// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ /* Intel(R) Ethernet Connection E800 Series Linux Driver */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include "ice.h" #include "ice_base.h" #include "ice_lib.h" #include "ice_fltr.h" #include "ice_dcb_lib.h" #include "ice_dcb_nl.h" #include "ice_devlink.h" /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the * ice tracepoint functions. This must be done exactly once across the * ice driver. */ #define CREATE_TRACE_POINTS #include "ice_trace.h" #include "ice_eswitch.h" #include "ice_tc_lib.h" #include "ice_vsi_vlan_ops.h" #include #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" static const char ice_driver_string[] = DRV_SUMMARY; static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ #define ICE_DDP_PKG_PATH "intel/ice/ddp/" #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION(DRV_SUMMARY); MODULE_LICENSE("GPL v2"); MODULE_FIRMWARE(ICE_DDP_PKG_FILE); static int debug = -1; module_param(debug, int, 0644); #ifndef CONFIG_DYNAMIC_DEBUG MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); #else MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); #endif /* !CONFIG_DYNAMIC_DEBUG */ DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); EXPORT_SYMBOL(ice_xdp_locking_key); /** * ice_hw_to_dev - Get device pointer from the hardware structure * @hw: pointer to the device HW structure * * Used to access the device pointer from compilation units which can't easily * include the definition of struct ice_pf without leading to circular header * dependencies. */ struct device *ice_hw_to_dev(struct ice_hw *hw) { struct ice_pf *pf = container_of(hw, struct ice_pf, hw); return &pf->pdev->dev; } static struct workqueue_struct *ice_wq; struct workqueue_struct *ice_lag_wq; static const struct net_device_ops ice_netdev_safe_mode_ops; static const struct net_device_ops ice_netdev_ops; static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); static void ice_vsi_release_all(struct ice_pf *pf); static int ice_rebuild_channels(struct ice_pf *pf); static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); static int ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv, enum tc_setup_type type, void *type_data, void *data, void (*cleanup)(struct flow_block_cb *block_cb)); bool netif_is_ice(const struct net_device *dev) { return dev && (dev->netdev_ops == &ice_netdev_ops || dev->netdev_ops == &ice_netdev_safe_mode_ops); } /** * ice_get_tx_pending - returns number of Tx descriptors not processed * @ring: the ring of descriptors */ static u16 ice_get_tx_pending(struct ice_tx_ring *ring) { u16 head, tail; head = ring->next_to_clean; tail = ring->next_to_use; if (head != tail) return (head < tail) ? tail - head : (tail + ring->count - head); return 0; } /** * ice_check_for_hang_subtask - check for and recover hung queues * @pf: pointer to PF struct */ static void ice_check_for_hang_subtask(struct ice_pf *pf) { struct ice_vsi *vsi = NULL; struct ice_hw *hw; unsigned int i; int packets; u32 v; ice_for_each_vsi(pf, v) if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { vsi = pf->vsi[v]; break; } if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) return; if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) return; hw = &vsi->back->hw; ice_for_each_txq(vsi, i) { struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; struct ice_ring_stats *ring_stats; if (!tx_ring) continue; if (ice_ring_ch_enabled(tx_ring)) continue; ring_stats = tx_ring->ring_stats; if (!ring_stats) continue; if (tx_ring->desc) { /* If packet counter has not changed the queue is * likely stalled, so force an interrupt for this * queue. * * prev_pkt would be negative if there was no * pending work. */ packets = ring_stats->stats.pkts & INT_MAX; if (ring_stats->tx_stats.prev_pkt == packets) { /* Trigger sw interrupt to revive the queue */ ice_trigger_sw_intr(hw, tx_ring->q_vector); continue; } /* Memory barrier between read of packet count and call * to ice_get_tx_pending() */ smp_rmb(); ring_stats->tx_stats.prev_pkt = ice_get_tx_pending(tx_ring) ? packets : -1; } } } /** * ice_init_mac_fltr - Set initial MAC filters * @pf: board private structure * * Set initial set of MAC filters for PF VSI; configure filters for permanent * address and broadcast address. If an error is encountered, netdevice will be * unregistered. */ static int ice_init_mac_fltr(struct ice_pf *pf) { struct ice_vsi *vsi; u8 *perm_addr; vsi = ice_get_main_vsi(pf); if (!vsi) return -EINVAL; perm_addr = vsi->port_info->mac.perm_addr; return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); } /** * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced * @netdev: the net device on which the sync is happening * @addr: MAC address to sync * * This is a callback function which is called by the in kernel device sync * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only * populates the tmp_sync_list, which is later used by ice_add_mac to add the * MAC filters from the hardware. */ static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, ICE_FWD_TO_VSI)) return -EINVAL; return 0; } /** * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced * @netdev: the net device on which the unsync is happening * @addr: MAC address to unsync * * This is a callback function which is called by the in kernel device unsync * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only * populates the tmp_unsync_list, which is later used by ice_remove_mac to * delete the MAC filters from the hardware. */ static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; /* Under some circumstances, we might receive a request to delete our * own device address from our uc list. Because we store the device * address in the VSI's MAC filter list, we need to ignore such * requests and not delete our device address from this list. */ if (ether_addr_equal(addr, netdev->dev_addr)) return 0; if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, ICE_FWD_TO_VSI)) return -EINVAL; return 0; } /** * ice_vsi_fltr_changed - check if filter state changed * @vsi: VSI to be checked * * returns true if filter state has changed, false otherwise. */ static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) { return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); } /** * ice_set_promisc - Enable promiscuous mode for a given PF * @vsi: the VSI being configured * @promisc_m: mask of promiscuous config bits * */ static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) { int status; if (vsi->type != ICE_VSI_PF) return 0; if (ice_vsi_has_non_zero_vlans(vsi)) { promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); } else { status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); } if (status && status != -EEXIST) return status; netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", vsi->vsi_num, promisc_m); return 0; } /** * ice_clear_promisc - Disable promiscuous mode for a given PF * @vsi: the VSI being configured * @promisc_m: mask of promiscuous config bits * */ static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) { int status; if (vsi->type != ICE_VSI_PF) return 0; if (ice_vsi_has_non_zero_vlans(vsi)) { promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); } else { status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); } netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", vsi->vsi_num, promisc_m); return status; } /** * ice_vsi_sync_fltr - Update the VSI filter list to the HW * @vsi: ptr to the VSI * * Push any outstanding VSI filter changes through the AdminQ. */ static int ice_vsi_sync_fltr(struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); struct device *dev = ice_pf_to_dev(vsi->back); struct net_device *netdev = vsi->netdev; bool promisc_forced_on = false; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 changed_flags = 0; int err; if (!vsi->netdev) return -EINVAL; while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) usleep_range(1000, 2000); changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; vsi->current_netdev_flags = vsi->netdev->flags; INIT_LIST_HEAD(&vsi->tmp_sync_list); INIT_LIST_HEAD(&vsi->tmp_unsync_list); if (ice_vsi_fltr_changed(vsi)) { clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); /* grab the netdev's addr_list_lock */ netif_addr_lock_bh(netdev); __dev_uc_sync(netdev, ice_add_mac_to_sync_list, ice_add_mac_to_unsync_list); __dev_mc_sync(netdev, ice_add_mac_to_sync_list, ice_add_mac_to_unsync_list); /* our temp lists are populated. release lock */ netif_addr_unlock_bh(netdev); } /* Remove MAC addresses in the unsync list */ err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); ice_fltr_free_list(dev, &vsi->tmp_unsync_list); if (err) { netdev_err(netdev, "Failed to delete MAC filters\n"); /* if we failed because of alloc failures, just bail */ if (err == -ENOMEM) goto out; } /* Add MAC addresses in the sync list */ err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); ice_fltr_free_list(dev, &vsi->tmp_sync_list); /* If filter is added successfully or already exists, do not go into * 'if' condition and report it as error. Instead continue processing * rest of the function. */ if (err && err != -EEXIST) { netdev_err(netdev, "Failed to add MAC filters\n"); /* If there is no more space for new umac filters, VSI * should go into promiscuous mode. There should be some * space reserved for promiscuous filters. */ if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, vsi->state)) { promisc_forced_on = true; netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", vsi->vsi_num); } else { goto out; } } err = 0; /* check for changes in promiscuous modes */ if (changed_flags & IFF_ALLMULTI) { if (vsi->current_netdev_flags & IFF_ALLMULTI) { err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); if (err) { vsi->current_netdev_flags &= ~IFF_ALLMULTI; goto out_promisc; } } else { /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); if (err) { vsi->current_netdev_flags |= IFF_ALLMULTI; goto out_promisc; } } } if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); if (vsi->current_netdev_flags & IFF_PROMISC) { /* Apply Rx filter rule to get traffic from wire */ if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { err = ice_set_dflt_vsi(vsi); if (err && err != -EEXIST) { netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", err, vsi->vsi_num); vsi->current_netdev_flags &= ~IFF_PROMISC; goto out_promisc; } err = 0; vlan_ops->dis_rx_filtering(vsi); /* promiscuous mode implies allmulticast so * that VSIs that are in promiscuous mode are * subscribed to multicast packets coming to * the port */ err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); if (err) goto out_promisc; } } else { /* Clear Rx filter to remove traffic from wire */ if (ice_is_vsi_dflt_vsi(vsi)) { err = ice_clear_dflt_vsi(vsi); if (err) { netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", err, vsi->vsi_num); vsi->current_netdev_flags |= IFF_PROMISC; goto out_promisc; } if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER) vlan_ops->ena_rx_filtering(vsi); } /* disable allmulti here, but only if allmulti is not * still enabled for the netdev */ if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); if (err) { netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", err, vsi->vsi_num); } } } } goto exit; out_promisc: set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); goto exit; out: /* if something went wrong then set the changed flag so we try again */ set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); exit: clear_bit(ICE_CFG_BUSY, vsi->state); return err; } /** * ice_sync_fltr_subtask - Sync the VSI filter list with HW * @pf: board private structure */ static void ice_sync_fltr_subtask(struct ice_pf *pf) { int v; if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) return; clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); ice_for_each_vsi(pf, v) if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && ice_vsi_sync_fltr(pf->vsi[v])) { /* come back and try again later */ set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); break; } } /** * ice_pf_dis_all_vsi - Pause all VSIs on a PF * @pf: the PF * @locked: is the rtnl_lock already held */ static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) { int node; int v; ice_for_each_vsi(pf, v) if (pf->vsi[v]) ice_dis_vsi(pf->vsi[v], locked); for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) pf->pf_agg_node[node].num_vsis = 0; for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) pf->vf_agg_node[node].num_vsis = 0; } /** * ice_prepare_for_reset - prep for reset * @pf: board private structure * @reset_type: reset type requested * * Inform or close all dependent features in prep for reset. */ static void ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) { struct ice_hw *hw = &pf->hw; struct ice_vsi *vsi; struct ice_vf *vf; unsigned int bkt; dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); /* already prepared for reset */ if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) return; synchronize_irq(pf->oicr_irq.virq); ice_unplug_aux_dev(pf); /* Notify VFs of impending reset */ if (ice_check_sq_alive(hw, &hw->mailboxq)) ice_vc_notify_reset(pf); /* Disable VFs until reset is completed */ mutex_lock(&pf->vfs.table_lock); ice_for_each_vf(pf, bkt, vf) ice_set_vf_state_dis(vf); mutex_unlock(&pf->vfs.table_lock); if (ice_is_eswitch_mode_switchdev(pf)) { rtnl_lock(); ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); rtnl_unlock(); } /* release ADQ specific HW and SW resources */ vsi = ice_get_main_vsi(pf); if (!vsi) goto skip; /* to be on safe side, reset orig_rss_size so that normal flow * of deciding rss_size can take precedence */ vsi->orig_rss_size = 0; if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { if (reset_type == ICE_RESET_PFR) { vsi->old_ena_tc = vsi->all_enatc; vsi->old_numtc = vsi->all_numtc; } else { ice_remove_q_channels(vsi, true); /* for other reset type, do not support channel rebuild * hence reset needed info */ vsi->old_ena_tc = 0; vsi->all_enatc = 0; vsi->old_numtc = 0; vsi->all_numtc = 0; vsi->req_txq = 0; vsi->req_rxq = 0; clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); } } if (vsi->netdev) netif_device_detach(vsi->netdev); skip: /* clear SW filtering DB */ ice_clear_hw_tbls(hw); /* disable the VSIs and their queues that are not already DOWN */ set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); ice_pf_dis_all_vsi(pf, false); if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) ice_ptp_prepare_for_reset(pf); if (ice_is_feature_supported(pf, ICE_F_GNSS)) ice_gnss_exit(pf); if (hw->port_info) ice_sched_clear_port(hw->port_info); ice_shutdown_all_ctrlq(hw); set_bit(ICE_PREPARED_FOR_RESET, pf->state); } /** * ice_do_reset - Initiate one of many types of resets * @pf: board private structure * @reset_type: reset type requested before this function was called. */ static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); reset_type = ICE_RESET_CORER; } ice_prepare_for_reset(pf, reset_type); /* trigger the reset */ if (ice_reset(hw, reset_type)) { dev_err(dev, "reset %d failed\n", reset_type); set_bit(ICE_RESET_FAILED, pf->state); clear_bit(ICE_RESET_OICR_RECV, pf->state); clear_bit(ICE_PREPARED_FOR_RESET, pf->state); clear_bit(ICE_PFR_REQ, pf->state); clear_bit(ICE_CORER_REQ, pf->state); clear_bit(ICE_GLOBR_REQ, pf->state); wake_up(&pf->reset_wait_queue); return; } /* PFR is a bit of a special case because it doesn't result in an OICR * interrupt. So for PFR, rebuild after the reset and clear the reset- * associated state bits. */ if (reset_type == ICE_RESET_PFR) { pf->pfr_count++; ice_rebuild(pf, reset_type); clear_bit(ICE_PREPARED_FOR_RESET, pf->state); clear_bit(ICE_PFR_REQ, pf->state); wake_up(&pf->reset_wait_queue); ice_reset_all_vfs(pf); } } /** * ice_reset_subtask - Set up for resetting the device and driver * @pf: board private structure */ static void ice_reset_subtask(struct ice_pf *pf) { enum ice_reset_req reset_type = ICE_RESET_INVAL; /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an * OICR interrupt. The OICR handler (ice_misc_intr) determines what type * of reset is pending and sets bits in pf->state indicating the reset * type and ICE_RESET_OICR_RECV. So, if the latter bit is set * prepare for pending reset if not already (for PF software-initiated * global resets the software should already be prepared for it as * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated * by firmware or software on other PFs, that bit is not set so prepare * for the reset now), poll for reset done, rebuild and return. */ if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { /* Perform the largest reset requested */ if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) reset_type = ICE_RESET_CORER; if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) reset_type = ICE_RESET_GLOBR; if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) reset_type = ICE_RESET_EMPR; /* return if no valid reset type requested */ if (reset_type == ICE_RESET_INVAL) return; ice_prepare_for_reset(pf, reset_type); /* make sure we are ready to rebuild */ if (ice_check_reset(&pf->hw)) { set_bit(ICE_RESET_FAILED, pf->state); } else { /* done with reset. start rebuild */ pf->hw.reset_ongoing = false; ice_rebuild(pf, reset_type); /* clear bit to resume normal operations, but * ICE_NEEDS_RESTART bit is set in case rebuild failed */ clear_bit(ICE_RESET_OICR_RECV, pf->state); clear_bit(ICE_PREPARED_FOR_RESET, pf->state); clear_bit(ICE_PFR_REQ, pf->state); clear_bit(ICE_CORER_REQ, pf->state); clear_bit(ICE_GLOBR_REQ, pf->state); wake_up(&pf->reset_wait_queue); ice_reset_all_vfs(pf); } return; } /* No pending resets to finish processing. Check for new resets */ if (test_bit(ICE_PFR_REQ, pf->state)) { reset_type = ICE_RESET_PFR; if (pf->lag && pf->lag->bonded) { dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); reset_type = ICE_RESET_CORER; } } if (test_bit(ICE_CORER_REQ, pf->state)) reset_type = ICE_RESET_CORER; if (test_bit(ICE_GLOBR_REQ, pf->state)) reset_type = ICE_RESET_GLOBR; /* If no valid reset type requested just return */ if (reset_type == ICE_RESET_INVAL) return; /* reset if not already down or busy */ if (!test_bit(ICE_DOWN, pf->state) && !test_bit(ICE_CFG_BUSY, pf->state)) { ice_do_reset(pf, reset_type); } } /** * ice_print_topo_conflict - print topology conflict message * @vsi: the VSI whose topology status is being checked */ static void ice_print_topo_conflict(struct ice_vsi *vsi) { switch (vsi->port_info->phy.link_info.topo_media_conflict) { case ICE_AQ_LINK_TOPO_CONFLICT: case ICE_AQ_LINK_MEDIA_CONFLICT: case ICE_AQ_LINK_TOPO_UNREACH_PRT: case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); break; case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); else netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); break; default: break; } } /** * ice_print_link_msg - print link up or down message * @vsi: the VSI whose link status is being queried * @isup: boolean for if the link is now up or down */ void ice_print_link_msg(struct ice_vsi *vsi, bool isup) { struct ice_aqc_get_phy_caps_data *caps; const char *an_advertised; const char *fec_req; const char *speed; const char *fec; const char *fc; const char *an; int status; if (!vsi) return; if (vsi->current_isup == isup) return; vsi->current_isup = isup; if (!isup) { netdev_info(vsi->netdev, "NIC Link is Down\n"); return; } switch (vsi->port_info->phy.link_info.link_speed) { case ICE_AQ_LINK_SPEED_100GB: speed = "100 G"; break; case ICE_AQ_LINK_SPEED_50GB: speed = "50 G"; break; case ICE_AQ_LINK_SPEED_40GB: speed = "40 G"; break; case ICE_AQ_LINK_SPEED_25GB: speed = "25 G"; break; case ICE_AQ_LINK_SPEED_20GB: speed = "20 G"; break; case ICE_AQ_LINK_SPEED_10GB: speed = "10 G"; break; case ICE_AQ_LINK_SPEED_5GB: speed = "5 G"; break; case ICE_AQ_LINK_SPEED_2500MB: speed = "2.5 G"; break; case ICE_AQ_LINK_SPEED_1000MB: speed = "1 G"; break; case ICE_AQ_LINK_SPEED_100MB: speed = "100 M"; break; default: speed = "Unknown "; break; } switch (vsi->port_info->fc.current_mode) { case ICE_FC_FULL: fc = "Rx/Tx"; break; case ICE_FC_TX_PAUSE: fc = "Tx"; break; case ICE_FC_RX_PAUSE: fc = "Rx"; break; case ICE_FC_NONE: fc = "None"; break; default: fc = "Unknown"; break; } /* Get FEC mode based on negotiated link info */ switch (vsi->port_info->phy.link_info.fec_info) { case ICE_AQ_LINK_25G_RS_528_FEC_EN: case ICE_AQ_LINK_25G_RS_544_FEC_EN: fec = "RS-FEC"; break; case ICE_AQ_LINK_25G_KR_FEC_EN: fec = "FC-FEC/BASE-R"; break; default: fec = "NONE"; break; } /* check if autoneg completed, might be false due to not supported */ if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) an = "True"; else an = "False"; /* Get FEC mode requested based on PHY caps last SW configuration */ caps = kzalloc(sizeof(*caps), GFP_KERNEL); if (!caps) { fec_req = "Unknown"; an_advertised = "Unknown"; goto done; } status = ice_aq_get_phy_caps(vsi->port_info, false, ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); if (status) netdev_info(vsi->netdev, "Get phy capability failed.\n"); an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) fec_req = "RS-FEC"; else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) fec_req = "FC-FEC/BASE-R"; else fec_req = "NONE"; kfree(caps); done: netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", speed, fec_req, fec, an_advertised, an, fc); ice_print_topo_conflict(vsi); } /** * ice_vsi_link_event - update the VSI's netdev * @vsi: the VSI on which the link event occurred * @link_up: whether or not the VSI needs to be set up or down */ static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) { if (!vsi) return; if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) return; if (vsi->type == ICE_VSI_PF) { if (link_up == netif_carrier_ok(vsi->netdev)) return; if (link_up) { netif_carrier_on(vsi->netdev); netif_tx_wake_all_queues(vsi->netdev); } else { netif_carrier_off(vsi->netdev); netif_tx_stop_all_queues(vsi->netdev); } } } /** * ice_set_dflt_mib - send a default config MIB to the FW * @pf: private PF struct * * This function sends a default configuration MIB to the FW. * * If this function errors out at any point, the driver is still able to * function. The main impact is that LFC may not operate as expected. * Therefore an error state in this function should be treated with a DBG * message and continue on with driver rebuild/reenable. */ static void ice_set_dflt_mib(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); u8 mib_type, *buf, *lldpmib = NULL; u16 len, typelen, offset = 0; struct ice_lldp_org_tlv *tlv; struct ice_hw *hw = &pf->hw; u32 ouisubtype; mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); if (!lldpmib) { dev_dbg(dev, "%s Failed to allocate MIB memory\n", __func__); return; } /* Add ETS CFG TLV */ tlv = (struct ice_lldp_org_tlv *)lldpmib; typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | ICE_IEEE_ETS_TLV_LEN); tlv->typelen = htons(typelen); ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | ICE_IEEE_SUBTYPE_ETS_CFG); tlv->ouisubtype = htonl(ouisubtype); buf = tlv->tlvinfo; buf[0] = 0; /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. * Octets 5 - 12 are BW values, set octet 5 to 100% BW. * Octets 13 - 20 are TSA values - leave as zeros */ buf[5] = 0x64; len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; offset += len + 2; tlv = (struct ice_lldp_org_tlv *) ((char *)tlv + sizeof(tlv->typelen) + len); /* Add ETS REC TLV */ buf = tlv->tlvinfo; tlv->typelen = htons(typelen); ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | ICE_IEEE_SUBTYPE_ETS_REC); tlv->ouisubtype = htonl(ouisubtype); /* First octet of buf is reserved * Octets 1 - 4 map UP to TC - all UPs map to zero * Octets 5 - 12 are BW values - set TC 0 to 100%. * Octets 13 - 20 are TSA value - leave as zeros */ buf[5] = 0x64; offset += len + 2; tlv = (struct ice_lldp_org_tlv *) ((char *)tlv + sizeof(tlv->typelen) + len); /* Add PFC CFG TLV */ typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | ICE_IEEE_PFC_TLV_LEN); tlv->typelen = htons(typelen); ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | ICE_IEEE_SUBTYPE_PFC_CFG); tlv->ouisubtype = htonl(ouisubtype); /* Octet 1 left as all zeros - PFC disabled */ buf[0] = 0x08; len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; offset += len + 2; if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); kfree(lldpmib); } /** * ice_check_phy_fw_load - check if PHY FW load failed * @pf: pointer to PF struct * @link_cfg_err: bitmap from the link info structure * * check if external PHY FW load failed and print an error message if it did */ static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) { if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); return; } if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) return; if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); } } /** * ice_check_module_power * @pf: pointer to PF struct * @link_cfg_err: bitmap from the link info structure * * check module power level returned by a previous call to aq_get_link_info * and print error messages if module power level is not supported */ static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) { /* if module power level is supported, clear the flag */ if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); return; } /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the * above block didn't clear this bit, there's nothing to do */ if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) return; if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); } } /** * ice_check_link_cfg_err - check if link configuration failed * @pf: pointer to the PF struct * @link_cfg_err: bitmap from the link info structure * * print if any link configuration failure happens due to the value in the * link_cfg_err parameter in the link info structure */ static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) { ice_check_module_power(pf, link_cfg_err); ice_check_phy_fw_load(pf, link_cfg_err); } /** * ice_link_event - process the link event * @pf: PF that the link event is associated with * @pi: port_info for the port that the link event is associated with * @link_up: true if the physical link is up and false if it is down * @link_speed: current link speed received from the link event * * Returns 0 on success and negative on failure */ static int ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, u16 link_speed) { struct device *dev = ice_pf_to_dev(pf); struct ice_phy_info *phy_info; struct ice_vsi *vsi; u16 old_link_speed; bool old_link; int status; phy_info = &pi->phy; phy_info->link_info_old = phy_info->link_info; old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); old_link_speed = phy_info->link_info_old.link_speed; /* update the link info structures and re-enable link events, * don't bail on failure due to other book keeping needed */ status = ice_update_link_info(pi); if (status) dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", pi->lport, status, ice_aq_str(pi->hw->adminq.sq_last_status)); ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); /* Check if the link state is up after updating link info, and treat * this event as an UP event since the link is actually UP now. */ if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) link_up = true; vsi = ice_get_main_vsi(pf); if (!vsi || !vsi->port_info) return -EINVAL; /* turn off PHY if media was removed */ if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { set_bit(ICE_FLAG_NO_MEDIA, pf->flags); ice_set_link(vsi, false); } /* if the old link up/down and speed is the same as the new */ if (link_up == old_link && link_speed == old_link_speed) return 0; ice_ptp_link_change(pf, pf->hw.pf_id, link_up); if (ice_is_dcb_active(pf)) { if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) ice_dcb_rebuild(pf); } else { if (link_up) ice_set_dflt_mib(pf); } ice_vsi_link_event(vsi, link_up); ice_print_link_msg(vsi, link_up); ice_vc_notify_link_state(pf); return 0; } /** * ice_watchdog_subtask - periodic tasks not using event driven scheduling * @pf: board private structure */ static void ice_watchdog_subtask(struct ice_pf *pf) { int i; /* if interface is down do nothing */ if (test_bit(ICE_DOWN, pf->state) || test_bit(ICE_CFG_BUSY, pf->state)) return; /* make sure we don't do these things too often */ if (time_before(jiffies, pf->serv_tmr_prev + pf->serv_tmr_period)) return; pf->serv_tmr_prev = jiffies; /* Update the stats for active netdevs so the network stack * can look at updated numbers whenever it cares to */ ice_update_pf_stats(pf); ice_for_each_vsi(pf, i) if (pf->vsi[i] && pf->vsi[i]->netdev) ice_update_vsi_stats(pf->vsi[i]); } /** * ice_init_link_events - enable/initialize link events * @pi: pointer to the port_info instance * * Returns -EIO on failure, 0 on success */ static int ice_init_link_events(struct ice_port_info *pi) { u16 mask; mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", pi->lport); return -EIO; } if (ice_aq_get_link_info(pi, true, NULL, NULL)) { dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", pi->lport); return -EIO; } return 0; } /** * ice_handle_link_event - handle link event via ARQ * @pf: PF that the link event is associated with * @event: event structure containing link status info */ static int ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) { struct ice_aqc_get_link_status_data *link_data; struct ice_port_info *port_info; int status; link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; port_info = pf->hw.port_info; if (!port_info) return -EINVAL; status = ice_link_event(pf, port_info, !!(link_data->link_info & ICE_AQ_LINK_UP), le16_to_cpu(link_data->link_speed)); if (status) dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", status); return status; } /** * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware * @pf: pointer to the PF private structure * @task: intermediate helper storage and identifier for waiting * @opcode: the opcode to wait for * * Prepares to wait for a specific AdminQ completion event on the ARQ for * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). * * Calls are separated to allow caller registering for event before sending * the command, which mitigates a race between registering and FW responding. * * To obtain only the descriptor contents, pass an task->event with null * msg_buf. If the complete data buffer is desired, allocate the * task->event.msg_buf with enough space ahead of time. */ void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, u16 opcode) { INIT_HLIST_NODE(&task->entry); task->opcode = opcode; task->state = ICE_AQ_TASK_WAITING; spin_lock_bh(&pf->aq_wait_lock); hlist_add_head(&task->entry, &pf->aq_wait_list); spin_unlock_bh(&pf->aq_wait_lock); } /** * ice_aq_wait_for_event - Wait for an AdminQ event from firmware * @pf: pointer to the PF private structure * @task: ptr prepared by ice_aq_prep_for_event() * @timeout: how long to wait, in jiffies * * Waits for a specific AdminQ completion event on the ARQ for a given PF. The * current thread will be put to sleep until the specified event occurs or * until the given timeout is reached. * * Returns: zero on success, or a negative error code on failure. */ int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, unsigned long timeout) { enum ice_aq_task_state *state = &task->state; struct device *dev = ice_pf_to_dev(pf); unsigned long start = jiffies; long ret; int err; ret = wait_event_interruptible_timeout(pf->aq_wait_queue, *state != ICE_AQ_TASK_WAITING, timeout); switch (*state) { case ICE_AQ_TASK_NOT_PREPARED: WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); err = -EINVAL; break; case ICE_AQ_TASK_WAITING: err = ret < 0 ? ret : -ETIMEDOUT; break; case ICE_AQ_TASK_CANCELED: err = ret < 0 ? ret : -ECANCELED; break; case ICE_AQ_TASK_COMPLETE: err = ret < 0 ? ret : 0; break; default: WARN(1, "Unexpected AdminQ wait task state %u", *state); err = -EINVAL; break; } dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", jiffies_to_msecs(jiffies - start), jiffies_to_msecs(timeout), task->opcode); spin_lock_bh(&pf->aq_wait_lock); hlist_del(&task->entry); spin_unlock_bh(&pf->aq_wait_lock); return err; } /** * ice_aq_check_events - Check if any thread is waiting for an AdminQ event * @pf: pointer to the PF private structure * @opcode: the opcode of the event * @event: the event to check * * Loops over the current list of pending threads waiting for an AdminQ event. * For each matching task, copy the contents of the event into the task * structure and wake up the thread. * * If multiple threads wait for the same opcode, they will all be woken up. * * Note that event->msg_buf will only be duplicated if the event has a buffer * with enough space already allocated. Otherwise, only the descriptor and * message length will be copied. * * Returns: true if an event was found, false otherwise */ static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, struct ice_rq_event_info *event) { struct ice_rq_event_info *task_ev; struct ice_aq_task *task; bool found = false; spin_lock_bh(&pf->aq_wait_lock); hlist_for_each_entry(task, &pf->aq_wait_list, entry) { if (task->state != ICE_AQ_TASK_WAITING) continue; if (task->opcode != opcode) continue; task_ev = &task->event; memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); task_ev->msg_len = event->msg_len; /* Only copy the data buffer if a destination was set */ if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { memcpy(task_ev->msg_buf, event->msg_buf, event->buf_len); task_ev->buf_len = event->buf_len; } task->state = ICE_AQ_TASK_COMPLETE; found = true; } spin_unlock_bh(&pf->aq_wait_lock); if (found) wake_up(&pf->aq_wait_queue); } /** * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks * @pf: the PF private structure * * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. */ static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) { struct ice_aq_task *task; spin_lock_bh(&pf->aq_wait_lock); hlist_for_each_entry(task, &pf->aq_wait_list, entry) task->state = ICE_AQ_TASK_CANCELED; spin_unlock_bh(&pf->aq_wait_lock); wake_up(&pf->aq_wait_queue); } #define ICE_MBX_OVERFLOW_WATERMARK 64 /** * __ice_clean_ctrlq - helper function to clean controlq rings * @pf: ptr to struct ice_pf * @q_type: specific Control queue type */ static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) { struct device *dev = ice_pf_to_dev(pf); struct ice_rq_event_info event; struct ice_hw *hw = &pf->hw; struct ice_ctl_q_info *cq; u16 pending, i = 0; const char *qtype; u32 oldval, val; /* Do not clean control queue if/when PF reset fails */ if (test_bit(ICE_RESET_FAILED, pf->state)) return 0; switch (q_type) { case ICE_CTL_Q_ADMIN: cq = &hw->adminq; qtype = "Admin"; break; case ICE_CTL_Q_SB: cq = &hw->sbq; qtype = "Sideband"; break; case ICE_CTL_Q_MAILBOX: cq = &hw->mailboxq; qtype = "Mailbox"; /* we are going to try to detect a malicious VF, so set the * state to begin detection */ hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; break; default: dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); return 0; } /* check for error indications - PF_xx_AxQLEN register layout for * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. */ val = rd32(hw, cq->rq.len); if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | PF_FW_ARQLEN_ARQCRIT_M)) { oldval = val; if (val & PF_FW_ARQLEN_ARQVFE_M) dev_dbg(dev, "%s Receive Queue VF Error detected\n", qtype); if (val & PF_FW_ARQLEN_ARQOVFL_M) { dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", qtype); } if (val & PF_FW_ARQLEN_ARQCRIT_M) dev_dbg(dev, "%s Receive Queue Critical Error detected\n", qtype); val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | PF_FW_ARQLEN_ARQCRIT_M); if (oldval != val) wr32(hw, cq->rq.len, val); } val = rd32(hw, cq->sq.len); if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | PF_FW_ATQLEN_ATQCRIT_M)) { oldval = val; if (val & PF_FW_ATQLEN_ATQVFE_M) dev_dbg(dev, "%s Send Queue VF Error detected\n", qtype); if (val & PF_FW_ATQLEN_ATQOVFL_M) { dev_dbg(dev, "%s Send Queue Overflow Error detected\n", qtype); } if (val & PF_FW_ATQLEN_ATQCRIT_M) dev_dbg(dev, "%s Send Queue Critical Error detected\n", qtype); val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | PF_FW_ATQLEN_ATQCRIT_M); if (oldval != val) wr32(hw, cq->sq.len, val); } event.buf_len = cq->rq_buf_size; event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); if (!event.msg_buf) return 0; do { struct ice_mbx_data data = {}; u16 opcode; int ret; ret = ice_clean_rq_elem(hw, cq, &event, &pending); if (ret == -EALREADY) break; if (ret) { dev_err(dev, "%s Receive Queue event error %d\n", qtype, ret); break; } opcode = le16_to_cpu(event.desc.opcode); /* Notify any thread that might be waiting for this event */ ice_aq_check_events(pf, opcode, &event); switch (opcode) { case ice_aqc_opc_get_link_status: if (ice_handle_link_event(pf, &event)) dev_err(dev, "Could not handle link event\n"); break; case ice_aqc_opc_event_lan_overflow: ice_vf_lan_overflow_event(pf, &event); break; case ice_mbx_opc_send_msg_to_pf: data.num_msg_proc = i; data.num_pending_arq = pending; data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; ice_vc_process_vf_msg(pf, &event, &data); break; case ice_aqc_opc_fw_logging: ice_output_fw_log(hw, &event.desc, event.msg_buf); break; case ice_aqc_opc_lldp_set_mib_change: ice_dcb_process_lldp_set_mib_change(pf, &event); break; default: dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", qtype, opcode); break; } } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); kfree(event.msg_buf); return pending && (i == ICE_DFLT_IRQ_WORK); } /** * ice_ctrlq_pending - check if there is a difference between ntc and ntu * @hw: pointer to hardware info * @cq: control queue information * * returns true if there are pending messages in a queue, false if there aren't */ static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) { u16 ntu; ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); return cq->rq.next_to_clean != ntu; } /** * ice_clean_adminq_subtask - clean the AdminQ rings * @pf: board private structure */ static void ice_clean_adminq_subtask(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) return; if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) return; clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); /* There might be a situation where new messages arrive to a control * queue between processing the last message and clearing the * EVENT_PENDING bit. So before exiting, check queue head again (using * ice_ctrlq_pending) and process new messages if any. */ if (ice_ctrlq_pending(hw, &hw->adminq)) __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); ice_flush(hw); } /** * ice_clean_mailboxq_subtask - clean the MailboxQ rings * @pf: board private structure */ static void ice_clean_mailboxq_subtask(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) return; if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) return; clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); if (ice_ctrlq_pending(hw, &hw->mailboxq)) __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); ice_flush(hw); } /** * ice_clean_sbq_subtask - clean the Sideband Queue rings * @pf: board private structure */ static void ice_clean_sbq_subtask(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; /* Nothing to do here if sideband queue is not supported */ if (!ice_is_sbq_supported(hw)) { clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); return; } if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) return; if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) return; clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); if (ice_ctrlq_pending(hw, &hw->sbq)) __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); ice_flush(hw); } /** * ice_service_task_schedule - schedule the service task to wake up * @pf: board private structure * * If not already scheduled, this puts the task into the work queue. */ void ice_service_task_schedule(struct ice_pf *pf) { if (!test_bit(ICE_SERVICE_DIS, pf->state) && !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && !test_bit(ICE_NEEDS_RESTART, pf->state)) queue_work(ice_wq, &pf->serv_task); } /** * ice_service_task_complete - finish up the service task * @pf: board private structure */ static void ice_service_task_complete(struct ice_pf *pf) { WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); /* force memory (pf->state) to sync before next service task */ smp_mb__before_atomic(); clear_bit(ICE_SERVICE_SCHED, pf->state); } /** * ice_service_task_stop - stop service task and cancel works * @pf: board private structure * * Return 0 if the ICE_SERVICE_DIS bit was not already set, * 1 otherwise. */ static int ice_service_task_stop(struct ice_pf *pf) { int ret; ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); if (pf->serv_tmr.function) del_timer_sync(&pf->serv_tmr); if (pf->serv_task.func) cancel_work_sync(&pf->serv_task); clear_bit(ICE_SERVICE_SCHED, pf->state); return ret; } /** * ice_service_task_restart - restart service task and schedule works * @pf: board private structure * * This function is needed for suspend and resume works (e.g WoL scenario) */ static void ice_service_task_restart(struct ice_pf *pf) { clear_bit(ICE_SERVICE_DIS, pf->state); ice_service_task_schedule(pf); } /** * ice_service_timer - timer callback to schedule service task * @t: pointer to timer_list */ static void ice_service_timer(struct timer_list *t) { struct ice_pf *pf = from_timer(pf, t, serv_tmr); mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); ice_service_task_schedule(pf); } /** * ice_handle_mdd_event - handle malicious driver detect event * @pf: pointer to the PF structure * * Called from service task. OICR interrupt handler indicates MDD event. * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events * disable the queue, the PF can be configured to reset the VF using ethtool * private flag mdd-auto-reset-vf. */ static void ice_handle_mdd_event(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct ice_vf *vf; unsigned int bkt; u32 reg; if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { /* Since the VF MDD event logging is rate limited, check if * there are pending MDD events. */ ice_print_vfs_mdd_events(pf); return; } /* find what triggered an MDD event */ reg = rd32(hw, GL_MDET_TX_PQM); if (reg & GL_MDET_TX_PQM_VALID_M) { u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> GL_MDET_TX_PQM_PF_NUM_S; u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> GL_MDET_TX_PQM_VF_NUM_S; u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> GL_MDET_TX_PQM_MAL_TYPE_S; u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> GL_MDET_TX_PQM_QNUM_S); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", event, queue, pf_num, vf_num); wr32(hw, GL_MDET_TX_PQM, 0xffffffff); } reg = rd32(hw, GL_MDET_TX_TCLAN); if (reg & GL_MDET_TX_TCLAN_VALID_M) { u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> GL_MDET_TX_TCLAN_PF_NUM_S; u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> GL_MDET_TX_TCLAN_VF_NUM_S; u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> GL_MDET_TX_TCLAN_MAL_TYPE_S; u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> GL_MDET_TX_TCLAN_QNUM_S); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", event, queue, pf_num, vf_num); wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); } reg = rd32(hw, GL_MDET_RX); if (reg & GL_MDET_RX_VALID_M) { u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> GL_MDET_RX_PF_NUM_S; u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> GL_MDET_RX_VF_NUM_S; u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> GL_MDET_RX_MAL_TYPE_S; u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> GL_MDET_RX_QNUM_S); if (netif_msg_rx_err(pf)) dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", event, queue, pf_num, vf_num); wr32(hw, GL_MDET_RX, 0xffffffff); } /* check to see if this PF caused an MDD event */ reg = rd32(hw, PF_MDET_TX_PQM); if (reg & PF_MDET_TX_PQM_VALID_M) { wr32(hw, PF_MDET_TX_PQM, 0xFFFF); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); } reg = rd32(hw, PF_MDET_TX_TCLAN); if (reg & PF_MDET_TX_TCLAN_VALID_M) { wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); } reg = rd32(hw, PF_MDET_RX); if (reg & PF_MDET_RX_VALID_M) { wr32(hw, PF_MDET_RX, 0xFFFF); if (netif_msg_rx_err(pf)) dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); } /* Check to see if one of the VFs caused an MDD event, and then * increment counters and set print pending */ mutex_lock(&pf->vfs.table_lock); ice_for_each_vf(pf, bkt, vf) { reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); if (reg & VP_MDET_TX_PQM_VALID_M) { wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); vf->mdd_tx_events.count++; set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", vf->vf_id); } reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); if (reg & VP_MDET_TX_TCLAN_VALID_M) { wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); vf->mdd_tx_events.count++; set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", vf->vf_id); } reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); if (reg & VP_MDET_TX_TDPU_VALID_M) { wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); vf->mdd_tx_events.count++; set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); if (netif_msg_tx_err(pf)) dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", vf->vf_id); } reg = rd32(hw, VP_MDET_RX(vf->vf_id)); if (reg & VP_MDET_RX_VALID_M) { wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); vf->mdd_rx_events.count++; set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); if (netif_msg_rx_err(pf)) dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", vf->vf_id); /* Since the queue is disabled on VF Rx MDD events, the * PF can be configured to reset the VF through ethtool * private flag mdd-auto-reset-vf. */ if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { /* VF MDD event counters will be cleared by * reset, so print the event prior to reset. */ ice_print_vf_rx_mdd_event(vf); ice_reset_vf(vf, ICE_VF_RESET_LOCK); } } } mutex_unlock(&pf->vfs.table_lock); ice_print_vfs_mdd_events(pf); } /** * ice_force_phys_link_state - Force the physical link state * @vsi: VSI to force the physical link state to up/down * @link_up: true/false indicates to set the physical link to up/down * * Force the physical link state by getting the current PHY capabilities from * hardware and setting the PHY config based on the determined capabilities. If * link changes a link event will be triggered because both the Enable Automatic * Link Update and LESM Enable bits are set when setting the PHY capabilities. * * Returns 0 on success, negative on failure */ static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) { struct ice_aqc_get_phy_caps_data *pcaps; struct ice_aqc_set_phy_cfg_data *cfg; struct ice_port_info *pi; struct device *dev; int retcode; if (!vsi || !vsi->port_info || !vsi->back) return -EINVAL; if (vsi->type != ICE_VSI_PF) return 0; dev = ice_pf_to_dev(vsi->back); pi = vsi->port_info; pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); if (!pcaps) return -ENOMEM; retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, NULL); if (retcode) { dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", vsi->vsi_num, retcode); retcode = -EIO; goto out; } /* No change in link */ if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) goto out; /* Use the current user PHY configuration. The current user PHY * configuration is initialized during probe from PHY capabilities * software mode, and updated on set PHY configuration. */ cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); if (!cfg) { retcode = -ENOMEM; goto out; } cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; if (link_up) cfg->caps |= ICE_AQ_PHY_ENA_LINK; else cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); if (retcode) { dev_err(dev, "Failed to set phy config, VSI %d error %d\n", vsi->vsi_num, retcode); retcode = -EIO; } kfree(cfg); out: kfree(pcaps); return retcode; } /** * ice_init_nvm_phy_type - Initialize the NVM PHY type * @pi: port info structure * * Initialize nvm_phy_type_[low|high] for link lenient mode support */ static int ice_init_nvm_phy_type(struct ice_port_info *pi) { struct ice_aqc_get_phy_caps_data *pcaps; struct ice_pf *pf = pi->hw->back; int err; pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); if (!pcaps) return -ENOMEM; err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, NULL); if (err) { dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); goto out; } pf->nvm_phy_type_hi = pcaps->phy_type_high; pf->nvm_phy_type_lo = pcaps->phy_type_low; out: kfree(pcaps); return err; } /** * ice_init_link_dflt_override - Initialize link default override * @pi: port info structure * * Initialize link default override and PHY total port shutdown during probe */ static void ice_init_link_dflt_override(struct ice_port_info *pi) { struct ice_link_default_override_tlv *ldo; struct ice_pf *pf = pi->hw->back; ldo = &pf->link_dflt_override; if (ice_get_link_default_override(ldo, pi)) return; if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) return; /* Enable Total Port Shutdown (override/replace link-down-on-close * ethtool private flag) for ports with Port Disable bit set. */ set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); } /** * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings * @pi: port info structure * * If default override is enabled, initialize the user PHY cfg speed and FEC * settings using the default override mask from the NVM. * * The PHY should only be configured with the default override settings the * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state * is used to indicate that the user PHY cfg default override is initialized * and the PHY has not been configured with the default override settings. The * state is set here, and cleared in ice_configure_phy the first time the PHY is * configured. * * This function should be called only if the FW doesn't support default * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. */ static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) { struct ice_link_default_override_tlv *ldo; struct ice_aqc_set_phy_cfg_data *cfg; struct ice_phy_info *phy = &pi->phy; struct ice_pf *pf = pi->hw->back; ldo = &pf->link_dflt_override; /* If link default override is enabled, use to mask NVM PHY capabilities * for speed and FEC default configuration. */ cfg = &phy->curr_user_phy_cfg; if (ldo->phy_type_low || ldo->phy_type_high) { cfg->phy_type_low = pf->nvm_phy_type_lo & cpu_to_le64(ldo->phy_type_low); cfg->phy_type_high = pf->nvm_phy_type_hi & cpu_to_le64(ldo->phy_type_high); } cfg->link_fec_opt = ldo->fec_options; phy->curr_user_fec_req = ICE_FEC_AUTO; set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); } /** * ice_init_phy_user_cfg - Initialize the PHY user configuration * @pi: port info structure * * Initialize the current user PHY configuration, speed, FEC, and FC requested * mode to default. The PHY defaults are from get PHY capabilities topology * with media so call when media is first available. An error is returned if * called when media is not available. The PHY initialization completed state is * set here. * * These configurations are used when setting PHY * configuration. The user PHY configuration is updated on set PHY * configuration. Returns 0 on success, negative on failure */ static int ice_init_phy_user_cfg(struct ice_port_info *pi) { struct ice_aqc_get_phy_caps_data *pcaps; struct ice_phy_info *phy = &pi->phy; struct ice_pf *pf = pi->hw->back; int err; if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) return -EIO; pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); if (!pcaps) return -ENOMEM; if (ice_fw_supports_report_dflt_cfg(pi->hw)) err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, pcaps, NULL); else err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL); if (err) { dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); goto err_out; } ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); /* check if lenient mode is supported and enabled */ if (ice_fw_supports_link_override(pi->hw) && !(pcaps->module_compliance_enforcement & ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); /* if the FW supports default PHY configuration mode, then the driver * does not have to apply link override settings. If not, * initialize user PHY configuration with link override values */ if (!ice_fw_supports_report_dflt_cfg(pi->hw) && (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { ice_init_phy_cfg_dflt_override(pi); goto out; } } /* if link default override is not enabled, set user flow control and * FEC settings based on what get_phy_caps returned */ phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, pcaps->link_fec_options); phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); out: phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; set_bit(ICE_PHY_INIT_COMPLETE, pf->state); err_out: kfree(pcaps); return err; } /** * ice_configure_phy - configure PHY * @vsi: VSI of PHY * * Set the PHY configuration. If the current PHY configuration is the same as * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise * configure the based get PHY capabilities for topology with media. */ static int ice_configure_phy(struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(vsi->back); struct ice_port_info *pi = vsi->port_info; struct ice_aqc_get_phy_caps_data *pcaps; struct ice_aqc_set_phy_cfg_data *cfg; struct ice_phy_info *phy = &pi->phy; struct ice_pf *pf = vsi->back; int err; /* Ensure we have media as we cannot configure a medialess port */ if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) return -ENOMEDIUM; ice_print_topo_conflict(vsi); if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) return -EPERM; if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) return ice_force_phys_link_state(vsi, true); pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); if (!pcaps) return -ENOMEM; /* Get current PHY config */ err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, NULL); if (err) { dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", vsi->vsi_num, err); goto done; } /* If PHY enable link is configured and configuration has not changed, * there's nothing to do */ if (pcaps->caps & ICE_AQC_PHY_EN_LINK && ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) goto done; /* Use PHY topology as baseline for configuration */ memset(pcaps, 0, sizeof(*pcaps)); if (ice_fw_supports_report_dflt_cfg(pi->hw)) err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, pcaps, NULL); else err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL); if (err) { dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", vsi->vsi_num, err); goto done; } cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { err = -ENOMEM; goto done; } ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); /* Speed - If default override pending, use curr_user_phy_cfg set in * ice_init_phy_user_cfg_ldo. */ if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, vsi->back->state)) { cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; } else { u64 phy_low = 0, phy_high = 0; ice_update_phy_type(&phy_low, &phy_high, pi->phy.curr_user_speed_req); cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); cfg->phy_type_high = pcaps->phy_type_high & cpu_to_le64(phy_high); } /* Can't provide what was requested; use PHY capabilities */ if (!cfg->phy_type_low && !cfg->phy_type_high) { cfg->phy_type_low = pcaps->phy_type_low; cfg->phy_type_high = pcaps->phy_type_high; } /* FEC */ ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); /* Can't provide what was requested; use PHY capabilities */ if (cfg->link_fec_opt != (cfg->link_fec_opt & pcaps->link_fec_options)) { cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; cfg->link_fec_opt = pcaps->link_fec_options; } /* Flow Control - always supported; no need to check against * capabilities */ ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); /* Enable link and link update */ cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); if (err) dev_err(dev, "Failed to set phy config, VSI %d error %d\n", vsi->vsi_num, err); kfree(cfg); done: kfree(pcaps); return err; } /** * ice_check_media_subtask - Check for media * @pf: pointer to PF struct * * If media is available, then initialize PHY user configuration if it is not * been, and configure the PHY if the interface is up. */ static void ice_check_media_subtask(struct ice_pf *pf) { struct ice_port_info *pi; struct ice_vsi *vsi; int err; /* No need to check for media if it's already present */ if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) return; vsi = ice_get_main_vsi(pf); if (!vsi) return; /* Refresh link info and check if media is present */ pi = vsi->port_info; err = ice_update_link_info(pi); if (err) return; ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) ice_init_phy_user_cfg(pi); /* PHY settings are reset on media insertion, reconfigure * PHY to preserve settings. */ if (test_bit(ICE_VSI_DOWN, vsi->state) && test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) return; err = ice_configure_phy(vsi); if (!err) clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); /* A Link Status Event will be generated; the event handler * will complete bringing the interface up */ } } /** * ice_service_task - manage and run subtasks * @work: pointer to work_struct contained by the PF struct */ static void ice_service_task(struct work_struct *work) { struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); unsigned long start_time = jiffies; /* subtasks */ /* process reset requests first */ ice_reset_subtask(pf); /* bail if a reset/recovery cycle is pending or rebuild failed */ if (ice_is_reset_in_progress(pf->state) || test_bit(ICE_SUSPENDED, pf->state) || test_bit(ICE_NEEDS_RESTART, pf->state)) { ice_service_task_complete(pf); return; } if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { struct iidc_event *event; event = kzalloc(sizeof(*event), GFP_KERNEL); if (event) { set_bit(IIDC_EVENT_CRIT_ERR, event->type); /* report the entire OICR value to AUX driver */ swap(event->reg, pf->oicr_err_reg); ice_send_event_to_aux(pf, event); kfree(event); } } /* unplug aux dev per request, if an unplug request came in * while processing a plug request, this will handle it */ if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) ice_unplug_aux_dev(pf); /* Plug aux device per request */ if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) ice_plug_aux_dev(pf); if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { struct iidc_event *event; event = kzalloc(sizeof(*event), GFP_KERNEL); if (event) { set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); ice_send_event_to_aux(pf, event); kfree(event); } } ice_clean_adminq_subtask(pf); ice_check_media_subtask(pf); ice_check_for_hang_subtask(pf); ice_sync_fltr_subtask(pf); ice_handle_mdd_event(pf); ice_watchdog_subtask(pf); if (ice_is_safe_mode(pf)) { ice_service_task_complete(pf); return; } ice_process_vflr_event(pf); ice_clean_mailboxq_subtask(pf); ice_clean_sbq_subtask(pf); ice_sync_arfs_fltrs(pf); ice_flush_fdir_ctx(pf); /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ ice_service_task_complete(pf); /* If the tasks have taken longer than one service timer period * or there is more work to be done, reset the service timer to * schedule the service task now. */ if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || test_bit(ICE_MDD_EVENT_PENDING, pf->state) || test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) mod_timer(&pf->serv_tmr, jiffies); } /** * ice_set_ctrlq_len - helper function to set controlq length * @hw: pointer to the HW instance */ static void ice_set_ctrlq_len(struct ice_hw *hw) { hw->adminq.num_rq_entries = ICE_AQ_LEN; hw->adminq.num_sq_entries = ICE_AQ_LEN; hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; hw->sbq.num_rq_entries = ICE_SBQ_LEN; hw->sbq.num_sq_entries = ICE_SBQ_LEN; hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; } /** * ice_schedule_reset - schedule a reset * @pf: board private structure * @reset: reset being requested */ int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) { struct device *dev = ice_pf_to_dev(pf); /* bail out if earlier reset has failed */ if (test_bit(ICE_RESET_FAILED, pf->state)) { dev_dbg(dev, "earlier reset has failed\n"); return -EIO; } /* bail if reset/recovery already in progress */ if (ice_is_reset_in_progress(pf->state)) { dev_dbg(dev, "Reset already in progress\n"); return -EBUSY; } switch (reset) { case ICE_RESET_PFR: set_bit(ICE_PFR_REQ, pf->state); break; case ICE_RESET_CORER: set_bit(ICE_CORER_REQ, pf->state); break; case ICE_RESET_GLOBR: set_bit(ICE_GLOBR_REQ, pf->state); break; default: return -EINVAL; } ice_service_task_schedule(pf); return 0; } /** * ice_irq_affinity_notify - Callback for affinity changes * @notify: context as to what irq was changed * @mask: the new affinity mask * * This is a callback function used by the irq_set_affinity_notifier function * so that we may register to receive changes to the irq affinity masks. */ static void ice_irq_affinity_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) { struct ice_q_vector *q_vector = container_of(notify, struct ice_q_vector, affinity_notify); cpumask_copy(&q_vector->affinity_mask, mask); } /** * ice_irq_affinity_release - Callback for affinity notifier release * @ref: internal core kernel usage * * This is a callback function used by the irq_set_affinity_notifier function * to inform the current notification subscriber that they will no longer * receive notifications. */ static void ice_irq_affinity_release(struct kref __always_unused *ref) {} /** * ice_vsi_ena_irq - Enable IRQ for the given VSI * @vsi: the VSI being configured */ static int ice_vsi_ena_irq(struct ice_vsi *vsi) { struct ice_hw *hw = &vsi->back->hw; int i; ice_for_each_q_vector(vsi, i) ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); ice_flush(hw); return 0; } /** * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI * @vsi: the VSI being configured * @basename: name for the vector */ static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) { int q_vectors = vsi->num_q_vectors; struct ice_pf *pf = vsi->back; struct device *dev; int rx_int_idx = 0; int tx_int_idx = 0; int vector, err; int irq_num; dev = ice_pf_to_dev(pf); for (vector = 0; vector < q_vectors; vector++) { struct ice_q_vector *q_vector = vsi->q_vectors[vector]; irq_num = q_vector->irq.virq; if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "TxRx", rx_int_idx++); tx_int_idx++; } else if (q_vector->rx.rx_ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "rx", rx_int_idx++); } else if (q_vector->tx.tx_ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "tx", tx_int_idx++); } else { /* skip this unused q_vector */ continue; } if (vsi->type == ICE_VSI_CTRL && vsi->vf) err = devm_request_irq(dev, irq_num, vsi->irq_handler, IRQF_SHARED, q_vector->name, q_vector); else err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, q_vector->name, q_vector); if (err) { netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", err); goto free_q_irqs; } /* register for affinity change notifications */ if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { struct irq_affinity_notify *affinity_notify; affinity_notify = &q_vector->affinity_notify; affinity_notify->notify = ice_irq_affinity_notify; affinity_notify->release = ice_irq_affinity_release; irq_set_affinity_notifier(irq_num, affinity_notify); } /* assign the mask for this irq */ irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); } err = ice_set_cpu_rx_rmap(vsi); if (err) { netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", vsi->vsi_num, ERR_PTR(err)); goto free_q_irqs; } vsi->irqs_ready = true; return 0; free_q_irqs: while (vector--) { irq_num = vsi->q_vectors[vector]->irq.virq; if (!IS_ENABLED(CONFIG_RFS_ACCEL)) irq_set_affinity_notifier(irq_num, NULL); irq_set_affinity_hint(irq_num, NULL); devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); } return err; } /** * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP * @vsi: VSI to setup Tx rings used by XDP * * Return 0 on success and negative value on error */ static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(vsi->back); struct ice_tx_desc *tx_desc; int i, j; ice_for_each_xdp_txq(vsi, i) { u16 xdp_q_idx = vsi->alloc_txq + i; struct ice_ring_stats *ring_stats; struct ice_tx_ring *xdp_ring; xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); if (!xdp_ring) goto free_xdp_rings; ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); if (!ring_stats) { ice_free_tx_ring(xdp_ring); goto free_xdp_rings; } xdp_ring->ring_stats = ring_stats; xdp_ring->q_index = xdp_q_idx; xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; xdp_ring->vsi = vsi; xdp_ring->netdev = NULL; xdp_ring->dev = dev; xdp_ring->count = vsi->num_tx_desc; WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); if (ice_setup_tx_ring(xdp_ring)) goto free_xdp_rings; ice_set_ring_xdp(xdp_ring); spin_lock_init(&xdp_ring->tx_lock); for (j = 0; j < xdp_ring->count; j++) { tx_desc = ICE_TX_DESC(xdp_ring, j); tx_desc->cmd_type_offset_bsz = 0; } } return 0; free_xdp_rings: for (; i >= 0; i--) { if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); vsi->xdp_rings[i]->ring_stats = NULL; ice_free_tx_ring(vsi->xdp_rings[i]); } } return -ENOMEM; } /** * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI * @vsi: VSI to set the bpf prog on * @prog: the bpf prog pointer */ static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) { struct bpf_prog *old_prog; int i; old_prog = xchg(&vsi->xdp_prog, prog); ice_for_each_rxq(vsi, i) WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); if (old_prog) bpf_prog_put(old_prog); } /** * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP * @vsi: VSI to bring up Tx rings used by XDP * @prog: bpf program that will be assigned to VSI * @cfg_type: create from scratch or restore the existing configuration * * Return 0 on success and negative value on error */ int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, enum ice_xdp_cfg cfg_type) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; int xdp_rings_rem = vsi->num_xdp_txq; struct ice_pf *pf = vsi->back; struct ice_qs_cfg xdp_qs_cfg = { .qs_mutex = &pf->avail_q_mutex, .pf_map = pf->avail_txqs, .pf_map_size = pf->max_pf_txqs, .q_count = vsi->num_xdp_txq, .scatter_count = ICE_MAX_SCATTER_TXQS, .vsi_map = vsi->txq_map, .vsi_map_offset = vsi->alloc_txq, .mapping_mode = ICE_VSI_MAP_CONTIG }; struct device *dev; int i, v_idx; int status; dev = ice_pf_to_dev(pf); vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, sizeof(*vsi->xdp_rings), GFP_KERNEL); if (!vsi->xdp_rings) return -ENOMEM; vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; if (__ice_vsi_get_qs(&xdp_qs_cfg)) goto err_map_xdp; if (static_key_enabled(&ice_xdp_locking_key)) netdev_warn(vsi->netdev, "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); if (ice_xdp_alloc_setup_rings(vsi)) goto clear_xdp_rings; /* follow the logic from ice_vsi_map_rings_to_vectors */ ice_for_each_q_vector(vsi, v_idx) { struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; int xdp_rings_per_v, q_id, q_base; xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, vsi->num_q_vectors - v_idx); q_base = vsi->num_xdp_txq - xdp_rings_rem; for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; xdp_ring->q_vector = q_vector; xdp_ring->next = q_vector->tx.tx_ring; q_vector->tx.tx_ring = xdp_ring; } xdp_rings_rem -= xdp_rings_per_v; } ice_for_each_rxq(vsi, i) { if (static_key_enabled(&ice_xdp_locking_key)) { vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; } else { struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; struct ice_tx_ring *ring; ice_for_each_tx_ring(ring, q_vector->tx) { if (ice_ring_is_xdp(ring)) { vsi->rx_rings[i]->xdp_ring = ring; break; } } } ice_tx_xsk_pool(vsi, i); } /* omit the scheduler update if in reset path; XDP queues will be * taken into account at the end of ice_vsi_rebuild, where * ice_cfg_vsi_lan is being called */ if (cfg_type == ICE_XDP_CFG_PART) return 0; /* tell the Tx scheduler that right now we have * additional queues */ for (i = 0; i < vsi->tc_cfg.numtc; i++) max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, max_txqs); if (status) { dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", status); goto clear_xdp_rings; } /* assign the prog only when it's not already present on VSI; * this flow is a subject of both ethtool -L and ndo_bpf flows; * VSI rebuild that happens under ethtool -L can expose us to * the bpf_prog refcount issues as we would be swapping same * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put * on it as it would be treated as an 'old_prog'; for ndo_bpf * this is not harmful as dev_xdp_install bumps the refcount * before calling the op exposed by the driver; */ if (!ice_is_xdp_ena_vsi(vsi)) ice_vsi_assign_bpf_prog(vsi, prog); return 0; clear_xdp_rings: ice_for_each_xdp_txq(vsi, i) if (vsi->xdp_rings[i]) { kfree_rcu(vsi->xdp_rings[i], rcu); vsi->xdp_rings[i] = NULL; } err_map_xdp: mutex_lock(&pf->avail_q_mutex); ice_for_each_xdp_txq(vsi, i) { clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; } mutex_unlock(&pf->avail_q_mutex); devm_kfree(dev, vsi->xdp_rings); return -ENOMEM; } /** * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings * @vsi: VSI to remove XDP rings * @cfg_type: disable XDP permanently or allow it to be restored later * * Detach XDP rings from irq vectors, clean up the PF bitmap and free * resources */ int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; struct ice_pf *pf = vsi->back; int i, v_idx; /* q_vectors are freed in reset path so there's no point in detaching * rings */ if (cfg_type == ICE_XDP_CFG_PART) goto free_qmap; ice_for_each_q_vector(vsi, v_idx) { struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; struct ice_tx_ring *ring; ice_for_each_tx_ring(ring, q_vector->tx) if (!ring->tx_buf || !ice_ring_is_xdp(ring)) break; /* restore the value of last node prior to XDP setup */ q_vector->tx.tx_ring = ring; } free_qmap: mutex_lock(&pf->avail_q_mutex); ice_for_each_xdp_txq(vsi, i) { clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; } mutex_unlock(&pf->avail_q_mutex); ice_for_each_xdp_txq(vsi, i) if (vsi->xdp_rings[i]) { if (vsi->xdp_rings[i]->desc) { synchronize_rcu(); ice_free_tx_ring(vsi->xdp_rings[i]); } kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); vsi->xdp_rings[i]->ring_stats = NULL; kfree_rcu(vsi->xdp_rings[i], rcu); vsi->xdp_rings[i] = NULL; } devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); vsi->xdp_rings = NULL; if (static_key_enabled(&ice_xdp_locking_key)) static_branch_dec(&ice_xdp_locking_key); if (cfg_type == ICE_XDP_CFG_PART) return 0; ice_vsi_assign_bpf_prog(vsi, NULL); /* notify Tx scheduler that we destroyed XDP queues and bring * back the old number of child nodes */ for (i = 0; i < vsi->tc_cfg.numtc; i++) max_txqs[i] = vsi->num_txq; /* change number of XDP Tx queues to 0 */ vsi->num_xdp_txq = 0; return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, max_txqs); } /** * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI * @vsi: VSI to schedule napi on */ static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) { int i; ice_for_each_rxq(vsi, i) { struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; if (rx_ring->xsk_pool) napi_schedule(&rx_ring->q_vector->napi); } } /** * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have * @vsi: VSI to determine the count of XDP Tx qs * * returns 0 if Tx qs count is higher than at least half of CPU count, * -ENOMEM otherwise */ int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) { u16 avail = ice_get_avail_txq_count(vsi->back); u16 cpus = num_possible_cpus(); if (avail < cpus / 2) return -ENOMEM; vsi->num_xdp_txq = min_t(u16, avail, cpus); if (vsi->num_xdp_txq < cpus) static_branch_inc(&ice_xdp_locking_key); return 0; } /** * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP * @vsi: Pointer to VSI structure */ static int ice_max_xdp_frame_size(struct ice_vsi *vsi) { if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) return ICE_RXBUF_1664; else return ICE_RXBUF_3072; } /** * ice_xdp_setup_prog - Add or remove XDP eBPF program * @vsi: VSI to setup XDP for * @prog: XDP program * @extack: netlink extended ack */ static int ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, struct netlink_ext_ack *extack) { unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; int ret = 0, xdp_ring_err = 0; bool if_running; if (prog && !prog->aux->xdp_has_frags) { if (frame_size > ice_max_xdp_frame_size(vsi)) { NL_SET_ERR_MSG_MOD(extack, "MTU is too large for linear frames and XDP prog does not support frags"); return -EOPNOTSUPP; } } /* hot swap progs and avoid toggling link */ if (ice_is_xdp_ena_vsi(vsi) == !!prog || test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { ice_vsi_assign_bpf_prog(vsi, prog); return 0; } if_running = netif_running(vsi->netdev) && !test_and_set_bit(ICE_VSI_DOWN, vsi->state); /* need to stop netdev while setting up the program for Rx rings */ if (if_running) { ret = ice_down(vsi); if (ret) { NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); return ret; } } if (!ice_is_xdp_ena_vsi(vsi) && prog) { xdp_ring_err = ice_vsi_determine_xdp_res(vsi); if (xdp_ring_err) { NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); } else { xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, ICE_XDP_CFG_FULL); if (xdp_ring_err) NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); } xdp_features_set_redirect_target(vsi->netdev, true); /* reallocate Rx queues that are used for zero-copy */ xdp_ring_err = ice_realloc_zc_buf(vsi, true); if (xdp_ring_err) NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { xdp_features_clear_redirect_target(vsi->netdev); xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); if (xdp_ring_err) NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); /* reallocate Rx queues that were used for zero-copy */ xdp_ring_err = ice_realloc_zc_buf(vsi, false); if (xdp_ring_err) NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); } if (if_running) ret = ice_up(vsi); if (!ret && prog) ice_vsi_rx_napi_schedule(vsi); return (ret || xdp_ring_err) ? -ENOMEM : 0; } /** * ice_xdp_safe_mode - XDP handler for safe mode * @dev: netdevice * @xdp: XDP command */ static int ice_xdp_safe_mode(struct net_device __always_unused *dev, struct netdev_bpf *xdp) { NL_SET_ERR_MSG_MOD(xdp->extack, "Please provide working DDP firmware package in order to use XDP\n" "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); return -EOPNOTSUPP; } /** * ice_xdp - implements XDP handler * @dev: netdevice * @xdp: XDP command */ static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) { struct ice_netdev_priv *np = netdev_priv(dev); struct ice_vsi *vsi = np->vsi; int ret; if (vsi->type != ICE_VSI_PF) { NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); return -EINVAL; } mutex_lock(&vsi->xdp_state_lock); switch (xdp->command) { case XDP_SETUP_PROG: ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); break; case XDP_SETUP_XSK_POOL: ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); break; default: ret = -EINVAL; } mutex_unlock(&vsi->xdp_state_lock); return ret; } /** * ice_ena_misc_vector - enable the non-queue interrupts * @pf: board private structure */ static void ice_ena_misc_vector(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 val; /* Disable anti-spoof detection interrupt to prevent spurious event * interrupts during a function reset. Anti-spoof functionally is * still supported. */ val = rd32(hw, GL_MDCK_TX_TDPU); val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; wr32(hw, GL_MDCK_TX_TDPU, val); /* clear things first */ wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ rd32(hw, PFINT_OICR); /* read to clear */ val = (PFINT_OICR_ECC_ERR_M | PFINT_OICR_MAL_DETECT_M | PFINT_OICR_GRST_M | PFINT_OICR_PCI_EXCEPTION_M | PFINT_OICR_VFLR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M | PFINT_OICR_PE_CRITERR_M); wr32(hw, PFINT_OICR_ENA, val); /* SW_ITR_IDX = 0, but don't change INTENA */ wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); } /** * ice_misc_intr - misc interrupt handler * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) { struct ice_pf *pf = (struct ice_pf *)data; struct ice_hw *hw = &pf->hw; struct device *dev; u32 oicr, ena_mask; dev = ice_pf_to_dev(pf); set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); oicr = rd32(hw, PFINT_OICR); ena_mask = rd32(hw, PFINT_OICR_ENA); if (oicr & PFINT_OICR_SWINT_M) { ena_mask &= ~PFINT_OICR_SWINT_M; pf->sw_int_count++; } if (oicr & PFINT_OICR_MAL_DETECT_M) { ena_mask &= ~PFINT_OICR_MAL_DETECT_M; set_bit(ICE_MDD_EVENT_PENDING, pf->state); } if (oicr & PFINT_OICR_VFLR_M) { /* disable any further VFLR event notifications */ if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { u32 reg = rd32(hw, PFINT_OICR_ENA); reg &= ~PFINT_OICR_VFLR_M; wr32(hw, PFINT_OICR_ENA, reg); } else { ena_mask &= ~PFINT_OICR_VFLR_M; set_bit(ICE_VFLR_EVENT_PENDING, pf->state); } } if (oicr & PFINT_OICR_GRST_M) { u32 reset; /* we have a reset warning */ ena_mask &= ~PFINT_OICR_GRST_M; reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> GLGEN_RSTAT_RESET_TYPE_S; if (reset == ICE_RESET_CORER) pf->corer_count++; else if (reset == ICE_RESET_GLOBR) pf->globr_count++; else if (reset == ICE_RESET_EMPR) pf->empr_count++; else dev_dbg(dev, "Invalid reset type %d\n", reset); /* If a reset cycle isn't already in progress, we set a bit in * pf->state so that the service task can start a reset/rebuild. */ if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { if (reset == ICE_RESET_CORER) set_bit(ICE_CORER_RECV, pf->state); else if (reset == ICE_RESET_GLOBR) set_bit(ICE_GLOBR_RECV, pf->state); else set_bit(ICE_EMPR_RECV, pf->state); /* There are couple of different bits at play here. * hw->reset_ongoing indicates whether the hardware is * in reset. This is set to true when a reset interrupt * is received and set back to false after the driver * has determined that the hardware is out of reset. * * ICE_RESET_OICR_RECV in pf->state indicates * that a post reset rebuild is required before the * driver is operational again. This is set above. * * As this is the start of the reset/rebuild cycle, set * both to indicate that. */ hw->reset_ongoing = true; } } if (oicr & PFINT_OICR_TSYN_TX_M) { ena_mask &= ~PFINT_OICR_TSYN_TX_M; if (!hw->reset_ongoing) set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); } if (oicr & PFINT_OICR_TSYN_EVNT_M) { u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; if (hw->func_caps.ts_func_info.src_tmr_owned) { /* Save EVENTs from GLTSYN register */ pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | GLTSYN_STAT_EVENT1_M | GLTSYN_STAT_EVENT2_M); set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); } } #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) if (oicr & ICE_AUX_CRIT_ERR) { pf->oicr_err_reg |= oicr; set_bit(ICE_AUX_ERR_PENDING, pf->state); ena_mask &= ~ICE_AUX_CRIT_ERR; } /* Report any remaining unexpected interrupts */ oicr &= ena_mask; if (oicr) { dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); /* If a critical error is pending there is no choice but to * reset the device. */ if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | PFINT_OICR_ECC_ERR_M)) { set_bit(ICE_PFR_REQ, pf->state); } } return IRQ_WAKE_THREAD; } /** * ice_misc_intr_thread_fn - misc interrupt thread function * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) { struct ice_pf *pf = data; struct ice_hw *hw; hw = &pf->hw; if (ice_is_reset_in_progress(pf->state)) return IRQ_HANDLED; ice_service_task_schedule(pf); if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) ice_ptp_extts_event(pf); if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { /* Process outstanding Tx timestamps. If there is more work, * re-arm the interrupt to trigger again. */ if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } } ice_irq_dynamic_ena(hw, NULL, NULL); return IRQ_HANDLED; } /** * ice_dis_ctrlq_interrupts - disable control queue interrupts * @hw: pointer to HW structure */ static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) { /* disable Admin queue Interrupt causes */ wr32(hw, PFINT_FW_CTL, rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); /* disable Mailbox queue Interrupt causes */ wr32(hw, PFINT_MBX_CTL, rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); wr32(hw, PFINT_SB_CTL, rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); /* disable Control queue Interrupt causes */ wr32(hw, PFINT_OICR_CTL, rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); ice_flush(hw); } /** * ice_free_irq_msix_misc - Unroll misc vector setup * @pf: board private structure */ static void ice_free_irq_msix_misc(struct ice_pf *pf) { int misc_irq_num = pf->oicr_irq.virq; struct ice_hw *hw = &pf->hw; ice_dis_ctrlq_interrupts(hw); /* disable OICR interrupt */ wr32(hw, PFINT_OICR_ENA, 0); ice_flush(hw); synchronize_irq(misc_irq_num); devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); ice_free_irq(pf, pf->oicr_irq); } /** * ice_ena_ctrlq_interrupts - enable control queue interrupts * @hw: pointer to HW structure * @reg_idx: HW vector index to associate the control queue interrupts with */ static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) { u32 val; val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | PFINT_OICR_CTL_CAUSE_ENA_M); wr32(hw, PFINT_OICR_CTL, val); /* enable Admin queue Interrupt causes */ val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | PFINT_FW_CTL_CAUSE_ENA_M); wr32(hw, PFINT_FW_CTL, val); /* enable Mailbox queue Interrupt causes */ val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | PFINT_MBX_CTL_CAUSE_ENA_M); wr32(hw, PFINT_MBX_CTL, val); /* This enables Sideband queue Interrupt causes */ val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); wr32(hw, PFINT_SB_CTL, val); ice_flush(hw); } /** * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events * @pf: board private structure * * This sets up the handler for MSIX 0, which is used to manage the * non-queue interrupts, e.g. AdminQ and errors. This is not used * when in MSI or Legacy interrupt mode. */ static int ice_req_irq_msix_misc(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct msi_map oicr_irq; int err = 0; if (!pf->int_name[0]) snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", dev_driver_string(dev), dev_name(dev)); /* Do not request IRQ but do enable OICR interrupt since settings are * lost during reset. Note that this function is called only during * rebuild path and not while reset is in progress. */ if (ice_is_reset_in_progress(pf->state)) goto skip_req_irq; /* reserve one vector in irq_tracker for misc interrupts */ oicr_irq = ice_alloc_irq(pf, false); if (oicr_irq.index < 0) return oicr_irq.index; pf->oicr_irq = oicr_irq; err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, ice_misc_intr_thread_fn, 0, pf->int_name, pf); if (err) { dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", pf->int_name, err); ice_free_irq(pf, pf->oicr_irq); return err; } skip_req_irq: ice_ena_misc_vector(pf); ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); ice_flush(hw); ice_irq_dynamic_ena(hw, NULL, NULL); return 0; } /** * ice_napi_add - register NAPI handler for the VSI * @vsi: VSI for which NAPI handler is to be registered * * This function is only called in the driver's load path. Registering the NAPI * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, * reset/rebuild, etc.) */ static void ice_napi_add(struct ice_vsi *vsi) { int v_idx; if (!vsi->netdev) return; ice_for_each_q_vector(vsi, v_idx) netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, ice_napi_poll); } /** * ice_set_ops - set netdev and ethtools ops for the given netdev * @vsi: the VSI associated with the new netdev */ static void ice_set_ops(struct ice_vsi *vsi) { struct net_device *netdev = vsi->netdev; struct ice_pf *pf = ice_netdev_to_pf(netdev); if (ice_is_safe_mode(pf)) { netdev->netdev_ops = &ice_netdev_safe_mode_ops; ice_set_ethtool_safe_mode_ops(netdev); return; } netdev->netdev_ops = &ice_netdev_ops; netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; ice_set_ethtool_ops(netdev); if (vsi->type != ICE_VSI_PF) return; netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_XSK_ZEROCOPY | NETDEV_XDP_ACT_RX_SG; netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; } /** * ice_set_netdev_features - set features for the given netdev * @netdev: netdev instance */ static void ice_set_netdev_features(struct net_device *netdev) { struct ice_pf *pf = ice_netdev_to_pf(netdev); bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); netdev_features_t csumo_features; netdev_features_t vlano_features; netdev_features_t dflt_features; netdev_features_t tso_features; if (ice_is_safe_mode(pf)) { /* safe mode */ netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; netdev->hw_features = netdev->features; return; } dflt_features = NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_NTUPLE | NETIF_F_RXHASH; csumo_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SCTP_CRC | NETIF_F_IPV6_CSUM; vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ if (is_dvm_ena) vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; tso_features = NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_PARTIAL | NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_L4; netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM; /* set features that user can change */ netdev->hw_features = dflt_features | csumo_features | vlano_features | tso_features; /* add support for HW_CSUM on packets with MPLS header */ netdev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_TSO | NETIF_F_TSO6; /* enable features */ netdev->features |= netdev->hw_features; netdev->hw_features |= NETIF_F_HW_TC; netdev->hw_features |= NETIF_F_LOOPBACK; /* encap and VLAN devices inherit default, csumo and tso features */ netdev->hw_enc_features |= dflt_features | csumo_features | tso_features; netdev->vlan_features |= dflt_features | csumo_features | tso_features; /* advertise support but don't enable by default since only one type of * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one * type turns on the other has to be turned off. This is enforced by the * ice_fix_features() ndo callback. */ if (is_dvm_ena) netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX; /* Leave CRC / FCS stripping enabled by default, but allow the value to * be changed at runtime */ netdev->hw_features |= NETIF_F_RXFCS; netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); } /** * ice_fill_rss_lut - Fill the RSS lookup table with default values * @lut: Lookup table * @rss_table_size: Lookup table size * @rss_size: Range of queue number for hashing */ void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) { u16 i; for (i = 0; i < rss_table_size; i++) lut[i] = i % rss_size; } /** * ice_pf_vsi_setup - Set up a PF VSI * @pf: board private structure * @pi: pointer to the port_info instance * * Returns pointer to the successfully allocated VSI software struct * on success, otherwise returns NULL on failure. */ static struct ice_vsi * ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) { struct ice_vsi_cfg_params params = {}; params.type = ICE_VSI_PF; params.pi = pi; params.flags = ICE_VSI_FLAG_INIT; return ice_vsi_setup(pf, ¶ms); } static struct ice_vsi * ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, struct ice_channel *ch) { struct ice_vsi_cfg_params params = {}; params.type = ICE_VSI_CHNL; params.pi = pi; params.ch = ch; params.flags = ICE_VSI_FLAG_INIT; return ice_vsi_setup(pf, ¶ms); } /** * ice_ctrl_vsi_setup - Set up a control VSI * @pf: board private structure * @pi: pointer to the port_info instance * * Returns pointer to the successfully allocated VSI software struct * on success, otherwise returns NULL on failure. */ static struct ice_vsi * ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) { struct ice_vsi_cfg_params params = {}; params.type = ICE_VSI_CTRL; params.pi = pi; params.flags = ICE_VSI_FLAG_INIT; return ice_vsi_setup(pf, ¶ms); } /** * ice_lb_vsi_setup - Set up a loopback VSI * @pf: board private structure * @pi: pointer to the port_info instance * * Returns pointer to the successfully allocated VSI software struct * on success, otherwise returns NULL on failure. */ struct ice_vsi * ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) { struct ice_vsi_cfg_params params = {}; params.type = ICE_VSI_LB; params.pi = pi; params.flags = ICE_VSI_FLAG_INIT; return ice_vsi_setup(pf, ¶ms); } /** * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload * @netdev: network interface to be adjusted * @proto: VLAN TPID * @vid: VLAN ID to be added * * net_device_ops implementation for adding VLAN IDs */ static int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi_vlan_ops *vlan_ops; struct ice_vsi *vsi = np->vsi; struct ice_vlan vlan; int ret; /* VLAN 0 is added by default during load/reset */ if (!vid) return 0; while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) usleep_range(1000, 2000); /* Add multicast promisc rule for the VLAN ID to be added if * all-multicast is currently enabled. */ if (vsi->current_netdev_flags & IFF_ALLMULTI) { ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_VLAN_PROMISC_BITS, vid); if (ret) goto finish; } vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged * packets aren't pruned by the device's internal switch on Rx */ vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); ret = vlan_ops->add_vlan(vsi, &vlan); if (ret) goto finish; /* If all-multicast is currently enabled and this VLAN ID is only one * besides VLAN-0 we have to update look-up type of multicast promisc * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. */ if ((vsi->current_netdev_flags & IFF_ALLMULTI) && ice_vsi_num_non_zero_vlans(vsi) == 1) { ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_PROMISC_BITS, 0); ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_VLAN_PROMISC_BITS, 0); } finish: clear_bit(ICE_CFG_BUSY, vsi->state); return ret; } /** * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload * @netdev: network interface to be adjusted * @proto: VLAN TPID * @vid: VLAN ID to be removed * * net_device_ops implementation for removing VLAN IDs */ static int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi_vlan_ops *vlan_ops; struct ice_vsi *vsi = np->vsi; struct ice_vlan vlan; int ret; /* don't allow removal of VLAN 0 */ if (!vid) return 0; while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) usleep_range(1000, 2000); ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_VLAN_PROMISC_BITS, vid); if (ret) { netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", vsi->vsi_num); vsi->current_netdev_flags |= IFF_ALLMULTI; } vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); /* Make sure VLAN delete is successful before updating VLAN * information */ vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); ret = vlan_ops->del_vlan(vsi, &vlan); if (ret) goto finish; /* Remove multicast promisc rule for the removed VLAN ID if * all-multicast is enabled. */ if (vsi->current_netdev_flags & IFF_ALLMULTI) ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_VLAN_PROMISC_BITS, vid); if (!ice_vsi_has_non_zero_vlans(vsi)) { /* Update look-up type of multicast promisc rule for VLAN 0 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when * all-multicast is enabled and VLAN 0 is the only VLAN rule. */ if (vsi->current_netdev_flags & IFF_ALLMULTI) { ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_VLAN_PROMISC_BITS, 0); ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_PROMISC_BITS, 0); } } finish: clear_bit(ICE_CFG_BUSY, vsi->state); return ret; } /** * ice_rep_indr_tc_block_unbind * @cb_priv: indirection block private data */ static void ice_rep_indr_tc_block_unbind(void *cb_priv) { struct ice_indr_block_priv *indr_priv = cb_priv; list_del(&indr_priv->list); kfree(indr_priv); } /** * ice_tc_indir_block_unregister - Unregister TC indirect block notifications * @vsi: VSI struct which has the netdev */ static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) { struct ice_netdev_priv *np = netdev_priv(vsi->netdev); flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, ice_rep_indr_tc_block_unbind); } /** * ice_tc_indir_block_register - Register TC indirect block notifications * @vsi: VSI struct which has the netdev * * Returns 0 on success, negative value on failure */ static int ice_tc_indir_block_register(struct ice_vsi *vsi) { struct ice_netdev_priv *np; if (!vsi || !vsi->netdev) return -EINVAL; np = netdev_priv(vsi->netdev); INIT_LIST_HEAD(&np->tc_indr_block_priv_list); return flow_indr_dev_register(ice_indr_setup_tc_cb, np); } /** * ice_get_avail_q_count - Get count of queues in use * @pf_qmap: bitmap to get queue use count from * @lock: pointer to a mutex that protects access to pf_qmap * @size: size of the bitmap */ static u16 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) { unsigned long bit; u16 count = 0; mutex_lock(lock); for_each_clear_bit(bit, pf_qmap, size) count++; mutex_unlock(lock); return count; } /** * ice_get_avail_txq_count - Get count of Tx queues in use * @pf: pointer to an ice_pf instance */ u16 ice_get_avail_txq_count(struct ice_pf *pf) { return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, pf->max_pf_txqs); } /** * ice_get_avail_rxq_count - Get count of Rx queues in use * @pf: pointer to an ice_pf instance */ u16 ice_get_avail_rxq_count(struct ice_pf *pf) { return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, pf->max_pf_rxqs); } /** * ice_deinit_pf - Unrolls initialziations done by ice_init_pf * @pf: board private structure to initialize */ static void ice_deinit_pf(struct ice_pf *pf) { ice_service_task_stop(pf); mutex_destroy(&pf->lag_mutex); mutex_destroy(&pf->adev_mutex); mutex_destroy(&pf->sw_mutex); mutex_destroy(&pf->tc_mutex); mutex_destroy(&pf->avail_q_mutex); mutex_destroy(&pf->vfs.table_lock); if (pf->avail_txqs) { bitmap_free(pf->avail_txqs); pf->avail_txqs = NULL; } if (pf->avail_rxqs) { bitmap_free(pf->avail_rxqs); pf->avail_rxqs = NULL; } if (pf->ptp.clock) ptp_clock_unregister(pf->ptp.clock); } /** * ice_set_pf_caps - set PFs capability flags * @pf: pointer to the PF instance */ static void ice_set_pf_caps(struct ice_pf *pf) { struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); if (func_caps->common_cap.rdma) set_bit(ICE_FLAG_RDMA_ENA, pf->flags); clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); if (func_caps->common_cap.dcb) set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); if (func_caps->common_cap.sr_iov_1_1) { set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, ICE_MAX_SRIOV_VFS); } clear_bit(ICE_FLAG_RSS_ENA, pf->flags); if (func_caps->common_cap.rss_table_size) set_bit(ICE_FLAG_RSS_ENA, pf->flags); clear_bit(ICE_FLAG_FD_ENA, pf->flags); if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { u16 unused; /* ctrl_vsi_idx will be set to a valid value when flow director * is setup by ice_init_fdir */ pf->ctrl_vsi_idx = ICE_NO_VSI; set_bit(ICE_FLAG_FD_ENA, pf->flags); /* force guaranteed filter pool for PF */ ice_alloc_fd_guar_item(&pf->hw, &unused, func_caps->fd_fltr_guar); /* force shared filter pool for PF */ ice_alloc_fd_shrd_item(&pf->hw, &unused, func_caps->fd_fltr_best_effort); } clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); if (func_caps->common_cap.ieee_1588) set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); pf->max_pf_txqs = func_caps->common_cap.num_txq; pf->max_pf_rxqs = func_caps->common_cap.num_rxq; } /** * ice_init_pf - Initialize general software structures (struct ice_pf) * @pf: board private structure to initialize */ static int ice_init_pf(struct ice_pf *pf) { ice_set_pf_caps(pf); mutex_init(&pf->sw_mutex); mutex_init(&pf->tc_mutex); mutex_init(&pf->adev_mutex); mutex_init(&pf->lag_mutex); INIT_HLIST_HEAD(&pf->aq_wait_list); spin_lock_init(&pf->aq_wait_lock); init_waitqueue_head(&pf->aq_wait_queue); init_waitqueue_head(&pf->reset_wait_queue); /* setup service timer and periodic service task */ timer_setup(&pf->serv_tmr, ice_service_timer, 0); pf->serv_tmr_period = HZ; INIT_WORK(&pf->serv_task, ice_service_task); clear_bit(ICE_SERVICE_SCHED, pf->state); mutex_init(&pf->avail_q_mutex); pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); if (!pf->avail_txqs) return -ENOMEM; pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); if (!pf->avail_rxqs) { bitmap_free(pf->avail_txqs); pf->avail_txqs = NULL; return -ENOMEM; } mutex_init(&pf->vfs.table_lock); hash_init(pf->vfs.table); ice_mbx_init_snapshot(&pf->hw); return 0; } /** * ice_is_wol_supported - check if WoL is supported * @hw: pointer to hardware info * * Check if WoL is supported based on the HW configuration. * Returns true if NVM supports and enables WoL for this port, false otherwise */ bool ice_is_wol_supported(struct ice_hw *hw) { u16 wol_ctrl; /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control * word) indicates WoL is not supported on the corresponding PF ID. */ if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) return false; return !(BIT(hw->port_info->lport) & wol_ctrl); } /** * ice_vsi_recfg_qs - Change the number of queues on a VSI * @vsi: VSI being changed * @new_rx: new number of Rx queues * @new_tx: new number of Tx queues * @locked: is adev device_lock held * * Only change the number of queues if new_tx, or new_rx is non-0. * * Returns 0 on success. */ int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) { struct ice_pf *pf = vsi->back; int i, err = 0, timeout = 50; if (!new_rx && !new_tx) return -EINVAL; while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { timeout--; if (!timeout) return -EBUSY; usleep_range(1000, 2000); } if (new_tx) vsi->req_txq = (u16)new_tx; if (new_rx) vsi->req_rxq = (u16)new_rx; /* set for the next time the netdev is started */ if (!netif_running(vsi->netdev)) { err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); if (err) goto rebuild_err; dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); goto done; } ice_vsi_close(vsi); err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); if (err) goto rebuild_err; ice_for_each_traffic_class(i) { if (vsi->tc_cfg.ena_tc & BIT(i)) netdev_set_tc_queue(vsi->netdev, vsi->tc_cfg.tc_info[i].netdev_tc, vsi->tc_cfg.tc_info[i].qcount_tx, vsi->tc_cfg.tc_info[i].qoffset); } ice_pf_dcb_recfg(pf, locked); ice_vsi_open(vsi); goto done; rebuild_err: dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", err); done: clear_bit(ICE_CFG_BUSY, pf->state); return err; } /** * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode * @pf: PF to configure * * No VLAN offloads/filtering are advertised in safe mode so make sure the PF * VSI can still Tx/Rx VLAN tagged packets. */ static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) { struct ice_vsi *vsi = ice_get_main_vsi(pf); struct ice_vsi_ctx *ctxt; struct ice_hw *hw; int status; if (!vsi) return; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return; hw = &pf->hw; ctxt->info = vsi->info; ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | ICE_AQ_VSI_PROP_SECURITY_VALID | ICE_AQ_VSI_PROP_SW_VALID); /* disable VLAN anti-spoof */ ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); /* disable VLAN pruning and keep all other settings */ ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; /* allow all VLANs on Tx and don't strip on Rx */ ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); if (status) { dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); } else { vsi->info.sec_flags = ctxt->info.sec_flags; vsi->info.sw_flags2 = ctxt->info.sw_flags2; vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; } kfree(ctxt); } /** * ice_log_pkg_init - log result of DDP package load * @hw: pointer to hardware info * @state: state of package load */ static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) { struct ice_pf *pf = hw->back; struct device *dev; dev = ice_pf_to_dev(pf); switch (state) { case ICE_DDP_PKG_SUCCESS: dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", hw->active_pkg_name, hw->active_pkg_ver.major, hw->active_pkg_ver.minor, hw->active_pkg_ver.update, hw->active_pkg_ver.draft); break; case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", hw->active_pkg_name, hw->active_pkg_ver.major, hw->active_pkg_ver.minor, hw->active_pkg_ver.update, hw->active_pkg_ver.draft); break; case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", hw->active_pkg_name, hw->active_pkg_ver.major, hw->active_pkg_ver.minor, ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); break; case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", hw->active_pkg_name, hw->active_pkg_ver.major, hw->active_pkg_ver.minor, hw->active_pkg_ver.update, hw->active_pkg_ver.draft, hw->pkg_name, hw->pkg_ver.major, hw->pkg_ver.minor, hw->pkg_ver.update, hw->pkg_ver.draft); break; case ICE_DDP_PKG_FW_MISMATCH: dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); break; case ICE_DDP_PKG_INVALID_FILE: dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); break; case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); break; case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); break; case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); break; case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); break; case ICE_DDP_PKG_LOAD_ERROR: dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); /* poll for reset to complete */ if (ice_check_reset(hw)) dev_err(dev, "Error resetting device. Please reload the driver\n"); break; case ICE_DDP_PKG_ERR: default: dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); break; } } /** * ice_load_pkg - load/reload the DDP Package file * @firmware: firmware structure when firmware requested or NULL for reload * @pf: pointer to the PF instance * * Called on probe and post CORER/GLOBR rebuild to load DDP Package and * initialize HW tables. */ static void ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) { enum ice_ddp_state state = ICE_DDP_PKG_ERR; struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; /* Load DDP Package */ if (firmware && !hw->pkg_copy) { state = ice_copy_and_init_pkg(hw, firmware->data, firmware->size); ice_log_pkg_init(hw, state); } else if (!firmware && hw->pkg_copy) { /* Reload package during rebuild after CORER/GLOBR reset */ state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); ice_log_pkg_init(hw, state); } else { dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); } if (!ice_is_init_pkg_successful(state)) { /* Safe Mode */ clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); return; } /* Successful download package is the precondition for advanced * features, hence setting the ICE_FLAG_ADV_FEATURES flag */ set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); } /** * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines * @pf: pointer to the PF structure * * There is no error returned here because the driver should be able to handle * 128 Byte cache lines, so we only print a warning in case issues are seen, * specifically with Tx. */ static void ice_verify_cacheline_size(struct ice_pf *pf) { if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", ICE_CACHE_LINE_BYTES); } /** * ice_send_version - update firmware with driver version * @pf: PF struct * * Returns 0 on success, else error code */ static int ice_send_version(struct ice_pf *pf) { struct ice_driver_ver dv; dv.major_ver = 0xff; dv.minor_ver = 0xff; dv.build_ver = 0xff; dv.subbuild_ver = 0; strscpy((char *)dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string)); return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); } /** * ice_init_fdir - Initialize flow director VSI and configuration * @pf: pointer to the PF instance * * returns 0 on success, negative on error */ static int ice_init_fdir(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_vsi *ctrl_vsi; int err; /* Side Band Flow Director needs to have a control VSI. * Allocate it and store it in the PF. */ ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); if (!ctrl_vsi) { dev_dbg(dev, "could not create control VSI\n"); return -ENOMEM; } err = ice_vsi_open_ctrl(ctrl_vsi); if (err) { dev_dbg(dev, "could not open control VSI\n"); goto err_vsi_open; } mutex_init(&pf->hw.fdir_fltr_lock); err = ice_fdir_create_dflt_rules(pf); if (err) goto err_fdir_rule; return 0; err_fdir_rule: ice_fdir_release_flows(&pf->hw); ice_vsi_close(ctrl_vsi); err_vsi_open: ice_vsi_release(ctrl_vsi); if (pf->ctrl_vsi_idx != ICE_NO_VSI) { pf->vsi[pf->ctrl_vsi_idx] = NULL; pf->ctrl_vsi_idx = ICE_NO_VSI; } return err; } static void ice_deinit_fdir(struct ice_pf *pf) { struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); if (!vsi) return; ice_vsi_manage_fdir(vsi, false); ice_vsi_release(vsi); if (pf->ctrl_vsi_idx != ICE_NO_VSI) { pf->vsi[pf->ctrl_vsi_idx] = NULL; pf->ctrl_vsi_idx = ICE_NO_VSI; } mutex_destroy(&(&pf->hw)->fdir_fltr_lock); } /** * ice_get_opt_fw_name - return optional firmware file name or NULL * @pf: pointer to the PF instance */ static char *ice_get_opt_fw_name(struct ice_pf *pf) { /* Optional firmware name same as default with additional dash * followed by a EUI-64 identifier (PCIe Device Serial Number) */ struct pci_dev *pdev = pf->pdev; char *opt_fw_filename; u64 dsn; /* Determine the name of the optional file using the DSN (two * dwords following the start of the DSN Capability). */ dsn = pci_get_dsn(pdev); if (!dsn) return NULL; opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); if (!opt_fw_filename) return NULL; snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", ICE_DDP_PKG_PATH, dsn); return opt_fw_filename; } /** * ice_request_fw - Device initialization routine * @pf: pointer to the PF instance */ static void ice_request_fw(struct ice_pf *pf) { char *opt_fw_filename = ice_get_opt_fw_name(pf); const struct firmware *firmware = NULL; struct device *dev = ice_pf_to_dev(pf); int err = 0; /* optional device-specific DDP (if present) overrides the default DDP * package file. kernel logs a debug message if the file doesn't exist, * and warning messages for other errors. */ if (opt_fw_filename) { err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); if (err) { kfree(opt_fw_filename); goto dflt_pkg_load; } /* request for firmware was successful. Download to device */ ice_load_pkg(firmware, pf); kfree(opt_fw_filename); release_firmware(firmware); return; } dflt_pkg_load: err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); if (err) { dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); return; } /* request for firmware was successful. Download to device */ ice_load_pkg(firmware, pf); release_firmware(firmware); } /** * ice_print_wake_reason - show the wake up cause in the log * @pf: pointer to the PF struct */ static void ice_print_wake_reason(struct ice_pf *pf) { u32 wus = pf->wakeup_reason; const char *wake_str; /* if no wake event, nothing to print */ if (!wus) return; if (wus & PFPM_WUS_LNKC_M) wake_str = "Link\n"; else if (wus & PFPM_WUS_MAG_M) wake_str = "Magic Packet\n"; else if (wus & PFPM_WUS_MNG_M) wake_str = "Management\n"; else if (wus & PFPM_WUS_FW_RST_WK_M) wake_str = "Firmware Reset\n"; else wake_str = "Unknown\n"; dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); } /** * ice_register_netdev - register netdev * @vsi: pointer to the VSI struct */ static int ice_register_netdev(struct ice_vsi *vsi) { int err; if (!vsi || !vsi->netdev) return -EIO; err = register_netdev(vsi->netdev); if (err) return err; set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); netif_carrier_off(vsi->netdev); netif_tx_stop_all_queues(vsi->netdev); return 0; } static void ice_unregister_netdev(struct ice_vsi *vsi) { if (!vsi || !vsi->netdev) return; unregister_netdev(vsi->netdev); clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); } /** * ice_cfg_netdev - Allocate, configure and register a netdev * @vsi: the VSI associated with the new netdev * * Returns 0 on success, negative value on failure */ static int ice_cfg_netdev(struct ice_vsi *vsi) { struct ice_netdev_priv *np; struct net_device *netdev; u8 mac_addr[ETH_ALEN]; netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, vsi->alloc_rxq); if (!netdev) return -ENOMEM; set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); vsi->netdev = netdev; np = netdev_priv(netdev); np->vsi = vsi; ice_set_netdev_features(netdev); ice_set_ops(vsi); if (vsi->type == ICE_VSI_PF) { SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); eth_hw_addr_set(netdev, mac_addr); } netdev->priv_flags |= IFF_UNICAST_FLT; /* Setup netdev TC information */ ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); netdev->max_mtu = ICE_MAX_MTU; return 0; } static void ice_decfg_netdev(struct ice_vsi *vsi) { clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); free_netdev(vsi->netdev); vsi->netdev = NULL; } static int ice_start_eth(struct ice_vsi *vsi) { int err; err = ice_init_mac_fltr(vsi->back); if (err) return err; err = ice_vsi_open(vsi); if (err) ice_fltr_remove_all(vsi); return err; } static void ice_stop_eth(struct ice_vsi *vsi) { ice_fltr_remove_all(vsi); ice_vsi_close(vsi); } static int ice_init_eth(struct ice_pf *pf) { struct ice_vsi *vsi = ice_get_main_vsi(pf); int err; if (!vsi) return -EINVAL; /* init channel list */ INIT_LIST_HEAD(&vsi->ch_list); err = ice_cfg_netdev(vsi); if (err) return err; /* Setup DCB netlink interface */ ice_dcbnl_setup(vsi); err = ice_init_mac_fltr(pf); if (err) goto err_init_mac_fltr; err = ice_devlink_create_pf_port(pf); if (err) goto err_devlink_create_pf_port; SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); err = ice_register_netdev(vsi); if (err) goto err_register_netdev; err = ice_tc_indir_block_register(vsi); if (err) goto err_tc_indir_block_register; ice_napi_add(vsi); return 0; err_tc_indir_block_register: ice_unregister_netdev(vsi); err_register_netdev: ice_devlink_destroy_pf_port(pf); err_devlink_create_pf_port: err_init_mac_fltr: ice_decfg_netdev(vsi); return err; } static void ice_deinit_eth(struct ice_pf *pf) { struct ice_vsi *vsi = ice_get_main_vsi(pf); if (!vsi) return; ice_vsi_close(vsi); ice_unregister_netdev(vsi); ice_devlink_destroy_pf_port(pf); ice_tc_indir_block_unregister(vsi); ice_decfg_netdev(vsi); } /** * ice_wait_for_fw - wait for full FW readiness * @hw: pointer to the hardware structure * @timeout: milliseconds that can elapse before timing out */ static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) { int fw_loading; u32 elapsed = 0; while (elapsed <= timeout) { fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; /* firmware was not yet loaded, we have to wait more */ if (fw_loading) { elapsed += 100; msleep(100); continue; } return 0; } return -ETIMEDOUT; } static int ice_init_dev(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int err; err = ice_init_hw(hw); if (err) { dev_err(dev, "ice_init_hw failed: %d\n", err); return err; } /* Some cards require longer initialization times * due to necessity of loading FW from an external source. * This can take even half a minute. */ if (ice_is_pf_c827(hw)) { err = ice_wait_for_fw(hw, 30000); if (err) { dev_err(dev, "ice_wait_for_fw timed out"); return err; } } ice_init_feature_support(pf); ice_request_fw(pf); /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be * set in pf->state, which will cause ice_is_safe_mode to return * true */ if (ice_is_safe_mode(pf)) { /* we already got function/device capabilities but these don't * reflect what the driver needs to do in safe mode. Instead of * adding conditional logic everywhere to ignore these * device/function capabilities, override them. */ ice_set_safe_mode_caps(hw); } err = ice_init_pf(pf); if (err) { dev_err(dev, "ice_init_pf failed: %d\n", err); goto err_init_pf; } pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; if (pf->hw.tnl.valid_count[TNL_VXLAN]) { pf->hw.udp_tunnel_nic.tables[0].n_entries = pf->hw.tnl.valid_count[TNL_VXLAN]; pf->hw.udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN; } if (pf->hw.tnl.valid_count[TNL_GENEVE]) { pf->hw.udp_tunnel_nic.tables[1].n_entries = pf->hw.tnl.valid_count[TNL_GENEVE]; pf->hw.udp_tunnel_nic.tables[1].tunnel_types = UDP_TUNNEL_TYPE_GENEVE; } err = ice_init_interrupt_scheme(pf); if (err) { dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); err = -EIO; goto err_init_interrupt_scheme; } /* In case of MSIX we are going to setup the misc vector right here * to handle admin queue events etc. In case of legacy and MSI * the misc functionality and queue processing is combined in * the same vector and that gets setup at open. */ err = ice_req_irq_msix_misc(pf); if (err) { dev_err(dev, "setup of misc vector failed: %d\n", err); goto err_req_irq_msix_misc; } return 0; err_req_irq_msix_misc: ice_clear_interrupt_scheme(pf); err_init_interrupt_scheme: ice_deinit_pf(pf); err_init_pf: ice_deinit_hw(hw); return err; } static void ice_deinit_dev(struct ice_pf *pf) { ice_free_irq_msix_misc(pf); ice_deinit_pf(pf); ice_deinit_hw(&pf->hw); /* Service task is already stopped, so call reset directly. */ ice_reset(&pf->hw, ICE_RESET_PFR); pci_wait_for_pending_transaction(pf->pdev); ice_clear_interrupt_scheme(pf); } static void ice_init_features(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); if (ice_is_safe_mode(pf)) return; /* initialize DDP driven features */ if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) ice_ptp_init(pf); if (ice_is_feature_supported(pf, ICE_F_GNSS)) ice_gnss_init(pf); /* Note: Flow director init failure is non-fatal to load */ if (ice_init_fdir(pf)) dev_err(dev, "could not initialize flow director\n"); /* Note: DCB init failure is non-fatal to load */ if (ice_init_pf_dcb(pf, false)) { clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); clear_bit(ICE_FLAG_DCB_ENA, pf->flags); } else { ice_cfg_lldp_mib_change(&pf->hw, true); } if (ice_init_lag(pf)) dev_warn(dev, "Failed to init link aggregation support\n"); } static void ice_deinit_features(struct ice_pf *pf) { if (ice_is_safe_mode(pf)) return; ice_deinit_lag(pf); if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) ice_cfg_lldp_mib_change(&pf->hw, false); ice_deinit_fdir(pf); if (ice_is_feature_supported(pf, ICE_F_GNSS)) ice_gnss_exit(pf); if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) ice_ptp_release(pf); } static void ice_init_wakeup(struct ice_pf *pf) { /* Save wakeup reason register for later use */ pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); /* check for a power management event */ ice_print_wake_reason(pf); /* clear wake status, all bits */ wr32(&pf->hw, PFPM_WUS, U32_MAX); /* Disable WoL at init, wait for user to enable */ device_set_wakeup_enable(ice_pf_to_dev(pf), false); } static int ice_init_link(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); int err; err = ice_init_link_events(pf->hw.port_info); if (err) { dev_err(dev, "ice_init_link_events failed: %d\n", err); return err; } /* not a fatal error if this fails */ err = ice_init_nvm_phy_type(pf->hw.port_info); if (err) dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); /* not a fatal error if this fails */ err = ice_update_link_info(pf->hw.port_info); if (err) dev_err(dev, "ice_update_link_info failed: %d\n", err); ice_init_link_dflt_override(pf->hw.port_info); ice_check_link_cfg_err(pf, pf->hw.port_info->phy.link_info.link_cfg_err); /* if media available, initialize PHY settings */ if (pf->hw.port_info->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { /* not a fatal error if this fails */ err = ice_init_phy_user_cfg(pf->hw.port_info); if (err) dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { struct ice_vsi *vsi = ice_get_main_vsi(pf); if (vsi) ice_configure_phy(vsi); } } else { set_bit(ICE_FLAG_NO_MEDIA, pf->flags); } return err; } static int ice_init_pf_sw(struct ice_pf *pf) { bool dvm = ice_is_dvm_ena(&pf->hw); struct ice_vsi *vsi; int err; /* create switch struct for the switch element created by FW on boot */ pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); if (!pf->first_sw) return -ENOMEM; if (pf->hw.evb_veb) pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; else pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; pf->first_sw->pf = pf; /* record the sw_id available for later use */ pf->first_sw->sw_id = pf->hw.port_info->sw_id; err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); if (err) goto err_aq_set_port_params; vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); if (!vsi) { err = -ENOMEM; goto err_pf_vsi_setup; } return 0; err_pf_vsi_setup: err_aq_set_port_params: kfree(pf->first_sw); return err; } static void ice_deinit_pf_sw(struct ice_pf *pf) { struct ice_vsi *vsi = ice_get_main_vsi(pf); if (!vsi) return; ice_vsi_release(vsi); kfree(pf->first_sw); } static int ice_alloc_vsis(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; if (!pf->num_alloc_vsi) return -EIO; if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { dev_warn(dev, "limiting the VSI count due to UDP tunnel limitation %d > %d\n", pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; } pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), GFP_KERNEL); if (!pf->vsi) return -ENOMEM; pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi_stats), GFP_KERNEL); if (!pf->vsi_stats) { devm_kfree(dev, pf->vsi); return -ENOMEM; } return 0; } static void ice_dealloc_vsis(struct ice_pf *pf) { devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); pf->vsi_stats = NULL; pf->num_alloc_vsi = 0; devm_kfree(ice_pf_to_dev(pf), pf->vsi); pf->vsi = NULL; } static int ice_init_devlink(struct ice_pf *pf) { int err; err = ice_devlink_register_params(pf); if (err) return err; ice_devlink_init_regions(pf); ice_devlink_register(pf); return 0; } static void ice_deinit_devlink(struct ice_pf *pf) { ice_devlink_unregister(pf); ice_devlink_destroy_regions(pf); ice_devlink_unregister_params(pf); } static int ice_init(struct ice_pf *pf) { int err; err = ice_init_dev(pf); if (err) return err; err = ice_alloc_vsis(pf); if (err) goto err_alloc_vsis; err = ice_init_pf_sw(pf); if (err) goto err_init_pf_sw; ice_init_wakeup(pf); err = ice_init_link(pf); if (err) goto err_init_link; err = ice_send_version(pf); if (err) goto err_init_link; ice_verify_cacheline_size(pf); if (ice_is_safe_mode(pf)) ice_set_safe_mode_vlan_cfg(pf); else /* print PCI link speed and width */ pcie_print_link_status(pf->pdev); /* ready to go, so clear down state bit */ clear_bit(ICE_DOWN, pf->state); clear_bit(ICE_SERVICE_DIS, pf->state); /* since everything is good, start the service timer */ mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); return 0; err_init_link: ice_deinit_pf_sw(pf); err_init_pf_sw: ice_dealloc_vsis(pf); err_alloc_vsis: ice_deinit_dev(pf); return err; } static void ice_deinit(struct ice_pf *pf) { set_bit(ICE_SERVICE_DIS, pf->state); set_bit(ICE_DOWN, pf->state); ice_deinit_pf_sw(pf); ice_dealloc_vsis(pf); ice_deinit_dev(pf); } /** * ice_load - load pf by init hw and starting VSI * @pf: pointer to the pf instance */ int ice_load(struct ice_pf *pf) { struct ice_vsi_cfg_params params = {}; struct ice_vsi *vsi; int err; err = ice_init_dev(pf); if (err) return err; vsi = ice_get_main_vsi(pf); params = ice_vsi_to_params(vsi); params.flags = ICE_VSI_FLAG_INIT; rtnl_lock(); err = ice_vsi_cfg(vsi, ¶ms); if (err) goto err_vsi_cfg; err = ice_start_eth(ice_get_main_vsi(pf)); if (err) goto err_start_eth; rtnl_unlock(); err = ice_init_rdma(pf); if (err) goto err_init_rdma; ice_init_features(pf); ice_service_task_restart(pf); clear_bit(ICE_DOWN, pf->state); return 0; err_init_rdma: ice_vsi_close(ice_get_main_vsi(pf)); rtnl_lock(); err_start_eth: ice_vsi_decfg(ice_get_main_vsi(pf)); err_vsi_cfg: rtnl_unlock(); ice_deinit_dev(pf); return err; } /** * ice_unload - unload pf by stopping VSI and deinit hw * @pf: pointer to the pf instance */ void ice_unload(struct ice_pf *pf) { ice_deinit_features(pf); ice_deinit_rdma(pf); rtnl_lock(); ice_stop_eth(ice_get_main_vsi(pf)); ice_vsi_decfg(ice_get_main_vsi(pf)); rtnl_unlock(); ice_deinit_dev(pf); } /** * ice_probe - Device initialization routine * @pdev: PCI device information struct * @ent: entry in ice_pci_tbl * * Returns 0 on success, negative on failure */ static int ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) { struct device *dev = &pdev->dev; struct ice_pf *pf; struct ice_hw *hw; int err; if (pdev->is_virtfn) { dev_err(dev, "can't probe a virtual function\n"); return -EINVAL; } /* when under a kdump kernel initiate a reset before enabling the * device in order to clear out any pending DMA transactions. These * transactions can cause some systems to machine check when doing * the pcim_enable_device() below. */ if (is_kdump_kernel()) { pci_save_state(pdev); pci_clear_master(pdev); err = pcie_flr(pdev); if (err) return err; pci_restore_state(pdev); } /* this driver uses devres, see * Documentation/driver-api/driver-model/devres.rst */ err = pcim_enable_device(pdev); if (err) return err; err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); if (err) { dev_err(dev, "BAR0 I/O map error %d\n", err); return err; } pf = ice_allocate_pf(dev); if (!pf) return -ENOMEM; /* initialize Auxiliary index to invalid value */ pf->aux_idx = -1; /* set up for high or low DMA */ err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (err) { dev_err(dev, "DMA configuration failed: 0x%x\n", err); return err; } pci_set_master(pdev); pf->pdev = pdev; pci_set_drvdata(pdev, pf); set_bit(ICE_DOWN, pf->state); /* Disable service task until DOWN bit is cleared */ set_bit(ICE_SERVICE_DIS, pf->state); hw = &pf->hw; hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; pci_save_state(pdev); hw->back = pf; hw->port_info = NULL; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = PCI_SLOT(pdev->devfn); hw->bus.func = PCI_FUNC(pdev->devfn); ice_set_ctrlq_len(hw); pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); #ifndef CONFIG_DYNAMIC_DEBUG if (debug < -1) hw->debug_mask = debug; #endif err = ice_init(pf); if (err) goto err_init; err = ice_init_eth(pf); if (err) goto err_init_eth; err = ice_init_rdma(pf); if (err) goto err_init_rdma; err = ice_init_devlink(pf); if (err) goto err_init_devlink; ice_init_features(pf); return 0; err_init_devlink: ice_deinit_rdma(pf); err_init_rdma: ice_deinit_eth(pf); err_init_eth: ice_deinit(pf); err_init: pci_disable_device(pdev); return err; } /** * ice_set_wake - enable or disable Wake on LAN * @pf: pointer to the PF struct * * Simple helper for WoL control */ static void ice_set_wake(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool wol = pf->wol_ena; /* clear wake state, otherwise new wake events won't fire */ wr32(hw, PFPM_WUS, U32_MAX); /* enable / disable APM wake up, no RMW needed */ wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); /* set magic packet filter enabled */ wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); } /** * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet * @pf: pointer to the PF struct * * Issue firmware command to enable multicast magic wake, making * sure that any locally administered address (LAA) is used for * wake, and that PF reset doesn't undo the LAA. */ static void ice_setup_mc_magic_wake(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; u8 mac_addr[ETH_ALEN]; struct ice_vsi *vsi; int status; u8 flags; if (!pf->wol_ena) return; vsi = ice_get_main_vsi(pf); if (!vsi) return; /* Get current MAC address in case it's an LAA */ if (vsi->netdev) ether_addr_copy(mac_addr, vsi->netdev->dev_addr); else ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); if (status) dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); } /** * ice_remove - Device removal routine * @pdev: PCI device information struct */ static void ice_remove(struct pci_dev *pdev) { struct ice_pf *pf = pci_get_drvdata(pdev); int i; for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { if (!ice_is_reset_in_progress(pf->state)) break; msleep(100); } if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { set_bit(ICE_VF_RESETS_DISABLED, pf->state); ice_free_vfs(pf); } ice_service_task_stop(pf); ice_aq_cancel_waiting_tasks(pf); set_bit(ICE_DOWN, pf->state); if (!ice_is_safe_mode(pf)) ice_remove_arfs(pf); ice_deinit_features(pf); ice_deinit_devlink(pf); ice_deinit_rdma(pf); ice_deinit_eth(pf); ice_deinit(pf); ice_vsi_release_all(pf); ice_setup_mc_magic_wake(pf); ice_set_wake(pf); pci_disable_device(pdev); } /** * ice_shutdown - PCI callback for shutting down device * @pdev: PCI device information struct */ static void ice_shutdown(struct pci_dev *pdev) { struct ice_pf *pf = pci_get_drvdata(pdev); ice_remove(pdev); if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, pf->wol_ena); pci_set_power_state(pdev, PCI_D3hot); } } #ifdef CONFIG_PM /** * ice_prepare_for_shutdown - prep for PCI shutdown * @pf: board private structure * * Inform or close all dependent features in prep for PCI device shutdown */ static void ice_prepare_for_shutdown(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 v; /* Notify VFs of impending reset */ if (ice_check_sq_alive(hw, &hw->mailboxq)) ice_vc_notify_reset(pf); dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); /* disable the VSIs and their queues that are not already DOWN */ ice_pf_dis_all_vsi(pf, false); ice_for_each_vsi(pf, v) if (pf->vsi[v]) pf->vsi[v]->vsi_num = 0; ice_shutdown_all_ctrlq(hw); } /** * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme * @pf: board private structure to reinitialize * * This routine reinitialize interrupt scheme that was cleared during * power management suspend callback. * * This should be called during resume routine to re-allocate the q_vectors * and reacquire interrupts. */ static int ice_reinit_interrupt_scheme(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); int ret, v; /* Since we clear MSIX flag during suspend, we need to * set it back during resume... */ ret = ice_init_interrupt_scheme(pf); if (ret) { dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); return ret; } /* Remap vectors and rings, after successful re-init interrupts */ ice_for_each_vsi(pf, v) { if (!pf->vsi[v]) continue; ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); if (ret) goto err_reinit; ice_vsi_map_rings_to_vectors(pf->vsi[v]); } ret = ice_req_irq_msix_misc(pf); if (ret) { dev_err(dev, "Setting up misc vector failed after device suspend %d\n", ret); goto err_reinit; } return 0; err_reinit: while (v--) if (pf->vsi[v]) ice_vsi_free_q_vectors(pf->vsi[v]); return ret; } /** * ice_suspend * @dev: generic device information structure * * Power Management callback to quiesce the device and prepare * for D3 transition. */ static int __maybe_unused ice_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct ice_pf *pf; int disabled, v; pf = pci_get_drvdata(pdev); if (!ice_pf_state_is_nominal(pf)) { dev_err(dev, "Device is not ready, no need to suspend it\n"); return -EBUSY; } /* Stop watchdog tasks until resume completion. * Even though it is most likely that the service task is * disabled if the device is suspended or down, the service task's * state is controlled by a different state bit, and we should * store and honor whatever state that bit is in at this point. */ disabled = ice_service_task_stop(pf); ice_deinit_rdma(pf); /* Already suspended?, then there is nothing to do */ if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { if (!disabled) ice_service_task_restart(pf); return 0; } if (test_bit(ICE_DOWN, pf->state) || ice_is_reset_in_progress(pf->state)) { dev_err(dev, "can't suspend device in reset or already down\n"); if (!disabled) ice_service_task_restart(pf); return 0; } ice_setup_mc_magic_wake(pf); ice_prepare_for_shutdown(pf); ice_set_wake(pf); /* Free vectors, clear the interrupt scheme and release IRQs * for proper hibernation, especially with large number of CPUs. * Otherwise hibernation might fail when mapping all the vectors back * to CPU0. */ ice_free_irq_msix_misc(pf); ice_for_each_vsi(pf, v) { if (!pf->vsi[v]) continue; ice_vsi_free_q_vectors(pf->vsi[v]); } ice_clear_interrupt_scheme(pf); pci_save_state(pdev); pci_wake_from_d3(pdev, pf->wol_ena); pci_set_power_state(pdev, PCI_D3hot); return 0; } /** * ice_resume - PM callback for waking up from D3 * @dev: generic device information structure */ static int __maybe_unused ice_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); enum ice_reset_req reset_type; struct ice_pf *pf; struct ice_hw *hw; int ret; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_save_state(pdev); if (!pci_device_is_present(pdev)) return -ENODEV; ret = pci_enable_device_mem(pdev); if (ret) { dev_err(dev, "Cannot enable device after suspend\n"); return ret; } pf = pci_get_drvdata(pdev); hw = &pf->hw; pf->wakeup_reason = rd32(hw, PFPM_WUS); ice_print_wake_reason(pf); /* We cleared the interrupt scheme when we suspended, so we need to * restore it now to resume device functionality. */ ret = ice_reinit_interrupt_scheme(pf); if (ret) dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); ret = ice_init_rdma(pf); if (ret) dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", ret); clear_bit(ICE_DOWN, pf->state); /* Now perform PF reset and rebuild */ reset_type = ICE_RESET_PFR; /* re-enable service task for reset, but allow reset to schedule it */ clear_bit(ICE_SERVICE_DIS, pf->state); if (ice_schedule_reset(pf, reset_type)) dev_err(dev, "Reset during resume failed.\n"); clear_bit(ICE_SUSPENDED, pf->state); ice_service_task_restart(pf); /* Restart the service task */ mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); return 0; } #endif /* CONFIG_PM */ /** * ice_pci_err_detected - warning that PCI error has been detected * @pdev: PCI device information struct * @err: the type of PCI error * * Called to warn that something happened on the PCI bus and the error handling * is in progress. Allows the driver to gracefully prepare/handle PCI errors. */ static pci_ers_result_t ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) { struct ice_pf *pf = pci_get_drvdata(pdev); if (!pf) { dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", __func__, err); return PCI_ERS_RESULT_DISCONNECT; } if (!test_bit(ICE_SUSPENDED, pf->state)) { ice_service_task_stop(pf); if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { set_bit(ICE_PFR_REQ, pf->state); ice_prepare_for_reset(pf, ICE_RESET_PFR); } } return PCI_ERS_RESULT_NEED_RESET; } /** * ice_pci_err_slot_reset - a PCI slot reset has just happened * @pdev: PCI device information struct * * Called to determine if the driver can recover from the PCI slot reset by * using a register read to determine if the device is recoverable. */ static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) { struct ice_pf *pf = pci_get_drvdata(pdev); pci_ers_result_t result; int err; u32 reg; err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", err); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_wake_from_d3(pdev, false); /* Check for life */ reg = rd32(&pf->hw, GLGEN_RTRIG); if (!reg) result = PCI_ERS_RESULT_RECOVERED; else result = PCI_ERS_RESULT_DISCONNECT; } return result; } /** * ice_pci_err_resume - restart operations after PCI error recovery * @pdev: PCI device information struct * * Called to allow the driver to bring things back up after PCI error and/or * reset recovery have finished */ static void ice_pci_err_resume(struct pci_dev *pdev) { struct ice_pf *pf = pci_get_drvdata(pdev); if (!pf) { dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", __func__); return; } if (test_bit(ICE_SUSPENDED, pf->state)) { dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", __func__); return; } ice_restore_all_vfs_msi_state(pdev); ice_do_reset(pf, ICE_RESET_PFR); ice_service_task_restart(pf); mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); } /** * ice_pci_err_reset_prepare - prepare device driver for PCI reset * @pdev: PCI device information struct */ static void ice_pci_err_reset_prepare(struct pci_dev *pdev) { struct ice_pf *pf = pci_get_drvdata(pdev); if (!test_bit(ICE_SUSPENDED, pf->state)) { ice_service_task_stop(pf); if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { set_bit(ICE_PFR_REQ, pf->state); ice_prepare_for_reset(pf, ICE_RESET_PFR); } } } /** * ice_pci_err_reset_done - PCI reset done, device driver reset can begin * @pdev: PCI device information struct */ static void ice_pci_err_reset_done(struct pci_dev *pdev) { ice_pci_err_resume(pdev); } /* ice_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id ice_pci_tbl[] = { { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, /* required last entry */ { 0, } }; MODULE_DEVICE_TABLE(pci, ice_pci_tbl); static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); static const struct pci_error_handlers ice_pci_err_handler = { .error_detected = ice_pci_err_detected, .slot_reset = ice_pci_err_slot_reset, .reset_prepare = ice_pci_err_reset_prepare, .reset_done = ice_pci_err_reset_done, .resume = ice_pci_err_resume }; static struct pci_driver ice_driver = { .name = KBUILD_MODNAME, .id_table = ice_pci_tbl, .probe = ice_probe, .remove = ice_remove, #ifdef CONFIG_PM .driver.pm = &ice_pm_ops, #endif /* CONFIG_PM */ .shutdown = ice_shutdown, .sriov_configure = ice_sriov_configure, .err_handler = &ice_pci_err_handler }; /** * ice_module_init - Driver registration routine * * ice_module_init is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init ice_module_init(void) { int status = -ENOMEM; pr_info("%s\n", ice_driver_string); pr_info("%s\n", ice_copyright); ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); if (!ice_wq) { pr_err("Failed to create workqueue\n"); return status; } ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); if (!ice_lag_wq) { pr_err("Failed to create LAG workqueue\n"); goto err_dest_wq; } status = pci_register_driver(&ice_driver); if (status) { pr_err("failed to register PCI driver, err %d\n", status); goto err_dest_lag_wq; } return 0; err_dest_lag_wq: destroy_workqueue(ice_lag_wq); err_dest_wq: destroy_workqueue(ice_wq); return status; } module_init(ice_module_init); /** * ice_module_exit - Driver exit cleanup routine * * ice_module_exit is called just before the driver is removed * from memory. */ static void __exit ice_module_exit(void) { pci_unregister_driver(&ice_driver); destroy_workqueue(ice_wq); destroy_workqueue(ice_lag_wq); pr_info("module unloaded\n"); } module_exit(ice_module_exit); /** * ice_set_mac_address - NDO callback to set MAC address * @netdev: network interface device structure * @pi: pointer to an address structure * * Returns 0 on success, negative on failure */ static int ice_set_mac_address(struct net_device *netdev, void *pi) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; struct sockaddr *addr = pi; u8 old_mac[ETH_ALEN]; u8 flags = 0; u8 *mac; int err; mac = (u8 *)addr->sa_data; if (!is_valid_ether_addr(mac)) return -EADDRNOTAVAIL; if (test_bit(ICE_DOWN, pf->state) || ice_is_reset_in_progress(pf->state)) { netdev_err(netdev, "can't set mac %pM. device not ready\n", mac); return -EBUSY; } if (ice_chnl_dmac_fltr_cnt(pf)) { netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", mac); return -EAGAIN; } netif_addr_lock_bh(netdev); ether_addr_copy(old_mac, netdev->dev_addr); /* change the netdev's MAC address */ eth_hw_addr_set(netdev, mac); netif_addr_unlock_bh(netdev); /* Clean up old MAC filter. Not an error if old filter doesn't exist */ err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); if (err && err != -ENOENT) { err = -EADDRNOTAVAIL; goto err_update_filters; } /* Add filter for new MAC. If filter exists, return success */ err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); if (err == -EEXIST) { /* Although this MAC filter is already present in hardware it's * possible in some cases (e.g. bonding) that dev_addr was * modified outside of the driver and needs to be restored back * to this value. */ netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); return 0; } else if (err) { /* error if the new filter addition failed */ err = -EADDRNOTAVAIL; } err_update_filters: if (err) { netdev_err(netdev, "can't set MAC %pM. filter update failed\n", mac); netif_addr_lock_bh(netdev); eth_hw_addr_set(netdev, old_mac); netif_addr_unlock_bh(netdev); return err; } netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", netdev->dev_addr); /* write new MAC address to the firmware */ flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; err = ice_aq_manage_mac_write(hw, mac, flags, NULL); if (err) { netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", mac, err); } return 0; } /** * ice_set_rx_mode - NDO callback to set the netdev filters * @netdev: network interface device structure */ static void ice_set_rx_mode(struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; if (!vsi || ice_is_switchdev_running(vsi->back)) return; /* Set the flags to synchronize filters * ndo_set_rx_mode may be triggered even without a change in netdev * flags */ set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); /* schedule our worker thread which will take care of * applying the new filter changes */ ice_service_task_schedule(vsi->back); } /** * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate * @netdev: network interface device structure * @queue_index: Queue ID * @maxrate: maximum bandwidth in Mbps */ static int ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; u16 q_handle; int status; u8 tc; /* Validate maxrate requested is within permitted range */ if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", maxrate, queue_index); return -EINVAL; } q_handle = vsi->tx_rings[queue_index]->q_handle; tc = ice_dcb_get_tc(vsi, queue_index); vsi = ice_locate_vsi_using_queue(vsi, queue_index); if (!vsi) { netdev_err(netdev, "Invalid VSI for given queue %d\n", queue_index); return -EINVAL; } /* Set BW back to default, when user set maxrate to 0 */ if (!maxrate) status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, q_handle, ICE_MAX_BW); else status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, q_handle, ICE_MAX_BW, maxrate * 1000); if (status) netdev_err(netdev, "Unable to set Tx max rate, error %d\n", status); return status; } /** * ice_fdb_add - add an entry to the hardware database * @ndm: the input from the stack * @tb: pointer to array of nladdr (unused) * @dev: the net device pointer * @addr: the MAC address entry being added * @vid: VLAN ID * @flags: instructions from stack about fdb operation * @extack: netlink extended ack */ static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags, struct netlink_ext_ack __always_unused *extack) { int err; if (vid) { netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); return -EINVAL; } if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { netdev_err(dev, "FDB only supports static addresses\n"); return -EINVAL; } if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) err = dev_uc_add_excl(dev, addr); else if (is_multicast_ether_addr(addr)) err = dev_mc_add_excl(dev, addr); else err = -EINVAL; /* Only return duplicate errors if NLM_F_EXCL is set */ if (err == -EEXIST && !(flags & NLM_F_EXCL)) err = 0; return err; } /** * ice_fdb_del - delete an entry from the hardware database * @ndm: the input from the stack * @tb: pointer to array of nladdr (unused) * @dev: the net device pointer * @addr: the MAC address entry being added * @vid: VLAN ID * @extack: netlink extended ack */ static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, __always_unused u16 vid, struct netlink_ext_ack *extack) { int err; if (ndm->ndm_state & NUD_PERMANENT) { netdev_err(dev, "FDB only supports static addresses\n"); return -EINVAL; } if (is_unicast_ether_addr(addr)) err = dev_uc_del(dev, addr); else if (is_multicast_ether_addr(addr)) err = dev_mc_del(dev, addr); else err = -EINVAL; return err; } #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_CTAG_TX | \ NETIF_F_HW_VLAN_STAG_RX | \ NETIF_F_HW_VLAN_STAG_TX) #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_STAG_RX) #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ NETIF_F_HW_VLAN_STAG_FILTER) /** * ice_fix_features - fix the netdev features flags based on device limitations * @netdev: ptr to the netdev that flags are being fixed on * @features: features that need to be checked and possibly fixed * * Make sure any fixups are made to features in this callback. This enables the * driver to not have to check unsupported configurations throughout the driver * because that's the responsiblity of this callback. * * Single VLAN Mode (SVM) Supported Features: * NETIF_F_HW_VLAN_CTAG_FILTER * NETIF_F_HW_VLAN_CTAG_RX * NETIF_F_HW_VLAN_CTAG_TX * * Double VLAN Mode (DVM) Supported Features: * NETIF_F_HW_VLAN_CTAG_FILTER * NETIF_F_HW_VLAN_CTAG_RX * NETIF_F_HW_VLAN_CTAG_TX * * NETIF_F_HW_VLAN_STAG_FILTER * NETIF_HW_VLAN_STAG_RX * NETIF_HW_VLAN_STAG_TX * * Features that need fixing: * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. * These are mutually exlusive as the VSI context cannot support multiple * VLAN ethertypes simultaneously for stripping and/or insertion. If this * is not done, then default to clearing the requested STAG offload * settings. * * All supported filtering has to be enabled or disabled together. For * example, in DVM, CTAG and STAG filtering have to be enabled and disabled * together. If this is not done, then default to VLAN filtering disabled. * These are mutually exclusive as there is currently no way to * enable/disable VLAN filtering based on VLAN ethertype when using VLAN * prune rules. */ static netdev_features_t ice_fix_features(struct net_device *netdev, netdev_features_t features) { struct ice_netdev_priv *np = netdev_priv(netdev); netdev_features_t req_vlan_fltr, cur_vlan_fltr; bool cur_ctag, cur_stag, req_ctag, req_stag; cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; if (req_vlan_fltr != cur_vlan_fltr) { if (ice_is_dvm_ena(&np->vsi->back->hw)) { if (req_ctag && req_stag) { features |= NETIF_VLAN_FILTERING_FEATURES; } else if (!req_ctag && !req_stag) { features &= ~NETIF_VLAN_FILTERING_FEATURES; } else if ((!cur_ctag && req_ctag && !cur_stag) || (!cur_stag && req_stag && !cur_ctag)) { features |= NETIF_VLAN_FILTERING_FEATURES; netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); } else if ((cur_ctag && !req_ctag && cur_stag) || (cur_stag && !req_stag && cur_ctag)) { features &= ~NETIF_VLAN_FILTERING_FEATURES; netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); } } else { if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) features |= NETIF_F_HW_VLAN_CTAG_FILTER; } } if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); features &= ~(NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX); } if (!(netdev->features & NETIF_F_RXFCS) && (features & NETIF_F_RXFCS) && (features & NETIF_VLAN_STRIPPING_FEATURES) && !ice_vsi_has_non_zero_vlans(np->vsi)) { netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); features &= ~NETIF_VLAN_STRIPPING_FEATURES; } return features; } /** * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI * @vsi: PF's VSI * @features: features used to determine VLAN offload settings * * First, determine the vlan_ethertype based on the VLAN offload bits in * features. Then determine if stripping and insertion should be enabled or * disabled. Finally enable or disable VLAN stripping and insertion. */ static int ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) { bool enable_stripping = true, enable_insertion = true; struct ice_vsi_vlan_ops *vlan_ops; int strip_err = 0, insert_err = 0; u16 vlan_ethertype = 0; vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) vlan_ethertype = ETH_P_8021AD; else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) vlan_ethertype = ETH_P_8021Q; if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) enable_stripping = false; if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) enable_insertion = false; if (enable_stripping) strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); else strip_err = vlan_ops->dis_stripping(vsi); if (enable_insertion) insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); else insert_err = vlan_ops->dis_insertion(vsi); if (strip_err || insert_err) return -EIO; return 0; } /** * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI * @vsi: PF's VSI * @features: features used to determine VLAN filtering settings * * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the * features. */ static int ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) { struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); int err = 0; /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking * if either bit is set */ if (features & (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) err = vlan_ops->ena_rx_filtering(vsi); else err = vlan_ops->dis_rx_filtering(vsi); return err; } /** * ice_set_vlan_features - set VLAN settings based on suggested feature set * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting * * Only update VLAN settings if the requested_vlan_features are different than * the current_vlan_features. */ static int ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t current_vlan_features, requested_vlan_features; struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; int err; current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; if (current_vlan_features ^ requested_vlan_features) { if ((features & NETIF_F_RXFCS) && (features & NETIF_VLAN_STRIPPING_FEATURES)) { dev_err(ice_pf_to_dev(vsi->back), "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); return -EIO; } err = ice_set_vlan_offload_features(vsi, features); if (err) return err; } current_vlan_features = netdev->features & NETIF_VLAN_FILTERING_FEATURES; requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; if (current_vlan_features ^ requested_vlan_features) { err = ice_set_vlan_filtering_features(vsi, features); if (err) return err; } return 0; } /** * ice_set_loopback - turn on/off loopback mode on underlying PF * @vsi: ptr to VSI * @ena: flag to indicate the on/off setting */ static int ice_set_loopback(struct ice_vsi *vsi, bool ena) { bool if_running = netif_running(vsi->netdev); int ret; if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { ret = ice_down(vsi); if (ret) { netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); return ret; } } ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); if (ret) netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); if (if_running) ret = ice_up(vsi); return ret; } /** * ice_set_features - set the netdev feature flags * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting */ static int ice_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; int ret = 0; /* Don't set any netdev advanced features with device in Safe Mode */ if (ice_is_safe_mode(pf)) { dev_err(ice_pf_to_dev(pf), "Device is in Safe Mode - not enabling advanced netdev features\n"); return ret; } /* Do not change setting during reset */ if (ice_is_reset_in_progress(pf->state)) { dev_err(ice_pf_to_dev(pf), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); return -EBUSY; } /* Multiple features can be changed in one call so keep features in * separate if/else statements to guarantee each feature is checked */ if (changed & NETIF_F_RXHASH) ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); ret = ice_set_vlan_features(netdev, features); if (ret) return ret; /* Turn on receive of FCS aka CRC, and after setting this * flag the packet data will have the 4 byte CRC appended */ if (changed & NETIF_F_RXFCS) { if ((features & NETIF_F_RXFCS) && (features & NETIF_VLAN_STRIPPING_FEATURES)) { dev_err(ice_pf_to_dev(vsi->back), "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); return -EIO; } ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); ret = ice_down_up(vsi); if (ret) return ret; } if (changed & NETIF_F_NTUPLE) { bool ena = !!(features & NETIF_F_NTUPLE); ice_vsi_manage_fdir(vsi, ena); ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); } /* don't turn off hw_tc_offload when ADQ is already enabled */ if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); return -EACCES; } if (changed & NETIF_F_HW_TC) { bool ena = !!(features & NETIF_F_HW_TC); ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); } if (changed & NETIF_F_LOOPBACK) ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); return ret; } /** * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI * @vsi: VSI to setup VLAN properties for */ static int ice_vsi_vlan_setup(struct ice_vsi *vsi) { int err; err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); if (err) return err; err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); if (err) return err; return ice_vsi_add_vlan_zero(vsi); } /** * ice_vsi_cfg_lan - Setup the VSI lan related config * @vsi: the VSI being configured * * Return 0 on success and negative value on error */ int ice_vsi_cfg_lan(struct ice_vsi *vsi) { int err; if (vsi->netdev && vsi->type == ICE_VSI_PF) { ice_set_rx_mode(vsi->netdev); err = ice_vsi_vlan_setup(vsi); if (err) return err; } ice_vsi_cfg_dcb_rings(vsi); err = ice_vsi_cfg_lan_txqs(vsi); if (!err && ice_is_xdp_ena_vsi(vsi)) err = ice_vsi_cfg_xdp_txqs(vsi); if (!err) err = ice_vsi_cfg_rxqs(vsi); return err; } /* THEORY OF MODERATION: * The ice driver hardware works differently than the hardware that DIMLIB was * originally made for. ice hardware doesn't have packet count limits that * can trigger an interrupt, but it *does* have interrupt rate limit support, * which is hard-coded to a limit of 250,000 ints/second. * If not using dynamic moderation, the INTRL value can be modified * by ethtool rx-usecs-high. */ struct ice_dim { /* the throttle rate for interrupts, basically worst case delay before * an initial interrupt fires, value is stored in microseconds. */ u16 itr; }; /* Make a different profile for Rx that doesn't allow quite so aggressive * moderation at the high end (it maxes out at 126us or about 8k interrupts a * second. */ static const struct ice_dim rx_profile[] = { {2}, /* 500,000 ints/s, capped at 250K by INTRL */ {8}, /* 125,000 ints/s */ {16}, /* 62,500 ints/s */ {62}, /* 16,129 ints/s */ {126} /* 7,936 ints/s */ }; /* The transmit profile, which has the same sorts of values * as the previous struct */ static const struct ice_dim tx_profile[] = { {2}, /* 500,000 ints/s, capped at 250K by INTRL */ {8}, /* 125,000 ints/s */ {40}, /* 16,125 ints/s */ {128}, /* 7,812 ints/s */ {256} /* 3,906 ints/s */ }; static void ice_tx_dim_work(struct work_struct *work) { struct ice_ring_container *rc; struct dim *dim; u16 itr; dim = container_of(work, struct dim, work); rc = dim->priv; WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); /* look up the values in our local table */ itr = tx_profile[dim->profile_ix].itr; ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); ice_write_itr(rc, itr); dim->state = DIM_START_MEASURE; } static void ice_rx_dim_work(struct work_struct *work) { struct ice_ring_container *rc; struct dim *dim; u16 itr; dim = container_of(work, struct dim, work); rc = dim->priv; WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); /* look up the values in our local table */ itr = rx_profile[dim->profile_ix].itr; ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); ice_write_itr(rc, itr); dim->state = DIM_START_MEASURE; } #define ICE_DIM_DEFAULT_PROFILE_IX 1 /** * ice_init_moderation - set up interrupt moderation * @q_vector: the vector containing rings to be configured * * Set up interrupt moderation registers, with the intent to do the right thing * when called from reset or from probe, and whether or not dynamic moderation * is enabled or not. Take special care to write all the registers in both * dynamic moderation mode or not in order to make sure hardware is in a known * state. */ static void ice_init_moderation(struct ice_q_vector *q_vector) { struct ice_ring_container *rc; bool tx_dynamic, rx_dynamic; rc = &q_vector->tx; INIT_WORK(&rc->dim.work, ice_tx_dim_work); rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; rc->dim.priv = rc; tx_dynamic = ITR_IS_DYNAMIC(rc); /* set the initial TX ITR to match the above */ ice_write_itr(rc, tx_dynamic ? tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); rc = &q_vector->rx; INIT_WORK(&rc->dim.work, ice_rx_dim_work); rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; rc->dim.priv = rc; rx_dynamic = ITR_IS_DYNAMIC(rc); /* set the initial RX ITR to match the above */ ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : rc->itr_setting); ice_set_q_vector_intrl(q_vector); } /** * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI * @vsi: the VSI being configured */ static void ice_napi_enable_all(struct ice_vsi *vsi) { int q_idx; if (!vsi->netdev) return; ice_for_each_q_vector(vsi, q_idx) { struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; ice_init_moderation(q_vector); if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) napi_enable(&q_vector->napi); } } /** * ice_up_complete - Finish the last steps of bringing up a connection * @vsi: The VSI being configured * * Return 0 on success and negative value on error */ static int ice_up_complete(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int err; ice_vsi_cfg_msix(vsi); /* Enable only Rx rings, Tx rings were enabled by the FW when the * Tx queue group list was configured and the context bits were * programmed using ice_vsi_cfg_txqs */ err = ice_vsi_start_all_rx_rings(vsi); if (err) return err; clear_bit(ICE_VSI_DOWN, vsi->state); ice_napi_enable_all(vsi); ice_vsi_ena_irq(vsi); if (vsi->port_info && (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && vsi->netdev && vsi->type == ICE_VSI_PF) { ice_print_link_msg(vsi, true); netif_tx_start_all_queues(vsi->netdev); netif_carrier_on(vsi->netdev); ice_ptp_link_change(pf, pf->hw.pf_id, true); } /* Perform an initial read of the statistics registers now to * set the baseline so counters are ready when interface is up */ ice_update_eth_stats(vsi); if (vsi->type == ICE_VSI_PF) ice_service_task_schedule(pf); return 0; } /** * ice_up - Bring the connection back up after being down * @vsi: VSI being configured */ int ice_up(struct ice_vsi *vsi) { int err; err = ice_vsi_cfg_lan(vsi); if (!err) err = ice_up_complete(vsi); return err; } /** * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring * @syncp: pointer to u64_stats_sync * @stats: stats that pkts and bytes count will be taken from * @pkts: packets stats counter * @bytes: bytes stats counter * * This function fetches stats from the ring considering the atomic operations * that needs to be performed to read u64 values in 32 bit machine. */ void ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, u64 *pkts, u64 *bytes) { unsigned int start; do { start = u64_stats_fetch_begin(syncp); *pkts = stats.pkts; *bytes = stats.bytes; } while (u64_stats_fetch_retry(syncp, start)); } /** * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters * @vsi: the VSI to be updated * @vsi_stats: the stats struct to be updated * @rings: rings to work on * @count: number of rings */ static void ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct rtnl_link_stats64 *vsi_stats, struct ice_tx_ring **rings, u16 count) { u16 i; for (i = 0; i < count; i++) { struct ice_tx_ring *ring; u64 pkts = 0, bytes = 0; ring = READ_ONCE(rings[i]); if (!ring || !ring->ring_stats) continue; ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, ring->ring_stats->stats, &pkts, &bytes); vsi_stats->tx_packets += pkts; vsi_stats->tx_bytes += bytes; vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; } } /** * ice_update_vsi_ring_stats - Update VSI stats counters * @vsi: the VSI to be updated */ static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) { struct rtnl_link_stats64 *net_stats, *stats_prev; struct rtnl_link_stats64 *vsi_stats; struct ice_pf *pf = vsi->back; u64 pkts, bytes; int i; vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); if (!vsi_stats) return; /* reset non-netdev (extended) stats */ vsi->tx_restart = 0; vsi->tx_busy = 0; vsi->tx_linearize = 0; vsi->rx_buf_failed = 0; vsi->rx_page_failed = 0; rcu_read_lock(); /* update Tx rings counters */ ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, vsi->num_txq); /* update Rx rings counters */ ice_for_each_rxq(vsi, i) { struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); struct ice_ring_stats *ring_stats; ring_stats = ring->ring_stats; ice_fetch_u64_stats_per_ring(&ring_stats->syncp, ring_stats->stats, &pkts, &bytes); vsi_stats->rx_packets += pkts; vsi_stats->rx_bytes += bytes; vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; } /* update XDP Tx rings counters */ if (ice_is_xdp_ena_vsi(vsi)) ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, vsi->num_xdp_txq); rcu_read_unlock(); net_stats = &vsi->net_stats; stats_prev = &vsi->net_stats_prev; /* Update netdev counters, but keep in mind that values could start at * random value after PF reset. And as we increase the reported stat by * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, * let's skip this round. */ if (likely(pf->stat_prev_loaded)) { net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; } stats_prev->tx_packets = vsi_stats->tx_packets; stats_prev->tx_bytes = vsi_stats->tx_bytes; stats_prev->rx_packets = vsi_stats->rx_packets; stats_prev->rx_bytes = vsi_stats->rx_bytes; kfree(vsi_stats); } /** * ice_update_vsi_stats - Update VSI stats counters * @vsi: the VSI to be updated */ void ice_update_vsi_stats(struct ice_vsi *vsi) { struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; struct ice_eth_stats *cur_es = &vsi->eth_stats; struct ice_pf *pf = vsi->back; if (test_bit(ICE_VSI_DOWN, vsi->state) || test_bit(ICE_CFG_BUSY, pf->state)) return; /* get stats as recorded by Tx/Rx rings */ ice_update_vsi_ring_stats(vsi); /* get VSI stats as recorded by the hardware */ ice_update_eth_stats(vsi); cur_ns->tx_errors = cur_es->tx_errors; cur_ns->rx_dropped = cur_es->rx_discards; cur_ns->tx_dropped = cur_es->tx_discards; cur_ns->multicast = cur_es->rx_multicast; /* update some more netdev stats if this is main VSI */ if (vsi->type == ICE_VSI_PF) { cur_ns->rx_crc_errors = pf->stats.crc_errors; cur_ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes + pf->stats.rx_len_errors + pf->stats.rx_undersize + pf->hw_csum_rx_error + pf->stats.rx_jabber + pf->stats.rx_fragments + pf->stats.rx_oversize; cur_ns->rx_length_errors = pf->stats.rx_len_errors; /* record drops from the port level */ cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; } } /** * ice_update_pf_stats - Update PF port stats counters * @pf: PF whose stats needs to be updated */ void ice_update_pf_stats(struct ice_pf *pf) { struct ice_hw_port_stats *prev_ps, *cur_ps; struct ice_hw *hw = &pf->hw; u16 fd_ctr_base; u8 port; port = hw->port_info->lport; prev_ps = &pf->stats_prev; cur_ps = &pf->stats; if (ice_is_reset_in_progress(pf->state)) pf->stat_prev_loaded = false; ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, &prev_ps->eth.rx_bytes, &cur_ps->eth.rx_bytes); ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, &prev_ps->eth.rx_unicast, &cur_ps->eth.rx_unicast); ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, &prev_ps->eth.rx_multicast, &cur_ps->eth.rx_multicast); ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast, &cur_ps->eth.rx_broadcast); ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, &prev_ps->eth.rx_discards, &cur_ps->eth.rx_discards); ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, &prev_ps->eth.tx_bytes, &cur_ps->eth.tx_bytes); ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, &prev_ps->eth.tx_unicast, &cur_ps->eth.tx_unicast); ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, &prev_ps->eth.tx_multicast, &cur_ps->eth.tx_multicast); ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast, &cur_ps->eth.tx_broadcast); ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, &prev_ps->tx_dropped_link_down, &cur_ps->tx_dropped_link_down); ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, &prev_ps->rx_size_64, &cur_ps->rx_size_64); ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, &prev_ps->rx_size_127, &cur_ps->rx_size_127); ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, &prev_ps->rx_size_255, &cur_ps->rx_size_255); ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, &prev_ps->rx_size_511, &cur_ps->rx_size_511); ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, &prev_ps->rx_size_big, &cur_ps->rx_size_big); ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, &prev_ps->tx_size_64, &cur_ps->tx_size_64); ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, &prev_ps->tx_size_127, &cur_ps->tx_size_127); ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, &prev_ps->tx_size_255, &cur_ps->tx_size_255); ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, &prev_ps->tx_size_511, &cur_ps->tx_size_511); ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, &prev_ps->tx_size_big, &cur_ps->tx_size_big); fd_ctr_base = hw->fd_ctr_base; ice_stat_update40(hw, GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), pf->stat_prev_loaded, &prev_ps->fd_sb_match, &cur_ps->fd_sb_match); ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); ice_update_dcb_stats(pf); ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, &prev_ps->crc_errors, &cur_ps->crc_errors); ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, &prev_ps->mac_local_faults, &cur_ps->mac_local_faults); ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, &prev_ps->mac_remote_faults, &cur_ps->mac_remote_faults); ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, &prev_ps->rx_undersize, &cur_ps->rx_undersize); ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, &prev_ps->rx_fragments, &cur_ps->rx_fragments); ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, &prev_ps->rx_oversize, &cur_ps->rx_oversize); ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, &prev_ps->rx_jabber, &cur_ps->rx_jabber); cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; pf->stat_prev_loaded = true; } /** * ice_get_stats64 - get statistics for network device structure * @netdev: network interface device structure * @stats: main device statistics structure */ static void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct ice_netdev_priv *np = netdev_priv(netdev); struct rtnl_link_stats64 *vsi_stats; struct ice_vsi *vsi = np->vsi; vsi_stats = &vsi->net_stats; if (!vsi->num_txq || !vsi->num_rxq) return; /* netdev packet/byte stats come from ring counter. These are obtained * by summing up ring counters (done by ice_update_vsi_ring_stats). * But, only call the update routine and read the registers if VSI is * not down. */ if (!test_bit(ICE_VSI_DOWN, vsi->state)) ice_update_vsi_ring_stats(vsi); stats->tx_packets = vsi_stats->tx_packets; stats->tx_bytes = vsi_stats->tx_bytes; stats->rx_packets = vsi_stats->rx_packets; stats->rx_bytes = vsi_stats->rx_bytes; /* The rest of the stats can be read from the hardware but instead we * just return values that the watchdog task has already obtained from * the hardware. */ stats->multicast = vsi_stats->multicast; stats->tx_errors = vsi_stats->tx_errors; stats->tx_dropped = vsi_stats->tx_dropped; stats->rx_errors = vsi_stats->rx_errors; stats->rx_dropped = vsi_stats->rx_dropped; stats->rx_crc_errors = vsi_stats->rx_crc_errors; stats->rx_length_errors = vsi_stats->rx_length_errors; } /** * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI * @vsi: VSI having NAPI disabled */ static void ice_napi_disable_all(struct ice_vsi *vsi) { int q_idx; if (!vsi->netdev) return; ice_for_each_q_vector(vsi, q_idx) { struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) napi_disable(&q_vector->napi); cancel_work_sync(&q_vector->tx.dim.work); cancel_work_sync(&q_vector->rx.dim.work); } } /** * ice_down - Shutdown the connection * @vsi: The VSI being stopped * * Caller of this function is expected to set the vsi->state ICE_DOWN bit */ int ice_down(struct ice_vsi *vsi) { int i, tx_err, rx_err, vlan_err = 0; WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); if (vsi->netdev && vsi->type == ICE_VSI_PF) { vlan_err = ice_vsi_del_vlan_zero(vsi); ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); netif_carrier_off(vsi->netdev); netif_tx_disable(vsi->netdev); } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { ice_eswitch_stop_all_tx_queues(vsi->back); } ice_vsi_dis_irq(vsi); tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); if (tx_err) netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", vsi->vsi_num, tx_err); if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { tx_err = ice_vsi_stop_xdp_tx_rings(vsi); if (tx_err) netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", vsi->vsi_num, tx_err); } rx_err = ice_vsi_stop_all_rx_rings(vsi); if (rx_err) netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", vsi->vsi_num, rx_err); ice_napi_disable_all(vsi); ice_for_each_txq(vsi, i) ice_clean_tx_ring(vsi->tx_rings[i]); if (ice_is_xdp_ena_vsi(vsi)) ice_for_each_xdp_txq(vsi, i) ice_clean_tx_ring(vsi->xdp_rings[i]); ice_for_each_rxq(vsi, i) ice_clean_rx_ring(vsi->rx_rings[i]); if (tx_err || rx_err || vlan_err) { netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", vsi->vsi_num, vsi->vsw->sw_id); return -EIO; } return 0; } /** * ice_down_up - shutdown the VSI connection and bring it up * @vsi: the VSI to be reconnected */ int ice_down_up(struct ice_vsi *vsi) { int ret; /* if DOWN already set, nothing to do */ if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) return 0; ret = ice_down(vsi); if (ret) return ret; ret = ice_up(vsi); if (ret) { netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); return ret; } return 0; } /** * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources * @vsi: VSI having resources allocated * * Return 0 on success, negative on failure */ int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) { int i, err = 0; if (!vsi->num_txq) { dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", vsi->vsi_num); return -EINVAL; } ice_for_each_txq(vsi, i) { struct ice_tx_ring *ring = vsi->tx_rings[i]; if (!ring) return -EINVAL; if (vsi->netdev) ring->netdev = vsi->netdev; err = ice_setup_tx_ring(ring); if (err) break; } return err; } /** * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources * @vsi: VSI having resources allocated * * Return 0 on success, negative on failure */ int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) { int i, err = 0; if (!vsi->num_rxq) { dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", vsi->vsi_num); return -EINVAL; } ice_for_each_rxq(vsi, i) { struct ice_rx_ring *ring = vsi->rx_rings[i]; if (!ring) return -EINVAL; if (vsi->netdev) ring->netdev = vsi->netdev; err = ice_setup_rx_ring(ring); if (err) break; } return err; } /** * ice_vsi_open_ctrl - open control VSI for use * @vsi: the VSI to open * * Initialization of the Control VSI * * Returns 0 on success, negative value on error */ int ice_vsi_open_ctrl(struct ice_vsi *vsi) { char int_name[ICE_INT_NAME_STR_LEN]; struct ice_pf *pf = vsi->back; struct device *dev; int err; dev = ice_pf_to_dev(pf); /* allocate descriptors */ err = ice_vsi_setup_tx_rings(vsi); if (err) goto err_setup_tx; err = ice_vsi_setup_rx_rings(vsi); if (err) goto err_setup_rx; err = ice_vsi_cfg_lan(vsi); if (err) goto err_setup_rx; snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", dev_driver_string(dev), dev_name(dev)); err = ice_vsi_req_irq_msix(vsi, int_name); if (err) goto err_setup_rx; ice_vsi_cfg_msix(vsi); err = ice_vsi_start_all_rx_rings(vsi); if (err) goto err_up_complete; clear_bit(ICE_VSI_DOWN, vsi->state); ice_vsi_ena_irq(vsi); return 0; err_up_complete: ice_down(vsi); err_setup_rx: ice_vsi_free_rx_rings(vsi); err_setup_tx: ice_vsi_free_tx_rings(vsi); return err; } /** * ice_vsi_open - Called when a network interface is made active * @vsi: the VSI to open * * Initialization of the VSI * * Returns 0 on success, negative value on error */ int ice_vsi_open(struct ice_vsi *vsi) { char int_name[ICE_INT_NAME_STR_LEN]; struct ice_pf *pf = vsi->back; int err; /* allocate descriptors */ err = ice_vsi_setup_tx_rings(vsi); if (err) goto err_setup_tx; err = ice_vsi_setup_rx_rings(vsi); if (err) goto err_setup_rx; err = ice_vsi_cfg_lan(vsi); if (err) goto err_setup_rx; snprintf(int_name, sizeof(int_name) - 1, "%s-%s", dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); err = ice_vsi_req_irq_msix(vsi, int_name); if (err) goto err_setup_rx; ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); if (vsi->type == ICE_VSI_PF) { /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); if (err) goto err_set_qs; err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); if (err) goto err_set_qs; } err = ice_up_complete(vsi); if (err) goto err_up_complete; return 0; err_up_complete: ice_down(vsi); err_set_qs: ice_vsi_free_irq(vsi); err_setup_rx: ice_vsi_free_rx_rings(vsi); err_setup_tx: ice_vsi_free_tx_rings(vsi); return err; } /** * ice_vsi_release_all - Delete all VSIs * @pf: PF from which all VSIs are being removed */ static void ice_vsi_release_all(struct ice_pf *pf) { int err, i; if (!pf->vsi) return; ice_for_each_vsi(pf, i) { if (!pf->vsi[i]) continue; if (pf->vsi[i]->type == ICE_VSI_CHNL) continue; err = ice_vsi_release(pf->vsi[i]); if (err) dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", i, err, pf->vsi[i]->vsi_num); } } /** * ice_vsi_rebuild_by_type - Rebuild VSI of a given type * @pf: pointer to the PF instance * @type: VSI type to rebuild * * Iterates through the pf->vsi array and rebuilds VSIs of the requested type */ static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) { struct device *dev = ice_pf_to_dev(pf); int i, err; ice_for_each_vsi(pf, i) { struct ice_vsi *vsi = pf->vsi[i]; if (!vsi || vsi->type != type) continue; /* rebuild the VSI */ err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); if (err) { dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", err, vsi->idx, ice_vsi_type_str(type)); return err; } /* replay filters for the VSI */ err = ice_replay_vsi(&pf->hw, vsi->idx); if (err) { dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", err, vsi->idx, ice_vsi_type_str(type)); return err; } /* Re-map HW VSI number, using VSI handle that has been * previously validated in ice_replay_vsi() call above */ vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); /* enable the VSI */ err = ice_ena_vsi(vsi, false); if (err) { dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", err, vsi->idx, ice_vsi_type_str(type)); return err; } dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, ice_vsi_type_str(type)); } return 0; } /** * ice_update_pf_netdev_link - Update PF netdev link status * @pf: pointer to the PF instance */ static void ice_update_pf_netdev_link(struct ice_pf *pf) { bool link_up; int i; ice_for_each_vsi(pf, i) { struct ice_vsi *vsi = pf->vsi[i]; if (!vsi || vsi->type != ICE_VSI_PF) return; ice_get_link_status(pf->vsi[i]->port_info, &link_up); if (link_up) { netif_carrier_on(pf->vsi[i]->netdev); netif_tx_wake_all_queues(pf->vsi[i]->netdev); } else { netif_carrier_off(pf->vsi[i]->netdev); netif_tx_stop_all_queues(pf->vsi[i]->netdev); } } } /** * ice_rebuild - rebuild after reset * @pf: PF to rebuild * @reset_type: type of reset * * Do not rebuild VF VSI in this flow because that is already handled via * ice_reset_all_vfs(). This is because requirements for resetting a VF after a * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want * to reset/rebuild all the VF VSI twice. */ static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) { struct ice_vsi *vsi = ice_get_main_vsi(pf); struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; bool dvm; int err; if (test_bit(ICE_DOWN, pf->state)) goto clear_recovery; dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); #define ICE_EMP_RESET_SLEEP_MS 5000 if (reset_type == ICE_RESET_EMPR) { /* If an EMP reset has occurred, any previously pending flash * update will have completed. We no longer know whether or * not the NVM update EMP reset is restricted. */ pf->fw_emp_reset_disabled = false; msleep(ICE_EMP_RESET_SLEEP_MS); } err = ice_init_all_ctrlq(hw); if (err) { dev_err(dev, "control queues init failed %d\n", err); goto err_init_ctrlq; } /* if DDP was previously loaded successfully */ if (!ice_is_safe_mode(pf)) { /* reload the SW DB of filter tables */ if (reset_type == ICE_RESET_PFR) ice_fill_blk_tbls(hw); else /* Reload DDP Package after CORER/GLOBR reset */ ice_load_pkg(NULL, pf); } err = ice_clear_pf_cfg(hw); if (err) { dev_err(dev, "clear PF configuration failed %d\n", err); goto err_init_ctrlq; } ice_clear_pxe_mode(hw); err = ice_init_nvm(hw); if (err) { dev_err(dev, "ice_init_nvm failed %d\n", err); goto err_init_ctrlq; } err = ice_get_caps(hw); if (err) { dev_err(dev, "ice_get_caps failed %d\n", err); goto err_init_ctrlq; } err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); if (err) { dev_err(dev, "set_mac_cfg failed %d\n", err); goto err_init_ctrlq; } dvm = ice_is_dvm_ena(hw); err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); if (err) goto err_init_ctrlq; err = ice_sched_init_port(hw->port_info); if (err) goto err_sched_init_port; /* start misc vector */ err = ice_req_irq_msix_misc(pf); if (err) { dev_err(dev, "misc vector setup failed: %d\n", err); goto err_sched_init_port; } if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); if (!rd32(hw, PFQF_FD_SIZE)) { u16 unused, guar, b_effort; guar = hw->func_caps.fd_fltr_guar; b_effort = hw->func_caps.fd_fltr_best_effort; /* force guaranteed filter pool for PF */ ice_alloc_fd_guar_item(hw, &unused, guar); /* force shared filter pool for PF */ ice_alloc_fd_shrd_item(hw, &unused, b_effort); } } if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) ice_dcb_rebuild(pf); /* If the PF previously had enabled PTP, PTP init needs to happen before * the VSI rebuild. If not, this causes the PTP link status events to * fail. */ if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) ice_ptp_reset(pf); if (ice_is_feature_supported(pf, ICE_F_GNSS)) ice_gnss_init(pf); /* rebuild PF VSI */ err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); if (err) { dev_err(dev, "PF VSI rebuild failed: %d\n", err); goto err_vsi_rebuild; } /* configure PTP timestamping after VSI rebuild */ if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) ice_ptp_cfg_timestamp(pf, false); err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); if (err) { dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); goto err_vsi_rebuild; } if (reset_type == ICE_RESET_PFR) { err = ice_rebuild_channels(pf); if (err) { dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", err); goto err_vsi_rebuild; } } /* If Flow Director is active */ if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); if (err) { dev_err(dev, "control VSI rebuild failed: %d\n", err); goto err_vsi_rebuild; } /* replay HW Flow Director recipes */ if (hw->fdir_prof) ice_fdir_replay_flows(hw); /* replay Flow Director filters */ ice_fdir_replay_fltrs(pf); ice_rebuild_arfs(pf); } if (vsi && vsi->netdev) netif_device_attach(vsi->netdev); ice_update_pf_netdev_link(pf); /* tell the firmware we are up */ err = ice_send_version(pf); if (err) { dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", err); goto err_vsi_rebuild; } ice_replay_post(hw); /* if we get here, reset flow is successful */ clear_bit(ICE_RESET_FAILED, pf->state); ice_plug_aux_dev(pf); if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) ice_lag_rebuild(pf); return; err_vsi_rebuild: err_sched_init_port: ice_sched_cleanup_all(hw); err_init_ctrlq: ice_shutdown_all_ctrlq(hw); set_bit(ICE_RESET_FAILED, pf->state); clear_recovery: /* set this bit in PF state to control service task scheduling */ set_bit(ICE_NEEDS_RESTART, pf->state); dev_err(dev, "Rebuild failed, unload and reload driver\n"); } /** * ice_change_mtu - NDO callback to change the MTU * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int ice_change_mtu(struct net_device *netdev, int new_mtu) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; struct bpf_prog *prog; u8 count = 0; int err = 0; if (new_mtu == (int)netdev->mtu) { netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); return 0; } prog = vsi->xdp_prog; if (prog && !prog->aux->xdp_has_frags) { int frame_size = ice_max_xdp_frame_size(vsi); if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { netdev_err(netdev, "max MTU for XDP usage is %d\n", frame_size - ICE_ETH_PKT_HDR_PAD); return -EINVAL; } } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); return -EINVAL; } } /* if a reset is in progress, wait for some time for it to complete */ do { if (ice_is_reset_in_progress(pf->state)) { count++; usleep_range(1000, 2000); } else { break; } } while (count < 100); if (count == 100) { netdev_err(netdev, "can't change MTU. Device is busy\n"); return -EBUSY; } netdev->mtu = (unsigned int)new_mtu; err = ice_down_up(vsi); if (err) return err; netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); return err; } /** * ice_eth_ioctl - Access the hwtstamp interface * @netdev: network interface device structure * @ifr: interface request data * @cmd: ioctl command */ static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_pf *pf = np->vsi->back; switch (cmd) { case SIOCGHWTSTAMP: return ice_ptp_get_ts_config(pf, ifr); case SIOCSHWTSTAMP: return ice_ptp_set_ts_config(pf, ifr); default: return -EOPNOTSUPP; } } /** * ice_aq_str - convert AQ err code to a string * @aq_err: the AQ error code to convert */ const char *ice_aq_str(enum ice_aq_err aq_err) { switch (aq_err) { case ICE_AQ_RC_OK: return "OK"; case ICE_AQ_RC_EPERM: return "ICE_AQ_RC_EPERM"; case ICE_AQ_RC_ENOENT: return "ICE_AQ_RC_ENOENT"; case ICE_AQ_RC_ENOMEM: return "ICE_AQ_RC_ENOMEM"; case ICE_AQ_RC_EBUSY: return "ICE_AQ_RC_EBUSY"; case ICE_AQ_RC_EEXIST: return "ICE_AQ_RC_EEXIST"; case ICE_AQ_RC_EINVAL: return "ICE_AQ_RC_EINVAL"; case ICE_AQ_RC_ENOSPC: return "ICE_AQ_RC_ENOSPC"; case ICE_AQ_RC_ENOSYS: return "ICE_AQ_RC_ENOSYS"; case ICE_AQ_RC_EMODE: return "ICE_AQ_RC_EMODE"; case ICE_AQ_RC_ENOSEC: return "ICE_AQ_RC_ENOSEC"; case ICE_AQ_RC_EBADSIG: return "ICE_AQ_RC_EBADSIG"; case ICE_AQ_RC_ESVN: return "ICE_AQ_RC_ESVN"; case ICE_AQ_RC_EBADMAN: return "ICE_AQ_RC_EBADMAN"; case ICE_AQ_RC_EBADBUF: return "ICE_AQ_RC_EBADBUF"; } return "ICE_AQ_RC_UNKNOWN"; } /** * ice_set_rss_lut - Set RSS LUT * @vsi: Pointer to VSI structure * @lut: Lookup table * @lut_size: Lookup table size * * Returns 0 on success, negative on failure */ int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) { struct ice_aq_get_set_rss_lut_params params = {}; struct ice_hw *hw = &vsi->back->hw; int status; if (!lut) return -EINVAL; params.vsi_handle = vsi->idx; params.lut_size = lut_size; params.lut_type = vsi->rss_lut_type; params.lut = lut; status = ice_aq_set_rss_lut(hw, ¶ms); if (status) dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); return status; } /** * ice_set_rss_key - Set RSS key * @vsi: Pointer to the VSI structure * @seed: RSS hash seed * * Returns 0 on success, negative on failure */ int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) { struct ice_hw *hw = &vsi->back->hw; int status; if (!seed) return -EINVAL; status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); if (status) dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); return status; } /** * ice_get_rss_lut - Get RSS LUT * @vsi: Pointer to VSI structure * @lut: Buffer to store the lookup table entries * @lut_size: Size of buffer to store the lookup table entries * * Returns 0 on success, negative on failure */ int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) { struct ice_aq_get_set_rss_lut_params params = {}; struct ice_hw *hw = &vsi->back->hw; int status; if (!lut) return -EINVAL; params.vsi_handle = vsi->idx; params.lut_size = lut_size; params.lut_type = vsi->rss_lut_type; params.lut = lut; status = ice_aq_get_rss_lut(hw, ¶ms); if (status) dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); return status; } /** * ice_get_rss_key - Get RSS key * @vsi: Pointer to VSI structure * @seed: Buffer to store the key in * * Returns 0 on success, negative on failure */ int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) { struct ice_hw *hw = &vsi->back->hw; int status; if (!seed) return -EINVAL; status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); if (status) dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); return status; } /** * ice_bridge_getlink - Get the hardware bridge mode * @skb: skb buff * @pid: process ID * @seq: RTNL message seq * @dev: the netdev being configured * @filter_mask: filter mask passed in * @nlflags: netlink flags passed in * * Return the bridge mode (VEB/VEPA) */ static int ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags) { struct ice_netdev_priv *np = netdev_priv(dev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; u16 bmode; bmode = pf->first_sw->bridge_mode; return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, filter_mask, NULL); } /** * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) * @vsi: Pointer to VSI structure * @bmode: Hardware bridge mode (VEB/VEPA) * * Returns 0 on success, negative on failure */ static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) { struct ice_aqc_vsi_props *vsi_props; struct ice_hw *hw = &vsi->back->hw; struct ice_vsi_ctx *ctxt; int ret; vsi_props = &vsi->info; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return -ENOMEM; ctxt->info = vsi->info; if (bmode == BRIDGE_MODE_VEB) /* change from VEPA to VEB mode */ ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; else /* change from VEB to VEPA mode */ ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); if (ret) { dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); goto out; } /* Update sw flags for book keeping */ vsi_props->sw_flags = ctxt->info.sw_flags; out: kfree(ctxt); return ret; } /** * ice_bridge_setlink - Set the hardware bridge mode * @dev: the netdev being configured * @nlh: RTNL message * @flags: bridge setlink flags * @extack: netlink extended ack * * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if * not already set for all VSIs connected to this switch. And also update the * unicast switch filter rules for the corresponding switch of the netdev. */ static int ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, u16 __always_unused flags, struct netlink_ext_ack __always_unused *extack) { struct ice_netdev_priv *np = netdev_priv(dev); struct ice_pf *pf = np->vsi->back; struct nlattr *attr, *br_spec; struct ice_hw *hw = &pf->hw; struct ice_sw *pf_sw; int rem, v, err = 0; pf_sw = pf->first_sw; /* find the attribute in the netlink message */ br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); if (!br_spec) return -EINVAL; nla_for_each_nested(attr, br_spec, rem) { __u16 mode; if (nla_type(attr) != IFLA_BRIDGE_MODE) continue; mode = nla_get_u16(attr); if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) return -EINVAL; /* Continue if bridge mode is not being flipped */ if (mode == pf_sw->bridge_mode) continue; /* Iterates through the PF VSI list and update the loopback * mode of the VSI */ ice_for_each_vsi(pf, v) { if (!pf->vsi[v]) continue; err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); if (err) return err; } hw->evb_veb = (mode == BRIDGE_MODE_VEB); /* Update the unicast switch filter rules for the corresponding * switch of the netdev */ err = ice_update_sw_rule_bridge_mode(hw); if (err) { netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", mode, err, ice_aq_str(hw->adminq.sq_last_status)); /* revert hw->evb_veb */ hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); return err; } pf_sw->bridge_mode = mode; } return 0; } /** * ice_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * @txqueue: Tx queue */ static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_tx_ring *tx_ring = NULL; struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; u32 i; pf->tx_timeout_count++; /* Check if PFC is enabled for the TC to which the queue belongs * to. If yes then Tx timeout is not caused by a hung queue, no * need to reset and rebuild */ if (ice_is_pfc_causing_hung_q(pf, txqueue)) { dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", txqueue); return; } /* now that we have an index, find the tx_ring struct */ ice_for_each_txq(vsi, i) if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) if (txqueue == vsi->tx_rings[i]->q_index) { tx_ring = vsi->tx_rings[i]; break; } /* Reset recovery level if enough time has elapsed after last timeout. * Also ensure no new reset action happens before next timeout period. */ if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) pf->tx_timeout_recovery_level = 1; else if (time_before(jiffies, (pf->tx_timeout_last_recovery + netdev->watchdog_timeo))) return; if (tx_ring) { struct ice_hw *hw = &pf->hw; u32 head, val = 0; head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; /* Read interrupt register */ val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", vsi->vsi_num, txqueue, tx_ring->next_to_clean, head, tx_ring->next_to_use, val); } pf->tx_timeout_last_recovery = jiffies; netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", pf->tx_timeout_recovery_level, txqueue); switch (pf->tx_timeout_recovery_level) { case 1: set_bit(ICE_PFR_REQ, pf->state); break; case 2: set_bit(ICE_CORER_REQ, pf->state); break; case 3: set_bit(ICE_GLOBR_REQ, pf->state); break; default: netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); set_bit(ICE_DOWN, pf->state); set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); set_bit(ICE_SERVICE_DIS, pf->state); break; } ice_service_task_schedule(pf); pf->tx_timeout_recovery_level++; } /** * ice_setup_tc_cls_flower - flower classifier offloads * @np: net device to configure * @filter_dev: device on which filter is added * @cls_flower: offload data */ static int ice_setup_tc_cls_flower(struct ice_netdev_priv *np, struct net_device *filter_dev, struct flow_cls_offload *cls_flower) { struct ice_vsi *vsi = np->vsi; if (cls_flower->common.chain_index) return -EOPNOTSUPP; switch (cls_flower->command) { case FLOW_CLS_REPLACE: return ice_add_cls_flower(filter_dev, vsi, cls_flower); case FLOW_CLS_DESTROY: return ice_del_cls_flower(vsi, cls_flower); default: return -EINVAL; } } /** * ice_setup_tc_block_cb - callback handler registered for TC block * @type: TC SETUP type * @type_data: TC flower offload data that contains user input * @cb_priv: netdev private data */ static int ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct ice_netdev_priv *np = cb_priv; switch (type) { case TC_SETUP_CLSFLOWER: return ice_setup_tc_cls_flower(np, np->vsi->netdev, type_data); default: return -EOPNOTSUPP; } } /** * ice_validate_mqprio_qopt - Validate TCF input parameters * @vsi: Pointer to VSI * @mqprio_qopt: input parameters for mqprio queue configuration * * This function validates MQPRIO params, such as qcount (power of 2 wherever * needed), and make sure user doesn't specify qcount and BW rate limit * for TCs, which are more than "num_tc" */ static int ice_validate_mqprio_qopt(struct ice_vsi *vsi, struct tc_mqprio_qopt_offload *mqprio_qopt) { int non_power_of_2_qcount = 0; struct ice_pf *pf = vsi->back; int max_rss_q_cnt = 0; u64 sum_min_rate = 0; struct device *dev; int i, speed; u8 num_tc; if (vsi->type != ICE_VSI_PF) return -EINVAL; if (mqprio_qopt->qopt.offset[0] != 0 || mqprio_qopt->qopt.num_tc < 1 || mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) return -EINVAL; dev = ice_pf_to_dev(pf); vsi->ch_rss_size = 0; num_tc = mqprio_qopt->qopt.num_tc; speed = ice_get_link_speed_kbps(vsi); for (i = 0; num_tc; i++) { int qcount = mqprio_qopt->qopt.count[i]; u64 max_rate, min_rate, rem; if (!qcount) return -EINVAL; if (is_power_of_2(qcount)) { if (non_power_of_2_qcount && qcount > non_power_of_2_qcount) { dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", qcount, non_power_of_2_qcount); return -EINVAL; } if (qcount > max_rss_q_cnt) max_rss_q_cnt = qcount; } else { if (non_power_of_2_qcount && qcount != non_power_of_2_qcount) { dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", qcount, non_power_of_2_qcount); return -EINVAL; } if (qcount < max_rss_q_cnt) { dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", qcount, max_rss_q_cnt); return -EINVAL; } max_rss_q_cnt = qcount; non_power_of_2_qcount = qcount; } /* TC command takes input in K/N/Gbps or K/M/Gbit etc but * converts the bandwidth rate limit into Bytes/s when * passing it down to the driver. So convert input bandwidth * from Bytes/s to Kbps */ max_rate = mqprio_qopt->max_rate[i]; max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); /* min_rate is minimum guaranteed rate and it can't be zero */ min_rate = mqprio_qopt->min_rate[i]; min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); sum_min_rate += min_rate; if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, min_rate, ICE_MIN_BW_LIMIT); return -EINVAL; } if (max_rate && max_rate > speed) { dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", i, max_rate, speed); return -EINVAL; } iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); if (rem) { dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", i, ICE_MIN_BW_LIMIT); return -EINVAL; } iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); if (rem) { dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", i, ICE_MIN_BW_LIMIT); return -EINVAL; } /* min_rate can't be more than max_rate, except when max_rate * is zero (implies max_rate sought is max line rate). In such * a case min_rate can be more than max. */ if (max_rate && min_rate > max_rate) { dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", min_rate, max_rate); return -EINVAL; } if (i >= mqprio_qopt->qopt.num_tc - 1) break; if (mqprio_qopt->qopt.offset[i + 1] != (mqprio_qopt->qopt.offset[i] + qcount)) return -EINVAL; } if (vsi->num_rxq < (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) return -EINVAL; if (vsi->num_txq < (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) return -EINVAL; if (sum_min_rate && sum_min_rate > (u64)speed) { dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", sum_min_rate, speed); return -EINVAL; } /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ vsi->ch_rss_size = max_rss_q_cnt; return 0; } /** * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF * @pf: ptr to PF device * @vsi: ptr to VSI */ static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(pf); bool added = false; struct ice_hw *hw; int flow; if (!(vsi->num_gfltr || vsi->num_bfltr)) return -EINVAL; hw = &pf->hw; for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { struct ice_fd_hw_prof *prof; int tun, status; u64 entry_h; if (!(hw->fdir_prof && hw->fdir_prof[flow] && hw->fdir_prof[flow]->cnt)) continue; for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { enum ice_flow_priority prio; u64 prof_id; /* add this VSI to FDir profile for this flow */ prio = ICE_FLOW_PRIO_NORMAL; prof = hw->fdir_prof[flow]; prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, prof->vsi_h[0], vsi->idx, prio, prof->fdir_seg[tun], &entry_h); if (status) { dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", vsi->idx, flow); continue; } prof->entry_h[prof->cnt][tun] = entry_h; } /* store VSI for filter replay and delete */ prof->vsi_h[prof->cnt] = vsi->idx; prof->cnt++; added = true; dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, flow); } if (!added) dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); return 0; } /** * ice_add_channel - add a channel by adding VSI * @pf: ptr to PF device * @sw_id: underlying HW switching element ID * @ch: ptr to channel structure * * Add a channel (VSI) using add_vsi and queue_map */ static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) { struct device *dev = ice_pf_to_dev(pf); struct ice_vsi *vsi; if (ch->type != ICE_VSI_CHNL) { dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); return -EINVAL; } vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); if (!vsi || vsi->type != ICE_VSI_CHNL) { dev_err(dev, "create chnl VSI failure\n"); return -EINVAL; } ice_add_vsi_to_fdir(pf, vsi); ch->sw_id = sw_id; ch->vsi_num = vsi->vsi_num; ch->info.mapping_flags = vsi->info.mapping_flags; ch->ch_vsi = vsi; /* set the back pointer of channel for newly created VSI */ vsi->ch = ch; memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, sizeof(vsi->info.q_mapping)); memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, sizeof(vsi->info.tc_mapping)); return 0; } /** * ice_chnl_cfg_res * @vsi: the VSI being setup * @ch: ptr to channel structure * * Configure channel specific resources such as rings, vector. */ static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) { int i; for (i = 0; i < ch->num_txq; i++) { struct ice_q_vector *tx_q_vector, *rx_q_vector; struct ice_ring_container *rc; struct ice_tx_ring *tx_ring; struct ice_rx_ring *rx_ring; tx_ring = vsi->tx_rings[ch->base_q + i]; rx_ring = vsi->rx_rings[ch->base_q + i]; if (!tx_ring || !rx_ring) continue; /* setup ring being channel enabled */ tx_ring->ch = ch; rx_ring->ch = ch; /* following code block sets up vector specific attributes */ tx_q_vector = tx_ring->q_vector; rx_q_vector = rx_ring->q_vector; if (!tx_q_vector && !rx_q_vector) continue; if (tx_q_vector) { tx_q_vector->ch = ch; /* setup Tx and Rx ITR setting if DIM is off */ rc = &tx_q_vector->tx; if (!ITR_IS_DYNAMIC(rc)) ice_write_itr(rc, rc->itr_setting); } if (rx_q_vector) { rx_q_vector->ch = ch; /* setup Tx and Rx ITR setting if DIM is off */ rc = &rx_q_vector->rx; if (!ITR_IS_DYNAMIC(rc)) ice_write_itr(rc, rc->itr_setting); } } /* it is safe to assume that, if channel has non-zero num_t[r]xq, then * GLINT_ITR register would have written to perform in-context * update, hence perform flush */ if (ch->num_txq || ch->num_rxq) ice_flush(&vsi->back->hw); } /** * ice_cfg_chnl_all_res - configure channel resources * @vsi: pte to main_vsi * @ch: ptr to channel structure * * This function configures channel specific resources such as flow-director * counter index, and other resources such as queues, vectors, ITR settings */ static void ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) { /* configure channel (aka ADQ) resources such as queues, vectors, * ITR settings for channel specific vectors and anything else */ ice_chnl_cfg_res(vsi, ch); } /** * ice_setup_hw_channel - setup new channel * @pf: ptr to PF device * @vsi: the VSI being setup * @ch: ptr to channel structure * @sw_id: underlying HW switching element ID * @type: type of channel to be created (VMDq2/VF) * * Setup new channel (VSI) based on specified type (VMDq2/VF) * and configures Tx rings accordingly */ static int ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, struct ice_channel *ch, u16 sw_id, u8 type) { struct device *dev = ice_pf_to_dev(pf); int ret; ch->base_q = vsi->next_base_q; ch->type = type; ret = ice_add_channel(pf, sw_id, ch); if (ret) { dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); return ret; } /* configure/setup ADQ specific resources */ ice_cfg_chnl_all_res(vsi, ch); /* make sure to update the next_base_q so that subsequent channel's * (aka ADQ) VSI queue map is correct */ vsi->next_base_q = vsi->next_base_q + ch->num_rxq; dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, ch->num_rxq); return 0; } /** * ice_setup_channel - setup new channel using uplink element * @pf: ptr to PF device * @vsi: the VSI being setup * @ch: ptr to channel structure * * Setup new channel (VSI) based on specified type (VMDq2/VF) * and uplink switching element */ static bool ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, struct ice_channel *ch) { struct device *dev = ice_pf_to_dev(pf); u16 sw_id; int ret; if (vsi->type != ICE_VSI_PF) { dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); return false; } sw_id = pf->first_sw->sw_id; /* create channel (VSI) */ ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); if (ret) { dev_err(dev, "failed to setup hw_channel\n"); return false; } dev_dbg(dev, "successfully created channel()\n"); return ch->ch_vsi ? true : false; } /** * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate * @vsi: VSI to be configured * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit */ static int ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) { int err; err = ice_set_min_bw_limit(vsi, min_tx_rate); if (err) return err; return ice_set_max_bw_limit(vsi, max_tx_rate); } /** * ice_create_q_channel - function to create channel * @vsi: VSI to be configured * @ch: ptr to channel (it contains channel specific params) * * This function creates channel (VSI) using num_queues specified by user, * reconfigs RSS if needed. */ static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) { struct ice_pf *pf = vsi->back; struct device *dev; if (!ch) return -EINVAL; dev = ice_pf_to_dev(pf); if (!ch->num_txq || !ch->num_rxq) { dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); return -EINVAL; } if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", vsi->cnt_q_avail, ch->num_txq); return -EINVAL; } if (!ice_setup_channel(pf, vsi, ch)) { dev_info(dev, "Failed to setup channel\n"); return -EINVAL; } /* configure BW rate limit */ if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { int ret; ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, ch->min_tx_rate); if (ret) dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", ch->max_tx_rate, ch->ch_vsi->vsi_num); else dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", ch->max_tx_rate, ch->ch_vsi->vsi_num); } vsi->cnt_q_avail -= ch->num_txq; return 0; } /** * ice_rem_all_chnl_fltrs - removes all channel filters * @pf: ptr to PF, TC-flower based filter are tracked at PF level * * Remove all advanced switch filters only if they are channel specific * tc-flower based filter */ static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) { struct ice_tc_flower_fltr *fltr; struct hlist_node *node; /* to remove all channel filters, iterate an ordered list of filters */ hlist_for_each_entry_safe(fltr, node, &pf->tc_flower_fltr_list, tc_flower_node) { struct ice_rule_query_data rule; int status; /* for now process only channel specific filters */ if (!ice_is_chnl_fltr(fltr)) continue; rule.rid = fltr->rid; rule.rule_id = fltr->rule_id; rule.vsi_handle = fltr->dest_vsi_handle; status = ice_rem_adv_rule_by_id(&pf->hw, &rule); if (status) { if (status == -ENOENT) dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", rule.rule_id); else dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", status); } else if (fltr->dest_vsi) { /* update advanced switch filter count */ if (fltr->dest_vsi->type == ICE_VSI_CHNL) { u32 flags = fltr->flags; fltr->dest_vsi->num_chnl_fltr--; if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | ICE_TC_FLWR_FIELD_ENC_DST_MAC)) pf->num_dmac_chnl_fltrs--; } } hlist_del(&fltr->tc_flower_node); kfree(fltr); } } /** * ice_remove_q_channels - Remove queue channels for the TCs * @vsi: VSI to be configured * @rem_fltr: delete advanced switch filter or not * * Remove queue channels for the TCs */ static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) { struct ice_channel *ch, *ch_tmp; struct ice_pf *pf = vsi->back; int i; /* remove all tc-flower based filter if they are channel filters only */ if (rem_fltr) ice_rem_all_chnl_fltrs(pf); /* remove ntuple filters since queue configuration is being changed */ if (vsi->netdev->features & NETIF_F_NTUPLE) { struct ice_hw *hw = &pf->hw; mutex_lock(&hw->fdir_fltr_lock); ice_fdir_del_all_fltrs(vsi); mutex_unlock(&hw->fdir_fltr_lock); } /* perform cleanup for channels if they exist */ list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { struct ice_vsi *ch_vsi; list_del(&ch->list); ch_vsi = ch->ch_vsi; if (!ch_vsi) { kfree(ch); continue; } /* Reset queue contexts */ for (i = 0; i < ch->num_rxq; i++) { struct ice_tx_ring *tx_ring; struct ice_rx_ring *rx_ring; tx_ring = vsi->tx_rings[ch->base_q + i]; rx_ring = vsi->rx_rings[ch->base_q + i]; if (tx_ring) { tx_ring->ch = NULL; if (tx_ring->q_vector) tx_ring->q_vector->ch = NULL; } if (rx_ring) { rx_ring->ch = NULL; if (rx_ring->q_vector) rx_ring->q_vector->ch = NULL; } } /* Release FD resources for the channel VSI */ ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); /* clear the VSI from scheduler tree */ ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); /* Delete VSI from FW, PF and HW VSI arrays */ ice_vsi_delete(ch->ch_vsi); /* free the channel */ kfree(ch); } /* clear the channel VSI map which is stored in main VSI */ ice_for_each_chnl_tc(i) vsi->tc_map_vsi[i] = NULL; /* reset main VSI's all TC information */ vsi->all_enatc = 0; vsi->all_numtc = 0; } /** * ice_rebuild_channels - rebuild channel * @pf: ptr to PF * * Recreate channel VSIs and replay filters */ static int ice_rebuild_channels(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_vsi *main_vsi; bool rem_adv_fltr = true; struct ice_channel *ch; struct ice_vsi *vsi; int tc_idx = 1; int i, err; main_vsi = ice_get_main_vsi(pf); if (!main_vsi) return 0; if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || main_vsi->old_numtc == 1) return 0; /* nothing to be done */ /* reconfigure main VSI based on old value of TC and cached values * for MQPRIO opts */ err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); if (err) { dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", main_vsi->old_ena_tc, main_vsi->vsi_num); return err; } /* rebuild ADQ VSIs */ ice_for_each_vsi(pf, i) { enum ice_vsi_type type; vsi = pf->vsi[i]; if (!vsi || vsi->type != ICE_VSI_CHNL) continue; type = vsi->type; /* rebuild ADQ VSI */ err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); if (err) { dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", ice_vsi_type_str(type), vsi->idx, err); goto cleanup; } /* Re-map HW VSI number, using VSI handle that has been * previously validated in ice_replay_vsi() call above */ vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); /* replay filters for the VSI */ err = ice_replay_vsi(&pf->hw, vsi->idx); if (err) { dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", ice_vsi_type_str(type), err, vsi->idx); rem_adv_fltr = false; goto cleanup; } dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", ice_vsi_type_str(type), vsi->idx); /* store ADQ VSI at correct TC index in main VSI's * map of TC to VSI */ main_vsi->tc_map_vsi[tc_idx++] = vsi; } /* ADQ VSI(s) has been rebuilt successfully, so setup * channel for main VSI's Tx and Rx rings */ list_for_each_entry(ch, &main_vsi->ch_list, list) { struct ice_vsi *ch_vsi; ch_vsi = ch->ch_vsi; if (!ch_vsi) continue; /* reconfig channel resources */ ice_cfg_chnl_all_res(main_vsi, ch); /* replay BW rate limit if it is non-zero */ if (!ch->max_tx_rate && !ch->min_tx_rate) continue; err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, ch->min_tx_rate); if (err) dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", err, ch->max_tx_rate, ch->min_tx_rate, ch_vsi->vsi_num); else dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", ch->max_tx_rate, ch->min_tx_rate, ch_vsi->vsi_num); } /* reconfig RSS for main VSI */ if (main_vsi->ch_rss_size) ice_vsi_cfg_rss_lut_key(main_vsi); return 0; cleanup: ice_remove_q_channels(main_vsi, rem_adv_fltr); return err; } /** * ice_create_q_channels - Add queue channel for the given TCs * @vsi: VSI to be configured * * Configures queue channel mapping to the given TCs */ static int ice_create_q_channels(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_channel *ch; int ret = 0, i; ice_for_each_chnl_tc(i) { if (!(vsi->all_enatc & BIT(i))) continue; ch = kzalloc(sizeof(*ch), GFP_KERNEL); if (!ch) { ret = -ENOMEM; goto err_free; } INIT_LIST_HEAD(&ch->list); ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; /* convert to Kbits/s */ if (ch->max_tx_rate) ch->max_tx_rate = div_u64(ch->max_tx_rate, ICE_BW_KBPS_DIVISOR); if (ch->min_tx_rate) ch->min_tx_rate = div_u64(ch->min_tx_rate, ICE_BW_KBPS_DIVISOR); ret = ice_create_q_channel(vsi, ch); if (ret) { dev_err(ice_pf_to_dev(pf), "failed creating channel TC:%d\n", i); kfree(ch); goto err_free; } list_add_tail(&ch->list, &vsi->ch_list); vsi->tc_map_vsi[i] = ch->ch_vsi; dev_dbg(ice_pf_to_dev(pf), "successfully created channel: VSI %pK\n", ch->ch_vsi); } return 0; err_free: ice_remove_q_channels(vsi, false); return ret; } /** * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes * @netdev: net device to configure * @type_data: TC offload data */ static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; u16 mode, ena_tc_qdisc = 0; int cur_txq, cur_rxq; u8 hw = 0, num_tcf; struct device *dev; int ret, i; dev = ice_pf_to_dev(pf); num_tcf = mqprio_qopt->qopt.num_tc; hw = mqprio_qopt->qopt.hw; mode = mqprio_qopt->mode; if (!hw) { clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); vsi->ch_rss_size = 0; memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); goto config_tcf; } /* Generate queue region map for number of TCF requested */ for (i = 0; i < num_tcf; i++) ena_tc_qdisc |= BIT(i); switch (mode) { case TC_MQPRIO_MODE_CHANNEL: if (pf->hw.port_info->is_custom_tx_enabled) { dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); return -EBUSY; } ice_tear_down_devlink_rate_tree(pf); ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); if (ret) { netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", ret); return ret; } memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); /* don't assume state of hw_tc_offload during driver load * and set the flag for TC flower filter if hw_tc_offload * already ON */ if (vsi->netdev->features & NETIF_F_HW_TC) set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); break; default: return -EINVAL; } config_tcf: /* Requesting same TCF configuration as already enabled */ if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && mode != TC_MQPRIO_MODE_CHANNEL) return 0; /* Pause VSI queues */ ice_dis_vsi(vsi, true); if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) ice_remove_q_channels(vsi, true); if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), num_online_cpus()); vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), num_online_cpus()); } else { /* logic to rebuild VSI, same like ethtool -L */ u16 offset = 0, qcount_tx = 0, qcount_rx = 0; for (i = 0; i < num_tcf; i++) { if (!(ena_tc_qdisc & BIT(i))) continue; offset = vsi->mqprio_qopt.qopt.offset[i]; qcount_rx = vsi->mqprio_qopt.qopt.count[i]; qcount_tx = vsi->mqprio_qopt.qopt.count[i]; } vsi->req_txq = offset + qcount_tx; vsi->req_rxq = offset + qcount_rx; /* store away original rss_size info, so that it gets reused * form ice_vsi_rebuild during tc-qdisc delete stage - to * determine, what should be the rss_sizefor main VSI */ vsi->orig_rss_size = vsi->rss_size; } /* save current values of Tx and Rx queues before calling VSI rebuild * for fallback option */ cur_txq = vsi->num_txq; cur_rxq = vsi->num_rxq; /* proceed with rebuild main VSI using correct number of queues */ ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); if (ret) { /* fallback to current number of queues */ dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); vsi->req_txq = cur_txq; vsi->req_rxq = cur_rxq; clear_bit(ICE_RESET_FAILED, pf->state); if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { dev_err(dev, "Rebuild of main VSI failed again\n"); return ret; } } vsi->all_numtc = num_tcf; vsi->all_enatc = ena_tc_qdisc; ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); if (ret) { netdev_err(netdev, "failed configuring TC for VSI id=%d\n", vsi->vsi_num); goto exit; } if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; /* set TC0 rate limit if specified */ if (max_tx_rate || min_tx_rate) { /* convert to Kbits/s */ if (max_tx_rate) max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); if (min_tx_rate) min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); if (!ret) { dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", max_tx_rate, min_tx_rate, vsi->vsi_num); } else { dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", max_tx_rate, min_tx_rate, vsi->vsi_num); goto exit; } } ret = ice_create_q_channels(vsi); if (ret) { netdev_err(netdev, "failed configuring queue channels\n"); goto exit; } else { netdev_dbg(netdev, "successfully configured channels\n"); } } if (vsi->ch_rss_size) ice_vsi_cfg_rss_lut_key(vsi); exit: /* if error, reset the all_numtc and all_enatc */ if (ret) { vsi->all_numtc = 0; vsi->all_enatc = 0; } /* resume VSI */ ice_ena_vsi(vsi, true); return ret; } static LIST_HEAD(ice_block_cb_list); static int ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_pf *pf = np->vsi->back; bool locked = false; int err; switch (type) { case TC_SETUP_BLOCK: return flow_block_cb_setup_simple(type_data, &ice_block_cb_list, ice_setup_tc_block_cb, np, np, true); case TC_SETUP_QDISC_MQPRIO: if (ice_is_eswitch_mode_switchdev(pf)) { netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); return -EOPNOTSUPP; } if (pf->adev) { mutex_lock(&pf->adev_mutex); device_lock(&pf->adev->dev); locked = true; if (pf->adev->dev.driver) { netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); err = -EBUSY; goto adev_unlock; } } /* setup traffic classifier for receive side */ mutex_lock(&pf->tc_mutex); err = ice_setup_tc_mqprio_qdisc(netdev, type_data); mutex_unlock(&pf->tc_mutex); adev_unlock: if (locked) { device_unlock(&pf->adev->dev); mutex_unlock(&pf->adev_mutex); } return err; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static struct ice_indr_block_priv * ice_indr_block_priv_lookup(struct ice_netdev_priv *np, struct net_device *netdev) { struct ice_indr_block_priv *cb_priv; list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { if (!cb_priv->netdev) return NULL; if (cb_priv->netdev == netdev) return cb_priv; } return NULL; } static int ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, void *indr_priv) { struct ice_indr_block_priv *priv = indr_priv; struct ice_netdev_priv *np = priv->np; switch (type) { case TC_SETUP_CLSFLOWER: return ice_setup_tc_cls_flower(np, priv->netdev, (struct flow_cls_offload *) type_data); default: return -EOPNOTSUPP; } } static int ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, struct ice_netdev_priv *np, struct flow_block_offload *f, void *data, void (*cleanup)(struct flow_block_cb *block_cb)) { struct ice_indr_block_priv *indr_priv; struct flow_block_cb *block_cb; if (!ice_is_tunnel_supported(netdev) && !(is_vlan_dev(netdev) && vlan_dev_real_dev(netdev) == np->vsi->netdev)) return -EOPNOTSUPP; if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) return -EOPNOTSUPP; switch (f->command) { case FLOW_BLOCK_BIND: indr_priv = ice_indr_block_priv_lookup(np, netdev); if (indr_priv) return -EEXIST; indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); if (!indr_priv) return -ENOMEM; indr_priv->netdev = netdev; indr_priv->np = np; list_add(&indr_priv->list, &np->tc_indr_block_priv_list); block_cb = flow_indr_block_cb_alloc(ice_indr_setup_block_cb, indr_priv, indr_priv, ice_rep_indr_tc_block_unbind, f, netdev, sch, data, np, cleanup); if (IS_ERR(block_cb)) { list_del(&indr_priv->list); kfree(indr_priv); return PTR_ERR(block_cb); } flow_block_cb_add(block_cb, f); list_add_tail(&block_cb->driver_list, &ice_block_cb_list); break; case FLOW_BLOCK_UNBIND: indr_priv = ice_indr_block_priv_lookup(np, netdev); if (!indr_priv) return -ENOENT; block_cb = flow_block_cb_lookup(f->block, ice_indr_setup_block_cb, indr_priv); if (!block_cb) return -ENOENT; flow_indr_block_cb_remove(block_cb, f); list_del(&block_cb->driver_list); break; default: return -EOPNOTSUPP; } return 0; } static int ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv, enum tc_setup_type type, void *type_data, void *data, void (*cleanup)(struct flow_block_cb *block_cb)) { switch (type) { case TC_SETUP_BLOCK: return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, data, cleanup); default: return -EOPNOTSUPP; } } /** * ice_open - Called when a network interface becomes active * @netdev: network interface device structure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the netdev watchdog is enabled, * and the stack is notified that the interface is ready. * * Returns 0 on success, negative value on failure */ int ice_open(struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_pf *pf = np->vsi->back; if (ice_is_reset_in_progress(pf->state)) { netdev_err(netdev, "can't open net device while reset is in progress"); return -EBUSY; } return ice_open_internal(netdev); } /** * ice_open_internal - Called when a network interface becomes active * @netdev: network interface device structure * * Internal ice_open implementation. Should not be used directly except for ice_open and reset * handling routine * * Returns 0 on success, negative value on failure */ int ice_open_internal(struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; struct ice_port_info *pi; int err; if (test_bit(ICE_NEEDS_RESTART, pf->state)) { netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); return -EIO; } netif_carrier_off(netdev); pi = vsi->port_info; err = ice_update_link_info(pi); if (err) { netdev_err(netdev, "Failed to get link info, error %d\n", err); return err; } ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); /* Set PHY if there is media, otherwise, turn off PHY */ if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { err = ice_init_phy_user_cfg(pi); if (err) { netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", err); return err; } } err = ice_configure_phy(vsi); if (err) { netdev_err(netdev, "Failed to set physical link up, error %d\n", err); return err; } } else { set_bit(ICE_FLAG_NO_MEDIA, pf->flags); ice_set_link(vsi, false); } err = ice_vsi_open(vsi); if (err) netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", vsi->vsi_num, vsi->vsw->sw_id); /* Update existing tunnels information */ udp_tunnel_get_rx_info(netdev); return err; } /** * ice_stop - Disables a network interface * @netdev: network interface device structure * * The stop entry point is called when an interface is de-activated by the OS, * and the netdevice enters the DOWN state. The hardware is still under the * driver's control, but the netdev interface is disabled. * * Returns success only - not allowed to fail */ int ice_stop(struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; struct ice_pf *pf = vsi->back; if (ice_is_reset_in_progress(pf->state)) { netdev_err(netdev, "can't stop net device while reset is in progress"); return -EBUSY; } if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { int link_err = ice_force_phys_link_state(vsi, false); if (link_err) { if (link_err == -ENOMEDIUM) netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", vsi->vsi_num); else netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", vsi->vsi_num, link_err); ice_vsi_close(vsi); return -EIO; } } ice_vsi_close(vsi); return 0; } /** * ice_features_check - Validate encapsulated packet conforms to limits * @skb: skb buffer * @netdev: This port's netdev * @features: Offload features that the stack believes apply */ static netdev_features_t ice_features_check(struct sk_buff *skb, struct net_device __always_unused *netdev, netdev_features_t features) { bool gso = skb_is_gso(skb); size_t len; /* No point in doing any of this if neither checksum nor GSO are * being requested for this frame. We can rule out both by just * checking for CHECKSUM_PARTIAL */ if (skb->ip_summed != CHECKSUM_PARTIAL) return features; /* We cannot support GSO if the MSS is going to be less than * 64 bytes. If it is then we need to drop support for GSO. */ if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) features &= ~NETIF_F_GSO_MASK; len = skb_network_offset(skb); if (len > ICE_TXD_MACLEN_MAX || len & 0x1) goto out_rm_features; len = skb_network_header_len(skb); if (len > ICE_TXD_IPLEN_MAX || len & 0x1) goto out_rm_features; if (skb->encapsulation) { /* this must work for VXLAN frames AND IPIP/SIT frames, and in * the case of IPIP frames, the transport header pointer is * after the inner header! So check to make sure that this * is a GRE or UDP_TUNNEL frame before doing that math. */ if (gso && (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { len = skb_inner_network_header(skb) - skb_transport_header(skb); if (len > ICE_TXD_L4LEN_MAX || len & 0x1) goto out_rm_features; } len = skb_inner_network_header_len(skb); if (len > ICE_TXD_IPLEN_MAX || len & 0x1) goto out_rm_features; } return features; out_rm_features: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } static const struct net_device_ops ice_netdev_safe_mode_ops = { .ndo_open = ice_open, .ndo_stop = ice_stop, .ndo_start_xmit = ice_start_xmit, .ndo_set_mac_address = ice_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = ice_change_mtu, .ndo_get_stats64 = ice_get_stats64, .ndo_tx_timeout = ice_tx_timeout, .ndo_bpf = ice_xdp_safe_mode, }; static const struct net_device_ops ice_netdev_ops = { .ndo_open = ice_open, .ndo_stop = ice_stop, .ndo_start_xmit = ice_start_xmit, .ndo_select_queue = ice_select_queue, .ndo_features_check = ice_features_check, .ndo_fix_features = ice_fix_features, .ndo_set_rx_mode = ice_set_rx_mode, .ndo_set_mac_address = ice_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = ice_change_mtu, .ndo_get_stats64 = ice_get_stats64, .ndo_set_tx_maxrate = ice_set_tx_maxrate, .ndo_eth_ioctl = ice_eth_ioctl, .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, .ndo_set_vf_mac = ice_set_vf_mac, .ndo_get_vf_config = ice_get_vf_cfg, .ndo_set_vf_trust = ice_set_vf_trust, .ndo_set_vf_vlan = ice_set_vf_port_vlan, .ndo_set_vf_link_state = ice_set_vf_link_state, .ndo_get_vf_stats = ice_get_vf_stats, .ndo_set_vf_rate = ice_set_vf_bw, .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, .ndo_setup_tc = ice_setup_tc, .ndo_set_features = ice_set_features, .ndo_bridge_getlink = ice_bridge_getlink, .ndo_bridge_setlink = ice_bridge_setlink, .ndo_fdb_add = ice_fdb_add, .ndo_fdb_del = ice_fdb_del, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = ice_rx_flow_steer, #endif .ndo_tx_timeout = ice_tx_timeout, .ndo_bpf = ice_xdp, .ndo_xdp_xmit = ice_xdp_xmit, .ndo_xsk_wakeup = ice_xsk_wakeup, };