, guar, b_effort;
7381
7382 guar = hw->func_caps.fd_fltr_guar;
7383 b_effort = hw->func_caps.fd_fltr_best_effort;
7384
7385 /* force guaranteed filter pool for PF */
7386 ice_alloc_fd_guar_item(hw, &unused, guar);
7387 /* force shared filter pool for PF */
7388 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7389 }
7390 }
7391
7392 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7393 ice_dcb_rebuild(pf);
7394
7395 /* If the PF previously had enabled PTP, PTP init needs to happen before
7396 * the VSI rebuild. If not, this causes the PTP link status events to
7397 * fail.
7398 */
7399 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7400 ice_ptp_reset(pf);
7401
7402 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7403 ice_gnss_init(pf);
7404
7405 /* rebuild PF VSI */
7406 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7407 if (err) {
7408 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7409 goto err_vsi_rebuild;
7410 }
7411
7412 /* configure PTP timestamping after VSI rebuild */
7413 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7414 ice_ptp_cfg_timestamp(pf, false);
7415
7416 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7417 if (err) {
7418 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7419 goto err_vsi_rebuild;
7420 }
7421
7422 if (reset_type == ICE_RESET_PFR) {
7423 err = ice_rebuild_channels(pf);
7424 if (err) {
7425 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7426 err);
7427 goto err_vsi_rebuild;
7428 }
7429 }
7430
7431 /* If Flow Director is active */
7432 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7433 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7434 if (err) {
7435 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7436 goto err_vsi_rebuild;
7437 }
7438
7439 /* replay HW Flow Director recipes */
7440 if (hw->fdir_prof)
7441 ice_fdir_replay_flows(hw);
7442
7443 /* replay Flow Director filters */
7444 ice_fdir_replay_fltrs(pf);
7445
7446 ice_rebuild_arfs(pf);
7447 }
7448
7449 if (vsi && vsi->netdev)
7450 netif_device_attach(vsi->netdev);
7451
7452 ice_update_pf_netdev_link(pf);
7453
7454 /* tell the firmware we are up */
7455 err = ice_send_version(pf);
7456 if (err) {
7457 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7458 err);
7459 goto err_vsi_rebuild;
7460 }
7461
7462 ice_replay_post(hw);
7463
7464 /* if we get here, reset flow is successful */
7465 clear_bit(ICE_RESET_FAILED, pf->state);
7466
7467 ice_plug_aux_dev(pf);
7468 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7469 ice_lag_rebuild(pf);
7470 return;
7471
7472 err_vsi_rebuild:
7473 err_sched_init_port:
7474 ice_sched_cleanup_all(hw);
7475 err_init_ctrlq:
7476 ice_shutdown_all_ctrlq(hw);
7477 set_bit(ICE_RESET_FAILED, pf->state);
7478 clear_recovery:
7479 /* set this bit in PF state to control service task scheduling */
7480 set_bit(ICE_NEEDS_RESTART, pf->state);
7481 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7482 }
7483
7484 /**
7485 * ice_change_mtu - NDO callback to change the MTU
7486 * @netdev: network interface device structure
7487 * @new_mtu: new value for maximum frame size
7488 *
7489 * Returns 0 on success, negative on failure
7490 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7491 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7492 {
7493 struct ice_netdev_priv *np = netdev_priv(netdev);
7494 struct ice_vsi *vsi = np->vsi;
7495 struct ice_pf *pf = vsi->back;
7496 struct bpf_prog *prog;
7497 u8 count = 0;
7498 int err = 0;
7499
7500 if (new_mtu == (int)netdev->mtu) {
7501 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7502 return 0;
7503 }
7504
7505 prog = vsi->xdp_prog;
7506 if (prog && !prog->aux->xdp_has_frags) {
7507 int frame_size = ice_max_xdp_frame_size(vsi);
7508
7509 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7510 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7511 frame_size - ICE_ETH_PKT_HDR_PAD);
7512 return -EINVAL;
7513 }
7514 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7515 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7516 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7517 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7518 return -EINVAL;
7519 }
7520 }
7521
7522 /* if a reset is in progress, wait for some time for it to complete */
7523 do {
7524 if (ice_is_reset_in_progress(pf->state)) {
7525 count++;
7526 usleep_range(1000, 2000);
7527 } else {
7528 break;
7529 }
7530
7531 } while (count < 100);
7532
7533 if (count == 100) {
7534 netdev_err(netdev, "can't change MTU. Device is busy\n");
7535 return -EBUSY;
7536 }
7537
7538 netdev->mtu = (unsigned int)new_mtu;
7539 err = ice_down_up(vsi);
7540 if (err)
7541 return err;
7542
7543 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7544 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7545
7546 return err;
7547 }
7548
7549 /**
7550 * ice_eth_ioctl - Access the hwtstamp interface
7551 * @netdev: network interface device structure
7552 * @ifr: interface request data
7553 * @cmd: ioctl command
7554 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7555 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7556 {
7557 struct ice_netdev_priv *np = netdev_priv(netdev);
7558 struct ice_pf *pf = np->vsi->back;
7559
7560 switch (cmd) {
7561 case SIOCGHWTSTAMP:
7562 return ice_ptp_get_ts_config(pf, ifr);
7563 case SIOCSHWTSTAMP:
7564 return ice_ptp_set_ts_config(pf, ifr);
7565 default:
7566 return -EOPNOTSUPP;
7567 }
7568 }
7569
7570 /**
7571 * ice_aq_str - convert AQ err code to a string
7572 * @aq_err: the AQ error code to convert
7573 */
ice_aq_str(enum ice_aq_err aq_err)7574 const char *ice_aq_str(enum ice_aq_err aq_err)
7575 {
7576 switch (aq_err) {
7577 case ICE_AQ_RC_OK:
7578 return "OK";
7579 case ICE_AQ_RC_EPERM:
7580 return "ICE_AQ_RC_EPERM";
7581 case ICE_AQ_RC_ENOENT:
7582 return "ICE_AQ_RC_ENOENT";
7583 case ICE_AQ_RC_ENOMEM:
7584 return "ICE_AQ_RC_ENOMEM";
7585 case ICE_AQ_RC_EBUSY:
7586 return "ICE_AQ_RC_EBUSY";
7587 case ICE_AQ_RC_EEXIST:
7588 return "ICE_AQ_RC_EEXIST";
7589 case ICE_AQ_RC_EINVAL:
7590 return "ICE_AQ_RC_EINVAL";
7591 case ICE_AQ_RC_ENOSPC:
7592 return "ICE_AQ_RC_ENOSPC";
7593 case ICE_AQ_RC_ENOSYS:
7594 return "ICE_AQ_RC_ENOSYS";
7595 case ICE_AQ_RC_EMODE:
7596 return "ICE_AQ_RC_EMODE";
7597 case ICE_AQ_RC_ENOSEC:
7598 return "ICE_AQ_RC_ENOSEC";
7599 case ICE_AQ_RC_EBADSIG:
7600 return "ICE_AQ_RC_EBADSIG";
7601 case ICE_AQ_RC_ESVN:
7602 return "ICE_AQ_RC_ESVN";
7603 case ICE_AQ_RC_EBADMAN:
7604 return "ICE_AQ_RC_EBADMAN";
7605 case ICE_AQ_RC_EBADBUF:
7606 return "ICE_AQ_RC_EBADBUF";
7607 }
7608
7609 return "ICE_AQ_RC_UNKNOWN";
7610 }
7611
7612 /**
7613 * ice_set_rss_lut - Set RSS LUT
7614 * @vsi: Pointer to VSI structure
7615 * @lut: Lookup table
7616 * @lut_size: Lookup table size
7617 *
7618 * Returns 0 on success, negative on failure
7619 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7620 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7621 {
7622 struct ice_aq_get_set_rss_lut_params params = {};
7623 struct ice_hw *hw = &vsi->back->hw;
7624 int status;
7625
7626 if (!lut)
7627 return -EINVAL;
7628
7629 params.vsi_handle = vsi->idx;
7630 params.lut_size = lut_size;
7631 params.lut_type = vsi->rss_lut_type;
7632 params.lut = lut;
7633
7634 status = ice_aq_set_rss_lut(hw, ¶ms);
7635 if (status)
7636 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7637 status, ice_aq_str(hw->adminq.sq_last_status));
7638
7639 return status;
7640 }
7641
7642 /**
7643 * ice_set_rss_key - Set RSS key
7644 * @vsi: Pointer to the VSI structure
7645 * @seed: RSS hash seed
7646 *
7647 * Returns 0 on success, negative on failure
7648 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7649 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7650 {
7651 struct ice_hw *hw = &vsi->back->hw;
7652 int status;
7653
7654 if (!seed)
7655 return -EINVAL;
7656
7657 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7658 if (status)
7659 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7660 status, ice_aq_str(hw->adminq.sq_last_status));
7661
7662 return status;
7663 }
7664
7665 /**
7666 * ice_get_rss_lut - Get RSS LUT
7667 * @vsi: Pointer to VSI structure
7668 * @lut: Buffer to store the lookup table entries
7669 * @lut_size: Size of buffer to store the lookup table entries
7670 *
7671 * Returns 0 on success, negative on failure
7672 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7673 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7674 {
7675 struct ice_aq_get_set_rss_lut_params params = {};
7676 struct ice_hw *hw = &vsi->back->hw;
7677 int status;
7678
7679 if (!lut)
7680 return -EINVAL;
7681
7682 params.vsi_handle = vsi->idx;
7683 params.lut_size = lut_size;
7684 params.lut_type = vsi->rss_lut_type;
7685 params.lut = lut;
7686
7687 status = ice_aq_get_rss_lut(hw, ¶ms);
7688 if (status)
7689 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7690 status, ice_aq_str(hw->adminq.sq_last_status));
7691
7692 return status;
7693 }
7694
7695 /**
7696 * ice_get_rss_key - Get RSS key
7697 * @vsi: Pointer to VSI structure
7698 * @seed: Buffer to store the key in
7699 *
7700 * Returns 0 on success, negative on failure
7701 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7702 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7703 {
7704 struct ice_hw *hw = &vsi->back->hw;
7705 int status;
7706
7707 if (!seed)
7708 return -EINVAL;
7709
7710 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7711 if (status)
7712 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7713 status, ice_aq_str(hw->adminq.sq_last_status));
7714
7715 return status;
7716 }
7717
7718 /**
7719 * ice_bridge_getlink - Get the hardware bridge mode
7720 * @skb: skb buff
7721 * @pid: process ID
7722 * @seq: RTNL message seq
7723 * @dev: the netdev being configured
7724 * @filter_mask: filter mask passed in
7725 * @nlflags: netlink flags passed in
7726 *
7727 * Return the bridge mode (VEB/VEPA)
7728 */
7729 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)7730 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7731 struct net_device *dev, u32 filter_mask, int nlflags)
7732 {
7733 struct ice_netdev_priv *np = netdev_priv(dev);
7734 struct ice_vsi *vsi = np->vsi;
7735 struct ice_pf *pf = vsi->back;
7736 u16 bmode;
7737
7738 bmode = pf->first_sw->bridge_mode;
7739
7740 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7741 filter_mask, NULL);
7742 }
7743
7744 /**
7745 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7746 * @vsi: Pointer to VSI structure
7747 * @bmode: Hardware bridge mode (VEB/VEPA)
7748 *
7749 * Returns 0 on success, negative on failure
7750 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)7751 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7752 {
7753 struct ice_aqc_vsi_props *vsi_props;
7754 struct ice_hw *hw = &vsi->back->hw;
7755 struct ice_vsi_ctx *ctxt;
7756 int ret;
7757
7758 vsi_props = &vsi->info;
7759
7760 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7761 if (!ctxt)
7762 return -ENOMEM;
7763
7764 ctxt->info = vsi->info;
7765
7766 if (bmode == BRIDGE_MODE_VEB)
7767 /* change from VEPA to VEB mode */
7768 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7769 else
7770 /* change from VEB to VEPA mode */
7771 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7772 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7773
7774 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7775 if (ret) {
7776 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7777 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7778 goto out;
7779 }
7780 /* Update sw flags for book keeping */
7781 vsi_props->sw_flags = ctxt->info.sw_flags;
7782
7783 out:
7784 kfree(ctxt);
7785 return ret;
7786 }
7787
7788 /**
7789 * ice_bridge_setlink - Set the hardware bridge mode
7790 * @dev: the netdev being configured
7791 * @nlh: RTNL message
7792 * @flags: bridge setlink flags
7793 * @extack: netlink extended ack
7794 *
7795 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7796 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7797 * not already set for all VSIs connected to this switch. And also update the
7798 * unicast switch filter rules for the corresponding switch of the netdev.
7799 */
7800 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)7801 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7802 u16 __always_unused flags,
7803 struct netlink_ext_ack __always_unused *extack)
7804 {
7805 struct ice_netdev_priv *np = netdev_priv(dev);
7806 struct ice_pf *pf = np->vsi->back;
7807 struct nlattr *attr, *br_spec;
7808 struct ice_hw *hw = &pf->hw;
7809 struct ice_sw *pf_sw;
7810 int rem, v, err = 0;
7811
7812 pf_sw = pf->first_sw;
7813 /* find the attribute in the netlink message */
7814 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7815 if (!br_spec)
7816 return -EINVAL;
7817
7818 nla_for_each_nested(attr, br_spec, rem) {
7819 __u16 mode;
7820
7821 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7822 continue;
7823 mode = nla_get_u16(attr);
7824 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7825 return -EINVAL;
7826 /* Continue if bridge mode is not being flipped */
7827 if (mode == pf_sw->bridge_mode)
7828 continue;
7829 /* Iterates through the PF VSI list and update the loopback
7830 * mode of the VSI
7831 */
7832 ice_for_each_vsi(pf, v) {
7833 if (!pf->vsi[v])
7834 continue;
7835 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7836 if (err)
7837 return err;
7838 }
7839
7840 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7841 /* Update the unicast switch filter rules for the corresponding
7842 * switch of the netdev
7843 */
7844 err = ice_update_sw_rule_bridge_mode(hw);
7845 if (err) {
7846 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7847 mode, err,
7848 ice_aq_str(hw->adminq.sq_last_status));
7849 /* revert hw->evb_veb */
7850 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7851 return err;
7852 }
7853
7854 pf_sw->bridge_mode = mode;
7855 }
7856
7857 return 0;
7858 }
7859
7860 /**
7861 * ice_tx_timeout - Respond to a Tx Hang
7862 * @netdev: network interface device structure
7863 * @txqueue: Tx queue
7864 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)7865 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7866 {
7867 struct ice_netdev_priv *np = netdev_priv(netdev);
7868 struct ice_tx_ring *tx_ring = NULL;
7869 struct ice_vsi *vsi = np->vsi;
7870 struct ice_pf *pf = vsi->back;
7871 u32 i;
7872
7873 pf->tx_timeout_count++;
7874
7875 /* Check if PFC is enabled for the TC to which the queue belongs
7876 * to. If yes then Tx timeout is not caused by a hung queue, no
7877 * need to reset and rebuild
7878 */
7879 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7880 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7881 txqueue);
7882 return;
7883 }
7884
7885 /* now that we have an index, find the tx_ring struct */
7886 ice_for_each_txq(vsi, i)
7887 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7888 if (txqueue == vsi->tx_rings[i]->q_index) {
7889 tx_ring = vsi->tx_rings[i];
7890 break;
7891 }
7892
7893 /* Reset recovery level if enough time has elapsed after last timeout.
7894 * Also ensure no new reset action happens before next timeout period.
7895 */
7896 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7897 pf->tx_timeout_recovery_level = 1;
7898 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7899 netdev->watchdog_timeo)))
7900 return;
7901
7902 if (tx_ring) {
7903 struct ice_hw *hw = &pf->hw;
7904 u32 head, val = 0;
7905
7906 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7907 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7908 /* Read interrupt register */
7909 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7910
7911 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7912 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7913 head, tx_ring->next_to_use, val);
7914 }
7915
7916 pf->tx_timeout_last_recovery = jiffies;
7917 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7918 pf->tx_timeout_recovery_level, txqueue);
7919
7920 switch (pf->tx_timeout_recovery_level) {
7921 case 1:
7922 set_bit(ICE_PFR_REQ, pf->state);
7923 break;
7924 case 2:
7925 set_bit(ICE_CORER_REQ, pf->state);
7926 break;
7927 case 3:
7928 set_bit(ICE_GLOBR_REQ, pf->state);
7929 break;
7930 default:
7931 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7932 set_bit(ICE_DOWN, pf->state);
7933 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7934 set_bit(ICE_SERVICE_DIS, pf->state);
7935 break;
7936 }
7937
7938 ice_service_task_schedule(pf);
7939 pf->tx_timeout_recovery_level++;
7940 }
7941
7942 /**
7943 * ice_setup_tc_cls_flower - flower classifier offloads
7944 * @np: net device to configure
7945 * @filter_dev: device on which filter is added
7946 * @cls_flower: offload data
7947 */
7948 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)7949 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7950 struct net_device *filter_dev,
7951 struct flow_cls_offload *cls_flower)
7952 {
7953 struct ice_vsi *vsi = np->vsi;
7954
7955 if (cls_flower->common.chain_index)
7956 return -EOPNOTSUPP;
7957
7958 switch (cls_flower->command) {
7959 case FLOW_CLS_REPLACE:
7960 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7961 case FLOW_CLS_DESTROY:
7962 return ice_del_cls_flower(vsi, cls_flower);
7963 default:
7964 return -EINVAL;
7965 }
7966 }
7967
7968 /**
7969 * ice_setup_tc_block_cb - callback handler registered for TC block
7970 * @type: TC SETUP type
7971 * @type_data: TC flower offload data that contains user input
7972 * @cb_priv: netdev private data
7973 */
7974 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)7975 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7976 {
7977 struct ice_netdev_priv *np = cb_priv;
7978
7979 switch (type) {
7980 case TC_SETUP_CLSFLOWER:
7981 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7982 type_data);
7983 default:
7984 return -EOPNOTSUPP;
7985 }
7986 }
7987
7988 /**
7989 * ice_validate_mqprio_qopt - Validate TCF input parameters
7990 * @vsi: Pointer to VSI
7991 * @mqprio_qopt: input parameters for mqprio queue configuration
7992 *
7993 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7994 * needed), and make sure user doesn't specify qcount and BW rate limit
7995 * for TCs, which are more than "num_tc"
7996 */
7997 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)7998 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7999 struct tc_mqprio_qopt_offload *mqprio_qopt)
8000 {
8001 int non_power_of_2_qcount = 0;
8002 struct ice_pf *pf = vsi->back;
8003 int max_rss_q_cnt = 0;
8004 u64 sum_min_rate = 0;
8005 struct device *dev;
8006 int i, speed;
8007 u8 num_tc;
8008
8009 if (vsi->type != ICE_VSI_PF)
8010 return -EINVAL;
8011
8012 if (mqprio_qopt->qopt.offset[0] != 0 ||
8013 mqprio_qopt->qopt.num_tc < 1 ||
8014 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8015 return -EINVAL;
8016
8017 dev = ice_pf_to_dev(pf);
8018 vsi->ch_rss_size = 0;
8019 num_tc = mqprio_qopt->qopt.num_tc;
8020 speed = ice_get_link_speed_kbps(vsi);
8021
8022 for (i = 0; num_tc; i++) {
8023 int qcount = mqprio_qopt->qopt.count[i];
8024 u64 max_rate, min_rate, rem;
8025
8026 if (!qcount)
8027 return -EINVAL;
8028
8029 if (is_power_of_2(qcount)) {
8030 if (non_power_of_2_qcount &&
8031 qcount > non_power_of_2_qcount) {
8032 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8033 qcount, non_power_of_2_qcount);
8034 return -EINVAL;
8035 }
8036 if (qcount > max_rss_q_cnt)
8037 max_rss_q_cnt = qcount;
8038 } else {
8039 if (non_power_of_2_qcount &&
8040 qcount != non_power_of_2_qcount) {
8041 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8042 qcount, non_power_of_2_qcount);
8043 return -EINVAL;
8044 }
8045 if (qcount < max_rss_q_cnt) {
8046 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8047 qcount, max_rss_q_cnt);
8048 return -EINVAL;
8049 }
8050 max_rss_q_cnt = qcount;
8051 non_power_of_2_qcount = qcount;
8052 }
8053
8054 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8055 * converts the bandwidth rate limit into Bytes/s when
8056 * passing it down to the driver. So convert input bandwidth
8057 * from Bytes/s to Kbps
8058 */
8059 max_rate = mqprio_qopt->max_rate[i];
8060 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8061
8062 /* min_rate is minimum guaranteed rate and it can't be zero */
8063 min_rate = mqprio_qopt->min_rate[i];
8064 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8065 sum_min_rate += min_rate;
8066
8067 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8068 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8069 min_rate, ICE_MIN_BW_LIMIT);
8070 return -EINVAL;
8071 }
8072
8073 if (max_rate && max_rate > speed) {
8074 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8075 i, max_rate, speed);
8076 return -EINVAL;
8077 }
8078
8079 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8080 if (rem) {
8081 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8082 i, ICE_MIN_BW_LIMIT);
8083 return -EINVAL;
8084 }
8085
8086 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8087 if (rem) {
8088 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8089 i, ICE_MIN_BW_LIMIT);
8090 return -EINVAL;
8091 }
8092
8093 /* min_rate can't be more than max_rate, except when max_rate
8094 * is zero (implies max_rate sought is max line rate). In such
8095 * a case min_rate can be more than max.
8096 */
8097 if (max_rate && min_rate > max_rate) {
8098 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8099 min_rate, max_rate);
8100 return -EINVAL;
8101 }
8102
8103 if (i >= mqprio_qopt->qopt.num_tc - 1)
8104 break;
8105 if (mqprio_qopt->qopt.offset[i + 1] !=
8106 (mqprio_qopt->qopt.offset[i] + qcount))
8107 return -EINVAL;
8108 }
8109 if (vsi->num_rxq <
8110 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8111 return -EINVAL;
8112 if (vsi->num_txq <
8113 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8114 return -EINVAL;
8115
8116 if (sum_min_rate && sum_min_rate > (u64)speed) {
8117 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8118 sum_min_rate, speed);
8119 return -EINVAL;
8120 }
8121
8122 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8123 vsi->ch_rss_size = max_rss_q_cnt;
8124
8125 return 0;
8126 }
8127
8128 /**
8129 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8130 * @pf: ptr to PF device
8131 * @vsi: ptr to VSI
8132 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8133 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8134 {
8135 struct device *dev = ice_pf_to_dev(pf);
8136 bool added = false;
8137 struct ice_hw *hw;
8138 int flow;
8139
8140 if (!(vsi->num_gfltr || vsi->num_bfltr))
8141 return -EINVAL;
8142
8143 hw = &pf->hw;
8144 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8145 struct ice_fd_hw_prof *prof;
8146 int tun, status;
8147 u64 entry_h;
8148
8149 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8150 hw->fdir_prof[flow]->cnt))
8151 continue;
8152
8153 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8154 enum ice_flow_priority prio;
8155 u64 prof_id;
8156
8157 /* add this VSI to FDir profile for this flow */
8158 prio = ICE_FLOW_PRIO_NORMAL;
8159 prof = hw->fdir_prof[flow];
8160 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8161 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8162 prof->vsi_h[0], vsi->idx,
8163 prio, prof->fdir_seg[tun],
8164 &entry_h);
8165 if (status) {
8166 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8167 vsi->idx, flow);
8168 continue;
8169 }
8170
8171 prof->entry_h[prof->cnt][tun] = entry_h;
8172 }
8173
8174 /* store VSI for filter replay and delete */
8175 prof->vsi_h[prof->cnt] = vsi->idx;
8176 prof->cnt++;
8177
8178 added = true;
8179 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8180 flow);
8181 }
8182
8183 if (!added)
8184 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8185
8186 return 0;
8187 }
8188
8189 /**
8190 * ice_add_channel - add a channel by adding VSI
8191 * @pf: ptr to PF device
8192 * @sw_id: underlying HW switching element ID
8193 * @ch: ptr to channel structure
8194 *
8195 * Add a channel (VSI) using add_vsi and queue_map
8196 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8197 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8198 {
8199 struct device *dev = ice_pf_to_dev(pf);
8200 struct ice_vsi *vsi;
8201
8202 if (ch->type != ICE_VSI_CHNL) {
8203 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8204 return -EINVAL;
8205 }
8206
8207 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8208 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8209 dev_err(dev, "create chnl VSI failure\n");
8210 return -EINVAL;
8211 }
8212
8213 ice_add_vsi_to_fdir(pf, vsi);
8214
8215 ch->sw_id = sw_id;
8216 ch->vsi_num = vsi->vsi_num;
8217 ch->info.mapping_flags = vsi->info.mapping_flags;
8218 ch->ch_vsi = vsi;
8219 /* set the back pointer of channel for newly created VSI */
8220 vsi->ch = ch;
8221
8222 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8223 sizeof(vsi->info.q_mapping));
8224 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8225 sizeof(vsi->info.tc_mapping));
8226
8227 return 0;
8228 }
8229
8230 /**
8231 * ice_chnl_cfg_res
8232 * @vsi: the VSI being setup
8233 * @ch: ptr to channel structure
8234 *
8235 * Configure channel specific resources such as rings, vector.
8236 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8237 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8238 {
8239 int i;
8240
8241 for (i = 0; i < ch->num_txq; i++) {
8242 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8243 struct ice_ring_container *rc;
8244 struct ice_tx_ring *tx_ring;
8245 struct ice_rx_ring *rx_ring;
8246
8247 tx_ring = vsi->tx_rings[ch->base_q + i];
8248 rx_ring = vsi->rx_rings[ch->base_q + i];
8249 if (!tx_ring || !rx_ring)
8250 continue;
8251
8252 /* setup ring being channel enabled */
8253 tx_ring->ch = ch;
8254 rx_ring->ch = ch;
8255
8256 /* following code block sets up vector specific attributes */
8257 tx_q_vector = tx_ring->q_vector;
8258 rx_q_vector = rx_ring->q_vector;
8259 if (!tx_q_vector && !rx_q_vector)
8260 continue;
8261
8262 if (tx_q_vector) {
8263 tx_q_vector->ch = ch;
8264 /* setup Tx and Rx ITR setting if DIM is off */
8265 rc = &tx_q_vector->tx;
8266 if (!ITR_IS_DYNAMIC(rc))
8267 ice_write_itr(rc, rc->itr_setting);
8268 }
8269 if (rx_q_vector) {
8270 rx_q_vector->ch = ch;
8271 /* setup Tx and Rx ITR setting if DIM is off */
8272 rc = &rx_q_vector->rx;
8273 if (!ITR_IS_DYNAMIC(rc))
8274 ice_write_itr(rc, rc->itr_setting);
8275 }
8276 }
8277
8278 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8279 * GLINT_ITR register would have written to perform in-context
8280 * update, hence perform flush
8281 */
8282 if (ch->num_txq || ch->num_rxq)
8283 ice_flush(&vsi->back->hw);
8284 }
8285
8286 /**
8287 * ice_cfg_chnl_all_res - configure channel resources
8288 * @vsi: pte to main_vsi
8289 * @ch: ptr to channel structure
8290 *
8291 * This function configures channel specific resources such as flow-director
8292 * counter index, and other resources such as queues, vectors, ITR settings
8293 */
8294 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8295 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8296 {
8297 /* configure channel (aka ADQ) resources such as queues, vectors,
8298 * ITR settings for channel specific vectors and anything else
8299 */
8300 ice_chnl_cfg_res(vsi, ch);
8301 }
8302
8303 /**
8304 * ice_setup_hw_channel - setup new channel
8305 * @pf: ptr to PF device
8306 * @vsi: the VSI being setup
8307 * @ch: ptr to channel structure
8308 * @sw_id: underlying HW switching element ID
8309 * @type: type of channel to be created (VMDq2/VF)
8310 *
8311 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8312 * and configures Tx rings accordingly
8313 */
8314 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8315 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8316 struct ice_channel *ch, u16 sw_id, u8 type)
8317 {
8318 struct device *dev = ice_pf_to_dev(pf);
8319 int ret;
8320
8321 ch->base_q = vsi->next_base_q;
8322 ch->type = type;
8323
8324 ret = ice_add_channel(pf, sw_id, ch);
8325 if (ret) {
8326 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8327 return ret;
8328 }
8329
8330 /* configure/setup ADQ specific resources */
8331 ice_cfg_chnl_all_res(vsi, ch);
8332
8333 /* make sure to update the next_base_q so that subsequent channel's
8334 * (aka ADQ) VSI queue map is correct
8335 */
8336 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8337 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8338 ch->num_rxq);
8339
8340 return 0;
8341 }
8342
8343 /**
8344 * ice_setup_channel - setup new channel using uplink element
8345 * @pf: ptr to PF device
8346 * @vsi: the VSI being setup
8347 * @ch: ptr to channel structure
8348 *
8349 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8350 * and uplink switching element
8351 */
8352 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8353 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8354 struct ice_channel *ch)
8355 {
8356 struct device *dev = ice_pf_to_dev(pf);
8357 u16 sw_id;
8358 int ret;
8359
8360 if (vsi->type != ICE_VSI_PF) {
8361 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8362 return false;
8363 }
8364
8365 sw_id = pf->first_sw->sw_id;
8366
8367 /* create channel (VSI) */
8368 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8369 if (ret) {
8370 dev_err(dev, "failed to setup hw_channel\n");
8371 return false;
8372 }
8373 dev_dbg(dev, "successfully created channel()\n");
8374
8375 return ch->ch_vsi ? true : false;
8376 }
8377
8378 /**
8379 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8380 * @vsi: VSI to be configured
8381 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8382 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8383 */
8384 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8385 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8386 {
8387 int err;
8388
8389 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8390 if (err)
8391 return err;
8392
8393 return ice_set_max_bw_limit(vsi, max_tx_rate);
8394 }
8395
8396 /**
8397 * ice_create_q_channel - function to create channel
8398 * @vsi: VSI to be configured
8399 * @ch: ptr to channel (it contains channel specific params)
8400 *
8401 * This function creates channel (VSI) using num_queues specified by user,
8402 * reconfigs RSS if needed.
8403 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8404 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8405 {
8406 struct ice_pf *pf = vsi->back;
8407 struct device *dev;
8408
8409 if (!ch)
8410 return -EINVAL;
8411
8412 dev = ice_pf_to_dev(pf);
8413 if (!ch->num_txq || !ch->num_rxq) {
8414 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8415 return -EINVAL;
8416 }
8417
8418 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8419 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8420 vsi->cnt_q_avail, ch->num_txq);
8421 return -EINVAL;
8422 }
8423
8424 if (!ice_setup_channel(pf, vsi, ch)) {
8425 dev_info(dev, "Failed to setup channel\n");
8426 return -EINVAL;
8427 }
8428 /* configure BW rate limit */
8429 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8430 int ret;
8431
8432 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8433 ch->min_tx_rate);
8434 if (ret)
8435 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8436 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8437 else
8438 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8439 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8440 }
8441
8442 vsi->cnt_q_avail -= ch->num_txq;
8443
8444 return 0;
8445 }
8446
8447 /**
8448 * ice_rem_all_chnl_fltrs - removes all channel filters
8449 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8450 *
8451 * Remove all advanced switch filters only if they are channel specific
8452 * tc-flower based filter
8453 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8454 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8455 {
8456 struct ice_tc_flower_fltr *fltr;
8457 struct hlist_node *node;
8458
8459 /* to remove all channel filters, iterate an ordered list of filters */
8460 hlist_for_each_entry_safe(fltr, node,
8461 &pf->tc_flower_fltr_list,
8462 tc_flower_node) {
8463 struct ice_rule_query_data rule;
8464 int status;
8465
8466 /* for now process only channel specific filters */
8467 if (!ice_is_chnl_fltr(fltr))
8468 continue;
8469
8470 rule.rid = fltr->rid;
8471 rule.rule_id = fltr->rule_id;
8472 rule.vsi_handle = fltr->dest_vsi_handle;
8473 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8474 if (status) {
8475 if (status == -ENOENT)
8476 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8477 rule.rule_id);
8478 else
8479 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8480 status);
8481 } else if (fltr->dest_vsi) {
8482 /* update advanced switch filter count */
8483 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8484 u32 flags = fltr->flags;
8485
8486 fltr->dest_vsi->num_chnl_fltr--;
8487 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8488 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8489 pf->num_dmac_chnl_fltrs--;
8490 }
8491 }
8492
8493 hlist_del(&fltr->tc_flower_node);
8494 kfree(fltr);
8495 }
8496 }
8497
8498 /**
8499 * ice_remove_q_channels - Remove queue channels for the TCs
8500 * @vsi: VSI to be configured
8501 * @rem_fltr: delete advanced switch filter or not
8502 *
8503 * Remove queue channels for the TCs
8504 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8505 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8506 {
8507 struct ice_channel *ch, *ch_tmp;
8508 struct ice_pf *pf = vsi->back;
8509 int i;
8510
8511 /* remove all tc-flower based filter if they are channel filters only */
8512 if (rem_fltr)
8513 ice_rem_all_chnl_fltrs(pf);
8514
8515 /* remove ntuple filters since queue configuration is being changed */
8516 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8517 struct ice_hw *hw = &pf->hw;
8518
8519 mutex_lock(&hw->fdir_fltr_lock);
8520 ice_fdir_del_all_fltrs(vsi);
8521 mutex_unlock(&hw->fdir_fltr_lock);
8522 }
8523
8524 /* perform cleanup for channels if they exist */
8525 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8526 struct ice_vsi *ch_vsi;
8527
8528 list_del(&ch->list);
8529 ch_vsi = ch->ch_vsi;
8530 if (!ch_vsi) {
8531 kfree(ch);
8532 continue;
8533 }
8534
8535 /* Reset queue contexts */
8536 for (i = 0; i < ch->num_rxq; i++) {
8537 struct ice_tx_ring *tx_ring;
8538 struct ice_rx_ring *rx_ring;
8539
8540 tx_ring = vsi->tx_rings[ch->base_q + i];
8541 rx_ring = vsi->rx_rings[ch->base_q + i];
8542 if (tx_ring) {
8543 tx_ring->ch = NULL;
8544 if (tx_ring->q_vector)
8545 tx_ring->q_vector->ch = NULL;
8546 }
8547 if (rx_ring) {
8548 rx_ring->ch = NULL;
8549 if (rx_ring->q_vector)
8550 rx_ring->q_vector->ch = NULL;
8551 }
8552 }
8553
8554 /* Release FD resources for the channel VSI */
8555 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8556
8557 /* clear the VSI from scheduler tree */
8558 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8559
8560 /* Delete VSI from FW, PF and HW VSI arrays */
8561 ice_vsi_delete(ch->ch_vsi);
8562
8563 /* free the channel */
8564 kfree(ch);
8565 }
8566
8567 /* clear the channel VSI map which is stored in main VSI */
8568 ice_for_each_chnl_tc(i)
8569 vsi->tc_map_vsi[i] = NULL;
8570
8571 /* reset main VSI's all TC information */
8572 vsi->all_enatc = 0;
8573 vsi->all_numtc = 0;
8574 }
8575
8576 /**
8577 * ice_rebuild_channels - rebuild channel
8578 * @pf: ptr to PF
8579 *
8580 * Recreate channel VSIs and replay filters
8581 */
ice_rebuild_channels(struct ice_pf * pf)8582 static int ice_rebuild_channels(struct ice_pf *pf)
8583 {
8584 struct device *dev = ice_pf_to_dev(pf);
8585 struct ice_vsi *main_vsi;
8586 bool rem_adv_fltr = true;
8587 struct ice_channel *ch;
8588 struct ice_vsi *vsi;
8589 int tc_idx = 1;
8590 int i, err;
8591
8592 main_vsi = ice_get_main_vsi(pf);
8593 if (!main_vsi)
8594 return 0;
8595
8596 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8597 main_vsi->old_numtc == 1)
8598 return 0; /* nothing to be done */
8599
8600 /* reconfigure main VSI based on old value of TC and cached values
8601 * for MQPRIO opts
8602 */
8603 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8604 if (err) {
8605 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8606 main_vsi->old_ena_tc, main_vsi->vsi_num);
8607 return err;
8608 }
8609
8610 /* rebuild ADQ VSIs */
8611 ice_for_each_vsi(pf, i) {
8612 enum ice_vsi_type type;
8613
8614 vsi = pf->vsi[i];
8615 if (!vsi || vsi->type != ICE_VSI_CHNL)
8616 continue;
8617
8618 type = vsi->type;
8619
8620 /* rebuild ADQ VSI */
8621 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8622 if (err) {
8623 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8624 ice_vsi_type_str(type), vsi->idx, err);
8625 goto cleanup;
8626 }
8627
8628 /* Re-map HW VSI number, using VSI handle that has been
8629 * previously validated in ice_replay_vsi() call above
8630 */
8631 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8632
8633 /* replay filters for the VSI */
8634 err = ice_replay_vsi(&pf->hw, vsi->idx);
8635 if (err) {
8636 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8637 ice_vsi_type_str(type), err, vsi->idx);
8638 rem_adv_fltr = false;
8639 goto cleanup;
8640 }
8641 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8642 ice_vsi_type_str(type), vsi->idx);
8643
8644 /* store ADQ VSI at correct TC index in main VSI's
8645 * map of TC to VSI
8646 */
8647 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8648 }
8649
8650 /* ADQ VSI(s) has been rebuilt successfully, so setup
8651 * channel for main VSI's Tx and Rx rings
8652 */
8653 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8654 struct ice_vsi *ch_vsi;
8655
8656 ch_vsi = ch->ch_vsi;
8657 if (!ch_vsi)
8658 continue;
8659
8660 /* reconfig channel resources */
8661 ice_cfg_chnl_all_res(main_vsi, ch);
8662
8663 /* replay BW rate limit if it is non-zero */
8664 if (!ch->max_tx_rate && !ch->min_tx_rate)
8665 continue;
8666
8667 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8668 ch->min_tx_rate);
8669 if (err)
8670 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8671 err, ch->max_tx_rate, ch->min_tx_rate,
8672 ch_vsi->vsi_num);
8673 else
8674 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8675 ch->max_tx_rate, ch->min_tx_rate,
8676 ch_vsi->vsi_num);
8677 }
8678
8679 /* reconfig RSS for main VSI */
8680 if (main_vsi->ch_rss_size)
8681 ice_vsi_cfg_rss_lut_key(main_vsi);
8682
8683 return 0;
8684
8685 cleanup:
8686 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8687 return err;
8688 }
8689
8690 /**
8691 * ice_create_q_channels - Add queue channel for the given TCs
8692 * @vsi: VSI to be configured
8693 *
8694 * Configures queue channel mapping to the given TCs
8695 */
ice_create_q_channels(struct ice_vsi * vsi)8696 static int ice_create_q_channels(struct ice_vsi *vsi)
8697 {
8698 struct ice_pf *pf = vsi->back;
8699 struct ice_channel *ch;
8700 int ret = 0, i;
8701
8702 ice_for_each_chnl_tc(i) {
8703 if (!(vsi->all_enatc & BIT(i)))
8704 continue;
8705
8706 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8707 if (!ch) {
8708 ret = -ENOMEM;
8709 goto err_free;
8710 }
8711 INIT_LIST_HEAD(&ch->list);
8712 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8713 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8714 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8715 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8716 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8717
8718 /* convert to Kbits/s */
8719 if (ch->max_tx_rate)
8720 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8721 ICE_BW_KBPS_DIVISOR);
8722 if (ch->min_tx_rate)
8723 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8724 ICE_BW_KBPS_DIVISOR);
8725
8726 ret = ice_create_q_channel(vsi, ch);
8727 if (ret) {
8728 dev_err(ice_pf_to_dev(pf),
8729 "failed creating channel TC:%d\n", i);
8730 kfree(ch);
8731 goto err_free;
8732 }
8733 list_add_tail(&ch->list, &vsi->ch_list);
8734 vsi->tc_map_vsi[i] = ch->ch_vsi;
8735 dev_dbg(ice_pf_to_dev(pf),
8736 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8737 }
8738 return 0;
8739
8740 err_free:
8741 ice_remove_q_channels(vsi, false);
8742
8743 return ret;
8744 }
8745
8746 /**
8747 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8748 * @netdev: net device to configure
8749 * @type_data: TC offload data
8750 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)8751 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8752 {
8753 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8754 struct ice_netdev_priv *np = netdev_priv(netdev);
8755 struct ice_vsi *vsi = np->vsi;
8756 struct ice_pf *pf = vsi->back;
8757 u16 mode, ena_tc_qdisc = 0;
8758 int cur_txq, cur_rxq;
8759 u8 hw = 0, num_tcf;
8760 struct device *dev;
8761 int ret, i;
8762
8763 dev = ice_pf_to_dev(pf);
8764 num_tcf = mqprio_qopt->qopt.num_tc;
8765 hw = mqprio_qopt->qopt.hw;
8766 mode = mqprio_qopt->mode;
8767 if (!hw) {
8768 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8769 vsi->ch_rss_size = 0;
8770 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8771 goto config_tcf;
8772 }
8773
8774 /* Generate queue region map for number of TCF requested */
8775 for (i = 0; i < num_tcf; i++)
8776 ena_tc_qdisc |= BIT(i);
8777
8778 switch (mode) {
8779 case TC_MQPRIO_MODE_CHANNEL:
8780
8781 if (pf->hw.port_info->is_custom_tx_enabled) {
8782 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8783 return -EBUSY;
8784 }
8785 ice_tear_down_devlink_rate_tree(pf);
8786
8787 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8788 if (ret) {
8789 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8790 ret);
8791 return ret;
8792 }
8793 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8794 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8795 /* don't assume state of hw_tc_offload during driver load
8796 * and set the flag for TC flower filter if hw_tc_offload
8797 * already ON
8798 */
8799 if (vsi->netdev->features & NETIF_F_HW_TC)
8800 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8801 break;
8802 default:
8803 return -EINVAL;
8804 }
8805
8806 config_tcf:
8807
8808 /* Requesting same TCF configuration as already enabled */
8809 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8810 mode != TC_MQPRIO_MODE_CHANNEL)
8811 return 0;
8812
8813 /* Pause VSI queues */
8814 ice_dis_vsi(vsi, true);
8815
8816 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8817 ice_remove_q_channels(vsi, true);
8818
8819 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8820 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8821 num_online_cpus());
8822 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8823 num_online_cpus());
8824 } else {
8825 /* logic to rebuild VSI, same like ethtool -L */
8826 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8827
8828 for (i = 0; i < num_tcf; i++) {
8829 if (!(ena_tc_qdisc & BIT(i)))
8830 continue;
8831
8832 offset = vsi->mqprio_qopt.qopt.offset[i];
8833 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8834 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8835 }
8836 vsi->req_txq = offset + qcount_tx;
8837 vsi->req_rxq = offset + qcount_rx;
8838
8839 /* store away original rss_size info, so that it gets reused
8840 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8841 * determine, what should be the rss_sizefor main VSI
8842 */
8843 vsi->orig_rss_size = vsi->rss_size;
8844 }
8845
8846 /* save current values of Tx and Rx queues before calling VSI rebuild
8847 * for fallback option
8848 */
8849 cur_txq = vsi->num_txq;
8850 cur_rxq = vsi->num_rxq;
8851
8852 /* proceed with rebuild main VSI using correct number of queues */
8853 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8854 if (ret) {
8855 /* fallback to current number of queues */
8856 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8857 vsi->req_txq = cur_txq;
8858 vsi->req_rxq = cur_rxq;
8859 clear_bit(ICE_RESET_FAILED, pf->state);
8860 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8861 dev_err(dev, "Rebuild of main VSI failed again\n");
8862 return ret;
8863 }
8864 }
8865
8866 vsi->all_numtc = num_tcf;
8867 vsi->all_enatc = ena_tc_qdisc;
8868 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8869 if (ret) {
8870 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8871 vsi->vsi_num);
8872 goto exit;
8873 }
8874
8875 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8876 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8877 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8878
8879 /* set TC0 rate limit if specified */
8880 if (max_tx_rate || min_tx_rate) {
8881 /* convert to Kbits/s */
8882 if (max_tx_rate)
8883 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8884 if (min_tx_rate)
8885 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8886
8887 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8888 if (!ret) {
8889 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8890 max_tx_rate, min_tx_rate, vsi->vsi_num);
8891 } else {
8892 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8893 max_tx_rate, min_tx_rate, vsi->vsi_num);
8894 goto exit;
8895 }
8896 }
8897 ret = ice_create_q_channels(vsi);
8898 if (ret) {
8899 netdev_err(netdev, "failed configuring queue channels\n");
8900 goto exit;
8901 } else {
8902 netdev_dbg(netdev, "successfully configured channels\n");
8903 }
8904 }
8905
8906 if (vsi->ch_rss_size)
8907 ice_vsi_cfg_rss_lut_key(vsi);
8908
8909 exit:
8910 /* if error, reset the all_numtc and all_enatc */
8911 if (ret) {
8912 vsi->all_numtc = 0;
8913 vsi->all_enatc = 0;
8914 }
8915 /* resume VSI */
8916 ice_ena_vsi(vsi, true);
8917
8918 return ret;
8919 }
8920
8921 static LIST_HEAD(ice_block_cb_list);
8922
8923 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8924 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8925 void *type_data)
8926 {
8927 struct ice_netdev_priv *np = netdev_priv(netdev);
8928 struct ice_pf *pf = np->vsi->back;
8929 bool locked = false;
8930 int err;
8931
8932 switch (type) {
8933 case TC_SETUP_BLOCK:
8934 return flow_block_cb_setup_simple(type_data,
8935 &ice_block_cb_list,
8936 ice_setup_tc_block_cb,
8937 np, np, true);
8938 case TC_SETUP_QDISC_MQPRIO:
8939 if (ice_is_eswitch_mode_switchdev(pf)) {
8940 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
8941 return -EOPNOTSUPP;
8942 }
8943
8944 if (pf->adev) {
8945 mutex_lock(&pf->adev_mutex);
8946 device_lock(&pf->adev->dev);
8947 locked = true;
8948 if (pf->adev->dev.driver) {
8949 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
8950 err = -EBUSY;
8951 goto adev_unlock;
8952 }
8953 }
8954
8955 /* setup traffic classifier for receive side */
8956 mutex_lock(&pf->tc_mutex);
8957 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8958 mutex_unlock(&pf->tc_mutex);
8959
8960 adev_unlock:
8961 if (locked) {
8962 device_unlock(&pf->adev->dev);
8963 mutex_unlock(&pf->adev_mutex);
8964 }
8965 return err;
8966 default:
8967 return -EOPNOTSUPP;
8968 }
8969 return -EOPNOTSUPP;
8970 }
8971
8972 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)8973 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8974 struct net_device *netdev)
8975 {
8976 struct ice_indr_block_priv *cb_priv;
8977
8978 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8979 if (!cb_priv->netdev)
8980 return NULL;
8981 if (cb_priv->netdev == netdev)
8982 return cb_priv;
8983 }
8984 return NULL;
8985 }
8986
8987 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)8988 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8989 void *indr_priv)
8990 {
8991 struct ice_indr_block_priv *priv = indr_priv;
8992 struct ice_netdev_priv *np = priv->np;
8993
8994 switch (type) {
8995 case TC_SETUP_CLSFLOWER:
8996 return ice_setup_tc_cls_flower(np, priv->netdev,
8997 (struct flow_cls_offload *)
8998 type_data);
8999 default:
9000 return -EOPNOTSUPP;
9001 }
9002 }
9003
9004 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9005 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9006 struct ice_netdev_priv *np,
9007 struct flow_block_offload *f, void *data,
9008 void (*cleanup)(struct flow_block_cb *block_cb))
9009 {
9010 struct ice_indr_block_priv *indr_priv;
9011 struct flow_block_cb *block_cb;
9012
9013 if (!ice_is_tunnel_supported(netdev) &&
9014 !(is_vlan_dev(netdev) &&
9015 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9016 return -EOPNOTSUPP;
9017
9018 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9019 return -EOPNOTSUPP;
9020
9021 switch (f->command) {
9022 case FLOW_BLOCK_BIND:
9023 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9024 if (indr_priv)
9025 return -EEXIST;
9026
9027 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9028 if (!indr_priv)
9029 return -ENOMEM;
9030
9031 indr_priv->netdev = netdev;
9032 indr_priv->np = np;
9033 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9034
9035 block_cb =
9036 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9037 indr_priv, indr_priv,
9038 ice_rep_indr_tc_block_unbind,
9039 f, netdev, sch, data, np,
9040 cleanup);
9041
9042 if (IS_ERR(block_cb)) {
9043 list_del(&indr_priv->list);
9044 kfree(indr_priv);
9045 return PTR_ERR(block_cb);
9046 }
9047 flow_block_cb_add(block_cb, f);
9048 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9049 break;
9050 case FLOW_BLOCK_UNBIND:
9051 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9052 if (!indr_priv)
9053 return -ENOENT;
9054
9055 block_cb = flow_block_cb_lookup(f->block,
9056 ice_indr_setup_block_cb,
9057 indr_priv);
9058 if (!block_cb)
9059 return -ENOENT;
9060
9061 flow_indr_block_cb_remove(block_cb, f);
9062
9063 list_del(&block_cb->driver_list);
9064 break;
9065 default:
9066 return -EOPNOTSUPP;
9067 }
9068 return 0;
9069 }
9070
9071 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9072 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9073 void *cb_priv, enum tc_setup_type type, void *type_data,
9074 void *data,
9075 void (*cleanup)(struct flow_block_cb *block_cb))
9076 {
9077 switch (type) {
9078 case TC_SETUP_BLOCK:
9079 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9080 data, cleanup);
9081
9082 default:
9083 return -EOPNOTSUPP;
9084 }
9085 }
9086
9087 /**
9088 * ice_open - Called when a network interface becomes active
9089 * @netdev: network interface device structure
9090 *
9091 * The open entry point is called when a network interface is made
9092 * active by the system (IFF_UP). At this point all resources needed
9093 * for transmit and receive operations are allocated, the interrupt
9094 * handler is registered with the OS, the netdev watchdog is enabled,
9095 * and the stack is notified that the interface is ready.
9096 *
9097 * Returns 0 on success, negative value on failure
9098 */
ice_open(struct net_device * netdev)9099 int ice_open(struct net_device *netdev)
9100 {
9101 struct ice_netdev_priv *np = netdev_priv(netdev);
9102 struct ice_pf *pf = np->vsi->back;
9103
9104 if (ice_is_reset_in_progress(pf->state)) {
9105 netdev_err(netdev, "can't open net device while reset is in progress");
9106 return -EBUSY;
9107 }
9108
9109 return ice_open_internal(netdev);
9110 }
9111
9112 /**
9113 * ice_open_internal - Called when a network interface becomes active
9114 * @netdev: network interface device structure
9115 *
9116 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9117 * handling routine
9118 *
9119 * Returns 0 on success, negative value on failure
9120 */
ice_open_internal(struct net_device * netdev)9121 int ice_open_internal(struct net_device *netdev)
9122 {
9123 struct ice_netdev_priv *np = netdev_priv(netdev);
9124 struct ice_vsi *vsi = np->vsi;
9125 struct ice_pf *pf = vsi->back;
9126 struct ice_port_info *pi;
9127 int err;
9128
9129 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9130 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9131 return -EIO;
9132 }
9133
9134 netif_carrier_off(netdev);
9135
9136 pi = vsi->port_info;
9137 err = ice_update_link_info(pi);
9138 if (err) {
9139 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9140 return err;
9141 }
9142
9143 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9144
9145 /* Set PHY if there is media, otherwise, turn off PHY */
9146 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9147 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9148 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9149 err = ice_init_phy_user_cfg(pi);
9150 if (err) {
9151 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9152 err);
9153 return err;
9154 }
9155 }
9156
9157 err = ice_configure_phy(vsi);
9158 if (err) {
9159 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9160 err);
9161 return err;
9162 }
9163 } else {
9164 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9165 ice_set_link(vsi, false);
9166 }
9167
9168 err = ice_vsi_open(vsi);
9169 if (err)
9170 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9171 vsi->vsi_num, vsi->vsw->sw_id);
9172
9173 /* Update existing tunnels information */
9174 udp_tunnel_get_rx_info(netdev);
9175
9176 return err;
9177 }
9178
9179 /**
9180 * ice_stop - Disables a network interface
9181 * @netdev: network interface device structure
9182 *
9183 * The stop entry point is called when an interface is de-activated by the OS,
9184 * and the netdevice enters the DOWN state. The hardware is still under the
9185 * driver's control, but the netdev interface is disabled.
9186 *
9187 * Returns success only - not allowed to fail
9188 */
ice_stop(struct net_device * netdev)9189 int ice_stop(struct net_device *netdev)
9190 {
9191 struct ice_netdev_priv *np = netdev_priv(netdev);
9192 struct ice_vsi *vsi = np->vsi;
9193 struct ice_pf *pf = vsi->back;
9194
9195 if (ice_is_reset_in_progress(pf->state)) {
9196 netdev_err(netdev, "can't stop net device while reset is in progress");
9197 return -EBUSY;
9198 }
9199
9200 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9201 int link_err = ice_force_phys_link_state(vsi, false);
9202
9203 if (link_err) {
9204 if (link_err == -ENOMEDIUM)
9205 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9206 vsi->vsi_num);
9207 else
9208 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9209 vsi->vsi_num, link_err);
9210
9211 ice_vsi_close(vsi);
9212 return -EIO;
9213 }
9214 }
9215
9216 ice_vsi_close(vsi);
9217
9218 return 0;
9219 }
9220
9221 /**
9222 * ice_features_check - Validate encapsulated packet conforms to limits
9223 * @skb: skb buffer
9224 * @netdev: This port's netdev
9225 * @features: Offload features that the stack believes apply
9226 */
9227 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9228 ice_features_check(struct sk_buff *skb,
9229 struct net_device __always_unused *netdev,
9230 netdev_features_t features)
9231 {
9232 bool gso = skb_is_gso(skb);
9233 size_t len;
9234
9235 /* No point in doing any of this if neither checksum nor GSO are
9236 * being requested for this frame. We can rule out both by just
9237 * checking for CHECKSUM_PARTIAL
9238 */
9239 if (skb->ip_summed != CHECKSUM_PARTIAL)
9240 return features;
9241
9242 /* We cannot support GSO if the MSS is going to be less than
9243 * 64 bytes. If it is then we need to drop support for GSO.
9244 */
9245 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9246 features &= ~NETIF_F_GSO_MASK;
9247
9248 len = skb_network_offset(skb);
9249 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9250 goto out_rm_features;
9251
9252 len = skb_network_header_len(skb);
9253 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9254 goto out_rm_features;
9255
9256 if (skb->encapsulation) {
9257 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9258 * the case of IPIP frames, the transport header pointer is
9259 * after the inner header! So check to make sure that this
9260 * is a GRE or UDP_TUNNEL frame before doing that math.
9261 */
9262 if (gso && (skb_shinfo(skb)->gso_type &
9263 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9264 len = skb_inner_network_header(skb) -
9265 skb_transport_header(skb);
9266 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9267 goto out_rm_features;
9268 }
9269
9270 len = skb_inner_network_header_len(skb);
9271 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9272 goto out_rm_features;
9273 }
9274
9275 return features;
9276 out_rm_features:
9277 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9278 }
9279
9280 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9281 .ndo_open = ice_open,
9282 .ndo_stop = ice_stop,
9283 .ndo_start_xmit = ice_start_xmit,
9284 .ndo_set_mac_address = ice_set_mac_address,
9285 .ndo_validate_addr = eth_validate_addr,
9286 .ndo_change_mtu = ice_change_mtu,
9287 .ndo_get_stats64 = ice_get_stats64,
9288 .ndo_tx_timeout = ice_tx_timeout,
9289 .ndo_bpf = ice_xdp_safe_mode,
9290 };
9291
9292 static const struct net_device_ops ice_netdev_ops = {
9293 .ndo_open = ice_open,
9294 .ndo_stop = ice_stop,
9295 .ndo_start_xmit = ice_start_xmit,
9296 .ndo_select_queue = ice_select_queue,
9297 .ndo_features_check = ice_features_check,
9298 .ndo_fix_features = ice_fix_features,
9299 .ndo_set_rx_mode = ice_set_rx_mode,
9300 .ndo_set_mac_address = ice_set_mac_address,
9301 .ndo_validate_addr = eth_validate_addr,
9302 .ndo_change_mtu = ice_change_mtu,
9303 .ndo_get_stats64 = ice_get_stats64,
9304 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9305 .ndo_eth_ioctl = ice_eth_ioctl,
9306 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9307 .ndo_set_vf_mac = ice_set_vf_mac,
9308 .ndo_get_vf_config = ice_get_vf_cfg,
9309 .ndo_set_vf_trust = ice_set_vf_trust,
9310 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9311 .ndo_set_vf_link_state = ice_set_vf_link_state,
9312 .ndo_get_vf_stats = ice_get_vf_stats,
9313 .ndo_set_vf_rate = ice_set_vf_bw,
9314 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9315 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9316 .ndo_setup_tc = ice_setup_tc,
9317 .ndo_set_features = ice_set_features,
9318 .ndo_bridge_getlink = ice_bridge_getlink,
9319 .ndo_bridge_setlink = ice_bridge_setlink,
9320 .ndo_fdb_add = ice_fdb_add,
9321 .ndo_fdb_del = ice_fdb_del,
9322 #ifdef CONFIG_RFS_ACCEL
9323 .ndo_rx_flow_steer = ice_rx_flow_steer,
9324 #endif
9325 .ndo_tx_timeout = ice_tx_timeout,
9326 .ndo_bpf = ice_xdp,
9327 .ndo_xdp_xmit = ice_xdp_xmit,
9328 .ndo_xsk_wakeup = ice_xsk_wakeup,
9329 };
9330