1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13 /*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63
64 #define RAID5_MAX_REQ_STRIPES 256
65
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71
stripe_hash(struct r5conf * conf,sector_t sect)72 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
73 {
74 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
75 return &conf->stripe_hashtbl[hash];
76 }
77
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)78 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
79 {
80 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
81 }
82
lock_device_hash_lock(struct r5conf * conf,int hash)83 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
84 __acquires(&conf->device_lock)
85 {
86 spin_lock_irq(conf->hash_locks + hash);
87 spin_lock(&conf->device_lock);
88 }
89
unlock_device_hash_lock(struct r5conf * conf,int hash)90 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
91 __releases(&conf->device_lock)
92 {
93 spin_unlock(&conf->device_lock);
94 spin_unlock_irq(conf->hash_locks + hash);
95 }
96
lock_all_device_hash_locks_irq(struct r5conf * conf)97 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
98 __acquires(&conf->device_lock)
99 {
100 int i;
101 spin_lock_irq(conf->hash_locks);
102 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
103 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
104 spin_lock(&conf->device_lock);
105 }
106
unlock_all_device_hash_locks_irq(struct r5conf * conf)107 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
108 __releases(&conf->device_lock)
109 {
110 int i;
111 spin_unlock(&conf->device_lock);
112 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
113 spin_unlock(conf->hash_locks + i);
114 spin_unlock_irq(conf->hash_locks);
115 }
116
117 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)118 static inline int raid6_d0(struct stripe_head *sh)
119 {
120 if (sh->ddf_layout)
121 /* ddf always start from first device */
122 return 0;
123 /* md starts just after Q block */
124 if (sh->qd_idx == sh->disks - 1)
125 return 0;
126 else
127 return sh->qd_idx + 1;
128 }
raid6_next_disk(int disk,int raid_disks)129 static inline int raid6_next_disk(int disk, int raid_disks)
130 {
131 disk++;
132 return (disk < raid_disks) ? disk : 0;
133 }
134
135 /* When walking through the disks in a raid5, starting at raid6_d0,
136 * We need to map each disk to a 'slot', where the data disks are slot
137 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
138 * is raid_disks-1. This help does that mapping.
139 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)140 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
141 int *count, int syndrome_disks)
142 {
143 int slot = *count;
144
145 if (sh->ddf_layout)
146 (*count)++;
147 if (idx == sh->pd_idx)
148 return syndrome_disks;
149 if (idx == sh->qd_idx)
150 return syndrome_disks + 1;
151 if (!sh->ddf_layout)
152 (*count)++;
153 return slot;
154 }
155
156 static void print_raid5_conf (struct r5conf *conf);
157
stripe_operations_active(struct stripe_head * sh)158 static int stripe_operations_active(struct stripe_head *sh)
159 {
160 return sh->check_state || sh->reconstruct_state ||
161 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
162 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
163 }
164
stripe_is_lowprio(struct stripe_head * sh)165 static bool stripe_is_lowprio(struct stripe_head *sh)
166 {
167 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
168 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
169 !test_bit(STRIPE_R5C_CACHING, &sh->state);
170 }
171
raid5_wakeup_stripe_thread(struct stripe_head * sh)172 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
173 __must_hold(&sh->raid_conf->device_lock)
174 {
175 struct r5conf *conf = sh->raid_conf;
176 struct r5worker_group *group;
177 int thread_cnt;
178 int i, cpu = sh->cpu;
179
180 if (!cpu_online(cpu)) {
181 cpu = cpumask_any(cpu_online_mask);
182 sh->cpu = cpu;
183 }
184
185 if (list_empty(&sh->lru)) {
186 struct r5worker_group *group;
187 group = conf->worker_groups + cpu_to_group(cpu);
188 if (stripe_is_lowprio(sh))
189 list_add_tail(&sh->lru, &group->loprio_list);
190 else
191 list_add_tail(&sh->lru, &group->handle_list);
192 group->stripes_cnt++;
193 sh->group = group;
194 }
195
196 if (conf->worker_cnt_per_group == 0) {
197 md_wakeup_thread(conf->mddev->thread);
198 return;
199 }
200
201 group = conf->worker_groups + cpu_to_group(sh->cpu);
202
203 group->workers[0].working = true;
204 /* at least one worker should run to avoid race */
205 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
206
207 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
208 /* wakeup more workers */
209 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
210 if (group->workers[i].working == false) {
211 group->workers[i].working = true;
212 queue_work_on(sh->cpu, raid5_wq,
213 &group->workers[i].work);
214 thread_cnt--;
215 }
216 }
217 }
218
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)219 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
220 struct list_head *temp_inactive_list)
221 __must_hold(&conf->device_lock)
222 {
223 int i;
224 int injournal = 0; /* number of date pages with R5_InJournal */
225
226 BUG_ON(!list_empty(&sh->lru));
227 BUG_ON(atomic_read(&conf->active_stripes)==0);
228
229 if (r5c_is_writeback(conf->log))
230 for (i = sh->disks; i--; )
231 if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 injournal++;
233 /*
234 * In the following cases, the stripe cannot be released to cached
235 * lists. Therefore, we make the stripe write out and set
236 * STRIPE_HANDLE:
237 * 1. when quiesce in r5c write back;
238 * 2. when resync is requested fot the stripe.
239 */
240 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
241 (conf->quiesce && r5c_is_writeback(conf->log) &&
242 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
243 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
244 r5c_make_stripe_write_out(sh);
245 set_bit(STRIPE_HANDLE, &sh->state);
246 }
247
248 if (test_bit(STRIPE_HANDLE, &sh->state)) {
249 if (test_bit(STRIPE_DELAYED, &sh->state) &&
250 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
251 list_add_tail(&sh->lru, &conf->delayed_list);
252 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
253 sh->bm_seq - conf->seq_write > 0)
254 list_add_tail(&sh->lru, &conf->bitmap_list);
255 else {
256 clear_bit(STRIPE_DELAYED, &sh->state);
257 clear_bit(STRIPE_BIT_DELAY, &sh->state);
258 if (conf->worker_cnt_per_group == 0) {
259 if (stripe_is_lowprio(sh))
260 list_add_tail(&sh->lru,
261 &conf->loprio_list);
262 else
263 list_add_tail(&sh->lru,
264 &conf->handle_list);
265 } else {
266 raid5_wakeup_stripe_thread(sh);
267 return;
268 }
269 }
270 md_wakeup_thread(conf->mddev->thread);
271 } else {
272 BUG_ON(stripe_operations_active(sh));
273 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
274 if (atomic_dec_return(&conf->preread_active_stripes)
275 < IO_THRESHOLD)
276 md_wakeup_thread(conf->mddev->thread);
277 atomic_dec(&conf->active_stripes);
278 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
279 if (!r5c_is_writeback(conf->log))
280 list_add_tail(&sh->lru, temp_inactive_list);
281 else {
282 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
283 if (injournal == 0)
284 list_add_tail(&sh->lru, temp_inactive_list);
285 else if (injournal == conf->raid_disks - conf->max_degraded) {
286 /* full stripe */
287 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
288 atomic_inc(&conf->r5c_cached_full_stripes);
289 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
290 atomic_dec(&conf->r5c_cached_partial_stripes);
291 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
292 r5c_check_cached_full_stripe(conf);
293 } else
294 /*
295 * STRIPE_R5C_PARTIAL_STRIPE is set in
296 * r5c_try_caching_write(). No need to
297 * set it again.
298 */
299 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
300 }
301 }
302 }
303 }
304
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)305 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
306 struct list_head *temp_inactive_list)
307 __must_hold(&conf->device_lock)
308 {
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
311 }
312
313 /*
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315 *
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
319 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
322 int hash)
323 {
324 int size;
325 bool do_wakeup = false;
326 unsigned long flags;
327
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
331 } else
332 size = 1;
333 while (size) {
334 struct list_head *list = &temp_inactive_list[size - 1];
335
336 /*
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
339 */
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
343 !list_empty(list))
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
346 do_wakeup = true;
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 }
349 size--;
350 hash--;
351 }
352
353 if (do_wakeup) {
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
359 }
360 }
361
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)362 static int release_stripe_list(struct r5conf *conf,
363 struct list_head *temp_inactive_list)
364 __must_hold(&conf->device_lock)
365 {
366 struct stripe_head *sh, *t;
367 int count = 0;
368 struct llist_node *head;
369
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
373 int hash;
374
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 smp_mb();
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 /*
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
382 */
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
385 count++;
386 }
387
388 return count;
389 }
390
raid5_release_stripe(struct stripe_head * sh)391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 struct r5conf *conf = sh->raid_conf;
394 unsigned long flags;
395 struct list_head list;
396 int hash;
397 bool wakeup;
398
399 /* Avoid release_list until the last reference.
400 */
401 if (atomic_add_unless(&sh->count, -1, 1))
402 return;
403
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 goto slow_path;
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 if (wakeup)
409 md_wakeup_thread(conf->mddev->thread);
410 return;
411 slow_path:
412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414 INIT_LIST_HEAD(&list);
415 hash = sh->hash_lock_index;
416 do_release_stripe(conf, sh, &list);
417 spin_unlock_irqrestore(&conf->device_lock, flags);
418 release_inactive_stripe_list(conf, &list, hash);
419 }
420 }
421
remove_hash(struct stripe_head * sh)422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 pr_debug("remove_hash(), stripe %llu\n",
425 (unsigned long long)sh->sector);
426
427 hlist_del_init(&sh->hash);
428 }
429
insert_hash(struct r5conf * conf,struct stripe_head * sh)430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 struct hlist_head *hp = stripe_hash(conf, sh->sector);
433
434 pr_debug("insert_hash(), stripe %llu\n",
435 (unsigned long long)sh->sector);
436
437 hlist_add_head(&sh->hash, hp);
438 }
439
440 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 struct stripe_head *sh = NULL;
444 struct list_head *first;
445
446 if (list_empty(conf->inactive_list + hash))
447 goto out;
448 first = (conf->inactive_list + hash)->next;
449 sh = list_entry(first, struct stripe_head, lru);
450 list_del_init(first);
451 remove_hash(sh);
452 atomic_inc(&conf->active_stripes);
453 BUG_ON(hash != sh->hash_lock_index);
454 if (list_empty(conf->inactive_list + hash))
455 atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 return sh;
458 }
459
460 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)461 static void free_stripe_pages(struct stripe_head *sh)
462 {
463 int i;
464 struct page *p;
465
466 /* Have not allocate page pool */
467 if (!sh->pages)
468 return;
469
470 for (i = 0; i < sh->nr_pages; i++) {
471 p = sh->pages[i];
472 if (p)
473 put_page(p);
474 sh->pages[i] = NULL;
475 }
476 }
477
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)478 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
479 {
480 int i;
481 struct page *p;
482
483 for (i = 0; i < sh->nr_pages; i++) {
484 /* The page have allocated. */
485 if (sh->pages[i])
486 continue;
487
488 p = alloc_page(gfp);
489 if (!p) {
490 free_stripe_pages(sh);
491 return -ENOMEM;
492 }
493 sh->pages[i] = p;
494 }
495 return 0;
496 }
497
498 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)499 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
500 {
501 int nr_pages, cnt;
502
503 if (sh->pages)
504 return 0;
505
506 /* Each of the sh->dev[i] need one conf->stripe_size */
507 cnt = PAGE_SIZE / conf->stripe_size;
508 nr_pages = (disks + cnt - 1) / cnt;
509
510 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
511 if (!sh->pages)
512 return -ENOMEM;
513 sh->nr_pages = nr_pages;
514 sh->stripes_per_page = cnt;
515 return 0;
516 }
517 #endif
518
shrink_buffers(struct stripe_head * sh)519 static void shrink_buffers(struct stripe_head *sh)
520 {
521 int i;
522 int num = sh->raid_conf->pool_size;
523
524 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
525 for (i = 0; i < num ; i++) {
526 struct page *p;
527
528 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
529 p = sh->dev[i].page;
530 if (!p)
531 continue;
532 sh->dev[i].page = NULL;
533 put_page(p);
534 }
535 #else
536 for (i = 0; i < num; i++)
537 sh->dev[i].page = NULL;
538 free_stripe_pages(sh); /* Free pages */
539 #endif
540 }
541
grow_buffers(struct stripe_head * sh,gfp_t gfp)542 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
543 {
544 int i;
545 int num = sh->raid_conf->pool_size;
546
547 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
548 for (i = 0; i < num; i++) {
549 struct page *page;
550
551 if (!(page = alloc_page(gfp))) {
552 return 1;
553 }
554 sh->dev[i].page = page;
555 sh->dev[i].orig_page = page;
556 sh->dev[i].offset = 0;
557 }
558 #else
559 if (alloc_stripe_pages(sh, gfp))
560 return -ENOMEM;
561
562 for (i = 0; i < num; i++) {
563 sh->dev[i].page = raid5_get_dev_page(sh, i);
564 sh->dev[i].orig_page = sh->dev[i].page;
565 sh->dev[i].offset = raid5_get_page_offset(sh, i);
566 }
567 #endif
568 return 0;
569 }
570
571 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
572 struct stripe_head *sh);
573
init_stripe(struct stripe_head * sh,sector_t sector,int previous)574 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
575 {
576 struct r5conf *conf = sh->raid_conf;
577 int i, seq;
578
579 BUG_ON(atomic_read(&sh->count) != 0);
580 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
581 BUG_ON(stripe_operations_active(sh));
582 BUG_ON(sh->batch_head);
583
584 pr_debug("init_stripe called, stripe %llu\n",
585 (unsigned long long)sector);
586 retry:
587 seq = read_seqcount_begin(&conf->gen_lock);
588 sh->generation = conf->generation - previous;
589 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
590 sh->sector = sector;
591 stripe_set_idx(sector, conf, previous, sh);
592 sh->state = 0;
593
594 for (i = sh->disks; i--; ) {
595 struct r5dev *dev = &sh->dev[i];
596
597 if (dev->toread || dev->read || dev->towrite || dev->written ||
598 test_bit(R5_LOCKED, &dev->flags)) {
599 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
600 (unsigned long long)sh->sector, i, dev->toread,
601 dev->read, dev->towrite, dev->written,
602 test_bit(R5_LOCKED, &dev->flags));
603 WARN_ON(1);
604 }
605 dev->flags = 0;
606 dev->sector = raid5_compute_blocknr(sh, i, previous);
607 }
608 if (read_seqcount_retry(&conf->gen_lock, seq))
609 goto retry;
610 sh->overwrite_disks = 0;
611 insert_hash(conf, sh);
612 sh->cpu = smp_processor_id();
613 set_bit(STRIPE_BATCH_READY, &sh->state);
614 }
615
__find_stripe(struct r5conf * conf,sector_t sector,short generation)616 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
617 short generation)
618 {
619 struct stripe_head *sh;
620
621 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
622 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
623 if (sh->sector == sector && sh->generation == generation)
624 return sh;
625 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
626 return NULL;
627 }
628
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)629 static struct stripe_head *find_get_stripe(struct r5conf *conf,
630 sector_t sector, short generation, int hash)
631 {
632 int inc_empty_inactive_list_flag;
633 struct stripe_head *sh;
634
635 sh = __find_stripe(conf, sector, generation);
636 if (!sh)
637 return NULL;
638
639 if (atomic_inc_not_zero(&sh->count))
640 return sh;
641
642 /*
643 * Slow path. The reference count is zero which means the stripe must
644 * be on a list (sh->lru). Must remove the stripe from the list that
645 * references it with the device_lock held.
646 */
647
648 spin_lock(&conf->device_lock);
649 if (!atomic_read(&sh->count)) {
650 if (!test_bit(STRIPE_HANDLE, &sh->state))
651 atomic_inc(&conf->active_stripes);
652 BUG_ON(list_empty(&sh->lru) &&
653 !test_bit(STRIPE_EXPANDING, &sh->state));
654 inc_empty_inactive_list_flag = 0;
655 if (!list_empty(conf->inactive_list + hash))
656 inc_empty_inactive_list_flag = 1;
657 list_del_init(&sh->lru);
658 if (list_empty(conf->inactive_list + hash) &&
659 inc_empty_inactive_list_flag)
660 atomic_inc(&conf->empty_inactive_list_nr);
661 if (sh->group) {
662 sh->group->stripes_cnt--;
663 sh->group = NULL;
664 }
665 }
666 atomic_inc(&sh->count);
667 spin_unlock(&conf->device_lock);
668
669 return sh;
670 }
671
672 /*
673 * Need to check if array has failed when deciding whether to:
674 * - start an array
675 * - remove non-faulty devices
676 * - add a spare
677 * - allow a reshape
678 * This determination is simple when no reshape is happening.
679 * However if there is a reshape, we need to carefully check
680 * both the before and after sections.
681 * This is because some failed devices may only affect one
682 * of the two sections, and some non-in_sync devices may
683 * be insync in the section most affected by failed devices.
684 *
685 * Most calls to this function hold &conf->device_lock. Calls
686 * in raid5_run() do not require the lock as no other threads
687 * have been started yet.
688 */
raid5_calc_degraded(struct r5conf * conf)689 int raid5_calc_degraded(struct r5conf *conf)
690 {
691 int degraded, degraded2;
692 int i;
693
694 rcu_read_lock();
695 degraded = 0;
696 for (i = 0; i < conf->previous_raid_disks; i++) {
697 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
698 if (rdev && test_bit(Faulty, &rdev->flags))
699 rdev = rcu_dereference(conf->disks[i].replacement);
700 if (!rdev || test_bit(Faulty, &rdev->flags))
701 degraded++;
702 else if (test_bit(In_sync, &rdev->flags))
703 ;
704 else
705 /* not in-sync or faulty.
706 * If the reshape increases the number of devices,
707 * this is being recovered by the reshape, so
708 * this 'previous' section is not in_sync.
709 * If the number of devices is being reduced however,
710 * the device can only be part of the array if
711 * we are reverting a reshape, so this section will
712 * be in-sync.
713 */
714 if (conf->raid_disks >= conf->previous_raid_disks)
715 degraded++;
716 }
717 rcu_read_unlock();
718 if (conf->raid_disks == conf->previous_raid_disks)
719 return degraded;
720 rcu_read_lock();
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
724 if (rdev && test_bit(Faulty, &rdev->flags))
725 rdev = rcu_dereference(conf->disks[i].replacement);
726 if (!rdev || test_bit(Faulty, &rdev->flags))
727 degraded2++;
728 else if (test_bit(In_sync, &rdev->flags))
729 ;
730 else
731 /* not in-sync or faulty.
732 * If reshape increases the number of devices, this
733 * section has already been recovered, else it
734 * almost certainly hasn't.
735 */
736 if (conf->raid_disks <= conf->previous_raid_disks)
737 degraded2++;
738 }
739 rcu_read_unlock();
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743 }
744
has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf)
746 {
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756 }
757
758 enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763 };
764
765 struct stripe_request_ctx {
766 /* a reference to the last stripe_head for batching */
767 struct stripe_head *batch_last;
768
769 /* first sector in the request */
770 sector_t first_sector;
771
772 /* last sector in the request */
773 sector_t last_sector;
774
775 /*
776 * bitmap to track stripe sectors that have been added to stripes
777 * add one to account for unaligned requests
778 */
779 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
780
781 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
782 bool do_flush;
783 };
784
785 /*
786 * Block until another thread clears R5_INACTIVE_BLOCKED or
787 * there are fewer than 3/4 the maximum number of active stripes
788 * and there is an inactive stripe available.
789 */
is_inactive_blocked(struct r5conf * conf,int hash)790 static bool is_inactive_blocked(struct r5conf *conf, int hash)
791 {
792 if (list_empty(conf->inactive_list + hash))
793 return false;
794
795 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
796 return true;
797
798 return (atomic_read(&conf->active_stripes) <
799 (conf->max_nr_stripes * 3 / 4));
800 }
801
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)802 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
803 struct stripe_request_ctx *ctx, sector_t sector,
804 unsigned int flags)
805 {
806 struct stripe_head *sh;
807 int hash = stripe_hash_locks_hash(conf, sector);
808 int previous = !!(flags & R5_GAS_PREVIOUS);
809
810 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
811
812 spin_lock_irq(conf->hash_locks + hash);
813
814 for (;;) {
815 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
816 /*
817 * Must release the reference to batch_last before
818 * waiting, on quiesce, otherwise the batch_last will
819 * hold a reference to a stripe and raid5_quiesce()
820 * will deadlock waiting for active_stripes to go to
821 * zero.
822 */
823 if (ctx && ctx->batch_last) {
824 raid5_release_stripe(ctx->batch_last);
825 ctx->batch_last = NULL;
826 }
827
828 wait_event_lock_irq(conf->wait_for_quiescent,
829 !conf->quiesce,
830 *(conf->hash_locks + hash));
831 }
832
833 sh = find_get_stripe(conf, sector, conf->generation - previous,
834 hash);
835 if (sh)
836 break;
837
838 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
839 sh = get_free_stripe(conf, hash);
840 if (sh) {
841 r5c_check_stripe_cache_usage(conf);
842 init_stripe(sh, sector, previous);
843 atomic_inc(&sh->count);
844 break;
845 }
846
847 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
848 set_bit(R5_ALLOC_MORE, &conf->cache_state);
849 }
850
851 if (flags & R5_GAS_NOBLOCK)
852 break;
853
854 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
855 r5l_wake_reclaim(conf->log, 0);
856
857 /* release batch_last before wait to avoid risk of deadlock */
858 if (ctx && ctx->batch_last) {
859 raid5_release_stripe(ctx->batch_last);
860 ctx->batch_last = NULL;
861 }
862
863 wait_event_lock_irq(conf->wait_for_stripe,
864 is_inactive_blocked(conf, hash),
865 *(conf->hash_locks + hash));
866 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
867 }
868
869 spin_unlock_irq(conf->hash_locks + hash);
870 return sh;
871 }
872
is_full_stripe_write(struct stripe_head * sh)873 static bool is_full_stripe_write(struct stripe_head *sh)
874 {
875 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
876 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
877 }
878
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)879 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
880 __acquires(&sh1->stripe_lock)
881 __acquires(&sh2->stripe_lock)
882 {
883 if (sh1 > sh2) {
884 spin_lock_irq(&sh2->stripe_lock);
885 spin_lock_nested(&sh1->stripe_lock, 1);
886 } else {
887 spin_lock_irq(&sh1->stripe_lock);
888 spin_lock_nested(&sh2->stripe_lock, 1);
889 }
890 }
891
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)892 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
893 __releases(&sh1->stripe_lock)
894 __releases(&sh2->stripe_lock)
895 {
896 spin_unlock(&sh1->stripe_lock);
897 spin_unlock_irq(&sh2->stripe_lock);
898 }
899
900 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)901 static bool stripe_can_batch(struct stripe_head *sh)
902 {
903 struct r5conf *conf = sh->raid_conf;
904
905 if (raid5_has_log(conf) || raid5_has_ppl(conf))
906 return false;
907 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
908 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
909 is_full_stripe_write(sh);
910 }
911
912 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
915 {
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
918 int hash;
919 int dd_idx;
920
921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
924 return;
925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926
927 if (last_sh && head_sector == last_sh->sector) {
928 head = last_sh;
929 atomic_inc(&head->count);
930 } else {
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
934 hash);
935 spin_unlock_irq(conf->hash_locks + hash);
936 if (!head)
937 return;
938 if (!stripe_can_batch(head))
939 goto out;
940 }
941
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 goto unlock_out;
946
947 if (sh->batch_head)
948 goto unlock_out;
949
950 dd_idx = 0;
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 dd_idx++;
953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 goto unlock_out;
956
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
962 goto unlock_out;
963 }
964 /*
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
970 */
971 sh->batch_head = head->batch_head;
972
973 /*
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
976 */
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
979 } else {
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
985 }
986
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
989 < IO_THRESHOLD)
990 md_wakeup_thread(conf->mddev->thread);
991
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
999 }
1000
1001 atomic_inc(&sh->count);
1002 unlock_out:
1003 unlock_two_stripes(head, sh);
1004 out:
1005 raid5_release_stripe(head);
1006 }
1007
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1010 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012 {
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1017 */
1018 smp_rmb();
1019 if (progress == MaxSector)
1020 return 0;
1021 if (sh->generation == conf->generation - 1)
1022 return 0;
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1025 */
1026 return 1;
1027 }
1028
dispatch_bio_list(struct bio_list * tmp)1029 static void dispatch_bio_list(struct bio_list *tmp)
1030 {
1031 struct bio *bio;
1032
1033 while ((bio = bio_list_pop(tmp)))
1034 submit_bio_noacct(bio);
1035 }
1036
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
1039 {
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1045 return 1;
1046 if (da->sector < db->sector)
1047 return -1;
1048 return 0;
1049 }
1050
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1053 {
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1056 int cnt = 0;
1057
1058 if (conf->pending_data_cnt == 0)
1059 return;
1060
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1062
1063 first = conf->pending_list.next;
1064
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1069
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1076
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1079 cnt++;
1080 if (cnt >= target)
1081 break;
1082 }
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1089 else
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1094 }
1095
flush_deferred_bios(struct r5conf * conf)1096 static void flush_deferred_bios(struct r5conf *conf)
1097 {
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1099
1100 if (conf->pending_data_cnt == 0)
1101 return;
1102
1103 spin_lock(&conf->pending_bios_lock);
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
1106 spin_unlock(&conf->pending_bios_lock);
1107
1108 dispatch_bio_list(&tmp);
1109 }
1110
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
1113 {
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1116
1117 spin_lock(&conf->pending_bios_lock);
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 sibling);
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127
1128 spin_unlock(&conf->pending_bios_lock);
1129
1130 dispatch_bio_list(&tmp);
1131 }
1132
1133 static void
1134 raid5_end_read_request(struct bio *bi);
1135 static void
1136 raid5_end_write_request(struct bio *bi);
1137
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139 {
1140 struct r5conf *conf = sh->raid_conf;
1141 int i, disks = sh->disks;
1142 struct stripe_head *head_sh = sh;
1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 struct r5dev *dev;
1145 bool should_defer;
1146
1147 might_sleep();
1148
1149 if (log_stripe(sh, s) == 0)
1150 return;
1151
1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153
1154 for (i = disks; i--; ) {
1155 enum req_op op;
1156 blk_opf_t op_flags = 0;
1157 int replace_only = 0;
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
1160
1161 sh = head_sh;
1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 op = REQ_OP_WRITE;
1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 op_flags = REQ_FUA;
1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 op = REQ_OP_DISCARD;
1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 op = REQ_OP_READ;
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
1172 op = REQ_OP_WRITE;
1173 replace_only = 1;
1174 } else
1175 continue;
1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 op_flags |= REQ_SYNC;
1178
1179 again:
1180 dev = &sh->dev[i];
1181 bi = &dev->req;
1182 rbi = &dev->rreq; /* For writing to replacement */
1183
1184 rcu_read_lock();
1185 rrdev = rcu_dereference(conf->disks[i].replacement);
1186 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1187 rdev = rcu_dereference(conf->disks[i].rdev);
1188 if (!rdev) {
1189 rdev = rrdev;
1190 rrdev = NULL;
1191 }
1192 if (op_is_write(op)) {
1193 if (replace_only)
1194 rdev = NULL;
1195 if (rdev == rrdev)
1196 /* We raced and saw duplicates */
1197 rrdev = NULL;
1198 } else {
1199 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1200 rdev = rrdev;
1201 rrdev = NULL;
1202 }
1203
1204 if (rdev && test_bit(Faulty, &rdev->flags))
1205 rdev = NULL;
1206 if (rdev)
1207 atomic_inc(&rdev->nr_pending);
1208 if (rrdev && test_bit(Faulty, &rrdev->flags))
1209 rrdev = NULL;
1210 if (rrdev)
1211 atomic_inc(&rrdev->nr_pending);
1212 rcu_read_unlock();
1213
1214 /* We have already checked bad blocks for reads. Now
1215 * need to check for writes. We never accept write errors
1216 * on the replacement, so we don't to check rrdev.
1217 */
1218 while (op_is_write(op) && rdev &&
1219 test_bit(WriteErrorSeen, &rdev->flags)) {
1220 sector_t first_bad;
1221 int bad_sectors;
1222 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1223 &first_bad, &bad_sectors);
1224 if (!bad)
1225 break;
1226
1227 if (bad < 0) {
1228 set_bit(BlockedBadBlocks, &rdev->flags);
1229 if (!conf->mddev->external &&
1230 conf->mddev->sb_flags) {
1231 /* It is very unlikely, but we might
1232 * still need to write out the
1233 * bad block log - better give it
1234 * a chance*/
1235 md_check_recovery(conf->mddev);
1236 }
1237 /*
1238 * Because md_wait_for_blocked_rdev
1239 * will dec nr_pending, we must
1240 * increment it first.
1241 */
1242 atomic_inc(&rdev->nr_pending);
1243 md_wait_for_blocked_rdev(rdev, conf->mddev);
1244 } else {
1245 /* Acknowledged bad block - skip the write */
1246 rdev_dec_pending(rdev, conf->mddev);
1247 rdev = NULL;
1248 }
1249 }
1250
1251 if (rdev) {
1252 if (s->syncing || s->expanding || s->expanded
1253 || s->replacing)
1254 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1255
1256 set_bit(STRIPE_IO_STARTED, &sh->state);
1257
1258 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1259 bi->bi_end_io = op_is_write(op)
1260 ? raid5_end_write_request
1261 : raid5_end_read_request;
1262 bi->bi_private = sh;
1263
1264 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1265 __func__, (unsigned long long)sh->sector,
1266 bi->bi_opf, i);
1267 atomic_inc(&sh->count);
1268 if (sh != head_sh)
1269 atomic_inc(&head_sh->count);
1270 if (use_new_offset(conf, sh))
1271 bi->bi_iter.bi_sector = (sh->sector
1272 + rdev->new_data_offset);
1273 else
1274 bi->bi_iter.bi_sector = (sh->sector
1275 + rdev->data_offset);
1276 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1277 bi->bi_opf |= REQ_NOMERGE;
1278
1279 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1280 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1281
1282 if (!op_is_write(op) &&
1283 test_bit(R5_InJournal, &sh->dev[i].flags))
1284 /*
1285 * issuing read for a page in journal, this
1286 * must be preparing for prexor in rmw; read
1287 * the data into orig_page
1288 */
1289 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1290 else
1291 sh->dev[i].vec.bv_page = sh->dev[i].page;
1292 bi->bi_vcnt = 1;
1293 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1294 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1295 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1296 /*
1297 * If this is discard request, set bi_vcnt 0. We don't
1298 * want to confuse SCSI because SCSI will replace payload
1299 */
1300 if (op == REQ_OP_DISCARD)
1301 bi->bi_vcnt = 0;
1302 if (rrdev)
1303 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1304
1305 if (conf->mddev->gendisk)
1306 trace_block_bio_remap(bi,
1307 disk_devt(conf->mddev->gendisk),
1308 sh->dev[i].sector);
1309 if (should_defer && op_is_write(op))
1310 bio_list_add(&pending_bios, bi);
1311 else
1312 submit_bio_noacct(bi);
1313 }
1314 if (rrdev) {
1315 if (s->syncing || s->expanding || s->expanded
1316 || s->replacing)
1317 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1318
1319 set_bit(STRIPE_IO_STARTED, &sh->state);
1320
1321 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1322 BUG_ON(!op_is_write(op));
1323 rbi->bi_end_io = raid5_end_write_request;
1324 rbi->bi_private = sh;
1325
1326 pr_debug("%s: for %llu schedule op %d on "
1327 "replacement disc %d\n",
1328 __func__, (unsigned long long)sh->sector,
1329 rbi->bi_opf, i);
1330 atomic_inc(&sh->count);
1331 if (sh != head_sh)
1332 atomic_inc(&head_sh->count);
1333 if (use_new_offset(conf, sh))
1334 rbi->bi_iter.bi_sector = (sh->sector
1335 + rrdev->new_data_offset);
1336 else
1337 rbi->bi_iter.bi_sector = (sh->sector
1338 + rrdev->data_offset);
1339 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1340 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1341 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1342 rbi->bi_vcnt = 1;
1343 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1344 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1345 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1346 /*
1347 * If this is discard request, set bi_vcnt 0. We don't
1348 * want to confuse SCSI because SCSI will replace payload
1349 */
1350 if (op == REQ_OP_DISCARD)
1351 rbi->bi_vcnt = 0;
1352 if (conf->mddev->gendisk)
1353 trace_block_bio_remap(rbi,
1354 disk_devt(conf->mddev->gendisk),
1355 sh->dev[i].sector);
1356 if (should_defer && op_is_write(op))
1357 bio_list_add(&pending_bios, rbi);
1358 else
1359 submit_bio_noacct(rbi);
1360 }
1361 if (!rdev && !rrdev) {
1362 if (op_is_write(op))
1363 set_bit(STRIPE_DEGRADED, &sh->state);
1364 pr_debug("skip op %d on disc %d for sector %llu\n",
1365 bi->bi_opf, i, (unsigned long long)sh->sector);
1366 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1367 set_bit(STRIPE_HANDLE, &sh->state);
1368 }
1369
1370 if (!head_sh->batch_head)
1371 continue;
1372 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1373 batch_list);
1374 if (sh != head_sh)
1375 goto again;
1376 }
1377
1378 if (should_defer && !bio_list_empty(&pending_bios))
1379 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1380 }
1381
1382 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1383 async_copy_data(int frombio, struct bio *bio, struct page **page,
1384 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1385 struct stripe_head *sh, int no_skipcopy)
1386 {
1387 struct bio_vec bvl;
1388 struct bvec_iter iter;
1389 struct page *bio_page;
1390 int page_offset;
1391 struct async_submit_ctl submit;
1392 enum async_tx_flags flags = 0;
1393 struct r5conf *conf = sh->raid_conf;
1394
1395 if (bio->bi_iter.bi_sector >= sector)
1396 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1397 else
1398 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1399
1400 if (frombio)
1401 flags |= ASYNC_TX_FENCE;
1402 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1403
1404 bio_for_each_segment(bvl, bio, iter) {
1405 int len = bvl.bv_len;
1406 int clen;
1407 int b_offset = 0;
1408
1409 if (page_offset < 0) {
1410 b_offset = -page_offset;
1411 page_offset += b_offset;
1412 len -= b_offset;
1413 }
1414
1415 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1416 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1417 else
1418 clen = len;
1419
1420 if (clen > 0) {
1421 b_offset += bvl.bv_offset;
1422 bio_page = bvl.bv_page;
1423 if (frombio) {
1424 if (conf->skip_copy &&
1425 b_offset == 0 && page_offset == 0 &&
1426 clen == RAID5_STRIPE_SIZE(conf) &&
1427 !no_skipcopy)
1428 *page = bio_page;
1429 else
1430 tx = async_memcpy(*page, bio_page, page_offset + poff,
1431 b_offset, clen, &submit);
1432 } else
1433 tx = async_memcpy(bio_page, *page, b_offset,
1434 page_offset + poff, clen, &submit);
1435 }
1436 /* chain the operations */
1437 submit.depend_tx = tx;
1438
1439 if (clen < len) /* hit end of page */
1440 break;
1441 page_offset += len;
1442 }
1443
1444 return tx;
1445 }
1446
ops_complete_biofill(void * stripe_head_ref)1447 static void ops_complete_biofill(void *stripe_head_ref)
1448 {
1449 struct stripe_head *sh = stripe_head_ref;
1450 int i;
1451 struct r5conf *conf = sh->raid_conf;
1452
1453 pr_debug("%s: stripe %llu\n", __func__,
1454 (unsigned long long)sh->sector);
1455
1456 /* clear completed biofills */
1457 for (i = sh->disks; i--; ) {
1458 struct r5dev *dev = &sh->dev[i];
1459
1460 /* acknowledge completion of a biofill operation */
1461 /* and check if we need to reply to a read request,
1462 * new R5_Wantfill requests are held off until
1463 * !STRIPE_BIOFILL_RUN
1464 */
1465 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1466 struct bio *rbi, *rbi2;
1467
1468 BUG_ON(!dev->read);
1469 rbi = dev->read;
1470 dev->read = NULL;
1471 while (rbi && rbi->bi_iter.bi_sector <
1472 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1473 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1474 bio_endio(rbi);
1475 rbi = rbi2;
1476 }
1477 }
1478 }
1479 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1480
1481 set_bit(STRIPE_HANDLE, &sh->state);
1482 raid5_release_stripe(sh);
1483 }
1484
ops_run_biofill(struct stripe_head * sh)1485 static void ops_run_biofill(struct stripe_head *sh)
1486 {
1487 struct dma_async_tx_descriptor *tx = NULL;
1488 struct async_submit_ctl submit;
1489 int i;
1490 struct r5conf *conf = sh->raid_conf;
1491
1492 BUG_ON(sh->batch_head);
1493 pr_debug("%s: stripe %llu\n", __func__,
1494 (unsigned long long)sh->sector);
1495
1496 for (i = sh->disks; i--; ) {
1497 struct r5dev *dev = &sh->dev[i];
1498 if (test_bit(R5_Wantfill, &dev->flags)) {
1499 struct bio *rbi;
1500 spin_lock_irq(&sh->stripe_lock);
1501 dev->read = rbi = dev->toread;
1502 dev->toread = NULL;
1503 spin_unlock_irq(&sh->stripe_lock);
1504 while (rbi && rbi->bi_iter.bi_sector <
1505 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1506 tx = async_copy_data(0, rbi, &dev->page,
1507 dev->offset,
1508 dev->sector, tx, sh, 0);
1509 rbi = r5_next_bio(conf, rbi, dev->sector);
1510 }
1511 }
1512 }
1513
1514 atomic_inc(&sh->count);
1515 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1516 async_trigger_callback(&submit);
1517 }
1518
mark_target_uptodate(struct stripe_head * sh,int target)1519 static void mark_target_uptodate(struct stripe_head *sh, int target)
1520 {
1521 struct r5dev *tgt;
1522
1523 if (target < 0)
1524 return;
1525
1526 tgt = &sh->dev[target];
1527 set_bit(R5_UPTODATE, &tgt->flags);
1528 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1529 clear_bit(R5_Wantcompute, &tgt->flags);
1530 }
1531
ops_complete_compute(void * stripe_head_ref)1532 static void ops_complete_compute(void *stripe_head_ref)
1533 {
1534 struct stripe_head *sh = stripe_head_ref;
1535
1536 pr_debug("%s: stripe %llu\n", __func__,
1537 (unsigned long long)sh->sector);
1538
1539 /* mark the computed target(s) as uptodate */
1540 mark_target_uptodate(sh, sh->ops.target);
1541 mark_target_uptodate(sh, sh->ops.target2);
1542
1543 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1544 if (sh->check_state == check_state_compute_run)
1545 sh->check_state = check_state_compute_result;
1546 set_bit(STRIPE_HANDLE, &sh->state);
1547 raid5_release_stripe(sh);
1548 }
1549
1550 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1551 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1552 {
1553 return percpu->scribble + i * percpu->scribble_obj_size;
1554 }
1555
1556 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1557 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1558 struct raid5_percpu *percpu, int i)
1559 {
1560 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1561 }
1562
1563 /*
1564 * Return a pointer to record offset address.
1565 */
1566 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1567 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1568 {
1569 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1570 }
1571
1572 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1573 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1574 {
1575 int disks = sh->disks;
1576 struct page **xor_srcs = to_addr_page(percpu, 0);
1577 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1578 int target = sh->ops.target;
1579 struct r5dev *tgt = &sh->dev[target];
1580 struct page *xor_dest = tgt->page;
1581 unsigned int off_dest = tgt->offset;
1582 int count = 0;
1583 struct dma_async_tx_descriptor *tx;
1584 struct async_submit_ctl submit;
1585 int i;
1586
1587 BUG_ON(sh->batch_head);
1588
1589 pr_debug("%s: stripe %llu block: %d\n",
1590 __func__, (unsigned long long)sh->sector, target);
1591 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1592
1593 for (i = disks; i--; ) {
1594 if (i != target) {
1595 off_srcs[count] = sh->dev[i].offset;
1596 xor_srcs[count++] = sh->dev[i].page;
1597 }
1598 }
1599
1600 atomic_inc(&sh->count);
1601
1602 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1603 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1604 if (unlikely(count == 1))
1605 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1606 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1607 else
1608 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1609 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1610
1611 return tx;
1612 }
1613
1614 /* set_syndrome_sources - populate source buffers for gen_syndrome
1615 * @srcs - (struct page *) array of size sh->disks
1616 * @offs - (unsigned int) array of offset for each page
1617 * @sh - stripe_head to parse
1618 *
1619 * Populates srcs in proper layout order for the stripe and returns the
1620 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1621 * destination buffer is recorded in srcs[count] and the Q destination
1622 * is recorded in srcs[count+1]].
1623 */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1624 static int set_syndrome_sources(struct page **srcs,
1625 unsigned int *offs,
1626 struct stripe_head *sh,
1627 int srctype)
1628 {
1629 int disks = sh->disks;
1630 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1631 int d0_idx = raid6_d0(sh);
1632 int count;
1633 int i;
1634
1635 for (i = 0; i < disks; i++)
1636 srcs[i] = NULL;
1637
1638 count = 0;
1639 i = d0_idx;
1640 do {
1641 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1642 struct r5dev *dev = &sh->dev[i];
1643
1644 if (i == sh->qd_idx || i == sh->pd_idx ||
1645 (srctype == SYNDROME_SRC_ALL) ||
1646 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1647 (test_bit(R5_Wantdrain, &dev->flags) ||
1648 test_bit(R5_InJournal, &dev->flags))) ||
1649 (srctype == SYNDROME_SRC_WRITTEN &&
1650 (dev->written ||
1651 test_bit(R5_InJournal, &dev->flags)))) {
1652 if (test_bit(R5_InJournal, &dev->flags))
1653 srcs[slot] = sh->dev[i].orig_page;
1654 else
1655 srcs[slot] = sh->dev[i].page;
1656 /*
1657 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1658 * not shared page. In that case, dev[i].offset
1659 * is 0.
1660 */
1661 offs[slot] = sh->dev[i].offset;
1662 }
1663 i = raid6_next_disk(i, disks);
1664 } while (i != d0_idx);
1665
1666 return syndrome_disks;
1667 }
1668
1669 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1670 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1671 {
1672 int disks = sh->disks;
1673 struct page **blocks = to_addr_page(percpu, 0);
1674 unsigned int *offs = to_addr_offs(sh, percpu);
1675 int target;
1676 int qd_idx = sh->qd_idx;
1677 struct dma_async_tx_descriptor *tx;
1678 struct async_submit_ctl submit;
1679 struct r5dev *tgt;
1680 struct page *dest;
1681 unsigned int dest_off;
1682 int i;
1683 int count;
1684
1685 BUG_ON(sh->batch_head);
1686 if (sh->ops.target < 0)
1687 target = sh->ops.target2;
1688 else if (sh->ops.target2 < 0)
1689 target = sh->ops.target;
1690 else
1691 /* we should only have one valid target */
1692 BUG();
1693 BUG_ON(target < 0);
1694 pr_debug("%s: stripe %llu block: %d\n",
1695 __func__, (unsigned long long)sh->sector, target);
1696
1697 tgt = &sh->dev[target];
1698 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1699 dest = tgt->page;
1700 dest_off = tgt->offset;
1701
1702 atomic_inc(&sh->count);
1703
1704 if (target == qd_idx) {
1705 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1706 blocks[count] = NULL; /* regenerating p is not necessary */
1707 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1708 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1709 ops_complete_compute, sh,
1710 to_addr_conv(sh, percpu, 0));
1711 tx = async_gen_syndrome(blocks, offs, count+2,
1712 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1713 } else {
1714 /* Compute any data- or p-drive using XOR */
1715 count = 0;
1716 for (i = disks; i-- ; ) {
1717 if (i == target || i == qd_idx)
1718 continue;
1719 offs[count] = sh->dev[i].offset;
1720 blocks[count++] = sh->dev[i].page;
1721 }
1722
1723 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1724 NULL, ops_complete_compute, sh,
1725 to_addr_conv(sh, percpu, 0));
1726 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1727 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1728 }
1729
1730 return tx;
1731 }
1732
1733 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1734 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1735 {
1736 int i, count, disks = sh->disks;
1737 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1738 int d0_idx = raid6_d0(sh);
1739 int faila = -1, failb = -1;
1740 int target = sh->ops.target;
1741 int target2 = sh->ops.target2;
1742 struct r5dev *tgt = &sh->dev[target];
1743 struct r5dev *tgt2 = &sh->dev[target2];
1744 struct dma_async_tx_descriptor *tx;
1745 struct page **blocks = to_addr_page(percpu, 0);
1746 unsigned int *offs = to_addr_offs(sh, percpu);
1747 struct async_submit_ctl submit;
1748
1749 BUG_ON(sh->batch_head);
1750 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1751 __func__, (unsigned long long)sh->sector, target, target2);
1752 BUG_ON(target < 0 || target2 < 0);
1753 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1754 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1755
1756 /* we need to open-code set_syndrome_sources to handle the
1757 * slot number conversion for 'faila' and 'failb'
1758 */
1759 for (i = 0; i < disks ; i++) {
1760 offs[i] = 0;
1761 blocks[i] = NULL;
1762 }
1763 count = 0;
1764 i = d0_idx;
1765 do {
1766 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1767
1768 offs[slot] = sh->dev[i].offset;
1769 blocks[slot] = sh->dev[i].page;
1770
1771 if (i == target)
1772 faila = slot;
1773 if (i == target2)
1774 failb = slot;
1775 i = raid6_next_disk(i, disks);
1776 } while (i != d0_idx);
1777
1778 BUG_ON(faila == failb);
1779 if (failb < faila)
1780 swap(faila, failb);
1781 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1782 __func__, (unsigned long long)sh->sector, faila, failb);
1783
1784 atomic_inc(&sh->count);
1785
1786 if (failb == syndrome_disks+1) {
1787 /* Q disk is one of the missing disks */
1788 if (faila == syndrome_disks) {
1789 /* Missing P+Q, just recompute */
1790 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1791 ops_complete_compute, sh,
1792 to_addr_conv(sh, percpu, 0));
1793 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1794 RAID5_STRIPE_SIZE(sh->raid_conf),
1795 &submit);
1796 } else {
1797 struct page *dest;
1798 unsigned int dest_off;
1799 int data_target;
1800 int qd_idx = sh->qd_idx;
1801
1802 /* Missing D+Q: recompute D from P, then recompute Q */
1803 if (target == qd_idx)
1804 data_target = target2;
1805 else
1806 data_target = target;
1807
1808 count = 0;
1809 for (i = disks; i-- ; ) {
1810 if (i == data_target || i == qd_idx)
1811 continue;
1812 offs[count] = sh->dev[i].offset;
1813 blocks[count++] = sh->dev[i].page;
1814 }
1815 dest = sh->dev[data_target].page;
1816 dest_off = sh->dev[data_target].offset;
1817 init_async_submit(&submit,
1818 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1819 NULL, NULL, NULL,
1820 to_addr_conv(sh, percpu, 0));
1821 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1822 RAID5_STRIPE_SIZE(sh->raid_conf),
1823 &submit);
1824
1825 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1826 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1827 ops_complete_compute, sh,
1828 to_addr_conv(sh, percpu, 0));
1829 return async_gen_syndrome(blocks, offs, count+2,
1830 RAID5_STRIPE_SIZE(sh->raid_conf),
1831 &submit);
1832 }
1833 } else {
1834 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1835 ops_complete_compute, sh,
1836 to_addr_conv(sh, percpu, 0));
1837 if (failb == syndrome_disks) {
1838 /* We're missing D+P. */
1839 return async_raid6_datap_recov(syndrome_disks+2,
1840 RAID5_STRIPE_SIZE(sh->raid_conf),
1841 faila,
1842 blocks, offs, &submit);
1843 } else {
1844 /* We're missing D+D. */
1845 return async_raid6_2data_recov(syndrome_disks+2,
1846 RAID5_STRIPE_SIZE(sh->raid_conf),
1847 faila, failb,
1848 blocks, offs, &submit);
1849 }
1850 }
1851 }
1852
ops_complete_prexor(void * stripe_head_ref)1853 static void ops_complete_prexor(void *stripe_head_ref)
1854 {
1855 struct stripe_head *sh = stripe_head_ref;
1856
1857 pr_debug("%s: stripe %llu\n", __func__,
1858 (unsigned long long)sh->sector);
1859
1860 if (r5c_is_writeback(sh->raid_conf->log))
1861 /*
1862 * raid5-cache write back uses orig_page during prexor.
1863 * After prexor, it is time to free orig_page
1864 */
1865 r5c_release_extra_page(sh);
1866 }
1867
1868 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1869 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1870 struct dma_async_tx_descriptor *tx)
1871 {
1872 int disks = sh->disks;
1873 struct page **xor_srcs = to_addr_page(percpu, 0);
1874 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1875 int count = 0, pd_idx = sh->pd_idx, i;
1876 struct async_submit_ctl submit;
1877
1878 /* existing parity data subtracted */
1879 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1880 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1881
1882 BUG_ON(sh->batch_head);
1883 pr_debug("%s: stripe %llu\n", __func__,
1884 (unsigned long long)sh->sector);
1885
1886 for (i = disks; i--; ) {
1887 struct r5dev *dev = &sh->dev[i];
1888 /* Only process blocks that are known to be uptodate */
1889 if (test_bit(R5_InJournal, &dev->flags)) {
1890 /*
1891 * For this case, PAGE_SIZE must be equal to 4KB and
1892 * page offset is zero.
1893 */
1894 off_srcs[count] = dev->offset;
1895 xor_srcs[count++] = dev->orig_page;
1896 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1897 off_srcs[count] = dev->offset;
1898 xor_srcs[count++] = dev->page;
1899 }
1900 }
1901
1902 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1903 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1904 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1905 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1906
1907 return tx;
1908 }
1909
1910 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1911 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1912 struct dma_async_tx_descriptor *tx)
1913 {
1914 struct page **blocks = to_addr_page(percpu, 0);
1915 unsigned int *offs = to_addr_offs(sh, percpu);
1916 int count;
1917 struct async_submit_ctl submit;
1918
1919 pr_debug("%s: stripe %llu\n", __func__,
1920 (unsigned long long)sh->sector);
1921
1922 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1923
1924 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1925 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1926 tx = async_gen_syndrome(blocks, offs, count+2,
1927 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1928
1929 return tx;
1930 }
1931
1932 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1933 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1934 {
1935 struct r5conf *conf = sh->raid_conf;
1936 int disks = sh->disks;
1937 int i;
1938 struct stripe_head *head_sh = sh;
1939
1940 pr_debug("%s: stripe %llu\n", __func__,
1941 (unsigned long long)sh->sector);
1942
1943 for (i = disks; i--; ) {
1944 struct r5dev *dev;
1945 struct bio *chosen;
1946
1947 sh = head_sh;
1948 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1949 struct bio *wbi;
1950
1951 again:
1952 dev = &sh->dev[i];
1953 /*
1954 * clear R5_InJournal, so when rewriting a page in
1955 * journal, it is not skipped by r5l_log_stripe()
1956 */
1957 clear_bit(R5_InJournal, &dev->flags);
1958 spin_lock_irq(&sh->stripe_lock);
1959 chosen = dev->towrite;
1960 dev->towrite = NULL;
1961 sh->overwrite_disks = 0;
1962 BUG_ON(dev->written);
1963 wbi = dev->written = chosen;
1964 spin_unlock_irq(&sh->stripe_lock);
1965 WARN_ON(dev->page != dev->orig_page);
1966
1967 while (wbi && wbi->bi_iter.bi_sector <
1968 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1969 if (wbi->bi_opf & REQ_FUA)
1970 set_bit(R5_WantFUA, &dev->flags);
1971 if (wbi->bi_opf & REQ_SYNC)
1972 set_bit(R5_SyncIO, &dev->flags);
1973 if (bio_op(wbi) == REQ_OP_DISCARD)
1974 set_bit(R5_Discard, &dev->flags);
1975 else {
1976 tx = async_copy_data(1, wbi, &dev->page,
1977 dev->offset,
1978 dev->sector, tx, sh,
1979 r5c_is_writeback(conf->log));
1980 if (dev->page != dev->orig_page &&
1981 !r5c_is_writeback(conf->log)) {
1982 set_bit(R5_SkipCopy, &dev->flags);
1983 clear_bit(R5_UPTODATE, &dev->flags);
1984 clear_bit(R5_OVERWRITE, &dev->flags);
1985 }
1986 }
1987 wbi = r5_next_bio(conf, wbi, dev->sector);
1988 }
1989
1990 if (head_sh->batch_head) {
1991 sh = list_first_entry(&sh->batch_list,
1992 struct stripe_head,
1993 batch_list);
1994 if (sh == head_sh)
1995 continue;
1996 goto again;
1997 }
1998 }
1999 }
2000
2001 return tx;
2002 }
2003
ops_complete_reconstruct(void * stripe_head_ref)2004 static void ops_complete_reconstruct(void *stripe_head_ref)
2005 {
2006 struct stripe_head *sh = stripe_head_ref;
2007 int disks = sh->disks;
2008 int pd_idx = sh->pd_idx;
2009 int qd_idx = sh->qd_idx;
2010 int i;
2011 bool fua = false, sync = false, discard = false;
2012
2013 pr_debug("%s: stripe %llu\n", __func__,
2014 (unsigned long long)sh->sector);
2015
2016 for (i = disks; i--; ) {
2017 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2018 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2019 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2020 }
2021
2022 for (i = disks; i--; ) {
2023 struct r5dev *dev = &sh->dev[i];
2024
2025 if (dev->written || i == pd_idx || i == qd_idx) {
2026 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2027 set_bit(R5_UPTODATE, &dev->flags);
2028 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2029 set_bit(R5_Expanded, &dev->flags);
2030 }
2031 if (fua)
2032 set_bit(R5_WantFUA, &dev->flags);
2033 if (sync)
2034 set_bit(R5_SyncIO, &dev->flags);
2035 }
2036 }
2037
2038 if (sh->reconstruct_state == reconstruct_state_drain_run)
2039 sh->reconstruct_state = reconstruct_state_drain_result;
2040 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2041 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2042 else {
2043 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2044 sh->reconstruct_state = reconstruct_state_result;
2045 }
2046
2047 set_bit(STRIPE_HANDLE, &sh->state);
2048 raid5_release_stripe(sh);
2049 }
2050
2051 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2052 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2053 struct dma_async_tx_descriptor *tx)
2054 {
2055 int disks = sh->disks;
2056 struct page **xor_srcs;
2057 unsigned int *off_srcs;
2058 struct async_submit_ctl submit;
2059 int count, pd_idx = sh->pd_idx, i;
2060 struct page *xor_dest;
2061 unsigned int off_dest;
2062 int prexor = 0;
2063 unsigned long flags;
2064 int j = 0;
2065 struct stripe_head *head_sh = sh;
2066 int last_stripe;
2067
2068 pr_debug("%s: stripe %llu\n", __func__,
2069 (unsigned long long)sh->sector);
2070
2071 for (i = 0; i < sh->disks; i++) {
2072 if (pd_idx == i)
2073 continue;
2074 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2075 break;
2076 }
2077 if (i >= sh->disks) {
2078 atomic_inc(&sh->count);
2079 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2080 ops_complete_reconstruct(sh);
2081 return;
2082 }
2083 again:
2084 count = 0;
2085 xor_srcs = to_addr_page(percpu, j);
2086 off_srcs = to_addr_offs(sh, percpu);
2087 /* check if prexor is active which means only process blocks
2088 * that are part of a read-modify-write (written)
2089 */
2090 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2091 prexor = 1;
2092 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2093 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2094 for (i = disks; i--; ) {
2095 struct r5dev *dev = &sh->dev[i];
2096 if (head_sh->dev[i].written ||
2097 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2098 off_srcs[count] = dev->offset;
2099 xor_srcs[count++] = dev->page;
2100 }
2101 }
2102 } else {
2103 xor_dest = sh->dev[pd_idx].page;
2104 off_dest = sh->dev[pd_idx].offset;
2105 for (i = disks; i--; ) {
2106 struct r5dev *dev = &sh->dev[i];
2107 if (i != pd_idx) {
2108 off_srcs[count] = dev->offset;
2109 xor_srcs[count++] = dev->page;
2110 }
2111 }
2112 }
2113
2114 /* 1/ if we prexor'd then the dest is reused as a source
2115 * 2/ if we did not prexor then we are redoing the parity
2116 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2117 * for the synchronous xor case
2118 */
2119 last_stripe = !head_sh->batch_head ||
2120 list_first_entry(&sh->batch_list,
2121 struct stripe_head, batch_list) == head_sh;
2122 if (last_stripe) {
2123 flags = ASYNC_TX_ACK |
2124 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2125
2126 atomic_inc(&head_sh->count);
2127 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2128 to_addr_conv(sh, percpu, j));
2129 } else {
2130 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2131 init_async_submit(&submit, flags, tx, NULL, NULL,
2132 to_addr_conv(sh, percpu, j));
2133 }
2134
2135 if (unlikely(count == 1))
2136 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2137 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2138 else
2139 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2140 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2141 if (!last_stripe) {
2142 j++;
2143 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2144 batch_list);
2145 goto again;
2146 }
2147 }
2148
2149 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2150 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2151 struct dma_async_tx_descriptor *tx)
2152 {
2153 struct async_submit_ctl submit;
2154 struct page **blocks;
2155 unsigned int *offs;
2156 int count, i, j = 0;
2157 struct stripe_head *head_sh = sh;
2158 int last_stripe;
2159 int synflags;
2160 unsigned long txflags;
2161
2162 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2163
2164 for (i = 0; i < sh->disks; i++) {
2165 if (sh->pd_idx == i || sh->qd_idx == i)
2166 continue;
2167 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2168 break;
2169 }
2170 if (i >= sh->disks) {
2171 atomic_inc(&sh->count);
2172 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2173 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2174 ops_complete_reconstruct(sh);
2175 return;
2176 }
2177
2178 again:
2179 blocks = to_addr_page(percpu, j);
2180 offs = to_addr_offs(sh, percpu);
2181
2182 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2183 synflags = SYNDROME_SRC_WRITTEN;
2184 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2185 } else {
2186 synflags = SYNDROME_SRC_ALL;
2187 txflags = ASYNC_TX_ACK;
2188 }
2189
2190 count = set_syndrome_sources(blocks, offs, sh, synflags);
2191 last_stripe = !head_sh->batch_head ||
2192 list_first_entry(&sh->batch_list,
2193 struct stripe_head, batch_list) == head_sh;
2194
2195 if (last_stripe) {
2196 atomic_inc(&head_sh->count);
2197 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2198 head_sh, to_addr_conv(sh, percpu, j));
2199 } else
2200 init_async_submit(&submit, 0, tx, NULL, NULL,
2201 to_addr_conv(sh, percpu, j));
2202 tx = async_gen_syndrome(blocks, offs, count+2,
2203 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2204 if (!last_stripe) {
2205 j++;
2206 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2207 batch_list);
2208 goto again;
2209 }
2210 }
2211
ops_complete_check(void * stripe_head_ref)2212 static void ops_complete_check(void *stripe_head_ref)
2213 {
2214 struct stripe_head *sh = stripe_head_ref;
2215
2216 pr_debug("%s: stripe %llu\n", __func__,
2217 (unsigned long long)sh->sector);
2218
2219 sh->check_state = check_state_check_result;
2220 set_bit(STRIPE_HANDLE, &sh->state);
2221 raid5_release_stripe(sh);
2222 }
2223
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2224 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2225 {
2226 int disks = sh->disks;
2227 int pd_idx = sh->pd_idx;
2228 int qd_idx = sh->qd_idx;
2229 struct page *xor_dest;
2230 unsigned int off_dest;
2231 struct page **xor_srcs = to_addr_page(percpu, 0);
2232 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2233 struct dma_async_tx_descriptor *tx;
2234 struct async_submit_ctl submit;
2235 int count;
2236 int i;
2237
2238 pr_debug("%s: stripe %llu\n", __func__,
2239 (unsigned long long)sh->sector);
2240
2241 BUG_ON(sh->batch_head);
2242 count = 0;
2243 xor_dest = sh->dev[pd_idx].page;
2244 off_dest = sh->dev[pd_idx].offset;
2245 off_srcs[count] = off_dest;
2246 xor_srcs[count++] = xor_dest;
2247 for (i = disks; i--; ) {
2248 if (i == pd_idx || i == qd_idx)
2249 continue;
2250 off_srcs[count] = sh->dev[i].offset;
2251 xor_srcs[count++] = sh->dev[i].page;
2252 }
2253
2254 init_async_submit(&submit, 0, NULL, NULL, NULL,
2255 to_addr_conv(sh, percpu, 0));
2256 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2257 RAID5_STRIPE_SIZE(sh->raid_conf),
2258 &sh->ops.zero_sum_result, &submit);
2259
2260 atomic_inc(&sh->count);
2261 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2262 tx = async_trigger_callback(&submit);
2263 }
2264
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2265 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2266 {
2267 struct page **srcs = to_addr_page(percpu, 0);
2268 unsigned int *offs = to_addr_offs(sh, percpu);
2269 struct async_submit_ctl submit;
2270 int count;
2271
2272 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2273 (unsigned long long)sh->sector, checkp);
2274
2275 BUG_ON(sh->batch_head);
2276 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2277 if (!checkp)
2278 srcs[count] = NULL;
2279
2280 atomic_inc(&sh->count);
2281 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2282 sh, to_addr_conv(sh, percpu, 0));
2283 async_syndrome_val(srcs, offs, count+2,
2284 RAID5_STRIPE_SIZE(sh->raid_conf),
2285 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2286 }
2287
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2288 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2289 {
2290 int overlap_clear = 0, i, disks = sh->disks;
2291 struct dma_async_tx_descriptor *tx = NULL;
2292 struct r5conf *conf = sh->raid_conf;
2293 int level = conf->level;
2294 struct raid5_percpu *percpu;
2295
2296 local_lock(&conf->percpu->lock);
2297 percpu = this_cpu_ptr(conf->percpu);
2298 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2299 ops_run_biofill(sh);
2300 overlap_clear++;
2301 }
2302
2303 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2304 if (level < 6)
2305 tx = ops_run_compute5(sh, percpu);
2306 else {
2307 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2308 tx = ops_run_compute6_1(sh, percpu);
2309 else
2310 tx = ops_run_compute6_2(sh, percpu);
2311 }
2312 /* terminate the chain if reconstruct is not set to be run */
2313 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2314 async_tx_ack(tx);
2315 }
2316
2317 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2318 if (level < 6)
2319 tx = ops_run_prexor5(sh, percpu, tx);
2320 else
2321 tx = ops_run_prexor6(sh, percpu, tx);
2322 }
2323
2324 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2325 tx = ops_run_partial_parity(sh, percpu, tx);
2326
2327 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2328 tx = ops_run_biodrain(sh, tx);
2329 overlap_clear++;
2330 }
2331
2332 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2333 if (level < 6)
2334 ops_run_reconstruct5(sh, percpu, tx);
2335 else
2336 ops_run_reconstruct6(sh, percpu, tx);
2337 }
2338
2339 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2340 if (sh->check_state == check_state_run)
2341 ops_run_check_p(sh, percpu);
2342 else if (sh->check_state == check_state_run_q)
2343 ops_run_check_pq(sh, percpu, 0);
2344 else if (sh->check_state == check_state_run_pq)
2345 ops_run_check_pq(sh, percpu, 1);
2346 else
2347 BUG();
2348 }
2349
2350 if (overlap_clear && !sh->batch_head) {
2351 for (i = disks; i--; ) {
2352 struct r5dev *dev = &sh->dev[i];
2353 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2354 wake_up(&sh->raid_conf->wait_for_overlap);
2355 }
2356 }
2357 local_unlock(&conf->percpu->lock);
2358 }
2359
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2360 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2361 {
2362 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2363 kfree(sh->pages);
2364 #endif
2365 if (sh->ppl_page)
2366 __free_page(sh->ppl_page);
2367 kmem_cache_free(sc, sh);
2368 }
2369
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2370 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2371 int disks, struct r5conf *conf)
2372 {
2373 struct stripe_head *sh;
2374
2375 sh = kmem_cache_zalloc(sc, gfp);
2376 if (sh) {
2377 spin_lock_init(&sh->stripe_lock);
2378 spin_lock_init(&sh->batch_lock);
2379 INIT_LIST_HEAD(&sh->batch_list);
2380 INIT_LIST_HEAD(&sh->lru);
2381 INIT_LIST_HEAD(&sh->r5c);
2382 INIT_LIST_HEAD(&sh->log_list);
2383 atomic_set(&sh->count, 1);
2384 sh->raid_conf = conf;
2385 sh->log_start = MaxSector;
2386
2387 if (raid5_has_ppl(conf)) {
2388 sh->ppl_page = alloc_page(gfp);
2389 if (!sh->ppl_page) {
2390 free_stripe(sc, sh);
2391 return NULL;
2392 }
2393 }
2394 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2395 if (init_stripe_shared_pages(sh, conf, disks)) {
2396 free_stripe(sc, sh);
2397 return NULL;
2398 }
2399 #endif
2400 }
2401 return sh;
2402 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2403 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2404 {
2405 struct stripe_head *sh;
2406
2407 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2408 if (!sh)
2409 return 0;
2410
2411 if (grow_buffers(sh, gfp)) {
2412 shrink_buffers(sh);
2413 free_stripe(conf->slab_cache, sh);
2414 return 0;
2415 }
2416 sh->hash_lock_index =
2417 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2418 /* we just created an active stripe so... */
2419 atomic_inc(&conf->active_stripes);
2420
2421 raid5_release_stripe(sh);
2422 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2423 return 1;
2424 }
2425
grow_stripes(struct r5conf * conf,int num)2426 static int grow_stripes(struct r5conf *conf, int num)
2427 {
2428 struct kmem_cache *sc;
2429 size_t namelen = sizeof(conf->cache_name[0]);
2430 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2431
2432 if (conf->mddev->gendisk)
2433 snprintf(conf->cache_name[0], namelen,
2434 "raid%d-%s", conf->level, mdname(conf->mddev));
2435 else
2436 snprintf(conf->cache_name[0], namelen,
2437 "raid%d-%p", conf->level, conf->mddev);
2438 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2439
2440 conf->active_name = 0;
2441 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2442 struct_size_t(struct stripe_head, dev, devs),
2443 0, 0, NULL);
2444 if (!sc)
2445 return 1;
2446 conf->slab_cache = sc;
2447 conf->pool_size = devs;
2448 while (num--)
2449 if (!grow_one_stripe(conf, GFP_KERNEL))
2450 return 1;
2451
2452 return 0;
2453 }
2454
2455 /**
2456 * scribble_alloc - allocate percpu scribble buffer for required size
2457 * of the scribble region
2458 * @percpu: from for_each_present_cpu() of the caller
2459 * @num: total number of disks in the array
2460 * @cnt: scribble objs count for required size of the scribble region
2461 *
2462 * The scribble buffer size must be enough to contain:
2463 * 1/ a struct page pointer for each device in the array +2
2464 * 2/ room to convert each entry in (1) to its corresponding dma
2465 * (dma_map_page()) or page (page_address()) address.
2466 *
2467 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2468 * calculate over all devices (not just the data blocks), using zeros in place
2469 * of the P and Q blocks.
2470 */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2471 static int scribble_alloc(struct raid5_percpu *percpu,
2472 int num, int cnt)
2473 {
2474 size_t obj_size =
2475 sizeof(struct page *) * (num + 2) +
2476 sizeof(addr_conv_t) * (num + 2) +
2477 sizeof(unsigned int) * (num + 2);
2478 void *scribble;
2479
2480 /*
2481 * If here is in raid array suspend context, it is in memalloc noio
2482 * context as well, there is no potential recursive memory reclaim
2483 * I/Os with the GFP_KERNEL flag.
2484 */
2485 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2486 if (!scribble)
2487 return -ENOMEM;
2488
2489 kvfree(percpu->scribble);
2490
2491 percpu->scribble = scribble;
2492 percpu->scribble_obj_size = obj_size;
2493 return 0;
2494 }
2495
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2496 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2497 {
2498 unsigned long cpu;
2499 int err = 0;
2500
2501 /*
2502 * Never shrink. And mddev_suspend() could deadlock if this is called
2503 * from raid5d. In that case, scribble_disks and scribble_sectors
2504 * should equal to new_disks and new_sectors
2505 */
2506 if (conf->scribble_disks >= new_disks &&
2507 conf->scribble_sectors >= new_sectors)
2508 return 0;
2509 mddev_suspend(conf->mddev);
2510 cpus_read_lock();
2511
2512 for_each_present_cpu(cpu) {
2513 struct raid5_percpu *percpu;
2514
2515 percpu = per_cpu_ptr(conf->percpu, cpu);
2516 err = scribble_alloc(percpu, new_disks,
2517 new_sectors / RAID5_STRIPE_SECTORS(conf));
2518 if (err)
2519 break;
2520 }
2521
2522 cpus_read_unlock();
2523 mddev_resume(conf->mddev);
2524 if (!err) {
2525 conf->scribble_disks = new_disks;
2526 conf->scribble_sectors = new_sectors;
2527 }
2528 return err;
2529 }
2530
resize_stripes(struct r5conf * conf,int newsize)2531 static int resize_stripes(struct r5conf *conf, int newsize)
2532 {
2533 /* Make all the stripes able to hold 'newsize' devices.
2534 * New slots in each stripe get 'page' set to a new page.
2535 *
2536 * This happens in stages:
2537 * 1/ create a new kmem_cache and allocate the required number of
2538 * stripe_heads.
2539 * 2/ gather all the old stripe_heads and transfer the pages across
2540 * to the new stripe_heads. This will have the side effect of
2541 * freezing the array as once all stripe_heads have been collected,
2542 * no IO will be possible. Old stripe heads are freed once their
2543 * pages have been transferred over, and the old kmem_cache is
2544 * freed when all stripes are done.
2545 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2546 * we simple return a failure status - no need to clean anything up.
2547 * 4/ allocate new pages for the new slots in the new stripe_heads.
2548 * If this fails, we don't bother trying the shrink the
2549 * stripe_heads down again, we just leave them as they are.
2550 * As each stripe_head is processed the new one is released into
2551 * active service.
2552 *
2553 * Once step2 is started, we cannot afford to wait for a write,
2554 * so we use GFP_NOIO allocations.
2555 */
2556 struct stripe_head *osh, *nsh;
2557 LIST_HEAD(newstripes);
2558 struct disk_info *ndisks;
2559 int err = 0;
2560 struct kmem_cache *sc;
2561 int i;
2562 int hash, cnt;
2563
2564 md_allow_write(conf->mddev);
2565
2566 /* Step 1 */
2567 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2568 struct_size_t(struct stripe_head, dev, newsize),
2569 0, 0, NULL);
2570 if (!sc)
2571 return -ENOMEM;
2572
2573 /* Need to ensure auto-resizing doesn't interfere */
2574 mutex_lock(&conf->cache_size_mutex);
2575
2576 for (i = conf->max_nr_stripes; i; i--) {
2577 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2578 if (!nsh)
2579 break;
2580
2581 list_add(&nsh->lru, &newstripes);
2582 }
2583 if (i) {
2584 /* didn't get enough, give up */
2585 while (!list_empty(&newstripes)) {
2586 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2587 list_del(&nsh->lru);
2588 free_stripe(sc, nsh);
2589 }
2590 kmem_cache_destroy(sc);
2591 mutex_unlock(&conf->cache_size_mutex);
2592 return -ENOMEM;
2593 }
2594 /* Step 2 - Must use GFP_NOIO now.
2595 * OK, we have enough stripes, start collecting inactive
2596 * stripes and copying them over
2597 */
2598 hash = 0;
2599 cnt = 0;
2600 list_for_each_entry(nsh, &newstripes, lru) {
2601 lock_device_hash_lock(conf, hash);
2602 wait_event_cmd(conf->wait_for_stripe,
2603 !list_empty(conf->inactive_list + hash),
2604 unlock_device_hash_lock(conf, hash),
2605 lock_device_hash_lock(conf, hash));
2606 osh = get_free_stripe(conf, hash);
2607 unlock_device_hash_lock(conf, hash);
2608
2609 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2610 for (i = 0; i < osh->nr_pages; i++) {
2611 nsh->pages[i] = osh->pages[i];
2612 osh->pages[i] = NULL;
2613 }
2614 #endif
2615 for(i=0; i<conf->pool_size; i++) {
2616 nsh->dev[i].page = osh->dev[i].page;
2617 nsh->dev[i].orig_page = osh->dev[i].page;
2618 nsh->dev[i].offset = osh->dev[i].offset;
2619 }
2620 nsh->hash_lock_index = hash;
2621 free_stripe(conf->slab_cache, osh);
2622 cnt++;
2623 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2624 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2625 hash++;
2626 cnt = 0;
2627 }
2628 }
2629 kmem_cache_destroy(conf->slab_cache);
2630
2631 /* Step 3.
2632 * At this point, we are holding all the stripes so the array
2633 * is completely stalled, so now is a good time to resize
2634 * conf->disks and the scribble region
2635 */
2636 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2637 if (ndisks) {
2638 for (i = 0; i < conf->pool_size; i++)
2639 ndisks[i] = conf->disks[i];
2640
2641 for (i = conf->pool_size; i < newsize; i++) {
2642 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2643 if (!ndisks[i].extra_page)
2644 err = -ENOMEM;
2645 }
2646
2647 if (err) {
2648 for (i = conf->pool_size; i < newsize; i++)
2649 if (ndisks[i].extra_page)
2650 put_page(ndisks[i].extra_page);
2651 kfree(ndisks);
2652 } else {
2653 kfree(conf->disks);
2654 conf->disks = ndisks;
2655 }
2656 } else
2657 err = -ENOMEM;
2658
2659 conf->slab_cache = sc;
2660 conf->active_name = 1-conf->active_name;
2661
2662 /* Step 4, return new stripes to service */
2663 while(!list_empty(&newstripes)) {
2664 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2665 list_del_init(&nsh->lru);
2666
2667 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2668 for (i = 0; i < nsh->nr_pages; i++) {
2669 if (nsh->pages[i])
2670 continue;
2671 nsh->pages[i] = alloc_page(GFP_NOIO);
2672 if (!nsh->pages[i])
2673 err = -ENOMEM;
2674 }
2675
2676 for (i = conf->raid_disks; i < newsize; i++) {
2677 if (nsh->dev[i].page)
2678 continue;
2679 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2680 nsh->dev[i].orig_page = nsh->dev[i].page;
2681 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2682 }
2683 #else
2684 for (i=conf->raid_disks; i < newsize; i++)
2685 if (nsh->dev[i].page == NULL) {
2686 struct page *p = alloc_page(GFP_NOIO);
2687 nsh->dev[i].page = p;
2688 nsh->dev[i].orig_page = p;
2689 nsh->dev[i].offset = 0;
2690 if (!p)
2691 err = -ENOMEM;
2692 }
2693 #endif
2694 raid5_release_stripe(nsh);
2695 }
2696 /* critical section pass, GFP_NOIO no longer needed */
2697
2698 if (!err)
2699 conf->pool_size = newsize;
2700 mutex_unlock(&conf->cache_size_mutex);
2701
2702 return err;
2703 }
2704
drop_one_stripe(struct r5conf * conf)2705 static int drop_one_stripe(struct r5conf *conf)
2706 {
2707 struct stripe_head *sh;
2708 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2709
2710 spin_lock_irq(conf->hash_locks + hash);
2711 sh = get_free_stripe(conf, hash);
2712 spin_unlock_irq(conf->hash_locks + hash);
2713 if (!sh)
2714 return 0;
2715 BUG_ON(atomic_read(&sh->count));
2716 shrink_buffers(sh);
2717 free_stripe(conf->slab_cache, sh);
2718 atomic_dec(&conf->active_stripes);
2719 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2720 return 1;
2721 }
2722
shrink_stripes(struct r5conf * conf)2723 static void shrink_stripes(struct r5conf *conf)
2724 {
2725 while (conf->max_nr_stripes &&
2726 drop_one_stripe(conf))
2727 ;
2728
2729 kmem_cache_destroy(conf->slab_cache);
2730 conf->slab_cache = NULL;
2731 }
2732
2733 /*
2734 * This helper wraps rcu_dereference_protected() and can be used when
2735 * it is known that the nr_pending of the rdev is elevated.
2736 */
rdev_pend_deref(struct md_rdev __rcu * rdev)2737 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2738 {
2739 return rcu_dereference_protected(rdev,
2740 atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2741 }
2742
2743 /*
2744 * This helper wraps rcu_dereference_protected() and should be used
2745 * when it is known that the mddev_lock() is held. This is safe
2746 * seeing raid5_remove_disk() has the same lock held.
2747 */
rdev_mdlock_deref(struct mddev * mddev,struct md_rdev __rcu * rdev)2748 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2749 struct md_rdev __rcu *rdev)
2750 {
2751 return rcu_dereference_protected(rdev,
2752 lockdep_is_held(&mddev->reconfig_mutex));
2753 }
2754
raid5_end_read_request(struct bio * bi)2755 static void raid5_end_read_request(struct bio * bi)
2756 {
2757 struct stripe_head *sh = bi->bi_private;
2758 struct r5conf *conf = sh->raid_conf;
2759 int disks = sh->disks, i;
2760 struct md_rdev *rdev = NULL;
2761 sector_t s;
2762
2763 for (i=0 ; i<disks; i++)
2764 if (bi == &sh->dev[i].req)
2765 break;
2766
2767 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2768 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2769 bi->bi_status);
2770 if (i == disks) {
2771 BUG();
2772 return;
2773 }
2774 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2775 /* If replacement finished while this request was outstanding,
2776 * 'replacement' might be NULL already.
2777 * In that case it moved down to 'rdev'.
2778 * rdev is not removed until all requests are finished.
2779 */
2780 rdev = rdev_pend_deref(conf->disks[i].replacement);
2781 if (!rdev)
2782 rdev = rdev_pend_deref(conf->disks[i].rdev);
2783
2784 if (use_new_offset(conf, sh))
2785 s = sh->sector + rdev->new_data_offset;
2786 else
2787 s = sh->sector + rdev->data_offset;
2788 if (!bi->bi_status) {
2789 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2790 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2791 /* Note that this cannot happen on a
2792 * replacement device. We just fail those on
2793 * any error
2794 */
2795 pr_info_ratelimited(
2796 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2797 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2798 (unsigned long long)s,
2799 rdev->bdev);
2800 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2801 clear_bit(R5_ReadError, &sh->dev[i].flags);
2802 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2803 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2804 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2805
2806 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2807 /*
2808 * end read for a page in journal, this
2809 * must be preparing for prexor in rmw
2810 */
2811 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2812
2813 if (atomic_read(&rdev->read_errors))
2814 atomic_set(&rdev->read_errors, 0);
2815 } else {
2816 int retry = 0;
2817 int set_bad = 0;
2818
2819 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2820 if (!(bi->bi_status == BLK_STS_PROTECTION))
2821 atomic_inc(&rdev->read_errors);
2822 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2823 pr_warn_ratelimited(
2824 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2825 mdname(conf->mddev),
2826 (unsigned long long)s,
2827 rdev->bdev);
2828 else if (conf->mddev->degraded >= conf->max_degraded) {
2829 set_bad = 1;
2830 pr_warn_ratelimited(
2831 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2832 mdname(conf->mddev),
2833 (unsigned long long)s,
2834 rdev->bdev);
2835 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2836 /* Oh, no!!! */
2837 set_bad = 1;
2838 pr_warn_ratelimited(
2839 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2840 mdname(conf->mddev),
2841 (unsigned long long)s,
2842 rdev->bdev);
2843 } else if (atomic_read(&rdev->read_errors)
2844 > conf->max_nr_stripes) {
2845 if (!test_bit(Faulty, &rdev->flags)) {
2846 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2847 mdname(conf->mddev),
2848 atomic_read(&rdev->read_errors),
2849 conf->max_nr_stripes);
2850 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2851 mdname(conf->mddev), rdev->bdev);
2852 }
2853 } else
2854 retry = 1;
2855 if (set_bad && test_bit(In_sync, &rdev->flags)
2856 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2857 retry = 1;
2858 if (retry)
2859 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2860 set_bit(R5_ReadError, &sh->dev[i].flags);
2861 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2862 set_bit(R5_ReadError, &sh->dev[i].flags);
2863 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2864 } else
2865 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2866 else {
2867 clear_bit(R5_ReadError, &sh->dev[i].flags);
2868 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2869 if (!(set_bad
2870 && test_bit(In_sync, &rdev->flags)
2871 && rdev_set_badblocks(
2872 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2873 md_error(conf->mddev, rdev);
2874 }
2875 }
2876 rdev_dec_pending(rdev, conf->mddev);
2877 bio_uninit(bi);
2878 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2879 set_bit(STRIPE_HANDLE, &sh->state);
2880 raid5_release_stripe(sh);
2881 }
2882
raid5_end_write_request(struct bio * bi)2883 static void raid5_end_write_request(struct bio *bi)
2884 {
2885 struct stripe_head *sh = bi->bi_private;
2886 struct r5conf *conf = sh->raid_conf;
2887 int disks = sh->disks, i;
2888 struct md_rdev *rdev;
2889 sector_t first_bad;
2890 int bad_sectors;
2891 int replacement = 0;
2892
2893 for (i = 0 ; i < disks; i++) {
2894 if (bi == &sh->dev[i].req) {
2895 rdev = rdev_pend_deref(conf->disks[i].rdev);
2896 break;
2897 }
2898 if (bi == &sh->dev[i].rreq) {
2899 rdev = rdev_pend_deref(conf->disks[i].replacement);
2900 if (rdev)
2901 replacement = 1;
2902 else
2903 /* rdev was removed and 'replacement'
2904 * replaced it. rdev is not removed
2905 * until all requests are finished.
2906 */
2907 rdev = rdev_pend_deref(conf->disks[i].rdev);
2908 break;
2909 }
2910 }
2911 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2912 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2913 bi->bi_status);
2914 if (i == disks) {
2915 BUG();
2916 return;
2917 }
2918
2919 if (replacement) {
2920 if (bi->bi_status)
2921 md_error(conf->mddev, rdev);
2922 else if (is_badblock(rdev, sh->sector,
2923 RAID5_STRIPE_SECTORS(conf),
2924 &first_bad, &bad_sectors))
2925 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2926 } else {
2927 if (bi->bi_status) {
2928 set_bit(STRIPE_DEGRADED, &sh->state);
2929 set_bit(WriteErrorSeen, &rdev->flags);
2930 set_bit(R5_WriteError, &sh->dev[i].flags);
2931 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2932 set_bit(MD_RECOVERY_NEEDED,
2933 &rdev->mddev->recovery);
2934 } else if (is_badblock(rdev, sh->sector,
2935 RAID5_STRIPE_SECTORS(conf),
2936 &first_bad, &bad_sectors)) {
2937 set_bit(R5_MadeGood, &sh->dev[i].flags);
2938 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2939 /* That was a successful write so make
2940 * sure it looks like we already did
2941 * a re-write.
2942 */
2943 set_bit(R5_ReWrite, &sh->dev[i].flags);
2944 }
2945 }
2946 rdev_dec_pending(rdev, conf->mddev);
2947
2948 if (sh->batch_head && bi->bi_status && !replacement)
2949 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2950
2951 bio_uninit(bi);
2952 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2953 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2954 set_bit(STRIPE_HANDLE, &sh->state);
2955
2956 if (sh->batch_head && sh != sh->batch_head)
2957 raid5_release_stripe(sh->batch_head);
2958 raid5_release_stripe(sh);
2959 }
2960
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2961 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2962 {
2963 struct r5conf *conf = mddev->private;
2964 unsigned long flags;
2965 pr_debug("raid456: error called\n");
2966
2967 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2968 mdname(mddev), rdev->bdev);
2969
2970 spin_lock_irqsave(&conf->device_lock, flags);
2971 set_bit(Faulty, &rdev->flags);
2972 clear_bit(In_sync, &rdev->flags);
2973 mddev->degraded = raid5_calc_degraded(conf);
2974
2975 if (has_failed(conf)) {
2976 set_bit(MD_BROKEN, &conf->mddev->flags);
2977 conf->recovery_disabled = mddev->recovery_disabled;
2978
2979 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2980 mdname(mddev), mddev->degraded, conf->raid_disks);
2981 } else {
2982 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2983 mdname(mddev), conf->raid_disks - mddev->degraded);
2984 }
2985
2986 spin_unlock_irqrestore(&conf->device_lock, flags);
2987 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2988
2989 set_bit(Blocked, &rdev->flags);
2990 set_mask_bits(&mddev->sb_flags, 0,
2991 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2992 r5c_update_on_rdev_error(mddev, rdev);
2993 }
2994
2995 /*
2996 * Input: a 'big' sector number,
2997 * Output: index of the data and parity disk, and the sector # in them.
2998 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2999 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
3000 int previous, int *dd_idx,
3001 struct stripe_head *sh)
3002 {
3003 sector_t stripe, stripe2;
3004 sector_t chunk_number;
3005 unsigned int chunk_offset;
3006 int pd_idx, qd_idx;
3007 int ddf_layout = 0;
3008 sector_t new_sector;
3009 int algorithm = previous ? conf->prev_algo
3010 : conf->algorithm;
3011 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3012 : conf->chunk_sectors;
3013 int raid_disks = previous ? conf->previous_raid_disks
3014 : conf->raid_disks;
3015 int data_disks = raid_disks - conf->max_degraded;
3016
3017 /* First compute the information on this sector */
3018
3019 /*
3020 * Compute the chunk number and the sector offset inside the chunk
3021 */
3022 chunk_offset = sector_div(r_sector, sectors_per_chunk);
3023 chunk_number = r_sector;
3024
3025 /*
3026 * Compute the stripe number
3027 */
3028 stripe = chunk_number;
3029 *dd_idx = sector_div(stripe, data_disks);
3030 stripe2 = stripe;
3031 /*
3032 * Select the parity disk based on the user selected algorithm.
3033 */
3034 pd_idx = qd_idx = -1;
3035 switch(conf->level) {
3036 case 4:
3037 pd_idx = data_disks;
3038 break;
3039 case 5:
3040 switch (algorithm) {
3041 case ALGORITHM_LEFT_ASYMMETRIC:
3042 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3043 if (*dd_idx >= pd_idx)
3044 (*dd_idx)++;
3045 break;
3046 case ALGORITHM_RIGHT_ASYMMETRIC:
3047 pd_idx = sector_div(stripe2, raid_disks);
3048 if (*dd_idx >= pd_idx)
3049 (*dd_idx)++;
3050 break;
3051 case ALGORITHM_LEFT_SYMMETRIC:
3052 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3053 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3054 break;
3055 case ALGORITHM_RIGHT_SYMMETRIC:
3056 pd_idx = sector_div(stripe2, raid_disks);
3057 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3058 break;
3059 case ALGORITHM_PARITY_0:
3060 pd_idx = 0;
3061 (*dd_idx)++;
3062 break;
3063 case ALGORITHM_PARITY_N:
3064 pd_idx = data_disks;
3065 break;
3066 default:
3067 BUG();
3068 }
3069 break;
3070 case 6:
3071
3072 switch (algorithm) {
3073 case ALGORITHM_LEFT_ASYMMETRIC:
3074 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3075 qd_idx = pd_idx + 1;
3076 if (pd_idx == raid_disks-1) {
3077 (*dd_idx)++; /* Q D D D P */
3078 qd_idx = 0;
3079 } else if (*dd_idx >= pd_idx)
3080 (*dd_idx) += 2; /* D D P Q D */
3081 break;
3082 case ALGORITHM_RIGHT_ASYMMETRIC:
3083 pd_idx = sector_div(stripe2, raid_disks);
3084 qd_idx = pd_idx + 1;
3085 if (pd_idx == raid_disks-1) {
3086 (*dd_idx)++; /* Q D D D P */
3087 qd_idx = 0;
3088 } else if (*dd_idx >= pd_idx)
3089 (*dd_idx) += 2; /* D D P Q D */
3090 break;
3091 case ALGORITHM_LEFT_SYMMETRIC:
3092 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3093 qd_idx = (pd_idx + 1) % raid_disks;
3094 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3095 break;
3096 case ALGORITHM_RIGHT_SYMMETRIC:
3097 pd_idx = sector_div(stripe2, raid_disks);
3098 qd_idx = (pd_idx + 1) % raid_disks;
3099 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3100 break;
3101
3102 case ALGORITHM_PARITY_0:
3103 pd_idx = 0;
3104 qd_idx = 1;
3105 (*dd_idx) += 2;
3106 break;
3107 case ALGORITHM_PARITY_N:
3108 pd_idx = data_disks;
3109 qd_idx = data_disks + 1;
3110 break;
3111
3112 case ALGORITHM_ROTATING_ZERO_RESTART:
3113 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3114 * of blocks for computing Q is different.
3115 */
3116 pd_idx = sector_div(stripe2, raid_disks);
3117 qd_idx = pd_idx + 1;
3118 if (pd_idx == raid_disks-1) {
3119 (*dd_idx)++; /* Q D D D P */
3120 qd_idx = 0;
3121 } else if (*dd_idx >= pd_idx)
3122 (*dd_idx) += 2; /* D D P Q D */
3123 ddf_layout = 1;
3124 break;
3125
3126 case ALGORITHM_ROTATING_N_RESTART:
3127 /* Same a left_asymmetric, by first stripe is
3128 * D D D P Q rather than
3129 * Q D D D P
3130 */
3131 stripe2 += 1;
3132 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3133 qd_idx = pd_idx + 1;
3134 if (pd_idx == raid_disks-1) {
3135 (*dd_idx)++; /* Q D D D P */
3136 qd_idx = 0;
3137 } else if (*dd_idx >= pd_idx)
3138 (*dd_idx) += 2; /* D D P Q D */
3139 ddf_layout = 1;
3140 break;
3141
3142 case ALGORITHM_ROTATING_N_CONTINUE:
3143 /* Same as left_symmetric but Q is before P */
3144 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3145 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3146 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3147 ddf_layout = 1;
3148 break;
3149
3150 case ALGORITHM_LEFT_ASYMMETRIC_6:
3151 /* RAID5 left_asymmetric, with Q on last device */
3152 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3153 if (*dd_idx >= pd_idx)
3154 (*dd_idx)++;
3155 qd_idx = raid_disks - 1;
3156 break;
3157
3158 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3159 pd_idx = sector_div(stripe2, raid_disks-1);
3160 if (*dd_idx >= pd_idx)
3161 (*dd_idx)++;
3162 qd_idx = raid_disks - 1;
3163 break;
3164
3165 case ALGORITHM_LEFT_SYMMETRIC_6:
3166 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3168 qd_idx = raid_disks - 1;
3169 break;
3170
3171 case ALGORITHM_RIGHT_SYMMETRIC_6:
3172 pd_idx = sector_div(stripe2, raid_disks-1);
3173 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3174 qd_idx = raid_disks - 1;
3175 break;
3176
3177 case ALGORITHM_PARITY_0_6:
3178 pd_idx = 0;
3179 (*dd_idx)++;
3180 qd_idx = raid_disks - 1;
3181 break;
3182
3183 default:
3184 BUG();
3185 }
3186 break;
3187 }
3188
3189 if (sh) {
3190 sh->pd_idx = pd_idx;
3191 sh->qd_idx = qd_idx;
3192 sh->ddf_layout = ddf_layout;
3193 }
3194 /*
3195 * Finally, compute the new sector number
3196 */
3197 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3198 return new_sector;
3199 }
3200
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3201 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3202 {
3203 struct r5conf *conf = sh->raid_conf;
3204 int raid_disks = sh->disks;
3205 int data_disks = raid_disks - conf->max_degraded;
3206 sector_t new_sector = sh->sector, check;
3207 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3208 : conf->chunk_sectors;
3209 int algorithm = previous ? conf->prev_algo
3210 : conf->algorithm;
3211 sector_t stripe;
3212 int chunk_offset;
3213 sector_t chunk_number;
3214 int dummy1, dd_idx = i;
3215 sector_t r_sector;
3216 struct stripe_head sh2;
3217
3218 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3219 stripe = new_sector;
3220
3221 if (i == sh->pd_idx)
3222 return 0;
3223 switch(conf->level) {
3224 case 4: break;
3225 case 5:
3226 switch (algorithm) {
3227 case ALGORITHM_LEFT_ASYMMETRIC:
3228 case ALGORITHM_RIGHT_ASYMMETRIC:
3229 if (i > sh->pd_idx)
3230 i--;
3231 break;
3232 case ALGORITHM_LEFT_SYMMETRIC:
3233 case ALGORITHM_RIGHT_SYMMETRIC:
3234 if (i < sh->pd_idx)
3235 i += raid_disks;
3236 i -= (sh->pd_idx + 1);
3237 break;
3238 case ALGORITHM_PARITY_0:
3239 i -= 1;
3240 break;
3241 case ALGORITHM_PARITY_N:
3242 break;
3243 default:
3244 BUG();
3245 }
3246 break;
3247 case 6:
3248 if (i == sh->qd_idx)
3249 return 0; /* It is the Q disk */
3250 switch (algorithm) {
3251 case ALGORITHM_LEFT_ASYMMETRIC:
3252 case ALGORITHM_RIGHT_ASYMMETRIC:
3253 case ALGORITHM_ROTATING_ZERO_RESTART:
3254 case ALGORITHM_ROTATING_N_RESTART:
3255 if (sh->pd_idx == raid_disks-1)
3256 i--; /* Q D D D P */
3257 else if (i > sh->pd_idx)
3258 i -= 2; /* D D P Q D */
3259 break;
3260 case ALGORITHM_LEFT_SYMMETRIC:
3261 case ALGORITHM_RIGHT_SYMMETRIC:
3262 if (sh->pd_idx == raid_disks-1)
3263 i--; /* Q D D D P */
3264 else {
3265 /* D D P Q D */
3266 if (i < sh->pd_idx)
3267 i += raid_disks;
3268 i -= (sh->pd_idx + 2);
3269 }
3270 break;
3271 case ALGORITHM_PARITY_0:
3272 i -= 2;
3273 break;
3274 case ALGORITHM_PARITY_N:
3275 break;
3276 case ALGORITHM_ROTATING_N_CONTINUE:
3277 /* Like left_symmetric, but P is before Q */
3278 if (sh->pd_idx == 0)
3279 i--; /* P D D D Q */
3280 else {
3281 /* D D Q P D */
3282 if (i < sh->pd_idx)
3283 i += raid_disks;
3284 i -= (sh->pd_idx + 1);
3285 }
3286 break;
3287 case ALGORITHM_LEFT_ASYMMETRIC_6:
3288 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3289 if (i > sh->pd_idx)
3290 i--;
3291 break;
3292 case ALGORITHM_LEFT_SYMMETRIC_6:
3293 case ALGORITHM_RIGHT_SYMMETRIC_6:
3294 if (i < sh->pd_idx)
3295 i += data_disks + 1;
3296 i -= (sh->pd_idx + 1);
3297 break;
3298 case ALGORITHM_PARITY_0_6:
3299 i -= 1;
3300 break;
3301 default:
3302 BUG();
3303 }
3304 break;
3305 }
3306
3307 chunk_number = stripe * data_disks + i;
3308 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3309
3310 check = raid5_compute_sector(conf, r_sector,
3311 previous, &dummy1, &sh2);
3312 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3313 || sh2.qd_idx != sh->qd_idx) {
3314 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3315 mdname(conf->mddev));
3316 return 0;
3317 }
3318 return r_sector;
3319 }
3320
3321 /*
3322 * There are cases where we want handle_stripe_dirtying() and
3323 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3324 *
3325 * This function checks whether we want to delay the towrite. Specifically,
3326 * we delay the towrite when:
3327 *
3328 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3329 * stripe has data in journal (for other devices).
3330 *
3331 * In this case, when reading data for the non-overwrite dev, it is
3332 * necessary to handle complex rmw of write back cache (prexor with
3333 * orig_page, and xor with page). To keep read path simple, we would
3334 * like to flush data in journal to RAID disks first, so complex rmw
3335 * is handled in the write patch (handle_stripe_dirtying).
3336 *
3337 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3338 *
3339 * It is important to be able to flush all stripes in raid5-cache.
3340 * Therefore, we need reserve some space on the journal device for
3341 * these flushes. If flush operation includes pending writes to the
3342 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3343 * for the flush out. If we exclude these pending writes from flush
3344 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3345 * Therefore, excluding pending writes in these cases enables more
3346 * efficient use of the journal device.
3347 *
3348 * Note: To make sure the stripe makes progress, we only delay
3349 * towrite for stripes with data already in journal (injournal > 0).
3350 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3351 * no_space_stripes list.
3352 *
3353 * 3. during journal failure
3354 * In journal failure, we try to flush all cached data to raid disks
3355 * based on data in stripe cache. The array is read-only to upper
3356 * layers, so we would skip all pending writes.
3357 *
3358 */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3359 static inline bool delay_towrite(struct r5conf *conf,
3360 struct r5dev *dev,
3361 struct stripe_head_state *s)
3362 {
3363 /* case 1 above */
3364 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3365 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3366 return true;
3367 /* case 2 above */
3368 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3369 s->injournal > 0)
3370 return true;
3371 /* case 3 above */
3372 if (s->log_failed && s->injournal)
3373 return true;
3374 return false;
3375 }
3376
3377 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3378 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3379 int rcw, int expand)
3380 {
3381 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3382 struct r5conf *conf = sh->raid_conf;
3383 int level = conf->level;
3384
3385 if (rcw) {
3386 /*
3387 * In some cases, handle_stripe_dirtying initially decided to
3388 * run rmw and allocates extra page for prexor. However, rcw is
3389 * cheaper later on. We need to free the extra page now,
3390 * because we won't be able to do that in ops_complete_prexor().
3391 */
3392 r5c_release_extra_page(sh);
3393
3394 for (i = disks; i--; ) {
3395 struct r5dev *dev = &sh->dev[i];
3396
3397 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3398 set_bit(R5_LOCKED, &dev->flags);
3399 set_bit(R5_Wantdrain, &dev->flags);
3400 if (!expand)
3401 clear_bit(R5_UPTODATE, &dev->flags);
3402 s->locked++;
3403 } else if (test_bit(R5_InJournal, &dev->flags)) {
3404 set_bit(R5_LOCKED, &dev->flags);
3405 s->locked++;
3406 }
3407 }
3408 /* if we are not expanding this is a proper write request, and
3409 * there will be bios with new data to be drained into the
3410 * stripe cache
3411 */
3412 if (!expand) {
3413 if (!s->locked)
3414 /* False alarm, nothing to do */
3415 return;
3416 sh->reconstruct_state = reconstruct_state_drain_run;
3417 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3418 } else
3419 sh->reconstruct_state = reconstruct_state_run;
3420
3421 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3422
3423 if (s->locked + conf->max_degraded == disks)
3424 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3425 atomic_inc(&conf->pending_full_writes);
3426 } else {
3427 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3428 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3429 BUG_ON(level == 6 &&
3430 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3431 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3432
3433 for (i = disks; i--; ) {
3434 struct r5dev *dev = &sh->dev[i];
3435 if (i == pd_idx || i == qd_idx)
3436 continue;
3437
3438 if (dev->towrite &&
3439 (test_bit(R5_UPTODATE, &dev->flags) ||
3440 test_bit(R5_Wantcompute, &dev->flags))) {
3441 set_bit(R5_Wantdrain, &dev->flags);
3442 set_bit(R5_LOCKED, &dev->flags);
3443 clear_bit(R5_UPTODATE, &dev->flags);
3444 s->locked++;
3445 } else if (test_bit(R5_InJournal, &dev->flags)) {
3446 set_bit(R5_LOCKED, &dev->flags);
3447 s->locked++;
3448 }
3449 }
3450 if (!s->locked)
3451 /* False alarm - nothing to do */
3452 return;
3453 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3454 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3455 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3456 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3457 }
3458
3459 /* keep the parity disk(s) locked while asynchronous operations
3460 * are in flight
3461 */
3462 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3463 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3464 s->locked++;
3465
3466 if (level == 6) {
3467 int qd_idx = sh->qd_idx;
3468 struct r5dev *dev = &sh->dev[qd_idx];
3469
3470 set_bit(R5_LOCKED, &dev->flags);
3471 clear_bit(R5_UPTODATE, &dev->flags);
3472 s->locked++;
3473 }
3474
3475 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3476 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3477 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3478 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3479 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3480
3481 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3482 __func__, (unsigned long long)sh->sector,
3483 s->locked, s->ops_request);
3484 }
3485
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3486 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3487 int dd_idx, int forwrite)
3488 {
3489 struct r5conf *conf = sh->raid_conf;
3490 struct bio **bip;
3491
3492 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3493 bi->bi_iter.bi_sector, sh->sector);
3494
3495 /* Don't allow new IO added to stripes in batch list */
3496 if (sh->batch_head)
3497 return true;
3498
3499 if (forwrite)
3500 bip = &sh->dev[dd_idx].towrite;
3501 else
3502 bip = &sh->dev[dd_idx].toread;
3503
3504 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3505 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3506 return true;
3507 bip = &(*bip)->bi_next;
3508 }
3509
3510 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3511 return true;
3512
3513 if (forwrite && raid5_has_ppl(conf)) {
3514 /*
3515 * With PPL only writes to consecutive data chunks within a
3516 * stripe are allowed because for a single stripe_head we can
3517 * only have one PPL entry at a time, which describes one data
3518 * range. Not really an overlap, but wait_for_overlap can be
3519 * used to handle this.
3520 */
3521 sector_t sector;
3522 sector_t first = 0;
3523 sector_t last = 0;
3524 int count = 0;
3525 int i;
3526
3527 for (i = 0; i < sh->disks; i++) {
3528 if (i != sh->pd_idx &&
3529 (i == dd_idx || sh->dev[i].towrite)) {
3530 sector = sh->dev[i].sector;
3531 if (count == 0 || sector < first)
3532 first = sector;
3533 if (sector > last)
3534 last = sector;
3535 count++;
3536 }
3537 }
3538
3539 if (first + conf->chunk_sectors * (count - 1) != last)
3540 return true;
3541 }
3542
3543 return false;
3544 }
3545
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3546 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3547 int dd_idx, int forwrite, int previous)
3548 {
3549 struct r5conf *conf = sh->raid_conf;
3550 struct bio **bip;
3551 int firstwrite = 0;
3552
3553 if (forwrite) {
3554 bip = &sh->dev[dd_idx].towrite;
3555 if (!*bip)
3556 firstwrite = 1;
3557 } else {
3558 bip = &sh->dev[dd_idx].toread;
3559 }
3560
3561 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3562 bip = &(*bip)->bi_next;
3563
3564 if (!forwrite || previous)
3565 clear_bit(STRIPE_BATCH_READY, &sh->state);
3566
3567 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3568 if (*bip)
3569 bi->bi_next = *bip;
3570 *bip = bi;
3571 bio_inc_remaining(bi);
3572 md_write_inc(conf->mddev, bi);
3573
3574 if (forwrite) {
3575 /* check if page is covered */
3576 sector_t sector = sh->dev[dd_idx].sector;
3577 for (bi=sh->dev[dd_idx].towrite;
3578 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3579 bi && bi->bi_iter.bi_sector <= sector;
3580 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3581 if (bio_end_sector(bi) >= sector)
3582 sector = bio_end_sector(bi);
3583 }
3584 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3585 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3586 sh->overwrite_disks++;
3587 }
3588
3589 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3590 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3591 sh->dev[dd_idx].sector);
3592
3593 if (conf->mddev->bitmap && firstwrite) {
3594 /* Cannot hold spinlock over bitmap_startwrite,
3595 * but must ensure this isn't added to a batch until
3596 * we have added to the bitmap and set bm_seq.
3597 * So set STRIPE_BITMAP_PENDING to prevent
3598 * batching.
3599 * If multiple __add_stripe_bio() calls race here they
3600 * much all set STRIPE_BITMAP_PENDING. So only the first one
3601 * to complete "bitmap_startwrite" gets to set
3602 * STRIPE_BIT_DELAY. This is important as once a stripe
3603 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3604 * any more.
3605 */
3606 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3607 spin_unlock_irq(&sh->stripe_lock);
3608 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3609 RAID5_STRIPE_SECTORS(conf), 0);
3610 spin_lock_irq(&sh->stripe_lock);
3611 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3612 if (!sh->batch_head) {
3613 sh->bm_seq = conf->seq_flush+1;
3614 set_bit(STRIPE_BIT_DELAY, &sh->state);
3615 }
3616 }
3617 }
3618
3619 /*
3620 * Each stripe/dev can have one or more bios attached.
3621 * toread/towrite point to the first in a chain.
3622 * The bi_next chain must be in order.
3623 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3624 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3625 int dd_idx, int forwrite, int previous)
3626 {
3627 spin_lock_irq(&sh->stripe_lock);
3628
3629 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3630 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3631 spin_unlock_irq(&sh->stripe_lock);
3632 return false;
3633 }
3634
3635 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3636 spin_unlock_irq(&sh->stripe_lock);
3637 return true;
3638 }
3639
3640 static void end_reshape(struct r5conf *conf);
3641
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3642 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3643 struct stripe_head *sh)
3644 {
3645 int sectors_per_chunk =
3646 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3647 int dd_idx;
3648 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3649 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3650
3651 raid5_compute_sector(conf,
3652 stripe * (disks - conf->max_degraded)
3653 *sectors_per_chunk + chunk_offset,
3654 previous,
3655 &dd_idx, sh);
3656 }
3657
3658 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3659 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3660 struct stripe_head_state *s, int disks)
3661 {
3662 int i;
3663 BUG_ON(sh->batch_head);
3664 for (i = disks; i--; ) {
3665 struct bio *bi;
3666 int bitmap_end = 0;
3667
3668 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3669 struct md_rdev *rdev;
3670 rcu_read_lock();
3671 rdev = rcu_dereference(conf->disks[i].rdev);
3672 if (rdev && test_bit(In_sync, &rdev->flags) &&
3673 !test_bit(Faulty, &rdev->flags))
3674 atomic_inc(&rdev->nr_pending);
3675 else
3676 rdev = NULL;
3677 rcu_read_unlock();
3678 if (rdev) {
3679 if (!rdev_set_badblocks(
3680 rdev,
3681 sh->sector,
3682 RAID5_STRIPE_SECTORS(conf), 0))
3683 md_error(conf->mddev, rdev);
3684 rdev_dec_pending(rdev, conf->mddev);
3685 }
3686 }
3687 spin_lock_irq(&sh->stripe_lock);
3688 /* fail all writes first */
3689 bi = sh->dev[i].towrite;
3690 sh->dev[i].towrite = NULL;
3691 sh->overwrite_disks = 0;
3692 spin_unlock_irq(&sh->stripe_lock);
3693 if (bi)
3694 bitmap_end = 1;
3695
3696 log_stripe_write_finished(sh);
3697
3698 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3699 wake_up(&conf->wait_for_overlap);
3700
3701 while (bi && bi->bi_iter.bi_sector <
3702 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3703 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3704
3705 md_write_end(conf->mddev);
3706 bio_io_error(bi);
3707 bi = nextbi;
3708 }
3709 if (bitmap_end)
3710 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3711 RAID5_STRIPE_SECTORS(conf), 0, 0);
3712 bitmap_end = 0;
3713 /* and fail all 'written' */
3714 bi = sh->dev[i].written;
3715 sh->dev[i].written = NULL;
3716 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3717 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3718 sh->dev[i].page = sh->dev[i].orig_page;
3719 }
3720
3721 if (bi) bitmap_end = 1;
3722 while (bi && bi->bi_iter.bi_sector <
3723 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3724 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3725
3726 md_write_end(conf->mddev);
3727 bio_io_error(bi);
3728 bi = bi2;
3729 }
3730
3731 /* fail any reads if this device is non-operational and
3732 * the data has not reached the cache yet.
3733 */
3734 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3735 s->failed > conf->max_degraded &&
3736 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3737 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3738 spin_lock_irq(&sh->stripe_lock);
3739 bi = sh->dev[i].toread;
3740 sh->dev[i].toread = NULL;
3741 spin_unlock_irq(&sh->stripe_lock);
3742 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3743 wake_up(&conf->wait_for_overlap);
3744 if (bi)
3745 s->to_read--;
3746 while (bi && bi->bi_iter.bi_sector <
3747 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3748 struct bio *nextbi =
3749 r5_next_bio(conf, bi, sh->dev[i].sector);
3750
3751 bio_io_error(bi);
3752 bi = nextbi;
3753 }
3754 }
3755 if (bitmap_end)
3756 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3757 RAID5_STRIPE_SECTORS(conf), 0, 0);
3758 /* If we were in the middle of a write the parity block might
3759 * still be locked - so just clear all R5_LOCKED flags
3760 */
3761 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3762 }
3763 s->to_write = 0;
3764 s->written = 0;
3765
3766 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3767 if (atomic_dec_and_test(&conf->pending_full_writes))
3768 md_wakeup_thread(conf->mddev->thread);
3769 }
3770
3771 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3772 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3773 struct stripe_head_state *s)
3774 {
3775 int abort = 0;
3776 int i;
3777
3778 BUG_ON(sh->batch_head);
3779 clear_bit(STRIPE_SYNCING, &sh->state);
3780 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3781 wake_up(&conf->wait_for_overlap);
3782 s->syncing = 0;
3783 s->replacing = 0;
3784 /* There is nothing more to do for sync/check/repair.
3785 * Don't even need to abort as that is handled elsewhere
3786 * if needed, and not always wanted e.g. if there is a known
3787 * bad block here.
3788 * For recover/replace we need to record a bad block on all
3789 * non-sync devices, or abort the recovery
3790 */
3791 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3792 /* During recovery devices cannot be removed, so
3793 * locking and refcounting of rdevs is not needed
3794 */
3795 rcu_read_lock();
3796 for (i = 0; i < conf->raid_disks; i++) {
3797 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3798 if (rdev
3799 && !test_bit(Faulty, &rdev->flags)
3800 && !test_bit(In_sync, &rdev->flags)
3801 && !rdev_set_badblocks(rdev, sh->sector,
3802 RAID5_STRIPE_SECTORS(conf), 0))
3803 abort = 1;
3804 rdev = rcu_dereference(conf->disks[i].replacement);
3805 if (rdev
3806 && !test_bit(Faulty, &rdev->flags)
3807 && !test_bit(In_sync, &rdev->flags)
3808 && !rdev_set_badblocks(rdev, sh->sector,
3809 RAID5_STRIPE_SECTORS(conf), 0))
3810 abort = 1;
3811 }
3812 rcu_read_unlock();
3813 if (abort)
3814 conf->recovery_disabled =
3815 conf->mddev->recovery_disabled;
3816 }
3817 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3818 }
3819
want_replace(struct stripe_head * sh,int disk_idx)3820 static int want_replace(struct stripe_head *sh, int disk_idx)
3821 {
3822 struct md_rdev *rdev;
3823 int rv = 0;
3824
3825 rcu_read_lock();
3826 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3827 if (rdev
3828 && !test_bit(Faulty, &rdev->flags)
3829 && !test_bit(In_sync, &rdev->flags)
3830 && (rdev->recovery_offset <= sh->sector
3831 || rdev->mddev->recovery_cp <= sh->sector))
3832 rv = 1;
3833 rcu_read_unlock();
3834 return rv;
3835 }
3836
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3837 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3838 int disk_idx, int disks)
3839 {
3840 struct r5dev *dev = &sh->dev[disk_idx];
3841 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3842 &sh->dev[s->failed_num[1]] };
3843 int i;
3844 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3845
3846
3847 if (test_bit(R5_LOCKED, &dev->flags) ||
3848 test_bit(R5_UPTODATE, &dev->flags))
3849 /* No point reading this as we already have it or have
3850 * decided to get it.
3851 */
3852 return 0;
3853
3854 if (dev->toread ||
3855 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3856 /* We need this block to directly satisfy a request */
3857 return 1;
3858
3859 if (s->syncing || s->expanding ||
3860 (s->replacing && want_replace(sh, disk_idx)))
3861 /* When syncing, or expanding we read everything.
3862 * When replacing, we need the replaced block.
3863 */
3864 return 1;
3865
3866 if ((s->failed >= 1 && fdev[0]->toread) ||
3867 (s->failed >= 2 && fdev[1]->toread))
3868 /* If we want to read from a failed device, then
3869 * we need to actually read every other device.
3870 */
3871 return 1;
3872
3873 /* Sometimes neither read-modify-write nor reconstruct-write
3874 * cycles can work. In those cases we read every block we
3875 * can. Then the parity-update is certain to have enough to
3876 * work with.
3877 * This can only be a problem when we need to write something,
3878 * and some device has failed. If either of those tests
3879 * fail we need look no further.
3880 */
3881 if (!s->failed || !s->to_write)
3882 return 0;
3883
3884 if (test_bit(R5_Insync, &dev->flags) &&
3885 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3886 /* Pre-reads at not permitted until after short delay
3887 * to gather multiple requests. However if this
3888 * device is no Insync, the block could only be computed
3889 * and there is no need to delay that.
3890 */
3891 return 0;
3892
3893 for (i = 0; i < s->failed && i < 2; i++) {
3894 if (fdev[i]->towrite &&
3895 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3896 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3897 /* If we have a partial write to a failed
3898 * device, then we will need to reconstruct
3899 * the content of that device, so all other
3900 * devices must be read.
3901 */
3902 return 1;
3903
3904 if (s->failed >= 2 &&
3905 (fdev[i]->towrite ||
3906 s->failed_num[i] == sh->pd_idx ||
3907 s->failed_num[i] == sh->qd_idx) &&
3908 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3909 /* In max degraded raid6, If the failed disk is P, Q,
3910 * or we want to read the failed disk, we need to do
3911 * reconstruct-write.
3912 */
3913 force_rcw = true;
3914 }
3915
3916 /* If we are forced to do a reconstruct-write, because parity
3917 * cannot be trusted and we are currently recovering it, there
3918 * is extra need to be careful.
3919 * If one of the devices that we would need to read, because
3920 * it is not being overwritten (and maybe not written at all)
3921 * is missing/faulty, then we need to read everything we can.
3922 */
3923 if (!force_rcw &&
3924 sh->sector < sh->raid_conf->mddev->recovery_cp)
3925 /* reconstruct-write isn't being forced */
3926 return 0;
3927 for (i = 0; i < s->failed && i < 2; i++) {
3928 if (s->failed_num[i] != sh->pd_idx &&
3929 s->failed_num[i] != sh->qd_idx &&
3930 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3931 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3932 return 1;
3933 }
3934
3935 return 0;
3936 }
3937
3938 /* fetch_block - checks the given member device to see if its data needs
3939 * to be read or computed to satisfy a request.
3940 *
3941 * Returns 1 when no more member devices need to be checked, otherwise returns
3942 * 0 to tell the loop in handle_stripe_fill to continue
3943 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3944 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3945 int disk_idx, int disks)
3946 {
3947 struct r5dev *dev = &sh->dev[disk_idx];
3948
3949 /* is the data in this block needed, and can we get it? */
3950 if (need_this_block(sh, s, disk_idx, disks)) {
3951 /* we would like to get this block, possibly by computing it,
3952 * otherwise read it if the backing disk is insync
3953 */
3954 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3955 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3956 BUG_ON(sh->batch_head);
3957
3958 /*
3959 * In the raid6 case if the only non-uptodate disk is P
3960 * then we already trusted P to compute the other failed
3961 * drives. It is safe to compute rather than re-read P.
3962 * In other cases we only compute blocks from failed
3963 * devices, otherwise check/repair might fail to detect
3964 * a real inconsistency.
3965 */
3966
3967 if ((s->uptodate == disks - 1) &&
3968 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3969 (s->failed && (disk_idx == s->failed_num[0] ||
3970 disk_idx == s->failed_num[1])))) {
3971 /* have disk failed, and we're requested to fetch it;
3972 * do compute it
3973 */
3974 pr_debug("Computing stripe %llu block %d\n",
3975 (unsigned long long)sh->sector, disk_idx);
3976 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3977 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3978 set_bit(R5_Wantcompute, &dev->flags);
3979 sh->ops.target = disk_idx;
3980 sh->ops.target2 = -1; /* no 2nd target */
3981 s->req_compute = 1;
3982 /* Careful: from this point on 'uptodate' is in the eye
3983 * of raid_run_ops which services 'compute' operations
3984 * before writes. R5_Wantcompute flags a block that will
3985 * be R5_UPTODATE by the time it is needed for a
3986 * subsequent operation.
3987 */
3988 s->uptodate++;
3989 return 1;
3990 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3991 /* Computing 2-failure is *very* expensive; only
3992 * do it if failed >= 2
3993 */
3994 int other;
3995 for (other = disks; other--; ) {
3996 if (other == disk_idx)
3997 continue;
3998 if (!test_bit(R5_UPTODATE,
3999 &sh->dev[other].flags))
4000 break;
4001 }
4002 BUG_ON(other < 0);
4003 pr_debug("Computing stripe %llu blocks %d,%d\n",
4004 (unsigned long long)sh->sector,
4005 disk_idx, other);
4006 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4007 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4008 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
4009 set_bit(R5_Wantcompute, &sh->dev[other].flags);
4010 sh->ops.target = disk_idx;
4011 sh->ops.target2 = other;
4012 s->uptodate += 2;
4013 s->req_compute = 1;
4014 return 1;
4015 } else if (test_bit(R5_Insync, &dev->flags)) {
4016 set_bit(R5_LOCKED, &dev->flags);
4017 set_bit(R5_Wantread, &dev->flags);
4018 s->locked++;
4019 pr_debug("Reading block %d (sync=%d)\n",
4020 disk_idx, s->syncing);
4021 }
4022 }
4023
4024 return 0;
4025 }
4026
4027 /*
4028 * handle_stripe_fill - read or compute data to satisfy pending requests.
4029 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)4030 static void handle_stripe_fill(struct stripe_head *sh,
4031 struct stripe_head_state *s,
4032 int disks)
4033 {
4034 int i;
4035
4036 /* look for blocks to read/compute, skip this if a compute
4037 * is already in flight, or if the stripe contents are in the
4038 * midst of changing due to a write
4039 */
4040 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4041 !sh->reconstruct_state) {
4042
4043 /*
4044 * For degraded stripe with data in journal, do not handle
4045 * read requests yet, instead, flush the stripe to raid
4046 * disks first, this avoids handling complex rmw of write
4047 * back cache (prexor with orig_page, and then xor with
4048 * page) in the read path
4049 */
4050 if (s->to_read && s->injournal && s->failed) {
4051 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4052 r5c_make_stripe_write_out(sh);
4053 goto out;
4054 }
4055
4056 for (i = disks; i--; )
4057 if (fetch_block(sh, s, i, disks))
4058 break;
4059 }
4060 out:
4061 set_bit(STRIPE_HANDLE, &sh->state);
4062 }
4063
4064 static void break_stripe_batch_list(struct stripe_head *head_sh,
4065 unsigned long handle_flags);
4066 /* handle_stripe_clean_event
4067 * any written block on an uptodate or failed drive can be returned.
4068 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4069 * never LOCKED, so we don't need to test 'failed' directly.
4070 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)4071 static void handle_stripe_clean_event(struct r5conf *conf,
4072 struct stripe_head *sh, int disks)
4073 {
4074 int i;
4075 struct r5dev *dev;
4076 int discard_pending = 0;
4077 struct stripe_head *head_sh = sh;
4078 bool do_endio = false;
4079
4080 for (i = disks; i--; )
4081 if (sh->dev[i].written) {
4082 dev = &sh->dev[i];
4083 if (!test_bit(R5_LOCKED, &dev->flags) &&
4084 (test_bit(R5_UPTODATE, &dev->flags) ||
4085 test_bit(R5_Discard, &dev->flags) ||
4086 test_bit(R5_SkipCopy, &dev->flags))) {
4087 /* We can return any write requests */
4088 struct bio *wbi, *wbi2;
4089 pr_debug("Return write for disc %d\n", i);
4090 if (test_and_clear_bit(R5_Discard, &dev->flags))
4091 clear_bit(R5_UPTODATE, &dev->flags);
4092 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4093 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4094 }
4095 do_endio = true;
4096
4097 returnbi:
4098 dev->page = dev->orig_page;
4099 wbi = dev->written;
4100 dev->written = NULL;
4101 while (wbi && wbi->bi_iter.bi_sector <
4102 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4103 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4104 md_write_end(conf->mddev);
4105 bio_endio(wbi);
4106 wbi = wbi2;
4107 }
4108 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4109 RAID5_STRIPE_SECTORS(conf),
4110 !test_bit(STRIPE_DEGRADED, &sh->state),
4111 0);
4112 if (head_sh->batch_head) {
4113 sh = list_first_entry(&sh->batch_list,
4114 struct stripe_head,
4115 batch_list);
4116 if (sh != head_sh) {
4117 dev = &sh->dev[i];
4118 goto returnbi;
4119 }
4120 }
4121 sh = head_sh;
4122 dev = &sh->dev[i];
4123 } else if (test_bit(R5_Discard, &dev->flags))
4124 discard_pending = 1;
4125 }
4126
4127 log_stripe_write_finished(sh);
4128
4129 if (!discard_pending &&
4130 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4131 int hash;
4132 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4133 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4134 if (sh->qd_idx >= 0) {
4135 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4136 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4137 }
4138 /* now that discard is done we can proceed with any sync */
4139 clear_bit(STRIPE_DISCARD, &sh->state);
4140 /*
4141 * SCSI discard will change some bio fields and the stripe has
4142 * no updated data, so remove it from hash list and the stripe
4143 * will be reinitialized
4144 */
4145 unhash:
4146 hash = sh->hash_lock_index;
4147 spin_lock_irq(conf->hash_locks + hash);
4148 remove_hash(sh);
4149 spin_unlock_irq(conf->hash_locks + hash);
4150 if (head_sh->batch_head) {
4151 sh = list_first_entry(&sh->batch_list,
4152 struct stripe_head, batch_list);
4153 if (sh != head_sh)
4154 goto unhash;
4155 }
4156 sh = head_sh;
4157
4158 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4159 set_bit(STRIPE_HANDLE, &sh->state);
4160
4161 }
4162
4163 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4164 if (atomic_dec_and_test(&conf->pending_full_writes))
4165 md_wakeup_thread(conf->mddev->thread);
4166
4167 if (head_sh->batch_head && do_endio)
4168 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4169 }
4170
4171 /*
4172 * For RMW in write back cache, we need extra page in prexor to store the
4173 * old data. This page is stored in dev->orig_page.
4174 *
4175 * This function checks whether we have data for prexor. The exact logic
4176 * is:
4177 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4178 */
uptodate_for_rmw(struct r5dev * dev)4179 static inline bool uptodate_for_rmw(struct r5dev *dev)
4180 {
4181 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4182 (!test_bit(R5_InJournal, &dev->flags) ||
4183 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4184 }
4185
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4186 static int handle_stripe_dirtying(struct r5conf *conf,
4187 struct stripe_head *sh,
4188 struct stripe_head_state *s,
4189 int disks)
4190 {
4191 int rmw = 0, rcw = 0, i;
4192 sector_t recovery_cp = conf->mddev->recovery_cp;
4193
4194 /* Check whether resync is now happening or should start.
4195 * If yes, then the array is dirty (after unclean shutdown or
4196 * initial creation), so parity in some stripes might be inconsistent.
4197 * In this case, we need to always do reconstruct-write, to ensure
4198 * that in case of drive failure or read-error correction, we
4199 * generate correct data from the parity.
4200 */
4201 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4202 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4203 s->failed == 0)) {
4204 /* Calculate the real rcw later - for now make it
4205 * look like rcw is cheaper
4206 */
4207 rcw = 1; rmw = 2;
4208 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4209 conf->rmw_level, (unsigned long long)recovery_cp,
4210 (unsigned long long)sh->sector);
4211 } else for (i = disks; i--; ) {
4212 /* would I have to read this buffer for read_modify_write */
4213 struct r5dev *dev = &sh->dev[i];
4214 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4215 i == sh->pd_idx || i == sh->qd_idx ||
4216 test_bit(R5_InJournal, &dev->flags)) &&
4217 !test_bit(R5_LOCKED, &dev->flags) &&
4218 !(uptodate_for_rmw(dev) ||
4219 test_bit(R5_Wantcompute, &dev->flags))) {
4220 if (test_bit(R5_Insync, &dev->flags))
4221 rmw++;
4222 else
4223 rmw += 2*disks; /* cannot read it */
4224 }
4225 /* Would I have to read this buffer for reconstruct_write */
4226 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4227 i != sh->pd_idx && i != sh->qd_idx &&
4228 !test_bit(R5_LOCKED, &dev->flags) &&
4229 !(test_bit(R5_UPTODATE, &dev->flags) ||
4230 test_bit(R5_Wantcompute, &dev->flags))) {
4231 if (test_bit(R5_Insync, &dev->flags))
4232 rcw++;
4233 else
4234 rcw += 2*disks;
4235 }
4236 }
4237
4238 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4239 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4240 set_bit(STRIPE_HANDLE, &sh->state);
4241 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4242 /* prefer read-modify-write, but need to get some data */
4243 if (conf->mddev->queue)
4244 blk_add_trace_msg(conf->mddev->queue,
4245 "raid5 rmw %llu %d",
4246 (unsigned long long)sh->sector, rmw);
4247 for (i = disks; i--; ) {
4248 struct r5dev *dev = &sh->dev[i];
4249 if (test_bit(R5_InJournal, &dev->flags) &&
4250 dev->page == dev->orig_page &&
4251 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4252 /* alloc page for prexor */
4253 struct page *p = alloc_page(GFP_NOIO);
4254
4255 if (p) {
4256 dev->orig_page = p;
4257 continue;
4258 }
4259
4260 /*
4261 * alloc_page() failed, try use
4262 * disk_info->extra_page
4263 */
4264 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4265 &conf->cache_state)) {
4266 r5c_use_extra_page(sh);
4267 break;
4268 }
4269
4270 /* extra_page in use, add to delayed_list */
4271 set_bit(STRIPE_DELAYED, &sh->state);
4272 s->waiting_extra_page = 1;
4273 return -EAGAIN;
4274 }
4275 }
4276
4277 for (i = disks; i--; ) {
4278 struct r5dev *dev = &sh->dev[i];
4279 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4280 i == sh->pd_idx || i == sh->qd_idx ||
4281 test_bit(R5_InJournal, &dev->flags)) &&
4282 !test_bit(R5_LOCKED, &dev->flags) &&
4283 !(uptodate_for_rmw(dev) ||
4284 test_bit(R5_Wantcompute, &dev->flags)) &&
4285 test_bit(R5_Insync, &dev->flags)) {
4286 if (test_bit(STRIPE_PREREAD_ACTIVE,
4287 &sh->state)) {
4288 pr_debug("Read_old block %d for r-m-w\n",
4289 i);
4290 set_bit(R5_LOCKED, &dev->flags);
4291 set_bit(R5_Wantread, &dev->flags);
4292 s->locked++;
4293 } else
4294 set_bit(STRIPE_DELAYED, &sh->state);
4295 }
4296 }
4297 }
4298 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4299 /* want reconstruct write, but need to get some data */
4300 int qread =0;
4301 rcw = 0;
4302 for (i = disks; i--; ) {
4303 struct r5dev *dev = &sh->dev[i];
4304 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4305 i != sh->pd_idx && i != sh->qd_idx &&
4306 !test_bit(R5_LOCKED, &dev->flags) &&
4307 !(test_bit(R5_UPTODATE, &dev->flags) ||
4308 test_bit(R5_Wantcompute, &dev->flags))) {
4309 rcw++;
4310 if (test_bit(R5_Insync, &dev->flags) &&
4311 test_bit(STRIPE_PREREAD_ACTIVE,
4312 &sh->state)) {
4313 pr_debug("Read_old block "
4314 "%d for Reconstruct\n", i);
4315 set_bit(R5_LOCKED, &dev->flags);
4316 set_bit(R5_Wantread, &dev->flags);
4317 s->locked++;
4318 qread++;
4319 } else
4320 set_bit(STRIPE_DELAYED, &sh->state);
4321 }
4322 }
4323 if (rcw && conf->mddev->queue)
4324 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4325 (unsigned long long)sh->sector,
4326 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4327 }
4328
4329 if (rcw > disks && rmw > disks &&
4330 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4331 set_bit(STRIPE_DELAYED, &sh->state);
4332
4333 /* now if nothing is locked, and if we have enough data,
4334 * we can start a write request
4335 */
4336 /* since handle_stripe can be called at any time we need to handle the
4337 * case where a compute block operation has been submitted and then a
4338 * subsequent call wants to start a write request. raid_run_ops only
4339 * handles the case where compute block and reconstruct are requested
4340 * simultaneously. If this is not the case then new writes need to be
4341 * held off until the compute completes.
4342 */
4343 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4344 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4345 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4346 schedule_reconstruction(sh, s, rcw == 0, 0);
4347 return 0;
4348 }
4349
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4350 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4351 struct stripe_head_state *s, int disks)
4352 {
4353 struct r5dev *dev = NULL;
4354
4355 BUG_ON(sh->batch_head);
4356 set_bit(STRIPE_HANDLE, &sh->state);
4357
4358 switch (sh->check_state) {
4359 case check_state_idle:
4360 /* start a new check operation if there are no failures */
4361 if (s->failed == 0) {
4362 BUG_ON(s->uptodate != disks);
4363 sh->check_state = check_state_run;
4364 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4365 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4366 s->uptodate--;
4367 break;
4368 }
4369 dev = &sh->dev[s->failed_num[0]];
4370 fallthrough;
4371 case check_state_compute_result:
4372 sh->check_state = check_state_idle;
4373 if (!dev)
4374 dev = &sh->dev[sh->pd_idx];
4375
4376 /* check that a write has not made the stripe insync */
4377 if (test_bit(STRIPE_INSYNC, &sh->state))
4378 break;
4379
4380 /* either failed parity check, or recovery is happening */
4381 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4382 BUG_ON(s->uptodate != disks);
4383
4384 set_bit(R5_LOCKED, &dev->flags);
4385 s->locked++;
4386 set_bit(R5_Wantwrite, &dev->flags);
4387
4388 clear_bit(STRIPE_DEGRADED, &sh->state);
4389 set_bit(STRIPE_INSYNC, &sh->state);
4390 break;
4391 case check_state_run:
4392 break; /* we will be called again upon completion */
4393 case check_state_check_result:
4394 sh->check_state = check_state_idle;
4395
4396 /* if a failure occurred during the check operation, leave
4397 * STRIPE_INSYNC not set and let the stripe be handled again
4398 */
4399 if (s->failed)
4400 break;
4401
4402 /* handle a successful check operation, if parity is correct
4403 * we are done. Otherwise update the mismatch count and repair
4404 * parity if !MD_RECOVERY_CHECK
4405 */
4406 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4407 /* parity is correct (on disc,
4408 * not in buffer any more)
4409 */
4410 set_bit(STRIPE_INSYNC, &sh->state);
4411 else {
4412 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4413 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4414 /* don't try to repair!! */
4415 set_bit(STRIPE_INSYNC, &sh->state);
4416 pr_warn_ratelimited("%s: mismatch sector in range "
4417 "%llu-%llu\n", mdname(conf->mddev),
4418 (unsigned long long) sh->sector,
4419 (unsigned long long) sh->sector +
4420 RAID5_STRIPE_SECTORS(conf));
4421 } else {
4422 sh->check_state = check_state_compute_run;
4423 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4424 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4425 set_bit(R5_Wantcompute,
4426 &sh->dev[sh->pd_idx].flags);
4427 sh->ops.target = sh->pd_idx;
4428 sh->ops.target2 = -1;
4429 s->uptodate++;
4430 }
4431 }
4432 break;
4433 case check_state_compute_run:
4434 break;
4435 default:
4436 pr_err("%s: unknown check_state: %d sector: %llu\n",
4437 __func__, sh->check_state,
4438 (unsigned long long) sh->sector);
4439 BUG();
4440 }
4441 }
4442
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4443 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4444 struct stripe_head_state *s,
4445 int disks)
4446 {
4447 int pd_idx = sh->pd_idx;
4448 int qd_idx = sh->qd_idx;
4449 struct r5dev *dev;
4450
4451 BUG_ON(sh->batch_head);
4452 set_bit(STRIPE_HANDLE, &sh->state);
4453
4454 BUG_ON(s->failed > 2);
4455
4456 /* Want to check and possibly repair P and Q.
4457 * However there could be one 'failed' device, in which
4458 * case we can only check one of them, possibly using the
4459 * other to generate missing data
4460 */
4461
4462 switch (sh->check_state) {
4463 case check_state_idle:
4464 /* start a new check operation if there are < 2 failures */
4465 if (s->failed == s->q_failed) {
4466 /* The only possible failed device holds Q, so it
4467 * makes sense to check P (If anything else were failed,
4468 * we would have used P to recreate it).
4469 */
4470 sh->check_state = check_state_run;
4471 }
4472 if (!s->q_failed && s->failed < 2) {
4473 /* Q is not failed, and we didn't use it to generate
4474 * anything, so it makes sense to check it
4475 */
4476 if (sh->check_state == check_state_run)
4477 sh->check_state = check_state_run_pq;
4478 else
4479 sh->check_state = check_state_run_q;
4480 }
4481
4482 /* discard potentially stale zero_sum_result */
4483 sh->ops.zero_sum_result = 0;
4484
4485 if (sh->check_state == check_state_run) {
4486 /* async_xor_zero_sum destroys the contents of P */
4487 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4488 s->uptodate--;
4489 }
4490 if (sh->check_state >= check_state_run &&
4491 sh->check_state <= check_state_run_pq) {
4492 /* async_syndrome_zero_sum preserves P and Q, so
4493 * no need to mark them !uptodate here
4494 */
4495 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4496 break;
4497 }
4498
4499 /* we have 2-disk failure */
4500 BUG_ON(s->failed != 2);
4501 fallthrough;
4502 case check_state_compute_result:
4503 sh->check_state = check_state_idle;
4504
4505 /* check that a write has not made the stripe insync */
4506 if (test_bit(STRIPE_INSYNC, &sh->state))
4507 break;
4508
4509 /* now write out any block on a failed drive,
4510 * or P or Q if they were recomputed
4511 */
4512 dev = NULL;
4513 if (s->failed == 2) {
4514 dev = &sh->dev[s->failed_num[1]];
4515 s->locked++;
4516 set_bit(R5_LOCKED, &dev->flags);
4517 set_bit(R5_Wantwrite, &dev->flags);
4518 }
4519 if (s->failed >= 1) {
4520 dev = &sh->dev[s->failed_num[0]];
4521 s->locked++;
4522 set_bit(R5_LOCKED, &dev->flags);
4523 set_bit(R5_Wantwrite, &dev->flags);
4524 }
4525 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4526 dev = &sh->dev[pd_idx];
4527 s->locked++;
4528 set_bit(R5_LOCKED, &dev->flags);
4529 set_bit(R5_Wantwrite, &dev->flags);
4530 }
4531 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4532 dev = &sh->dev[qd_idx];
4533 s->locked++;
4534 set_bit(R5_LOCKED, &dev->flags);
4535 set_bit(R5_Wantwrite, &dev->flags);
4536 }
4537 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4538 "%s: disk%td not up to date\n",
4539 mdname(conf->mddev),
4540 dev - (struct r5dev *) &sh->dev)) {
4541 clear_bit(R5_LOCKED, &dev->flags);
4542 clear_bit(R5_Wantwrite, &dev->flags);
4543 s->locked--;
4544 }
4545 clear_bit(STRIPE_DEGRADED, &sh->state);
4546
4547 set_bit(STRIPE_INSYNC, &sh->state);
4548 break;
4549 case check_state_run:
4550 case check_state_run_q:
4551 case check_state_run_pq:
4552 break; /* we will be called again upon completion */
4553 case check_state_check_result:
4554 sh->check_state = check_state_idle;
4555
4556 /* handle a successful check operation, if parity is correct
4557 * we are done. Otherwise update the mismatch count and repair
4558 * parity if !MD_RECOVERY_CHECK
4559 */
4560 if (sh->ops.zero_sum_result == 0) {
4561 /* both parities are correct */
4562 if (!s->failed)
4563 set_bit(STRIPE_INSYNC, &sh->state);
4564 else {
4565 /* in contrast to the raid5 case we can validate
4566 * parity, but still have a failure to write
4567 * back
4568 */
4569 sh->check_state = check_state_compute_result;
4570 /* Returning at this point means that we may go
4571 * off and bring p and/or q uptodate again so
4572 * we make sure to check zero_sum_result again
4573 * to verify if p or q need writeback
4574 */
4575 }
4576 } else {
4577 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4578 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4579 /* don't try to repair!! */
4580 set_bit(STRIPE_INSYNC, &sh->state);
4581 pr_warn_ratelimited("%s: mismatch sector in range "
4582 "%llu-%llu\n", mdname(conf->mddev),
4583 (unsigned long long) sh->sector,
4584 (unsigned long long) sh->sector +
4585 RAID5_STRIPE_SECTORS(conf));
4586 } else {
4587 int *target = &sh->ops.target;
4588
4589 sh->ops.target = -1;
4590 sh->ops.target2 = -1;
4591 sh->check_state = check_state_compute_run;
4592 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4593 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4594 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4595 set_bit(R5_Wantcompute,
4596 &sh->dev[pd_idx].flags);
4597 *target = pd_idx;
4598 target = &sh->ops.target2;
4599 s->uptodate++;
4600 }
4601 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4602 set_bit(R5_Wantcompute,
4603 &sh->dev[qd_idx].flags);
4604 *target = qd_idx;
4605 s->uptodate++;
4606 }
4607 }
4608 }
4609 break;
4610 case check_state_compute_run:
4611 break;
4612 default:
4613 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4614 __func__, sh->check_state,
4615 (unsigned long long) sh->sector);
4616 BUG();
4617 }
4618 }
4619
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4620 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4621 {
4622 int i;
4623
4624 /* We have read all the blocks in this stripe and now we need to
4625 * copy some of them into a target stripe for expand.
4626 */
4627 struct dma_async_tx_descriptor *tx = NULL;
4628 BUG_ON(sh->batch_head);
4629 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4630 for (i = 0; i < sh->disks; i++)
4631 if (i != sh->pd_idx && i != sh->qd_idx) {
4632 int dd_idx, j;
4633 struct stripe_head *sh2;
4634 struct async_submit_ctl submit;
4635
4636 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4637 sector_t s = raid5_compute_sector(conf, bn, 0,
4638 &dd_idx, NULL);
4639 sh2 = raid5_get_active_stripe(conf, NULL, s,
4640 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4641 if (sh2 == NULL)
4642 /* so far only the early blocks of this stripe
4643 * have been requested. When later blocks
4644 * get requested, we will try again
4645 */
4646 continue;
4647 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4648 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4649 /* must have already done this block */
4650 raid5_release_stripe(sh2);
4651 continue;
4652 }
4653
4654 /* place all the copies on one channel */
4655 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4656 tx = async_memcpy(sh2->dev[dd_idx].page,
4657 sh->dev[i].page, sh2->dev[dd_idx].offset,
4658 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4659 &submit);
4660
4661 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4662 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4663 for (j = 0; j < conf->raid_disks; j++)
4664 if (j != sh2->pd_idx &&
4665 j != sh2->qd_idx &&
4666 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4667 break;
4668 if (j == conf->raid_disks) {
4669 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4670 set_bit(STRIPE_HANDLE, &sh2->state);
4671 }
4672 raid5_release_stripe(sh2);
4673
4674 }
4675 /* done submitting copies, wait for them to complete */
4676 async_tx_quiesce(&tx);
4677 }
4678
4679 /*
4680 * handle_stripe - do things to a stripe.
4681 *
4682 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4683 * state of various bits to see what needs to be done.
4684 * Possible results:
4685 * return some read requests which now have data
4686 * return some write requests which are safely on storage
4687 * schedule a read on some buffers
4688 * schedule a write of some buffers
4689 * return confirmation of parity correctness
4690 *
4691 */
4692
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4693 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4694 {
4695 struct r5conf *conf = sh->raid_conf;
4696 int disks = sh->disks;
4697 struct r5dev *dev;
4698 int i;
4699 int do_recovery = 0;
4700
4701 memset(s, 0, sizeof(*s));
4702
4703 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4704 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4705 s->failed_num[0] = -1;
4706 s->failed_num[1] = -1;
4707 s->log_failed = r5l_log_disk_error(conf);
4708
4709 /* Now to look around and see what can be done */
4710 rcu_read_lock();
4711 for (i=disks; i--; ) {
4712 struct md_rdev *rdev;
4713 sector_t first_bad;
4714 int bad_sectors;
4715 int is_bad = 0;
4716
4717 dev = &sh->dev[i];
4718
4719 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4720 i, dev->flags,
4721 dev->toread, dev->towrite, dev->written);
4722 /* maybe we can reply to a read
4723 *
4724 * new wantfill requests are only permitted while
4725 * ops_complete_biofill is guaranteed to be inactive
4726 */
4727 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4728 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4729 set_bit(R5_Wantfill, &dev->flags);
4730
4731 /* now count some things */
4732 if (test_bit(R5_LOCKED, &dev->flags))
4733 s->locked++;
4734 if (test_bit(R5_UPTODATE, &dev->flags))
4735 s->uptodate++;
4736 if (test_bit(R5_Wantcompute, &dev->flags)) {
4737 s->compute++;
4738 BUG_ON(s->compute > 2);
4739 }
4740
4741 if (test_bit(R5_Wantfill, &dev->flags))
4742 s->to_fill++;
4743 else if (dev->toread)
4744 s->to_read++;
4745 if (dev->towrite) {
4746 s->to_write++;
4747 if (!test_bit(R5_OVERWRITE, &dev->flags))
4748 s->non_overwrite++;
4749 }
4750 if (dev->written)
4751 s->written++;
4752 /* Prefer to use the replacement for reads, but only
4753 * if it is recovered enough and has no bad blocks.
4754 */
4755 rdev = rcu_dereference(conf->disks[i].replacement);
4756 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4757 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4758 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4759 &first_bad, &bad_sectors))
4760 set_bit(R5_ReadRepl, &dev->flags);
4761 else {
4762 if (rdev && !test_bit(Faulty, &rdev->flags))
4763 set_bit(R5_NeedReplace, &dev->flags);
4764 else
4765 clear_bit(R5_NeedReplace, &dev->flags);
4766 rdev = rcu_dereference(conf->disks[i].rdev);
4767 clear_bit(R5_ReadRepl, &dev->flags);
4768 }
4769 if (rdev && test_bit(Faulty, &rdev->flags))
4770 rdev = NULL;
4771 if (rdev) {
4772 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4773 &first_bad, &bad_sectors);
4774 if (s->blocked_rdev == NULL
4775 && (test_bit(Blocked, &rdev->flags)
4776 || is_bad < 0)) {
4777 if (is_bad < 0)
4778 set_bit(BlockedBadBlocks,
4779 &rdev->flags);
4780 s->blocked_rdev = rdev;
4781 atomic_inc(&rdev->nr_pending);
4782 }
4783 }
4784 clear_bit(R5_Insync, &dev->flags);
4785 if (!rdev)
4786 /* Not in-sync */;
4787 else if (is_bad) {
4788 /* also not in-sync */
4789 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4790 test_bit(R5_UPTODATE, &dev->flags)) {
4791 /* treat as in-sync, but with a read error
4792 * which we can now try to correct
4793 */
4794 set_bit(R5_Insync, &dev->flags);
4795 set_bit(R5_ReadError, &dev->flags);
4796 }
4797 } else if (test_bit(In_sync, &rdev->flags))
4798 set_bit(R5_Insync, &dev->flags);
4799 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4800 /* in sync if before recovery_offset */
4801 set_bit(R5_Insync, &dev->flags);
4802 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4803 test_bit(R5_Expanded, &dev->flags))
4804 /* If we've reshaped into here, we assume it is Insync.
4805 * We will shortly update recovery_offset to make
4806 * it official.
4807 */
4808 set_bit(R5_Insync, &dev->flags);
4809
4810 if (test_bit(R5_WriteError, &dev->flags)) {
4811 /* This flag does not apply to '.replacement'
4812 * only to .rdev, so make sure to check that*/
4813 struct md_rdev *rdev2 = rcu_dereference(
4814 conf->disks[i].rdev);
4815 if (rdev2 == rdev)
4816 clear_bit(R5_Insync, &dev->flags);
4817 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4818 s->handle_bad_blocks = 1;
4819 atomic_inc(&rdev2->nr_pending);
4820 } else
4821 clear_bit(R5_WriteError, &dev->flags);
4822 }
4823 if (test_bit(R5_MadeGood, &dev->flags)) {
4824 /* This flag does not apply to '.replacement'
4825 * only to .rdev, so make sure to check that*/
4826 struct md_rdev *rdev2 = rcu_dereference(
4827 conf->disks[i].rdev);
4828 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4829 s->handle_bad_blocks = 1;
4830 atomic_inc(&rdev2->nr_pending);
4831 } else
4832 clear_bit(R5_MadeGood, &dev->flags);
4833 }
4834 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4835 struct md_rdev *rdev2 = rcu_dereference(
4836 conf->disks[i].replacement);
4837 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4838 s->handle_bad_blocks = 1;
4839 atomic_inc(&rdev2->nr_pending);
4840 } else
4841 clear_bit(R5_MadeGoodRepl, &dev->flags);
4842 }
4843 if (!test_bit(R5_Insync, &dev->flags)) {
4844 /* The ReadError flag will just be confusing now */
4845 clear_bit(R5_ReadError, &dev->flags);
4846 clear_bit(R5_ReWrite, &dev->flags);
4847 }
4848 if (test_bit(R5_ReadError, &dev->flags))
4849 clear_bit(R5_Insync, &dev->flags);
4850 if (!test_bit(R5_Insync, &dev->flags)) {
4851 if (s->failed < 2)
4852 s->failed_num[s->failed] = i;
4853 s->failed++;
4854 if (rdev && !test_bit(Faulty, &rdev->flags))
4855 do_recovery = 1;
4856 else if (!rdev) {
4857 rdev = rcu_dereference(
4858 conf->disks[i].replacement);
4859 if (rdev && !test_bit(Faulty, &rdev->flags))
4860 do_recovery = 1;
4861 }
4862 }
4863
4864 if (test_bit(R5_InJournal, &dev->flags))
4865 s->injournal++;
4866 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4867 s->just_cached++;
4868 }
4869 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4870 /* If there is a failed device being replaced,
4871 * we must be recovering.
4872 * else if we are after recovery_cp, we must be syncing
4873 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4874 * else we can only be replacing
4875 * sync and recovery both need to read all devices, and so
4876 * use the same flag.
4877 */
4878 if (do_recovery ||
4879 sh->sector >= conf->mddev->recovery_cp ||
4880 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4881 s->syncing = 1;
4882 else
4883 s->replacing = 1;
4884 }
4885 rcu_read_unlock();
4886 }
4887
4888 /*
4889 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4890 * a head which can now be handled.
4891 */
clear_batch_ready(struct stripe_head * sh)4892 static int clear_batch_ready(struct stripe_head *sh)
4893 {
4894 struct stripe_head *tmp;
4895 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4896 return (sh->batch_head && sh->batch_head != sh);
4897 spin_lock(&sh->stripe_lock);
4898 if (!sh->batch_head) {
4899 spin_unlock(&sh->stripe_lock);
4900 return 0;
4901 }
4902
4903 /*
4904 * this stripe could be added to a batch list before we check
4905 * BATCH_READY, skips it
4906 */
4907 if (sh->batch_head != sh) {
4908 spin_unlock(&sh->stripe_lock);
4909 return 1;
4910 }
4911 spin_lock(&sh->batch_lock);
4912 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4913 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4914 spin_unlock(&sh->batch_lock);
4915 spin_unlock(&sh->stripe_lock);
4916
4917 /*
4918 * BATCH_READY is cleared, no new stripes can be added.
4919 * batch_list can be accessed without lock
4920 */
4921 return 0;
4922 }
4923
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4924 static void break_stripe_batch_list(struct stripe_head *head_sh,
4925 unsigned long handle_flags)
4926 {
4927 struct stripe_head *sh, *next;
4928 int i;
4929 int do_wakeup = 0;
4930
4931 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4932
4933 list_del_init(&sh->batch_list);
4934
4935 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4936 (1 << STRIPE_SYNCING) |
4937 (1 << STRIPE_REPLACED) |
4938 (1 << STRIPE_DELAYED) |
4939 (1 << STRIPE_BIT_DELAY) |
4940 (1 << STRIPE_FULL_WRITE) |
4941 (1 << STRIPE_BIOFILL_RUN) |
4942 (1 << STRIPE_COMPUTE_RUN) |
4943 (1 << STRIPE_DISCARD) |
4944 (1 << STRIPE_BATCH_READY) |
4945 (1 << STRIPE_BATCH_ERR) |
4946 (1 << STRIPE_BITMAP_PENDING)),
4947 "stripe state: %lx\n", sh->state);
4948 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4949 (1 << STRIPE_REPLACED)),
4950 "head stripe state: %lx\n", head_sh->state);
4951
4952 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4953 (1 << STRIPE_PREREAD_ACTIVE) |
4954 (1 << STRIPE_DEGRADED) |
4955 (1 << STRIPE_ON_UNPLUG_LIST)),
4956 head_sh->state & (1 << STRIPE_INSYNC));
4957
4958 sh->check_state = head_sh->check_state;
4959 sh->reconstruct_state = head_sh->reconstruct_state;
4960 spin_lock_irq(&sh->stripe_lock);
4961 sh->batch_head = NULL;
4962 spin_unlock_irq(&sh->stripe_lock);
4963 for (i = 0; i < sh->disks; i++) {
4964 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4965 do_wakeup = 1;
4966 sh->dev[i].flags = head_sh->dev[i].flags &
4967 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4968 }
4969 if (handle_flags == 0 ||
4970 sh->state & handle_flags)
4971 set_bit(STRIPE_HANDLE, &sh->state);
4972 raid5_release_stripe(sh);
4973 }
4974 spin_lock_irq(&head_sh->stripe_lock);
4975 head_sh->batch_head = NULL;
4976 spin_unlock_irq(&head_sh->stripe_lock);
4977 for (i = 0; i < head_sh->disks; i++)
4978 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4979 do_wakeup = 1;
4980 if (head_sh->state & handle_flags)
4981 set_bit(STRIPE_HANDLE, &head_sh->state);
4982
4983 if (do_wakeup)
4984 wake_up(&head_sh->raid_conf->wait_for_overlap);
4985 }
4986
handle_stripe(struct stripe_head * sh)4987 static void handle_stripe(struct stripe_head *sh)
4988 {
4989 struct stripe_head_state s;
4990 struct r5conf *conf = sh->raid_conf;
4991 int i;
4992 int prexor;
4993 int disks = sh->disks;
4994 struct r5dev *pdev, *qdev;
4995
4996 clear_bit(STRIPE_HANDLE, &sh->state);
4997
4998 /*
4999 * handle_stripe should not continue handle the batched stripe, only
5000 * the head of batch list or lone stripe can continue. Otherwise we
5001 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
5002 * is set for the batched stripe.
5003 */
5004 if (clear_batch_ready(sh))
5005 return;
5006
5007 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
5008 /* already being handled, ensure it gets handled
5009 * again when current action finishes */
5010 set_bit(STRIPE_HANDLE, &sh->state);
5011 return;
5012 }
5013
5014 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
5015 break_stripe_batch_list(sh, 0);
5016
5017 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
5018 spin_lock(&sh->stripe_lock);
5019 /*
5020 * Cannot process 'sync' concurrently with 'discard'.
5021 * Flush data in r5cache before 'sync'.
5022 */
5023 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
5024 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
5025 !test_bit(STRIPE_DISCARD, &sh->state) &&
5026 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
5027 set_bit(STRIPE_SYNCING, &sh->state);
5028 clear_bit(STRIPE_INSYNC, &sh->state);
5029 clear_bit(STRIPE_REPLACED, &sh->state);
5030 }
5031 spin_unlock(&sh->stripe_lock);
5032 }
5033 clear_bit(STRIPE_DELAYED, &sh->state);
5034
5035 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
5036 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
5037 (unsigned long long)sh->sector, sh->state,
5038 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5039 sh->check_state, sh->reconstruct_state);
5040
5041 analyse_stripe(sh, &s);
5042
5043 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5044 goto finish;
5045
5046 if (s.handle_bad_blocks ||
5047 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5048 set_bit(STRIPE_HANDLE, &sh->state);
5049 goto finish;
5050 }
5051
5052 if (unlikely(s.blocked_rdev)) {
5053 if (s.syncing || s.expanding || s.expanded ||
5054 s.replacing || s.to_write || s.written) {
5055 set_bit(STRIPE_HANDLE, &sh->state);
5056 goto finish;
5057 }
5058 /* There is nothing for the blocked_rdev to block */
5059 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5060 s.blocked_rdev = NULL;
5061 }
5062
5063 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5064 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5065 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5066 }
5067
5068 pr_debug("locked=%d uptodate=%d to_read=%d"
5069 " to_write=%d failed=%d failed_num=%d,%d\n",
5070 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5071 s.failed_num[0], s.failed_num[1]);
5072 /*
5073 * check if the array has lost more than max_degraded devices and,
5074 * if so, some requests might need to be failed.
5075 *
5076 * When journal device failed (log_failed), we will only process
5077 * the stripe if there is data need write to raid disks
5078 */
5079 if (s.failed > conf->max_degraded ||
5080 (s.log_failed && s.injournal == 0)) {
5081 sh->check_state = 0;
5082 sh->reconstruct_state = 0;
5083 break_stripe_batch_list(sh, 0);
5084 if (s.to_read+s.to_write+s.written)
5085 handle_failed_stripe(conf, sh, &s, disks);
5086 if (s.syncing + s.replacing)
5087 handle_failed_sync(conf, sh, &s);
5088 }
5089
5090 /* Now we check to see if any write operations have recently
5091 * completed
5092 */
5093 prexor = 0;
5094 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5095 prexor = 1;
5096 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5097 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5098 sh->reconstruct_state = reconstruct_state_idle;
5099
5100 /* All the 'written' buffers and the parity block are ready to
5101 * be written back to disk
5102 */
5103 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5104 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5105 BUG_ON(sh->qd_idx >= 0 &&
5106 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5107 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5108 for (i = disks; i--; ) {
5109 struct r5dev *dev = &sh->dev[i];
5110 if (test_bit(R5_LOCKED, &dev->flags) &&
5111 (i == sh->pd_idx || i == sh->qd_idx ||
5112 dev->written || test_bit(R5_InJournal,
5113 &dev->flags))) {
5114 pr_debug("Writing block %d\n", i);
5115 set_bit(R5_Wantwrite, &dev->flags);
5116 if (prexor)
5117 continue;
5118 if (s.failed > 1)
5119 continue;
5120 if (!test_bit(R5_Insync, &dev->flags) ||
5121 ((i == sh->pd_idx || i == sh->qd_idx) &&
5122 s.failed == 0))
5123 set_bit(STRIPE_INSYNC, &sh->state);
5124 }
5125 }
5126 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5127 s.dec_preread_active = 1;
5128 }
5129
5130 /*
5131 * might be able to return some write requests if the parity blocks
5132 * are safe, or on a failed drive
5133 */
5134 pdev = &sh->dev[sh->pd_idx];
5135 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5136 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5137 qdev = &sh->dev[sh->qd_idx];
5138 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5139 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5140 || conf->level < 6;
5141
5142 if (s.written &&
5143 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5144 && !test_bit(R5_LOCKED, &pdev->flags)
5145 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5146 test_bit(R5_Discard, &pdev->flags))))) &&
5147 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5148 && !test_bit(R5_LOCKED, &qdev->flags)
5149 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5150 test_bit(R5_Discard, &qdev->flags))))))
5151 handle_stripe_clean_event(conf, sh, disks);
5152
5153 if (s.just_cached)
5154 r5c_handle_cached_data_endio(conf, sh, disks);
5155 log_stripe_write_finished(sh);
5156
5157 /* Now we might consider reading some blocks, either to check/generate
5158 * parity, or to satisfy requests
5159 * or to load a block that is being partially written.
5160 */
5161 if (s.to_read || s.non_overwrite
5162 || (s.to_write && s.failed)
5163 || (s.syncing && (s.uptodate + s.compute < disks))
5164 || s.replacing
5165 || s.expanding)
5166 handle_stripe_fill(sh, &s, disks);
5167
5168 /*
5169 * When the stripe finishes full journal write cycle (write to journal
5170 * and raid disk), this is the clean up procedure so it is ready for
5171 * next operation.
5172 */
5173 r5c_finish_stripe_write_out(conf, sh, &s);
5174
5175 /*
5176 * Now to consider new write requests, cache write back and what else,
5177 * if anything should be read. We do not handle new writes when:
5178 * 1/ A 'write' operation (copy+xor) is already in flight.
5179 * 2/ A 'check' operation is in flight, as it may clobber the parity
5180 * block.
5181 * 3/ A r5c cache log write is in flight.
5182 */
5183
5184 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5185 if (!r5c_is_writeback(conf->log)) {
5186 if (s.to_write)
5187 handle_stripe_dirtying(conf, sh, &s, disks);
5188 } else { /* write back cache */
5189 int ret = 0;
5190
5191 /* First, try handle writes in caching phase */
5192 if (s.to_write)
5193 ret = r5c_try_caching_write(conf, sh, &s,
5194 disks);
5195 /*
5196 * If caching phase failed: ret == -EAGAIN
5197 * OR
5198 * stripe under reclaim: !caching && injournal
5199 *
5200 * fall back to handle_stripe_dirtying()
5201 */
5202 if (ret == -EAGAIN ||
5203 /* stripe under reclaim: !caching && injournal */
5204 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5205 s.injournal > 0)) {
5206 ret = handle_stripe_dirtying(conf, sh, &s,
5207 disks);
5208 if (ret == -EAGAIN)
5209 goto finish;
5210 }
5211 }
5212 }
5213
5214 /* maybe we need to check and possibly fix the parity for this stripe
5215 * Any reads will already have been scheduled, so we just see if enough
5216 * data is available. The parity check is held off while parity
5217 * dependent operations are in flight.
5218 */
5219 if (sh->check_state ||
5220 (s.syncing && s.locked == 0 &&
5221 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5222 !test_bit(STRIPE_INSYNC, &sh->state))) {
5223 if (conf->level == 6)
5224 handle_parity_checks6(conf, sh, &s, disks);
5225 else
5226 handle_parity_checks5(conf, sh, &s, disks);
5227 }
5228
5229 if ((s.replacing || s.syncing) && s.locked == 0
5230 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5231 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5232 /* Write out to replacement devices where possible */
5233 for (i = 0; i < conf->raid_disks; i++)
5234 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5235 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5236 set_bit(R5_WantReplace, &sh->dev[i].flags);
5237 set_bit(R5_LOCKED, &sh->dev[i].flags);
5238 s.locked++;
5239 }
5240 if (s.replacing)
5241 set_bit(STRIPE_INSYNC, &sh->state);
5242 set_bit(STRIPE_REPLACED, &sh->state);
5243 }
5244 if ((s.syncing || s.replacing) && s.locked == 0 &&
5245 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5246 test_bit(STRIPE_INSYNC, &sh->state)) {
5247 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5248 clear_bit(STRIPE_SYNCING, &sh->state);
5249 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5250 wake_up(&conf->wait_for_overlap);
5251 }
5252
5253 /* If the failed drives are just a ReadError, then we might need
5254 * to progress the repair/check process
5255 */
5256 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5257 for (i = 0; i < s.failed; i++) {
5258 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5259 if (test_bit(R5_ReadError, &dev->flags)
5260 && !test_bit(R5_LOCKED, &dev->flags)
5261 && test_bit(R5_UPTODATE, &dev->flags)
5262 ) {
5263 if (!test_bit(R5_ReWrite, &dev->flags)) {
5264 set_bit(R5_Wantwrite, &dev->flags);
5265 set_bit(R5_ReWrite, &dev->flags);
5266 } else
5267 /* let's read it back */
5268 set_bit(R5_Wantread, &dev->flags);
5269 set_bit(R5_LOCKED, &dev->flags);
5270 s.locked++;
5271 }
5272 }
5273
5274 /* Finish reconstruct operations initiated by the expansion process */
5275 if (sh->reconstruct_state == reconstruct_state_result) {
5276 struct stripe_head *sh_src
5277 = raid5_get_active_stripe(conf, NULL, sh->sector,
5278 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5279 R5_GAS_NOQUIESCE);
5280 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5281 /* sh cannot be written until sh_src has been read.
5282 * so arrange for sh to be delayed a little
5283 */
5284 set_bit(STRIPE_DELAYED, &sh->state);
5285 set_bit(STRIPE_HANDLE, &sh->state);
5286 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5287 &sh_src->state))
5288 atomic_inc(&conf->preread_active_stripes);
5289 raid5_release_stripe(sh_src);
5290 goto finish;
5291 }
5292 if (sh_src)
5293 raid5_release_stripe(sh_src);
5294
5295 sh->reconstruct_state = reconstruct_state_idle;
5296 clear_bit(STRIPE_EXPANDING, &sh->state);
5297 for (i = conf->raid_disks; i--; ) {
5298 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5299 set_bit(R5_LOCKED, &sh->dev[i].flags);
5300 s.locked++;
5301 }
5302 }
5303
5304 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5305 !sh->reconstruct_state) {
5306 /* Need to write out all blocks after computing parity */
5307 sh->disks = conf->raid_disks;
5308 stripe_set_idx(sh->sector, conf, 0, sh);
5309 schedule_reconstruction(sh, &s, 1, 1);
5310 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5311 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5312 atomic_dec(&conf->reshape_stripes);
5313 wake_up(&conf->wait_for_overlap);
5314 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5315 }
5316
5317 if (s.expanding && s.locked == 0 &&
5318 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5319 handle_stripe_expansion(conf, sh);
5320
5321 finish:
5322 /* wait for this device to become unblocked */
5323 if (unlikely(s.blocked_rdev)) {
5324 if (conf->mddev->external)
5325 md_wait_for_blocked_rdev(s.blocked_rdev,
5326 conf->mddev);
5327 else
5328 /* Internal metadata will immediately
5329 * be written by raid5d, so we don't
5330 * need to wait here.
5331 */
5332 rdev_dec_pending(s.blocked_rdev,
5333 conf->mddev);
5334 }
5335
5336 if (s.handle_bad_blocks)
5337 for (i = disks; i--; ) {
5338 struct md_rdev *rdev;
5339 struct r5dev *dev = &sh->dev[i];
5340 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5341 /* We own a safe reference to the rdev */
5342 rdev = rdev_pend_deref(conf->disks[i].rdev);
5343 if (!rdev_set_badblocks(rdev, sh->sector,
5344 RAID5_STRIPE_SECTORS(conf), 0))
5345 md_error(conf->mddev, rdev);
5346 rdev_dec_pending(rdev, conf->mddev);
5347 }
5348 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5349 rdev = rdev_pend_deref(conf->disks[i].rdev);
5350 rdev_clear_badblocks(rdev, sh->sector,
5351 RAID5_STRIPE_SECTORS(conf), 0);
5352 rdev_dec_pending(rdev, conf->mddev);
5353 }
5354 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5355 rdev = rdev_pend_deref(conf->disks[i].replacement);
5356 if (!rdev)
5357 /* rdev have been moved down */
5358 rdev = rdev_pend_deref(conf->disks[i].rdev);
5359 rdev_clear_badblocks(rdev, sh->sector,
5360 RAID5_STRIPE_SECTORS(conf), 0);
5361 rdev_dec_pending(rdev, conf->mddev);
5362 }
5363 }
5364
5365 if (s.ops_request)
5366 raid_run_ops(sh, s.ops_request);
5367
5368 ops_run_io(sh, &s);
5369
5370 if (s.dec_preread_active) {
5371 /* We delay this until after ops_run_io so that if make_request
5372 * is waiting on a flush, it won't continue until the writes
5373 * have actually been submitted.
5374 */
5375 atomic_dec(&conf->preread_active_stripes);
5376 if (atomic_read(&conf->preread_active_stripes) <
5377 IO_THRESHOLD)
5378 md_wakeup_thread(conf->mddev->thread);
5379 }
5380
5381 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5382 }
5383
raid5_activate_delayed(struct r5conf * conf)5384 static void raid5_activate_delayed(struct r5conf *conf)
5385 __must_hold(&conf->device_lock)
5386 {
5387 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5388 while (!list_empty(&conf->delayed_list)) {
5389 struct list_head *l = conf->delayed_list.next;
5390 struct stripe_head *sh;
5391 sh = list_entry(l, struct stripe_head, lru);
5392 list_del_init(l);
5393 clear_bit(STRIPE_DELAYED, &sh->state);
5394 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5395 atomic_inc(&conf->preread_active_stripes);
5396 list_add_tail(&sh->lru, &conf->hold_list);
5397 raid5_wakeup_stripe_thread(sh);
5398 }
5399 }
5400 }
5401
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5402 static void activate_bit_delay(struct r5conf *conf,
5403 struct list_head *temp_inactive_list)
5404 __must_hold(&conf->device_lock)
5405 {
5406 struct list_head head;
5407 list_add(&head, &conf->bitmap_list);
5408 list_del_init(&conf->bitmap_list);
5409 while (!list_empty(&head)) {
5410 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5411 int hash;
5412 list_del_init(&sh->lru);
5413 atomic_inc(&sh->count);
5414 hash = sh->hash_lock_index;
5415 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5416 }
5417 }
5418
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5419 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5420 {
5421 struct r5conf *conf = mddev->private;
5422 sector_t sector = bio->bi_iter.bi_sector;
5423 unsigned int chunk_sectors;
5424 unsigned int bio_sectors = bio_sectors(bio);
5425
5426 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5427 return chunk_sectors >=
5428 ((sector & (chunk_sectors - 1)) + bio_sectors);
5429 }
5430
5431 /*
5432 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5433 * later sampled by raid5d.
5434 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5435 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5436 {
5437 unsigned long flags;
5438
5439 spin_lock_irqsave(&conf->device_lock, flags);
5440
5441 bi->bi_next = conf->retry_read_aligned_list;
5442 conf->retry_read_aligned_list = bi;
5443
5444 spin_unlock_irqrestore(&conf->device_lock, flags);
5445 md_wakeup_thread(conf->mddev->thread);
5446 }
5447
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5448 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5449 unsigned int *offset)
5450 {
5451 struct bio *bi;
5452
5453 bi = conf->retry_read_aligned;
5454 if (bi) {
5455 *offset = conf->retry_read_offset;
5456 conf->retry_read_aligned = NULL;
5457 return bi;
5458 }
5459 bi = conf->retry_read_aligned_list;
5460 if(bi) {
5461 conf->retry_read_aligned_list = bi->bi_next;
5462 bi->bi_next = NULL;
5463 *offset = 0;
5464 }
5465
5466 return bi;
5467 }
5468
5469 /*
5470 * The "raid5_align_endio" should check if the read succeeded and if it
5471 * did, call bio_endio on the original bio (having bio_put the new bio
5472 * first).
5473 * If the read failed..
5474 */
raid5_align_endio(struct bio * bi)5475 static void raid5_align_endio(struct bio *bi)
5476 {
5477 struct bio *raid_bi = bi->bi_private;
5478 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5479 struct mddev *mddev = rdev->mddev;
5480 struct r5conf *conf = mddev->private;
5481 blk_status_t error = bi->bi_status;
5482
5483 bio_put(bi);
5484 raid_bi->bi_next = NULL;
5485 rdev_dec_pending(rdev, conf->mddev);
5486
5487 if (!error) {
5488 bio_endio(raid_bi);
5489 if (atomic_dec_and_test(&conf->active_aligned_reads))
5490 wake_up(&conf->wait_for_quiescent);
5491 return;
5492 }
5493
5494 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5495
5496 add_bio_to_retry(raid_bi, conf);
5497 }
5498
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5499 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5500 {
5501 struct r5conf *conf = mddev->private;
5502 struct bio *align_bio;
5503 struct md_rdev *rdev;
5504 sector_t sector, end_sector, first_bad;
5505 int bad_sectors, dd_idx;
5506 bool did_inc;
5507
5508 if (!in_chunk_boundary(mddev, raid_bio)) {
5509 pr_debug("%s: non aligned\n", __func__);
5510 return 0;
5511 }
5512
5513 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5514 &dd_idx, NULL);
5515 end_sector = sector + bio_sectors(raid_bio);
5516
5517 rcu_read_lock();
5518 if (r5c_big_stripe_cached(conf, sector))
5519 goto out_rcu_unlock;
5520
5521 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5522 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5523 rdev->recovery_offset < end_sector) {
5524 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5525 if (!rdev)
5526 goto out_rcu_unlock;
5527 if (test_bit(Faulty, &rdev->flags) ||
5528 !(test_bit(In_sync, &rdev->flags) ||
5529 rdev->recovery_offset >= end_sector))
5530 goto out_rcu_unlock;
5531 }
5532
5533 atomic_inc(&rdev->nr_pending);
5534 rcu_read_unlock();
5535
5536 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5537 &bad_sectors)) {
5538 rdev_dec_pending(rdev, mddev);
5539 return 0;
5540 }
5541
5542 md_account_bio(mddev, &raid_bio);
5543 raid_bio->bi_next = (void *)rdev;
5544
5545 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5546 &mddev->bio_set);
5547 align_bio->bi_end_io = raid5_align_endio;
5548 align_bio->bi_private = raid_bio;
5549 align_bio->bi_iter.bi_sector = sector;
5550
5551 /* No reshape active, so we can trust rdev->data_offset */
5552 align_bio->bi_iter.bi_sector += rdev->data_offset;
5553
5554 did_inc = false;
5555 if (conf->quiesce == 0) {
5556 atomic_inc(&conf->active_aligned_reads);
5557 did_inc = true;
5558 }
5559 /* need a memory barrier to detect the race with raid5_quiesce() */
5560 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5561 /* quiesce is in progress, so we need to undo io activation and wait
5562 * for it to finish
5563 */
5564 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5565 wake_up(&conf->wait_for_quiescent);
5566 spin_lock_irq(&conf->device_lock);
5567 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5568 conf->device_lock);
5569 atomic_inc(&conf->active_aligned_reads);
5570 spin_unlock_irq(&conf->device_lock);
5571 }
5572
5573 if (mddev->gendisk)
5574 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5575 raid_bio->bi_iter.bi_sector);
5576 submit_bio_noacct(align_bio);
5577 return 1;
5578
5579 out_rcu_unlock:
5580 rcu_read_unlock();
5581 return 0;
5582 }
5583
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5584 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5585 {
5586 struct bio *split;
5587 sector_t sector = raid_bio->bi_iter.bi_sector;
5588 unsigned chunk_sects = mddev->chunk_sectors;
5589 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5590
5591 if (sectors < bio_sectors(raid_bio)) {
5592 struct r5conf *conf = mddev->private;
5593 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5594 bio_chain(split, raid_bio);
5595 submit_bio_noacct(raid_bio);
5596 raid_bio = split;
5597 }
5598
5599 if (!raid5_read_one_chunk(mddev, raid_bio))
5600 return raid_bio;
5601
5602 return NULL;
5603 }
5604
5605 /* __get_priority_stripe - get the next stripe to process
5606 *
5607 * Full stripe writes are allowed to pass preread active stripes up until
5608 * the bypass_threshold is exceeded. In general the bypass_count
5609 * increments when the handle_list is handled before the hold_list; however, it
5610 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5611 * stripe with in flight i/o. The bypass_count will be reset when the
5612 * head of the hold_list has changed, i.e. the head was promoted to the
5613 * handle_list.
5614 */
__get_priority_stripe(struct r5conf * conf,int group)5615 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5616 __must_hold(&conf->device_lock)
5617 {
5618 struct stripe_head *sh, *tmp;
5619 struct list_head *handle_list = NULL;
5620 struct r5worker_group *wg;
5621 bool second_try = !r5c_is_writeback(conf->log) &&
5622 !r5l_log_disk_error(conf);
5623 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5624 r5l_log_disk_error(conf);
5625
5626 again:
5627 wg = NULL;
5628 sh = NULL;
5629 if (conf->worker_cnt_per_group == 0) {
5630 handle_list = try_loprio ? &conf->loprio_list :
5631 &conf->handle_list;
5632 } else if (group != ANY_GROUP) {
5633 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5634 &conf->worker_groups[group].handle_list;
5635 wg = &conf->worker_groups[group];
5636 } else {
5637 int i;
5638 for (i = 0; i < conf->group_cnt; i++) {
5639 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5640 &conf->worker_groups[i].handle_list;
5641 wg = &conf->worker_groups[i];
5642 if (!list_empty(handle_list))
5643 break;
5644 }
5645 }
5646
5647 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5648 __func__,
5649 list_empty(handle_list) ? "empty" : "busy",
5650 list_empty(&conf->hold_list) ? "empty" : "busy",
5651 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5652
5653 if (!list_empty(handle_list)) {
5654 sh = list_entry(handle_list->next, typeof(*sh), lru);
5655
5656 if (list_empty(&conf->hold_list))
5657 conf->bypass_count = 0;
5658 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5659 if (conf->hold_list.next == conf->last_hold)
5660 conf->bypass_count++;
5661 else {
5662 conf->last_hold = conf->hold_list.next;
5663 conf->bypass_count -= conf->bypass_threshold;
5664 if (conf->bypass_count < 0)
5665 conf->bypass_count = 0;
5666 }
5667 }
5668 } else if (!list_empty(&conf->hold_list) &&
5669 ((conf->bypass_threshold &&
5670 conf->bypass_count > conf->bypass_threshold) ||
5671 atomic_read(&conf->pending_full_writes) == 0)) {
5672
5673 list_for_each_entry(tmp, &conf->hold_list, lru) {
5674 if (conf->worker_cnt_per_group == 0 ||
5675 group == ANY_GROUP ||
5676 !cpu_online(tmp->cpu) ||
5677 cpu_to_group(tmp->cpu) == group) {
5678 sh = tmp;
5679 break;
5680 }
5681 }
5682
5683 if (sh) {
5684 conf->bypass_count -= conf->bypass_threshold;
5685 if (conf->bypass_count < 0)
5686 conf->bypass_count = 0;
5687 }
5688 wg = NULL;
5689 }
5690
5691 if (!sh) {
5692 if (second_try)
5693 return NULL;
5694 second_try = true;
5695 try_loprio = !try_loprio;
5696 goto again;
5697 }
5698
5699 if (wg) {
5700 wg->stripes_cnt--;
5701 sh->group = NULL;
5702 }
5703 list_del_init(&sh->lru);
5704 BUG_ON(atomic_inc_return(&sh->count) != 1);
5705 return sh;
5706 }
5707
5708 struct raid5_plug_cb {
5709 struct blk_plug_cb cb;
5710 struct list_head list;
5711 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5712 };
5713
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5714 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5715 {
5716 struct raid5_plug_cb *cb = container_of(
5717 blk_cb, struct raid5_plug_cb, cb);
5718 struct stripe_head *sh;
5719 struct mddev *mddev = cb->cb.data;
5720 struct r5conf *conf = mddev->private;
5721 int cnt = 0;
5722 int hash;
5723
5724 if (cb->list.next && !list_empty(&cb->list)) {
5725 spin_lock_irq(&conf->device_lock);
5726 while (!list_empty(&cb->list)) {
5727 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5728 list_del_init(&sh->lru);
5729 /*
5730 * avoid race release_stripe_plug() sees
5731 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5732 * is still in our list
5733 */
5734 smp_mb__before_atomic();
5735 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5736 /*
5737 * STRIPE_ON_RELEASE_LIST could be set here. In that
5738 * case, the count is always > 1 here
5739 */
5740 hash = sh->hash_lock_index;
5741 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5742 cnt++;
5743 }
5744 spin_unlock_irq(&conf->device_lock);
5745 }
5746 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5747 NR_STRIPE_HASH_LOCKS);
5748 if (mddev->queue)
5749 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5750 kfree(cb);
5751 }
5752
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5753 static void release_stripe_plug(struct mddev *mddev,
5754 struct stripe_head *sh)
5755 {
5756 struct blk_plug_cb *blk_cb = blk_check_plugged(
5757 raid5_unplug, mddev,
5758 sizeof(struct raid5_plug_cb));
5759 struct raid5_plug_cb *cb;
5760
5761 if (!blk_cb) {
5762 raid5_release_stripe(sh);
5763 return;
5764 }
5765
5766 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5767
5768 if (cb->list.next == NULL) {
5769 int i;
5770 INIT_LIST_HEAD(&cb->list);
5771 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5772 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5773 }
5774
5775 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5776 list_add_tail(&sh->lru, &cb->list);
5777 else
5778 raid5_release_stripe(sh);
5779 }
5780
make_discard_request(struct mddev * mddev,struct bio * bi)5781 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5782 {
5783 struct r5conf *conf = mddev->private;
5784 sector_t logical_sector, last_sector;
5785 struct stripe_head *sh;
5786 int stripe_sectors;
5787
5788 /* We need to handle this when io_uring supports discard/trim */
5789 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5790 return;
5791
5792 if (mddev->reshape_position != MaxSector)
5793 /* Skip discard while reshape is happening */
5794 return;
5795
5796 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5797 last_sector = bio_end_sector(bi);
5798
5799 bi->bi_next = NULL;
5800
5801 stripe_sectors = conf->chunk_sectors *
5802 (conf->raid_disks - conf->max_degraded);
5803 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5804 stripe_sectors);
5805 sector_div(last_sector, stripe_sectors);
5806
5807 logical_sector *= conf->chunk_sectors;
5808 last_sector *= conf->chunk_sectors;
5809
5810 for (; logical_sector < last_sector;
5811 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5812 DEFINE_WAIT(w);
5813 int d;
5814 again:
5815 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5816 prepare_to_wait(&conf->wait_for_overlap, &w,
5817 TASK_UNINTERRUPTIBLE);
5818 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5819 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5820 raid5_release_stripe(sh);
5821 schedule();
5822 goto again;
5823 }
5824 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5825 spin_lock_irq(&sh->stripe_lock);
5826 for (d = 0; d < conf->raid_disks; d++) {
5827 if (d == sh->pd_idx || d == sh->qd_idx)
5828 continue;
5829 if (sh->dev[d].towrite || sh->dev[d].toread) {
5830 set_bit(R5_Overlap, &sh->dev[d].flags);
5831 spin_unlock_irq(&sh->stripe_lock);
5832 raid5_release_stripe(sh);
5833 schedule();
5834 goto again;
5835 }
5836 }
5837 set_bit(STRIPE_DISCARD, &sh->state);
5838 finish_wait(&conf->wait_for_overlap, &w);
5839 sh->overwrite_disks = 0;
5840 for (d = 0; d < conf->raid_disks; d++) {
5841 if (d == sh->pd_idx || d == sh->qd_idx)
5842 continue;
5843 sh->dev[d].towrite = bi;
5844 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5845 bio_inc_remaining(bi);
5846 md_write_inc(mddev, bi);
5847 sh->overwrite_disks++;
5848 }
5849 spin_unlock_irq(&sh->stripe_lock);
5850 if (conf->mddev->bitmap) {
5851 for (d = 0;
5852 d < conf->raid_disks - conf->max_degraded;
5853 d++)
5854 md_bitmap_startwrite(mddev->bitmap,
5855 sh->sector,
5856 RAID5_STRIPE_SECTORS(conf),
5857 0);
5858 sh->bm_seq = conf->seq_flush + 1;
5859 set_bit(STRIPE_BIT_DELAY, &sh->state);
5860 }
5861
5862 set_bit(STRIPE_HANDLE, &sh->state);
5863 clear_bit(STRIPE_DELAYED, &sh->state);
5864 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5865 atomic_inc(&conf->preread_active_stripes);
5866 release_stripe_plug(mddev, sh);
5867 }
5868
5869 bio_endio(bi);
5870 }
5871
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5872 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5873 sector_t reshape_sector)
5874 {
5875 return mddev->reshape_backwards ? sector < reshape_sector :
5876 sector >= reshape_sector;
5877 }
5878
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5879 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5880 sector_t max, sector_t reshape_sector)
5881 {
5882 return mddev->reshape_backwards ? max < reshape_sector :
5883 min >= reshape_sector;
5884 }
5885
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5886 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5887 struct stripe_head *sh)
5888 {
5889 sector_t max_sector = 0, min_sector = MaxSector;
5890 bool ret = false;
5891 int dd_idx;
5892
5893 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5894 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5895 continue;
5896
5897 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5898 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5899 }
5900
5901 spin_lock_irq(&conf->device_lock);
5902
5903 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5904 conf->reshape_progress))
5905 /* mismatch, need to try again */
5906 ret = true;
5907
5908 spin_unlock_irq(&conf->device_lock);
5909
5910 return ret;
5911 }
5912
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5913 static int add_all_stripe_bios(struct r5conf *conf,
5914 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5915 struct bio *bi, int forwrite, int previous)
5916 {
5917 int dd_idx;
5918 int ret = 1;
5919
5920 spin_lock_irq(&sh->stripe_lock);
5921
5922 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5923 struct r5dev *dev = &sh->dev[dd_idx];
5924
5925 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5926 continue;
5927
5928 if (dev->sector < ctx->first_sector ||
5929 dev->sector >= ctx->last_sector)
5930 continue;
5931
5932 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5933 set_bit(R5_Overlap, &dev->flags);
5934 ret = 0;
5935 continue;
5936 }
5937 }
5938
5939 if (!ret)
5940 goto out;
5941
5942 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5943 struct r5dev *dev = &sh->dev[dd_idx];
5944
5945 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5946 continue;
5947
5948 if (dev->sector < ctx->first_sector ||
5949 dev->sector >= ctx->last_sector)
5950 continue;
5951
5952 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5953 clear_bit((dev->sector - ctx->first_sector) >>
5954 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5955 }
5956
5957 out:
5958 spin_unlock_irq(&sh->stripe_lock);
5959 return ret;
5960 }
5961
reshape_inprogress(struct mddev * mddev)5962 static bool reshape_inprogress(struct mddev *mddev)
5963 {
5964 return test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
5965 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5966 !test_bit(MD_RECOVERY_DONE, &mddev->recovery) &&
5967 !test_bit(MD_RECOVERY_INTR, &mddev->recovery);
5968 }
5969
reshape_disabled(struct mddev * mddev)5970 static bool reshape_disabled(struct mddev *mddev)
5971 {
5972 return is_md_suspended(mddev) || !md_is_rdwr(mddev);
5973 }
5974
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5975 static enum stripe_result make_stripe_request(struct mddev *mddev,
5976 struct r5conf *conf, struct stripe_request_ctx *ctx,
5977 sector_t logical_sector, struct bio *bi)
5978 {
5979 const int rw = bio_data_dir(bi);
5980 enum stripe_result ret;
5981 struct stripe_head *sh;
5982 sector_t new_sector;
5983 int previous = 0, flags = 0;
5984 int seq, dd_idx;
5985
5986 seq = read_seqcount_begin(&conf->gen_lock);
5987
5988 if (unlikely(conf->reshape_progress != MaxSector)) {
5989 /*
5990 * Spinlock is needed as reshape_progress may be
5991 * 64bit on a 32bit platform, and so it might be
5992 * possible to see a half-updated value
5993 * Of course reshape_progress could change after
5994 * the lock is dropped, so once we get a reference
5995 * to the stripe that we think it is, we will have
5996 * to check again.
5997 */
5998 spin_lock_irq(&conf->device_lock);
5999 if (ahead_of_reshape(mddev, logical_sector,
6000 conf->reshape_progress)) {
6001 previous = 1;
6002 } else {
6003 if (ahead_of_reshape(mddev, logical_sector,
6004 conf->reshape_safe)) {
6005 spin_unlock_irq(&conf->device_lock);
6006 ret = STRIPE_SCHEDULE_AND_RETRY;
6007 goto out;
6008 }
6009 }
6010 spin_unlock_irq(&conf->device_lock);
6011 }
6012
6013 new_sector = raid5_compute_sector(conf, logical_sector, previous,
6014 &dd_idx, NULL);
6015 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
6016 new_sector, logical_sector);
6017
6018 if (previous)
6019 flags |= R5_GAS_PREVIOUS;
6020 if (bi->bi_opf & REQ_RAHEAD)
6021 flags |= R5_GAS_NOBLOCK;
6022 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
6023 if (unlikely(!sh)) {
6024 /* cannot get stripe, just give-up */
6025 bi->bi_status = BLK_STS_IOERR;
6026 return STRIPE_FAIL;
6027 }
6028
6029 if (unlikely(previous) &&
6030 stripe_ahead_of_reshape(mddev, conf, sh)) {
6031 /*
6032 * Expansion moved on while waiting for a stripe.
6033 * Expansion could still move past after this
6034 * test, but as we are holding a reference to
6035 * 'sh', we know that if that happens,
6036 * STRIPE_EXPANDING will get set and the expansion
6037 * won't proceed until we finish with the stripe.
6038 */
6039 ret = STRIPE_SCHEDULE_AND_RETRY;
6040 goto out_release;
6041 }
6042
6043 if (read_seqcount_retry(&conf->gen_lock, seq)) {
6044 /* Might have got the wrong stripe_head by accident */
6045 ret = STRIPE_RETRY;
6046 goto out_release;
6047 }
6048
6049 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
6050 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
6051 /*
6052 * Stripe is busy expanding or add failed due to
6053 * overlap. Flush everything and wait a while.
6054 */
6055 md_wakeup_thread(mddev->thread);
6056 ret = STRIPE_SCHEDULE_AND_RETRY;
6057 goto out_release;
6058 }
6059
6060 if (stripe_can_batch(sh)) {
6061 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6062 if (ctx->batch_last)
6063 raid5_release_stripe(ctx->batch_last);
6064 atomic_inc(&sh->count);
6065 ctx->batch_last = sh;
6066 }
6067
6068 if (ctx->do_flush) {
6069 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6070 /* we only need flush for one stripe */
6071 ctx->do_flush = false;
6072 }
6073
6074 set_bit(STRIPE_HANDLE, &sh->state);
6075 clear_bit(STRIPE_DELAYED, &sh->state);
6076 if ((!sh->batch_head || sh == sh->batch_head) &&
6077 (bi->bi_opf & REQ_SYNC) &&
6078 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6079 atomic_inc(&conf->preread_active_stripes);
6080
6081 release_stripe_plug(mddev, sh);
6082 return STRIPE_SUCCESS;
6083
6084 out_release:
6085 raid5_release_stripe(sh);
6086 out:
6087 if (ret == STRIPE_SCHEDULE_AND_RETRY && !reshape_inprogress(mddev) &&
6088 reshape_disabled(mddev)) {
6089 bi->bi_status = BLK_STS_IOERR;
6090 ret = STRIPE_FAIL;
6091 pr_err("md/raid456:%s: io failed across reshape position while reshape can't make progress.\n",
6092 mdname(mddev));
6093 }
6094
6095 return ret;
6096 }
6097
6098 /*
6099 * If the bio covers multiple data disks, find sector within the bio that has
6100 * the lowest chunk offset in the first chunk.
6101 */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6102 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6103 struct bio *bi)
6104 {
6105 int sectors_per_chunk = conf->chunk_sectors;
6106 int raid_disks = conf->raid_disks;
6107 int dd_idx;
6108 struct stripe_head sh;
6109 unsigned int chunk_offset;
6110 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6111 sector_t sector;
6112
6113 /* We pass in fake stripe_head to get back parity disk numbers */
6114 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6115 chunk_offset = sector_div(sector, sectors_per_chunk);
6116 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6117 return r_sector;
6118 /*
6119 * Bio crosses to the next data disk. Check whether it's in the same
6120 * chunk.
6121 */
6122 dd_idx++;
6123 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6124 dd_idx++;
6125 if (dd_idx >= raid_disks)
6126 return r_sector;
6127 return r_sector + sectors_per_chunk - chunk_offset;
6128 }
6129
raid5_make_request(struct mddev * mddev,struct bio * bi)6130 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6131 {
6132 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6133 struct r5conf *conf = mddev->private;
6134 sector_t logical_sector;
6135 struct stripe_request_ctx ctx = {};
6136 const int rw = bio_data_dir(bi);
6137 enum stripe_result res;
6138 int s, stripe_cnt;
6139
6140 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6141 int ret = log_handle_flush_request(conf, bi);
6142
6143 if (ret == 0)
6144 return true;
6145 if (ret == -ENODEV) {
6146 if (md_flush_request(mddev, bi))
6147 return true;
6148 }
6149 /* ret == -EAGAIN, fallback */
6150 /*
6151 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6152 * we need to flush journal device
6153 */
6154 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6155 }
6156
6157 if (!md_write_start(mddev, bi))
6158 return false;
6159 /*
6160 * If array is degraded, better not do chunk aligned read because
6161 * later we might have to read it again in order to reconstruct
6162 * data on failed drives.
6163 */
6164 if (rw == READ && mddev->degraded == 0 &&
6165 mddev->reshape_position == MaxSector) {
6166 bi = chunk_aligned_read(mddev, bi);
6167 if (!bi)
6168 return true;
6169 }
6170
6171 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6172 make_discard_request(mddev, bi);
6173 md_write_end(mddev);
6174 return true;
6175 }
6176
6177 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6178 ctx.first_sector = logical_sector;
6179 ctx.last_sector = bio_end_sector(bi);
6180 bi->bi_next = NULL;
6181
6182 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6183 RAID5_STRIPE_SECTORS(conf));
6184 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6185
6186 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6187 bi->bi_iter.bi_sector, ctx.last_sector);
6188
6189 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6190 if ((bi->bi_opf & REQ_NOWAIT) &&
6191 (conf->reshape_progress != MaxSector) &&
6192 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6193 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6194 bio_wouldblock_error(bi);
6195 if (rw == WRITE)
6196 md_write_end(mddev);
6197 return true;
6198 }
6199 md_account_bio(mddev, &bi);
6200
6201 /*
6202 * Lets start with the stripe with the lowest chunk offset in the first
6203 * chunk. That has the best chances of creating IOs adjacent to
6204 * previous IOs in case of sequential IO and thus creates the most
6205 * sequential IO pattern. We don't bother with the optimization when
6206 * reshaping as the performance benefit is not worth the complexity.
6207 */
6208 if (likely(conf->reshape_progress == MaxSector))
6209 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6210 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6211
6212 add_wait_queue(&conf->wait_for_overlap, &wait);
6213 while (1) {
6214 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6215 bi);
6216 if (res == STRIPE_FAIL)
6217 break;
6218
6219 if (res == STRIPE_RETRY)
6220 continue;
6221
6222 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6223 /*
6224 * Must release the reference to batch_last before
6225 * scheduling and waiting for work to be done,
6226 * otherwise the batch_last stripe head could prevent
6227 * raid5_activate_delayed() from making progress
6228 * and thus deadlocking.
6229 */
6230 if (ctx.batch_last) {
6231 raid5_release_stripe(ctx.batch_last);
6232 ctx.batch_last = NULL;
6233 }
6234
6235 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6236 MAX_SCHEDULE_TIMEOUT);
6237 continue;
6238 }
6239
6240 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6241 if (s == stripe_cnt)
6242 break;
6243
6244 logical_sector = ctx.first_sector +
6245 (s << RAID5_STRIPE_SHIFT(conf));
6246 }
6247 remove_wait_queue(&conf->wait_for_overlap, &wait);
6248
6249 if (ctx.batch_last)
6250 raid5_release_stripe(ctx.batch_last);
6251
6252 if (rw == WRITE)
6253 md_write_end(mddev);
6254 bio_endio(bi);
6255 return true;
6256 }
6257
6258 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6259
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6260 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6261 {
6262 /* reshaping is quite different to recovery/resync so it is
6263 * handled quite separately ... here.
6264 *
6265 * On each call to sync_request, we gather one chunk worth of
6266 * destination stripes and flag them as expanding.
6267 * Then we find all the source stripes and request reads.
6268 * As the reads complete, handle_stripe will copy the data
6269 * into the destination stripe and release that stripe.
6270 */
6271 struct r5conf *conf = mddev->private;
6272 struct stripe_head *sh;
6273 struct md_rdev *rdev;
6274 sector_t first_sector, last_sector;
6275 int raid_disks = conf->previous_raid_disks;
6276 int data_disks = raid_disks - conf->max_degraded;
6277 int new_data_disks = conf->raid_disks - conf->max_degraded;
6278 int i;
6279 int dd_idx;
6280 sector_t writepos, readpos, safepos;
6281 sector_t stripe_addr;
6282 int reshape_sectors;
6283 struct list_head stripes;
6284 sector_t retn;
6285
6286 if (sector_nr == 0) {
6287 /* If restarting in the middle, skip the initial sectors */
6288 if (mddev->reshape_backwards &&
6289 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6290 sector_nr = raid5_size(mddev, 0, 0)
6291 - conf->reshape_progress;
6292 } else if (mddev->reshape_backwards &&
6293 conf->reshape_progress == MaxSector) {
6294 /* shouldn't happen, but just in case, finish up.*/
6295 sector_nr = MaxSector;
6296 } else if (!mddev->reshape_backwards &&
6297 conf->reshape_progress > 0)
6298 sector_nr = conf->reshape_progress;
6299 sector_div(sector_nr, new_data_disks);
6300 if (sector_nr) {
6301 mddev->curr_resync_completed = sector_nr;
6302 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6303 *skipped = 1;
6304 retn = sector_nr;
6305 goto finish;
6306 }
6307 }
6308
6309 /* We need to process a full chunk at a time.
6310 * If old and new chunk sizes differ, we need to process the
6311 * largest of these
6312 */
6313
6314 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6315
6316 /* We update the metadata at least every 10 seconds, or when
6317 * the data about to be copied would over-write the source of
6318 * the data at the front of the range. i.e. one new_stripe
6319 * along from reshape_progress new_maps to after where
6320 * reshape_safe old_maps to
6321 */
6322 writepos = conf->reshape_progress;
6323 sector_div(writepos, new_data_disks);
6324 readpos = conf->reshape_progress;
6325 sector_div(readpos, data_disks);
6326 safepos = conf->reshape_safe;
6327 sector_div(safepos, data_disks);
6328 if (mddev->reshape_backwards) {
6329 if (WARN_ON(writepos < reshape_sectors))
6330 return MaxSector;
6331
6332 writepos -= reshape_sectors;
6333 readpos += reshape_sectors;
6334 safepos += reshape_sectors;
6335 } else {
6336 writepos += reshape_sectors;
6337 /* readpos and safepos are worst-case calculations.
6338 * A negative number is overly pessimistic, and causes
6339 * obvious problems for unsigned storage. So clip to 0.
6340 */
6341 readpos -= min_t(sector_t, reshape_sectors, readpos);
6342 safepos -= min_t(sector_t, reshape_sectors, safepos);
6343 }
6344
6345 /* Having calculated the 'writepos' possibly use it
6346 * to set 'stripe_addr' which is where we will write to.
6347 */
6348 if (mddev->reshape_backwards) {
6349 if (WARN_ON(conf->reshape_progress == 0))
6350 return MaxSector;
6351
6352 stripe_addr = writepos;
6353 if (WARN_ON((mddev->dev_sectors &
6354 ~((sector_t)reshape_sectors - 1)) -
6355 reshape_sectors - stripe_addr != sector_nr))
6356 return MaxSector;
6357 } else {
6358 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6359 return MaxSector;
6360
6361 stripe_addr = sector_nr;
6362 }
6363
6364 /* 'writepos' is the most advanced device address we might write.
6365 * 'readpos' is the least advanced device address we might read.
6366 * 'safepos' is the least address recorded in the metadata as having
6367 * been reshaped.
6368 * If there is a min_offset_diff, these are adjusted either by
6369 * increasing the safepos/readpos if diff is negative, or
6370 * increasing writepos if diff is positive.
6371 * If 'readpos' is then behind 'writepos', there is no way that we can
6372 * ensure safety in the face of a crash - that must be done by userspace
6373 * making a backup of the data. So in that case there is no particular
6374 * rush to update metadata.
6375 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6376 * update the metadata to advance 'safepos' to match 'readpos' so that
6377 * we can be safe in the event of a crash.
6378 * So we insist on updating metadata if safepos is behind writepos and
6379 * readpos is beyond writepos.
6380 * In any case, update the metadata every 10 seconds.
6381 * Maybe that number should be configurable, but I'm not sure it is
6382 * worth it.... maybe it could be a multiple of safemode_delay???
6383 */
6384 if (conf->min_offset_diff < 0) {
6385 safepos += -conf->min_offset_diff;
6386 readpos += -conf->min_offset_diff;
6387 } else
6388 writepos += conf->min_offset_diff;
6389
6390 if ((mddev->reshape_backwards
6391 ? (safepos > writepos && readpos < writepos)
6392 : (safepos < writepos && readpos > writepos)) ||
6393 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6394 /* Cannot proceed until we've updated the superblock... */
6395 wait_event(conf->wait_for_overlap,
6396 atomic_read(&conf->reshape_stripes)==0
6397 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6398 if (atomic_read(&conf->reshape_stripes) != 0)
6399 return 0;
6400 mddev->reshape_position = conf->reshape_progress;
6401 mddev->curr_resync_completed = sector_nr;
6402 if (!mddev->reshape_backwards)
6403 /* Can update recovery_offset */
6404 rdev_for_each(rdev, mddev)
6405 if (rdev->raid_disk >= 0 &&
6406 !test_bit(Journal, &rdev->flags) &&
6407 !test_bit(In_sync, &rdev->flags) &&
6408 rdev->recovery_offset < sector_nr)
6409 rdev->recovery_offset = sector_nr;
6410
6411 conf->reshape_checkpoint = jiffies;
6412 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6413 md_wakeup_thread(mddev->thread);
6414 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6415 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6416 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6417 return 0;
6418 spin_lock_irq(&conf->device_lock);
6419 conf->reshape_safe = mddev->reshape_position;
6420 spin_unlock_irq(&conf->device_lock);
6421 wake_up(&conf->wait_for_overlap);
6422 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6423 }
6424
6425 INIT_LIST_HEAD(&stripes);
6426 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6427 int j;
6428 int skipped_disk = 0;
6429 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6430 R5_GAS_NOQUIESCE);
6431 set_bit(STRIPE_EXPANDING, &sh->state);
6432 atomic_inc(&conf->reshape_stripes);
6433 /* If any of this stripe is beyond the end of the old
6434 * array, then we need to zero those blocks
6435 */
6436 for (j=sh->disks; j--;) {
6437 sector_t s;
6438 if (j == sh->pd_idx)
6439 continue;
6440 if (conf->level == 6 &&
6441 j == sh->qd_idx)
6442 continue;
6443 s = raid5_compute_blocknr(sh, j, 0);
6444 if (s < raid5_size(mddev, 0, 0)) {
6445 skipped_disk = 1;
6446 continue;
6447 }
6448 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6449 set_bit(R5_Expanded, &sh->dev[j].flags);
6450 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6451 }
6452 if (!skipped_disk) {
6453 set_bit(STRIPE_EXPAND_READY, &sh->state);
6454 set_bit(STRIPE_HANDLE, &sh->state);
6455 }
6456 list_add(&sh->lru, &stripes);
6457 }
6458 spin_lock_irq(&conf->device_lock);
6459 if (mddev->reshape_backwards)
6460 conf->reshape_progress -= reshape_sectors * new_data_disks;
6461 else
6462 conf->reshape_progress += reshape_sectors * new_data_disks;
6463 spin_unlock_irq(&conf->device_lock);
6464 /* Ok, those stripe are ready. We can start scheduling
6465 * reads on the source stripes.
6466 * The source stripes are determined by mapping the first and last
6467 * block on the destination stripes.
6468 */
6469 first_sector =
6470 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6471 1, &dd_idx, NULL);
6472 last_sector =
6473 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6474 * new_data_disks - 1),
6475 1, &dd_idx, NULL);
6476 if (last_sector >= mddev->dev_sectors)
6477 last_sector = mddev->dev_sectors - 1;
6478 while (first_sector <= last_sector) {
6479 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6480 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6481 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6482 set_bit(STRIPE_HANDLE, &sh->state);
6483 raid5_release_stripe(sh);
6484 first_sector += RAID5_STRIPE_SECTORS(conf);
6485 }
6486 /* Now that the sources are clearly marked, we can release
6487 * the destination stripes
6488 */
6489 while (!list_empty(&stripes)) {
6490 sh = list_entry(stripes.next, struct stripe_head, lru);
6491 list_del_init(&sh->lru);
6492 raid5_release_stripe(sh);
6493 }
6494 /* If this takes us to the resync_max point where we have to pause,
6495 * then we need to write out the superblock.
6496 */
6497 sector_nr += reshape_sectors;
6498 retn = reshape_sectors;
6499 finish:
6500 if (mddev->curr_resync_completed > mddev->resync_max ||
6501 (sector_nr - mddev->curr_resync_completed) * 2
6502 >= mddev->resync_max - mddev->curr_resync_completed) {
6503 /* Cannot proceed until we've updated the superblock... */
6504 wait_event(conf->wait_for_overlap,
6505 atomic_read(&conf->reshape_stripes) == 0
6506 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6507 if (atomic_read(&conf->reshape_stripes) != 0)
6508 goto ret;
6509 mddev->reshape_position = conf->reshape_progress;
6510 mddev->curr_resync_completed = sector_nr;
6511 if (!mddev->reshape_backwards)
6512 /* Can update recovery_offset */
6513 rdev_for_each(rdev, mddev)
6514 if (rdev->raid_disk >= 0 &&
6515 !test_bit(Journal, &rdev->flags) &&
6516 !test_bit(In_sync, &rdev->flags) &&
6517 rdev->recovery_offset < sector_nr)
6518 rdev->recovery_offset = sector_nr;
6519 conf->reshape_checkpoint = jiffies;
6520 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6521 md_wakeup_thread(mddev->thread);
6522 wait_event(mddev->sb_wait,
6523 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6524 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6525 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6526 goto ret;
6527 spin_lock_irq(&conf->device_lock);
6528 conf->reshape_safe = mddev->reshape_position;
6529 spin_unlock_irq(&conf->device_lock);
6530 wake_up(&conf->wait_for_overlap);
6531 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6532 }
6533 ret:
6534 return retn;
6535 }
6536
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6537 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6538 int *skipped)
6539 {
6540 struct r5conf *conf = mddev->private;
6541 struct stripe_head *sh;
6542 sector_t max_sector = mddev->dev_sectors;
6543 sector_t sync_blocks;
6544 int still_degraded = 0;
6545 int i;
6546
6547 if (sector_nr >= max_sector) {
6548 /* just being told to finish up .. nothing much to do */
6549
6550 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6551 end_reshape(conf);
6552 return 0;
6553 }
6554
6555 if (mddev->curr_resync < max_sector) /* aborted */
6556 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6557 &sync_blocks, 1);
6558 else /* completed sync */
6559 conf->fullsync = 0;
6560 md_bitmap_close_sync(mddev->bitmap);
6561
6562 return 0;
6563 }
6564
6565 /* Allow raid5_quiesce to complete */
6566 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6567
6568 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6569 return reshape_request(mddev, sector_nr, skipped);
6570
6571 /* No need to check resync_max as we never do more than one
6572 * stripe, and as resync_max will always be on a chunk boundary,
6573 * if the check in md_do_sync didn't fire, there is no chance
6574 * of overstepping resync_max here
6575 */
6576
6577 /* if there is too many failed drives and we are trying
6578 * to resync, then assert that we are finished, because there is
6579 * nothing we can do.
6580 */
6581 if (mddev->degraded >= conf->max_degraded &&
6582 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6583 sector_t rv = mddev->dev_sectors - sector_nr;
6584 *skipped = 1;
6585 return rv;
6586 }
6587 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6588 !conf->fullsync &&
6589 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6590 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6591 /* we can skip this block, and probably more */
6592 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6593 *skipped = 1;
6594 /* keep things rounded to whole stripes */
6595 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6596 }
6597
6598 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6599
6600 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6601 R5_GAS_NOBLOCK);
6602 if (sh == NULL) {
6603 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6604 /* make sure we don't swamp the stripe cache if someone else
6605 * is trying to get access
6606 */
6607 schedule_timeout_uninterruptible(1);
6608 }
6609 /* Need to check if array will still be degraded after recovery/resync
6610 * Note in case of > 1 drive failures it's possible we're rebuilding
6611 * one drive while leaving another faulty drive in array.
6612 */
6613 rcu_read_lock();
6614 for (i = 0; i < conf->raid_disks; i++) {
6615 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6616
6617 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6618 still_degraded = 1;
6619 }
6620 rcu_read_unlock();
6621
6622 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6623
6624 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6625 set_bit(STRIPE_HANDLE, &sh->state);
6626
6627 raid5_release_stripe(sh);
6628
6629 return RAID5_STRIPE_SECTORS(conf);
6630 }
6631
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6632 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6633 unsigned int offset)
6634 {
6635 /* We may not be able to submit a whole bio at once as there
6636 * may not be enough stripe_heads available.
6637 * We cannot pre-allocate enough stripe_heads as we may need
6638 * more than exist in the cache (if we allow ever large chunks).
6639 * So we do one stripe head at a time and record in
6640 * ->bi_hw_segments how many have been done.
6641 *
6642 * We *know* that this entire raid_bio is in one chunk, so
6643 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6644 */
6645 struct stripe_head *sh;
6646 int dd_idx;
6647 sector_t sector, logical_sector, last_sector;
6648 int scnt = 0;
6649 int handled = 0;
6650
6651 logical_sector = raid_bio->bi_iter.bi_sector &
6652 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6653 sector = raid5_compute_sector(conf, logical_sector,
6654 0, &dd_idx, NULL);
6655 last_sector = bio_end_sector(raid_bio);
6656
6657 for (; logical_sector < last_sector;
6658 logical_sector += RAID5_STRIPE_SECTORS(conf),
6659 sector += RAID5_STRIPE_SECTORS(conf),
6660 scnt++) {
6661
6662 if (scnt < offset)
6663 /* already done this stripe */
6664 continue;
6665
6666 sh = raid5_get_active_stripe(conf, NULL, sector,
6667 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6668 if (!sh) {
6669 /* failed to get a stripe - must wait */
6670 conf->retry_read_aligned = raid_bio;
6671 conf->retry_read_offset = scnt;
6672 return handled;
6673 }
6674
6675 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6676 raid5_release_stripe(sh);
6677 conf->retry_read_aligned = raid_bio;
6678 conf->retry_read_offset = scnt;
6679 return handled;
6680 }
6681
6682 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6683 handle_stripe(sh);
6684 raid5_release_stripe(sh);
6685 handled++;
6686 }
6687
6688 bio_endio(raid_bio);
6689
6690 if (atomic_dec_and_test(&conf->active_aligned_reads))
6691 wake_up(&conf->wait_for_quiescent);
6692 return handled;
6693 }
6694
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6695 static int handle_active_stripes(struct r5conf *conf, int group,
6696 struct r5worker *worker,
6697 struct list_head *temp_inactive_list)
6698 __must_hold(&conf->device_lock)
6699 {
6700 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6701 int i, batch_size = 0, hash;
6702 bool release_inactive = false;
6703
6704 while (batch_size < MAX_STRIPE_BATCH &&
6705 (sh = __get_priority_stripe(conf, group)) != NULL)
6706 batch[batch_size++] = sh;
6707
6708 if (batch_size == 0) {
6709 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6710 if (!list_empty(temp_inactive_list + i))
6711 break;
6712 if (i == NR_STRIPE_HASH_LOCKS) {
6713 spin_unlock_irq(&conf->device_lock);
6714 log_flush_stripe_to_raid(conf);
6715 spin_lock_irq(&conf->device_lock);
6716 return batch_size;
6717 }
6718 release_inactive = true;
6719 }
6720 spin_unlock_irq(&conf->device_lock);
6721
6722 release_inactive_stripe_list(conf, temp_inactive_list,
6723 NR_STRIPE_HASH_LOCKS);
6724
6725 r5l_flush_stripe_to_raid(conf->log);
6726 if (release_inactive) {
6727 spin_lock_irq(&conf->device_lock);
6728 return 0;
6729 }
6730
6731 for (i = 0; i < batch_size; i++)
6732 handle_stripe(batch[i]);
6733 log_write_stripe_run(conf);
6734
6735 cond_resched();
6736
6737 spin_lock_irq(&conf->device_lock);
6738 for (i = 0; i < batch_size; i++) {
6739 hash = batch[i]->hash_lock_index;
6740 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6741 }
6742 return batch_size;
6743 }
6744
raid5_do_work(struct work_struct * work)6745 static void raid5_do_work(struct work_struct *work)
6746 {
6747 struct r5worker *worker = container_of(work, struct r5worker, work);
6748 struct r5worker_group *group = worker->group;
6749 struct r5conf *conf = group->conf;
6750 struct mddev *mddev = conf->mddev;
6751 int group_id = group - conf->worker_groups;
6752 int handled;
6753 struct blk_plug plug;
6754
6755 pr_debug("+++ raid5worker active\n");
6756
6757 blk_start_plug(&plug);
6758 handled = 0;
6759 spin_lock_irq(&conf->device_lock);
6760 while (1) {
6761 int batch_size, released;
6762
6763 released = release_stripe_list(conf, worker->temp_inactive_list);
6764
6765 batch_size = handle_active_stripes(conf, group_id, worker,
6766 worker->temp_inactive_list);
6767 worker->working = false;
6768 if (!batch_size && !released)
6769 break;
6770 handled += batch_size;
6771 wait_event_lock_irq(mddev->sb_wait,
6772 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6773 conf->device_lock);
6774 }
6775 pr_debug("%d stripes handled\n", handled);
6776
6777 spin_unlock_irq(&conf->device_lock);
6778
6779 flush_deferred_bios(conf);
6780
6781 r5l_flush_stripe_to_raid(conf->log);
6782
6783 async_tx_issue_pending_all();
6784 blk_finish_plug(&plug);
6785
6786 pr_debug("--- raid5worker inactive\n");
6787 }
6788
6789 /*
6790 * This is our raid5 kernel thread.
6791 *
6792 * We scan the hash table for stripes which can be handled now.
6793 * During the scan, completed stripes are saved for us by the interrupt
6794 * handler, so that they will not have to wait for our next wakeup.
6795 */
raid5d(struct md_thread * thread)6796 static void raid5d(struct md_thread *thread)
6797 {
6798 struct mddev *mddev = thread->mddev;
6799 struct r5conf *conf = mddev->private;
6800 int handled;
6801 struct blk_plug plug;
6802
6803 pr_debug("+++ raid5d active\n");
6804
6805 md_check_recovery(mddev);
6806
6807 blk_start_plug(&plug);
6808 handled = 0;
6809 spin_lock_irq(&conf->device_lock);
6810 while (1) {
6811 struct bio *bio;
6812 int batch_size, released;
6813 unsigned int offset;
6814
6815 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6816 break;
6817
6818 released = release_stripe_list(conf, conf->temp_inactive_list);
6819 if (released)
6820 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6821
6822 if (
6823 !list_empty(&conf->bitmap_list)) {
6824 /* Now is a good time to flush some bitmap updates */
6825 conf->seq_flush++;
6826 spin_unlock_irq(&conf->device_lock);
6827 md_bitmap_unplug(mddev->bitmap);
6828 spin_lock_irq(&conf->device_lock);
6829 conf->seq_write = conf->seq_flush;
6830 activate_bit_delay(conf, conf->temp_inactive_list);
6831 }
6832 raid5_activate_delayed(conf);
6833
6834 while ((bio = remove_bio_from_retry(conf, &offset))) {
6835 int ok;
6836 spin_unlock_irq(&conf->device_lock);
6837 ok = retry_aligned_read(conf, bio, offset);
6838 spin_lock_irq(&conf->device_lock);
6839 if (!ok)
6840 break;
6841 handled++;
6842 }
6843
6844 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6845 conf->temp_inactive_list);
6846 if (!batch_size && !released)
6847 break;
6848 handled += batch_size;
6849
6850 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6851 spin_unlock_irq(&conf->device_lock);
6852 md_check_recovery(mddev);
6853 spin_lock_irq(&conf->device_lock);
6854 }
6855 }
6856 pr_debug("%d stripes handled\n", handled);
6857
6858 spin_unlock_irq(&conf->device_lock);
6859 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6860 mutex_trylock(&conf->cache_size_mutex)) {
6861 grow_one_stripe(conf, __GFP_NOWARN);
6862 /* Set flag even if allocation failed. This helps
6863 * slow down allocation requests when mem is short
6864 */
6865 set_bit(R5_DID_ALLOC, &conf->cache_state);
6866 mutex_unlock(&conf->cache_size_mutex);
6867 }
6868
6869 flush_deferred_bios(conf);
6870
6871 r5l_flush_stripe_to_raid(conf->log);
6872
6873 async_tx_issue_pending_all();
6874 blk_finish_plug(&plug);
6875
6876 pr_debug("--- raid5d inactive\n");
6877 }
6878
6879 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6880 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6881 {
6882 struct r5conf *conf;
6883 int ret = 0;
6884 spin_lock(&mddev->lock);
6885 conf = mddev->private;
6886 if (conf)
6887 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6888 spin_unlock(&mddev->lock);
6889 return ret;
6890 }
6891
6892 int
raid5_set_cache_size(struct mddev * mddev,int size)6893 raid5_set_cache_size(struct mddev *mddev, int size)
6894 {
6895 int result = 0;
6896 struct r5conf *conf = mddev->private;
6897
6898 if (size <= 16 || size > 32768)
6899 return -EINVAL;
6900
6901 WRITE_ONCE(conf->min_nr_stripes, size);
6902 mutex_lock(&conf->cache_size_mutex);
6903 while (size < conf->max_nr_stripes &&
6904 drop_one_stripe(conf))
6905 ;
6906 mutex_unlock(&conf->cache_size_mutex);
6907
6908 md_allow_write(mddev);
6909
6910 mutex_lock(&conf->cache_size_mutex);
6911 while (size > conf->max_nr_stripes)
6912 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6913 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6914 result = -ENOMEM;
6915 break;
6916 }
6917 mutex_unlock(&conf->cache_size_mutex);
6918
6919 return result;
6920 }
6921 EXPORT_SYMBOL(raid5_set_cache_size);
6922
6923 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6924 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6925 {
6926 struct r5conf *conf;
6927 unsigned long new;
6928 int err;
6929
6930 if (len >= PAGE_SIZE)
6931 return -EINVAL;
6932 if (kstrtoul(page, 10, &new))
6933 return -EINVAL;
6934 err = mddev_lock(mddev);
6935 if (err)
6936 return err;
6937 conf = mddev->private;
6938 if (!conf)
6939 err = -ENODEV;
6940 else
6941 err = raid5_set_cache_size(mddev, new);
6942 mddev_unlock(mddev);
6943
6944 return err ?: len;
6945 }
6946
6947 static struct md_sysfs_entry
6948 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6949 raid5_show_stripe_cache_size,
6950 raid5_store_stripe_cache_size);
6951
6952 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6953 raid5_show_rmw_level(struct mddev *mddev, char *page)
6954 {
6955 struct r5conf *conf = mddev->private;
6956 if (conf)
6957 return sprintf(page, "%d\n", conf->rmw_level);
6958 else
6959 return 0;
6960 }
6961
6962 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6963 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6964 {
6965 struct r5conf *conf = mddev->private;
6966 unsigned long new;
6967
6968 if (!conf)
6969 return -ENODEV;
6970
6971 if (len >= PAGE_SIZE)
6972 return -EINVAL;
6973
6974 if (kstrtoul(page, 10, &new))
6975 return -EINVAL;
6976
6977 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6978 return -EINVAL;
6979
6980 if (new != PARITY_DISABLE_RMW &&
6981 new != PARITY_ENABLE_RMW &&
6982 new != PARITY_PREFER_RMW)
6983 return -EINVAL;
6984
6985 conf->rmw_level = new;
6986 return len;
6987 }
6988
6989 static struct md_sysfs_entry
6990 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6991 raid5_show_rmw_level,
6992 raid5_store_rmw_level);
6993
6994 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6995 raid5_show_stripe_size(struct mddev *mddev, char *page)
6996 {
6997 struct r5conf *conf;
6998 int ret = 0;
6999
7000 spin_lock(&mddev->lock);
7001 conf = mddev->private;
7002 if (conf)
7003 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
7004 spin_unlock(&mddev->lock);
7005 return ret;
7006 }
7007
7008 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7009 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)7010 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
7011 {
7012 struct r5conf *conf;
7013 unsigned long new;
7014 int err;
7015 int size;
7016
7017 if (len >= PAGE_SIZE)
7018 return -EINVAL;
7019 if (kstrtoul(page, 10, &new))
7020 return -EINVAL;
7021
7022 /*
7023 * The value should not be bigger than PAGE_SIZE. It requires to
7024 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
7025 * of two.
7026 */
7027 if (new % DEFAULT_STRIPE_SIZE != 0 ||
7028 new > PAGE_SIZE || new == 0 ||
7029 new != roundup_pow_of_two(new))
7030 return -EINVAL;
7031
7032 err = mddev_lock(mddev);
7033 if (err)
7034 return err;
7035
7036 conf = mddev->private;
7037 if (!conf) {
7038 err = -ENODEV;
7039 goto out_unlock;
7040 }
7041
7042 if (new == conf->stripe_size)
7043 goto out_unlock;
7044
7045 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
7046 conf->stripe_size, new);
7047
7048 if (mddev->sync_thread ||
7049 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7050 mddev->reshape_position != MaxSector ||
7051 mddev->sysfs_active) {
7052 err = -EBUSY;
7053 goto out_unlock;
7054 }
7055
7056 mddev_suspend(mddev);
7057 mutex_lock(&conf->cache_size_mutex);
7058 size = conf->max_nr_stripes;
7059
7060 shrink_stripes(conf);
7061
7062 conf->stripe_size = new;
7063 conf->stripe_shift = ilog2(new) - 9;
7064 conf->stripe_sectors = new >> 9;
7065 if (grow_stripes(conf, size)) {
7066 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7067 mdname(mddev));
7068 err = -ENOMEM;
7069 }
7070 mutex_unlock(&conf->cache_size_mutex);
7071 mddev_resume(mddev);
7072
7073 out_unlock:
7074 mddev_unlock(mddev);
7075 return err ?: len;
7076 }
7077
7078 static struct md_sysfs_entry
7079 raid5_stripe_size = __ATTR(stripe_size, 0644,
7080 raid5_show_stripe_size,
7081 raid5_store_stripe_size);
7082 #else
7083 static struct md_sysfs_entry
7084 raid5_stripe_size = __ATTR(stripe_size, 0444,
7085 raid5_show_stripe_size,
7086 NULL);
7087 #endif
7088
7089 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7090 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7091 {
7092 struct r5conf *conf;
7093 int ret = 0;
7094 spin_lock(&mddev->lock);
7095 conf = mddev->private;
7096 if (conf)
7097 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7098 spin_unlock(&mddev->lock);
7099 return ret;
7100 }
7101
7102 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7103 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7104 {
7105 struct r5conf *conf;
7106 unsigned long new;
7107 int err;
7108
7109 if (len >= PAGE_SIZE)
7110 return -EINVAL;
7111 if (kstrtoul(page, 10, &new))
7112 return -EINVAL;
7113
7114 err = mddev_lock(mddev);
7115 if (err)
7116 return err;
7117 conf = mddev->private;
7118 if (!conf)
7119 err = -ENODEV;
7120 else if (new > conf->min_nr_stripes)
7121 err = -EINVAL;
7122 else
7123 conf->bypass_threshold = new;
7124 mddev_unlock(mddev);
7125 return err ?: len;
7126 }
7127
7128 static struct md_sysfs_entry
7129 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7130 S_IRUGO | S_IWUSR,
7131 raid5_show_preread_threshold,
7132 raid5_store_preread_threshold);
7133
7134 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7135 raid5_show_skip_copy(struct mddev *mddev, char *page)
7136 {
7137 struct r5conf *conf;
7138 int ret = 0;
7139 spin_lock(&mddev->lock);
7140 conf = mddev->private;
7141 if (conf)
7142 ret = sprintf(page, "%d\n", conf->skip_copy);
7143 spin_unlock(&mddev->lock);
7144 return ret;
7145 }
7146
7147 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7148 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7149 {
7150 struct r5conf *conf;
7151 unsigned long new;
7152 int err;
7153
7154 if (len >= PAGE_SIZE)
7155 return -EINVAL;
7156 if (kstrtoul(page, 10, &new))
7157 return -EINVAL;
7158 new = !!new;
7159
7160 err = mddev_lock(mddev);
7161 if (err)
7162 return err;
7163 conf = mddev->private;
7164 if (!conf)
7165 err = -ENODEV;
7166 else if (new != conf->skip_copy) {
7167 struct request_queue *q = mddev->queue;
7168
7169 mddev_suspend(mddev);
7170 conf->skip_copy = new;
7171 if (new)
7172 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7173 else
7174 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7175 mddev_resume(mddev);
7176 }
7177 mddev_unlock(mddev);
7178 return err ?: len;
7179 }
7180
7181 static struct md_sysfs_entry
7182 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7183 raid5_show_skip_copy,
7184 raid5_store_skip_copy);
7185
7186 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7187 stripe_cache_active_show(struct mddev *mddev, char *page)
7188 {
7189 struct r5conf *conf = mddev->private;
7190 if (conf)
7191 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7192 else
7193 return 0;
7194 }
7195
7196 static struct md_sysfs_entry
7197 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7198
7199 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7200 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7201 {
7202 struct r5conf *conf;
7203 int ret = 0;
7204 spin_lock(&mddev->lock);
7205 conf = mddev->private;
7206 if (conf)
7207 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7208 spin_unlock(&mddev->lock);
7209 return ret;
7210 }
7211
7212 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7213 int *group_cnt,
7214 struct r5worker_group **worker_groups);
7215 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7216 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7217 {
7218 struct r5conf *conf;
7219 unsigned int new;
7220 int err;
7221 struct r5worker_group *new_groups, *old_groups;
7222 int group_cnt;
7223
7224 if (len >= PAGE_SIZE)
7225 return -EINVAL;
7226 if (kstrtouint(page, 10, &new))
7227 return -EINVAL;
7228 /* 8192 should be big enough */
7229 if (new > 8192)
7230 return -EINVAL;
7231
7232 err = mddev_lock(mddev);
7233 if (err)
7234 return err;
7235 conf = mddev->private;
7236 if (!conf)
7237 err = -ENODEV;
7238 else if (new != conf->worker_cnt_per_group) {
7239 mddev_suspend(mddev);
7240
7241 old_groups = conf->worker_groups;
7242 if (old_groups)
7243 flush_workqueue(raid5_wq);
7244
7245 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7246 if (!err) {
7247 spin_lock_irq(&conf->device_lock);
7248 conf->group_cnt = group_cnt;
7249 conf->worker_cnt_per_group = new;
7250 conf->worker_groups = new_groups;
7251 spin_unlock_irq(&conf->device_lock);
7252
7253 if (old_groups)
7254 kfree(old_groups[0].workers);
7255 kfree(old_groups);
7256 }
7257 mddev_resume(mddev);
7258 }
7259 mddev_unlock(mddev);
7260
7261 return err ?: len;
7262 }
7263
7264 static struct md_sysfs_entry
7265 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7266 raid5_show_group_thread_cnt,
7267 raid5_store_group_thread_cnt);
7268
7269 static struct attribute *raid5_attrs[] = {
7270 &raid5_stripecache_size.attr,
7271 &raid5_stripecache_active.attr,
7272 &raid5_preread_bypass_threshold.attr,
7273 &raid5_group_thread_cnt.attr,
7274 &raid5_skip_copy.attr,
7275 &raid5_rmw_level.attr,
7276 &raid5_stripe_size.attr,
7277 &r5c_journal_mode.attr,
7278 &ppl_write_hint.attr,
7279 NULL,
7280 };
7281 static const struct attribute_group raid5_attrs_group = {
7282 .name = NULL,
7283 .attrs = raid5_attrs,
7284 };
7285
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7286 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7287 struct r5worker_group **worker_groups)
7288 {
7289 int i, j, k;
7290 ssize_t size;
7291 struct r5worker *workers;
7292
7293 if (cnt == 0) {
7294 *group_cnt = 0;
7295 *worker_groups = NULL;
7296 return 0;
7297 }
7298 *group_cnt = num_possible_nodes();
7299 size = sizeof(struct r5worker) * cnt;
7300 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7301 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7302 GFP_NOIO);
7303 if (!*worker_groups || !workers) {
7304 kfree(workers);
7305 kfree(*worker_groups);
7306 return -ENOMEM;
7307 }
7308
7309 for (i = 0; i < *group_cnt; i++) {
7310 struct r5worker_group *group;
7311
7312 group = &(*worker_groups)[i];
7313 INIT_LIST_HEAD(&group->handle_list);
7314 INIT_LIST_HEAD(&group->loprio_list);
7315 group->conf = conf;
7316 group->workers = workers + i * cnt;
7317
7318 for (j = 0; j < cnt; j++) {
7319 struct r5worker *worker = group->workers + j;
7320 worker->group = group;
7321 INIT_WORK(&worker->work, raid5_do_work);
7322
7323 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7324 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7325 }
7326 }
7327
7328 return 0;
7329 }
7330
free_thread_groups(struct r5conf * conf)7331 static void free_thread_groups(struct r5conf *conf)
7332 {
7333 if (conf->worker_groups)
7334 kfree(conf->worker_groups[0].workers);
7335 kfree(conf->worker_groups);
7336 conf->worker_groups = NULL;
7337 }
7338
7339 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7340 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7341 {
7342 struct r5conf *conf = mddev->private;
7343
7344 if (!sectors)
7345 sectors = mddev->dev_sectors;
7346 if (!raid_disks)
7347 /* size is defined by the smallest of previous and new size */
7348 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7349
7350 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7351 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7352 return sectors * (raid_disks - conf->max_degraded);
7353 }
7354
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7355 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7356 {
7357 safe_put_page(percpu->spare_page);
7358 percpu->spare_page = NULL;
7359 kvfree(percpu->scribble);
7360 percpu->scribble = NULL;
7361 }
7362
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7363 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7364 {
7365 if (conf->level == 6 && !percpu->spare_page) {
7366 percpu->spare_page = alloc_page(GFP_KERNEL);
7367 if (!percpu->spare_page)
7368 return -ENOMEM;
7369 }
7370
7371 if (scribble_alloc(percpu,
7372 max(conf->raid_disks,
7373 conf->previous_raid_disks),
7374 max(conf->chunk_sectors,
7375 conf->prev_chunk_sectors)
7376 / RAID5_STRIPE_SECTORS(conf))) {
7377 free_scratch_buffer(conf, percpu);
7378 return -ENOMEM;
7379 }
7380
7381 local_lock_init(&percpu->lock);
7382 return 0;
7383 }
7384
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7385 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7386 {
7387 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7388
7389 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7390 return 0;
7391 }
7392
raid5_free_percpu(struct r5conf * conf)7393 static void raid5_free_percpu(struct r5conf *conf)
7394 {
7395 if (!conf->percpu)
7396 return;
7397
7398 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7399 free_percpu(conf->percpu);
7400 }
7401
free_conf(struct r5conf * conf)7402 static void free_conf(struct r5conf *conf)
7403 {
7404 int i;
7405
7406 log_exit(conf);
7407
7408 unregister_shrinker(&conf->shrinker);
7409 free_thread_groups(conf);
7410 shrink_stripes(conf);
7411 raid5_free_percpu(conf);
7412 for (i = 0; i < conf->pool_size; i++)
7413 if (conf->disks[i].extra_page)
7414 put_page(conf->disks[i].extra_page);
7415 kfree(conf->disks);
7416 bioset_exit(&conf->bio_split);
7417 kfree(conf->stripe_hashtbl);
7418 kfree(conf->pending_data);
7419 kfree(conf);
7420 }
7421
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7422 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7423 {
7424 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7425 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7426
7427 if (alloc_scratch_buffer(conf, percpu)) {
7428 pr_warn("%s: failed memory allocation for cpu%u\n",
7429 __func__, cpu);
7430 return -ENOMEM;
7431 }
7432 return 0;
7433 }
7434
raid5_alloc_percpu(struct r5conf * conf)7435 static int raid5_alloc_percpu(struct r5conf *conf)
7436 {
7437 int err = 0;
7438
7439 conf->percpu = alloc_percpu(struct raid5_percpu);
7440 if (!conf->percpu)
7441 return -ENOMEM;
7442
7443 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7444 if (!err) {
7445 conf->scribble_disks = max(conf->raid_disks,
7446 conf->previous_raid_disks);
7447 conf->scribble_sectors = max(conf->chunk_sectors,
7448 conf->prev_chunk_sectors);
7449 }
7450 return err;
7451 }
7452
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7453 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7454 struct shrink_control *sc)
7455 {
7456 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7457 unsigned long ret = SHRINK_STOP;
7458
7459 if (mutex_trylock(&conf->cache_size_mutex)) {
7460 ret= 0;
7461 while (ret < sc->nr_to_scan &&
7462 conf->max_nr_stripes > conf->min_nr_stripes) {
7463 if (drop_one_stripe(conf) == 0) {
7464 ret = SHRINK_STOP;
7465 break;
7466 }
7467 ret++;
7468 }
7469 mutex_unlock(&conf->cache_size_mutex);
7470 }
7471 return ret;
7472 }
7473
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7474 static unsigned long raid5_cache_count(struct shrinker *shrink,
7475 struct shrink_control *sc)
7476 {
7477 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7478 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7479 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7480
7481 if (max_stripes < min_stripes)
7482 /* unlikely, but not impossible */
7483 return 0;
7484 return max_stripes - min_stripes;
7485 }
7486
setup_conf(struct mddev * mddev)7487 static struct r5conf *setup_conf(struct mddev *mddev)
7488 {
7489 struct r5conf *conf;
7490 int raid_disk, memory, max_disks;
7491 struct md_rdev *rdev;
7492 struct disk_info *disk;
7493 char pers_name[6];
7494 int i;
7495 int group_cnt;
7496 struct r5worker_group *new_group;
7497 int ret = -ENOMEM;
7498
7499 if (mddev->new_level != 5
7500 && mddev->new_level != 4
7501 && mddev->new_level != 6) {
7502 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7503 mdname(mddev), mddev->new_level);
7504 return ERR_PTR(-EIO);
7505 }
7506 if ((mddev->new_level == 5
7507 && !algorithm_valid_raid5(mddev->new_layout)) ||
7508 (mddev->new_level == 6
7509 && !algorithm_valid_raid6(mddev->new_layout))) {
7510 pr_warn("md/raid:%s: layout %d not supported\n",
7511 mdname(mddev), mddev->new_layout);
7512 return ERR_PTR(-EIO);
7513 }
7514 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7515 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7516 mdname(mddev), mddev->raid_disks);
7517 return ERR_PTR(-EINVAL);
7518 }
7519
7520 if (!mddev->new_chunk_sectors ||
7521 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7522 !is_power_of_2(mddev->new_chunk_sectors)) {
7523 pr_warn("md/raid:%s: invalid chunk size %d\n",
7524 mdname(mddev), mddev->new_chunk_sectors << 9);
7525 return ERR_PTR(-EINVAL);
7526 }
7527
7528 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7529 if (conf == NULL)
7530 goto abort;
7531
7532 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7533 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7534 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7535 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7536 #endif
7537 INIT_LIST_HEAD(&conf->free_list);
7538 INIT_LIST_HEAD(&conf->pending_list);
7539 conf->pending_data = kcalloc(PENDING_IO_MAX,
7540 sizeof(struct r5pending_data),
7541 GFP_KERNEL);
7542 if (!conf->pending_data)
7543 goto abort;
7544 for (i = 0; i < PENDING_IO_MAX; i++)
7545 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7546 /* Don't enable multi-threading by default*/
7547 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7548 conf->group_cnt = group_cnt;
7549 conf->worker_cnt_per_group = 0;
7550 conf->worker_groups = new_group;
7551 } else
7552 goto abort;
7553 spin_lock_init(&conf->device_lock);
7554 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7555 mutex_init(&conf->cache_size_mutex);
7556
7557 init_waitqueue_head(&conf->wait_for_quiescent);
7558 init_waitqueue_head(&conf->wait_for_stripe);
7559 init_waitqueue_head(&conf->wait_for_overlap);
7560 INIT_LIST_HEAD(&conf->handle_list);
7561 INIT_LIST_HEAD(&conf->loprio_list);
7562 INIT_LIST_HEAD(&conf->hold_list);
7563 INIT_LIST_HEAD(&conf->delayed_list);
7564 INIT_LIST_HEAD(&conf->bitmap_list);
7565 init_llist_head(&conf->released_stripes);
7566 atomic_set(&conf->active_stripes, 0);
7567 atomic_set(&conf->preread_active_stripes, 0);
7568 atomic_set(&conf->active_aligned_reads, 0);
7569 spin_lock_init(&conf->pending_bios_lock);
7570 conf->batch_bio_dispatch = true;
7571 rdev_for_each(rdev, mddev) {
7572 if (test_bit(Journal, &rdev->flags))
7573 continue;
7574 if (bdev_nonrot(rdev->bdev)) {
7575 conf->batch_bio_dispatch = false;
7576 break;
7577 }
7578 }
7579
7580 conf->bypass_threshold = BYPASS_THRESHOLD;
7581 conf->recovery_disabled = mddev->recovery_disabled - 1;
7582
7583 conf->raid_disks = mddev->raid_disks;
7584 if (mddev->reshape_position == MaxSector)
7585 conf->previous_raid_disks = mddev->raid_disks;
7586 else
7587 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7588 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7589
7590 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7591 GFP_KERNEL);
7592
7593 if (!conf->disks)
7594 goto abort;
7595
7596 for (i = 0; i < max_disks; i++) {
7597 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7598 if (!conf->disks[i].extra_page)
7599 goto abort;
7600 }
7601
7602 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7603 if (ret)
7604 goto abort;
7605 conf->mddev = mddev;
7606
7607 ret = -ENOMEM;
7608 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7609 if (!conf->stripe_hashtbl)
7610 goto abort;
7611
7612 /* We init hash_locks[0] separately to that it can be used
7613 * as the reference lock in the spin_lock_nest_lock() call
7614 * in lock_all_device_hash_locks_irq in order to convince
7615 * lockdep that we know what we are doing.
7616 */
7617 spin_lock_init(conf->hash_locks);
7618 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7619 spin_lock_init(conf->hash_locks + i);
7620
7621 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7622 INIT_LIST_HEAD(conf->inactive_list + i);
7623
7624 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7625 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7626
7627 atomic_set(&conf->r5c_cached_full_stripes, 0);
7628 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7629 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7630 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7631 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7632 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7633
7634 conf->level = mddev->new_level;
7635 conf->chunk_sectors = mddev->new_chunk_sectors;
7636 ret = raid5_alloc_percpu(conf);
7637 if (ret)
7638 goto abort;
7639
7640 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7641
7642 ret = -EIO;
7643 rdev_for_each(rdev, mddev) {
7644 raid_disk = rdev->raid_disk;
7645 if (raid_disk >= max_disks
7646 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7647 continue;
7648 disk = conf->disks + raid_disk;
7649
7650 if (test_bit(Replacement, &rdev->flags)) {
7651 if (disk->replacement)
7652 goto abort;
7653 RCU_INIT_POINTER(disk->replacement, rdev);
7654 } else {
7655 if (disk->rdev)
7656 goto abort;
7657 RCU_INIT_POINTER(disk->rdev, rdev);
7658 }
7659
7660 if (test_bit(In_sync, &rdev->flags)) {
7661 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7662 mdname(mddev), rdev->bdev, raid_disk);
7663 } else if (rdev->saved_raid_disk != raid_disk)
7664 /* Cannot rely on bitmap to complete recovery */
7665 conf->fullsync = 1;
7666 }
7667
7668 conf->level = mddev->new_level;
7669 if (conf->level == 6) {
7670 conf->max_degraded = 2;
7671 if (raid6_call.xor_syndrome)
7672 conf->rmw_level = PARITY_ENABLE_RMW;
7673 else
7674 conf->rmw_level = PARITY_DISABLE_RMW;
7675 } else {
7676 conf->max_degraded = 1;
7677 conf->rmw_level = PARITY_ENABLE_RMW;
7678 }
7679 conf->algorithm = mddev->new_layout;
7680 conf->reshape_progress = mddev->reshape_position;
7681 if (conf->reshape_progress != MaxSector) {
7682 conf->prev_chunk_sectors = mddev->chunk_sectors;
7683 conf->prev_algo = mddev->layout;
7684 } else {
7685 conf->prev_chunk_sectors = conf->chunk_sectors;
7686 conf->prev_algo = conf->algorithm;
7687 }
7688
7689 conf->min_nr_stripes = NR_STRIPES;
7690 if (mddev->reshape_position != MaxSector) {
7691 int stripes = max_t(int,
7692 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7693 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7694 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7695 if (conf->min_nr_stripes != NR_STRIPES)
7696 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7697 mdname(mddev), conf->min_nr_stripes);
7698 }
7699 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7700 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7701 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7702 if (grow_stripes(conf, conf->min_nr_stripes)) {
7703 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7704 mdname(mddev), memory);
7705 ret = -ENOMEM;
7706 goto abort;
7707 } else
7708 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7709 /*
7710 * Losing a stripe head costs more than the time to refill it,
7711 * it reduces the queue depth and so can hurt throughput.
7712 * So set it rather large, scaled by number of devices.
7713 */
7714 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7715 conf->shrinker.scan_objects = raid5_cache_scan;
7716 conf->shrinker.count_objects = raid5_cache_count;
7717 conf->shrinker.batch = 128;
7718 conf->shrinker.flags = 0;
7719 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev));
7720 if (ret) {
7721 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7722 mdname(mddev));
7723 goto abort;
7724 }
7725
7726 sprintf(pers_name, "raid%d", mddev->new_level);
7727 rcu_assign_pointer(conf->thread,
7728 md_register_thread(raid5d, mddev, pers_name));
7729 if (!conf->thread) {
7730 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7731 mdname(mddev));
7732 ret = -ENOMEM;
7733 goto abort;
7734 }
7735
7736 return conf;
7737
7738 abort:
7739 if (conf)
7740 free_conf(conf);
7741 return ERR_PTR(ret);
7742 }
7743
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7744 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7745 {
7746 switch (algo) {
7747 case ALGORITHM_PARITY_0:
7748 if (raid_disk < max_degraded)
7749 return 1;
7750 break;
7751 case ALGORITHM_PARITY_N:
7752 if (raid_disk >= raid_disks - max_degraded)
7753 return 1;
7754 break;
7755 case ALGORITHM_PARITY_0_6:
7756 if (raid_disk == 0 ||
7757 raid_disk == raid_disks - 1)
7758 return 1;
7759 break;
7760 case ALGORITHM_LEFT_ASYMMETRIC_6:
7761 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7762 case ALGORITHM_LEFT_SYMMETRIC_6:
7763 case ALGORITHM_RIGHT_SYMMETRIC_6:
7764 if (raid_disk == raid_disks - 1)
7765 return 1;
7766 }
7767 return 0;
7768 }
7769
raid5_set_io_opt(struct r5conf * conf)7770 static void raid5_set_io_opt(struct r5conf *conf)
7771 {
7772 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7773 (conf->raid_disks - conf->max_degraded));
7774 }
7775
raid5_run(struct mddev * mddev)7776 static int raid5_run(struct mddev *mddev)
7777 {
7778 struct r5conf *conf;
7779 int dirty_parity_disks = 0;
7780 struct md_rdev *rdev;
7781 struct md_rdev *journal_dev = NULL;
7782 sector_t reshape_offset = 0;
7783 int i;
7784 long long min_offset_diff = 0;
7785 int first = 1;
7786
7787 if (mddev_init_writes_pending(mddev) < 0)
7788 return -ENOMEM;
7789
7790 if (mddev->recovery_cp != MaxSector)
7791 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7792 mdname(mddev));
7793
7794 rdev_for_each(rdev, mddev) {
7795 long long diff;
7796
7797 if (test_bit(Journal, &rdev->flags)) {
7798 journal_dev = rdev;
7799 continue;
7800 }
7801 if (rdev->raid_disk < 0)
7802 continue;
7803 diff = (rdev->new_data_offset - rdev->data_offset);
7804 if (first) {
7805 min_offset_diff = diff;
7806 first = 0;
7807 } else if (mddev->reshape_backwards &&
7808 diff < min_offset_diff)
7809 min_offset_diff = diff;
7810 else if (!mddev->reshape_backwards &&
7811 diff > min_offset_diff)
7812 min_offset_diff = diff;
7813 }
7814
7815 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7816 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7817 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7818 mdname(mddev));
7819 return -EINVAL;
7820 }
7821
7822 if (mddev->reshape_position != MaxSector) {
7823 /* Check that we can continue the reshape.
7824 * Difficulties arise if the stripe we would write to
7825 * next is at or after the stripe we would read from next.
7826 * For a reshape that changes the number of devices, this
7827 * is only possible for a very short time, and mdadm makes
7828 * sure that time appears to have past before assembling
7829 * the array. So we fail if that time hasn't passed.
7830 * For a reshape that keeps the number of devices the same
7831 * mdadm must be monitoring the reshape can keeping the
7832 * critical areas read-only and backed up. It will start
7833 * the array in read-only mode, so we check for that.
7834 */
7835 sector_t here_new, here_old;
7836 int old_disks;
7837 int max_degraded = (mddev->level == 6 ? 2 : 1);
7838 int chunk_sectors;
7839 int new_data_disks;
7840
7841 if (journal_dev) {
7842 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7843 mdname(mddev));
7844 return -EINVAL;
7845 }
7846
7847 if (mddev->new_level != mddev->level) {
7848 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7849 mdname(mddev));
7850 return -EINVAL;
7851 }
7852 old_disks = mddev->raid_disks - mddev->delta_disks;
7853 /* reshape_position must be on a new-stripe boundary, and one
7854 * further up in new geometry must map after here in old
7855 * geometry.
7856 * If the chunk sizes are different, then as we perform reshape
7857 * in units of the largest of the two, reshape_position needs
7858 * be a multiple of the largest chunk size times new data disks.
7859 */
7860 here_new = mddev->reshape_position;
7861 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7862 new_data_disks = mddev->raid_disks - max_degraded;
7863 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7864 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7865 mdname(mddev));
7866 return -EINVAL;
7867 }
7868 reshape_offset = here_new * chunk_sectors;
7869 /* here_new is the stripe we will write to */
7870 here_old = mddev->reshape_position;
7871 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7872 /* here_old is the first stripe that we might need to read
7873 * from */
7874 if (mddev->delta_disks == 0) {
7875 /* We cannot be sure it is safe to start an in-place
7876 * reshape. It is only safe if user-space is monitoring
7877 * and taking constant backups.
7878 * mdadm always starts a situation like this in
7879 * readonly mode so it can take control before
7880 * allowing any writes. So just check for that.
7881 */
7882 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7883 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7884 /* not really in-place - so OK */;
7885 else if (mddev->ro == 0) {
7886 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7887 mdname(mddev));
7888 return -EINVAL;
7889 }
7890 } else if (mddev->reshape_backwards
7891 ? (here_new * chunk_sectors + min_offset_diff <=
7892 here_old * chunk_sectors)
7893 : (here_new * chunk_sectors >=
7894 here_old * chunk_sectors + (-min_offset_diff))) {
7895 /* Reading from the same stripe as writing to - bad */
7896 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7897 mdname(mddev));
7898 return -EINVAL;
7899 }
7900 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7901 /* OK, we should be able to continue; */
7902 } else {
7903 BUG_ON(mddev->level != mddev->new_level);
7904 BUG_ON(mddev->layout != mddev->new_layout);
7905 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7906 BUG_ON(mddev->delta_disks != 0);
7907 }
7908
7909 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7910 test_bit(MD_HAS_PPL, &mddev->flags)) {
7911 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7912 mdname(mddev));
7913 clear_bit(MD_HAS_PPL, &mddev->flags);
7914 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7915 }
7916
7917 if (mddev->private == NULL)
7918 conf = setup_conf(mddev);
7919 else
7920 conf = mddev->private;
7921
7922 if (IS_ERR(conf))
7923 return PTR_ERR(conf);
7924
7925 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7926 if (!journal_dev) {
7927 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7928 mdname(mddev));
7929 mddev->ro = 1;
7930 set_disk_ro(mddev->gendisk, 1);
7931 } else if (mddev->recovery_cp == MaxSector)
7932 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7933 }
7934
7935 conf->min_offset_diff = min_offset_diff;
7936 rcu_assign_pointer(mddev->thread, conf->thread);
7937 rcu_assign_pointer(conf->thread, NULL);
7938 mddev->private = conf;
7939
7940 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7941 i++) {
7942 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7943 if (!rdev && conf->disks[i].replacement) {
7944 /* The replacement is all we have yet */
7945 rdev = rdev_mdlock_deref(mddev,
7946 conf->disks[i].replacement);
7947 conf->disks[i].replacement = NULL;
7948 clear_bit(Replacement, &rdev->flags);
7949 rcu_assign_pointer(conf->disks[i].rdev, rdev);
7950 }
7951 if (!rdev)
7952 continue;
7953 if (rcu_access_pointer(conf->disks[i].replacement) &&
7954 conf->reshape_progress != MaxSector) {
7955 /* replacements and reshape simply do not mix. */
7956 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7957 goto abort;
7958 }
7959 if (test_bit(In_sync, &rdev->flags))
7960 continue;
7961 /* This disc is not fully in-sync. However if it
7962 * just stored parity (beyond the recovery_offset),
7963 * when we don't need to be concerned about the
7964 * array being dirty.
7965 * When reshape goes 'backwards', we never have
7966 * partially completed devices, so we only need
7967 * to worry about reshape going forwards.
7968 */
7969 /* Hack because v0.91 doesn't store recovery_offset properly. */
7970 if (mddev->major_version == 0 &&
7971 mddev->minor_version > 90)
7972 rdev->recovery_offset = reshape_offset;
7973
7974 if (rdev->recovery_offset < reshape_offset) {
7975 /* We need to check old and new layout */
7976 if (!only_parity(rdev->raid_disk,
7977 conf->algorithm,
7978 conf->raid_disks,
7979 conf->max_degraded))
7980 continue;
7981 }
7982 if (!only_parity(rdev->raid_disk,
7983 conf->prev_algo,
7984 conf->previous_raid_disks,
7985 conf->max_degraded))
7986 continue;
7987 dirty_parity_disks++;
7988 }
7989
7990 /*
7991 * 0 for a fully functional array, 1 or 2 for a degraded array.
7992 */
7993 mddev->degraded = raid5_calc_degraded(conf);
7994
7995 if (has_failed(conf)) {
7996 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7997 mdname(mddev), mddev->degraded, conf->raid_disks);
7998 goto abort;
7999 }
8000
8001 /* device size must be a multiple of chunk size */
8002 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
8003 mddev->resync_max_sectors = mddev->dev_sectors;
8004
8005 if (mddev->degraded > dirty_parity_disks &&
8006 mddev->recovery_cp != MaxSector) {
8007 if (test_bit(MD_HAS_PPL, &mddev->flags))
8008 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8009 mdname(mddev));
8010 else if (mddev->ok_start_degraded)
8011 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8012 mdname(mddev));
8013 else {
8014 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8015 mdname(mddev));
8016 goto abort;
8017 }
8018 }
8019
8020 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8021 mdname(mddev), conf->level,
8022 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8023 mddev->new_layout);
8024
8025 print_raid5_conf(conf);
8026
8027 if (conf->reshape_progress != MaxSector) {
8028 conf->reshape_safe = conf->reshape_progress;
8029 atomic_set(&conf->reshape_stripes, 0);
8030 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8031 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8032 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8033 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8034 rcu_assign_pointer(mddev->sync_thread,
8035 md_register_thread(md_do_sync, mddev, "reshape"));
8036 if (!mddev->sync_thread)
8037 goto abort;
8038 }
8039
8040 /* Ok, everything is just fine now */
8041 if (mddev->to_remove == &raid5_attrs_group)
8042 mddev->to_remove = NULL;
8043 else if (mddev->kobj.sd &&
8044 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8045 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8046 mdname(mddev));
8047 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8048
8049 if (mddev->queue) {
8050 int chunk_size;
8051 /* read-ahead size must cover two whole stripes, which
8052 * is 2 * (datadisks) * chunksize where 'n' is the
8053 * number of raid devices
8054 */
8055 int data_disks = conf->previous_raid_disks - conf->max_degraded;
8056 int stripe = data_disks *
8057 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
8058
8059 chunk_size = mddev->chunk_sectors << 9;
8060 blk_queue_io_min(mddev->queue, chunk_size);
8061 raid5_set_io_opt(conf);
8062 mddev->queue->limits.raid_partial_stripes_expensive = 1;
8063 /*
8064 * We can only discard a whole stripe. It doesn't make sense to
8065 * discard data disk but write parity disk
8066 */
8067 stripe = stripe * PAGE_SIZE;
8068 stripe = roundup_pow_of_two(stripe);
8069 mddev->queue->limits.discard_granularity = stripe;
8070
8071 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
8072
8073 rdev_for_each(rdev, mddev) {
8074 disk_stack_limits(mddev->gendisk, rdev->bdev,
8075 rdev->data_offset << 9);
8076 disk_stack_limits(mddev->gendisk, rdev->bdev,
8077 rdev->new_data_offset << 9);
8078 }
8079
8080 /*
8081 * zeroing is required, otherwise data
8082 * could be lost. Consider a scenario: discard a stripe
8083 * (the stripe could be inconsistent if
8084 * discard_zeroes_data is 0); write one disk of the
8085 * stripe (the stripe could be inconsistent again
8086 * depending on which disks are used to calculate
8087 * parity); the disk is broken; The stripe data of this
8088 * disk is lost.
8089 *
8090 * We only allow DISCARD if the sysadmin has confirmed that
8091 * only safe devices are in use by setting a module parameter.
8092 * A better idea might be to turn DISCARD into WRITE_ZEROES
8093 * requests, as that is required to be safe.
8094 */
8095 if (!devices_handle_discard_safely ||
8096 mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
8097 mddev->queue->limits.discard_granularity < stripe)
8098 blk_queue_max_discard_sectors(mddev->queue, 0);
8099
8100 /*
8101 * Requests require having a bitmap for each stripe.
8102 * Limit the max sectors based on this.
8103 */
8104 blk_queue_max_hw_sectors(mddev->queue,
8105 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8106
8107 /* No restrictions on the number of segments in the request */
8108 blk_queue_max_segments(mddev->queue, USHRT_MAX);
8109 }
8110
8111 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8112 goto abort;
8113
8114 return 0;
8115 abort:
8116 md_unregister_thread(mddev, &mddev->thread);
8117 print_raid5_conf(conf);
8118 free_conf(conf);
8119 mddev->private = NULL;
8120 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8121 return -EIO;
8122 }
8123
raid5_free(struct mddev * mddev,void * priv)8124 static void raid5_free(struct mddev *mddev, void *priv)
8125 {
8126 struct r5conf *conf = priv;
8127
8128 free_conf(conf);
8129 mddev->to_remove = &raid5_attrs_group;
8130 }
8131
raid5_status(struct seq_file * seq,struct mddev * mddev)8132 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8133 {
8134 struct r5conf *conf = mddev->private;
8135 int i;
8136
8137 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8138 conf->chunk_sectors / 2, mddev->layout);
8139 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8140 rcu_read_lock();
8141 for (i = 0; i < conf->raid_disks; i++) {
8142 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
8143 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8144 }
8145 rcu_read_unlock();
8146 seq_printf (seq, "]");
8147 }
8148
print_raid5_conf(struct r5conf * conf)8149 static void print_raid5_conf (struct r5conf *conf)
8150 {
8151 struct md_rdev *rdev;
8152 int i;
8153
8154 pr_debug("RAID conf printout:\n");
8155 if (!conf) {
8156 pr_debug("(conf==NULL)\n");
8157 return;
8158 }
8159 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8160 conf->raid_disks,
8161 conf->raid_disks - conf->mddev->degraded);
8162
8163 rcu_read_lock();
8164 for (i = 0; i < conf->raid_disks; i++) {
8165 rdev = rcu_dereference(conf->disks[i].rdev);
8166 if (rdev)
8167 pr_debug(" disk %d, o:%d, dev:%pg\n",
8168 i, !test_bit(Faulty, &rdev->flags),
8169 rdev->bdev);
8170 }
8171 rcu_read_unlock();
8172 }
8173
raid5_spare_active(struct mddev * mddev)8174 static int raid5_spare_active(struct mddev *mddev)
8175 {
8176 int i;
8177 struct r5conf *conf = mddev->private;
8178 struct md_rdev *rdev, *replacement;
8179 int count = 0;
8180 unsigned long flags;
8181
8182 for (i = 0; i < conf->raid_disks; i++) {
8183 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
8184 replacement = rdev_mdlock_deref(mddev,
8185 conf->disks[i].replacement);
8186 if (replacement
8187 && replacement->recovery_offset == MaxSector
8188 && !test_bit(Faulty, &replacement->flags)
8189 && !test_and_set_bit(In_sync, &replacement->flags)) {
8190 /* Replacement has just become active. */
8191 if (!rdev
8192 || !test_and_clear_bit(In_sync, &rdev->flags))
8193 count++;
8194 if (rdev) {
8195 /* Replaced device not technically faulty,
8196 * but we need to be sure it gets removed
8197 * and never re-added.
8198 */
8199 set_bit(Faulty, &rdev->flags);
8200 sysfs_notify_dirent_safe(
8201 rdev->sysfs_state);
8202 }
8203 sysfs_notify_dirent_safe(replacement->sysfs_state);
8204 } else if (rdev
8205 && rdev->recovery_offset == MaxSector
8206 && !test_bit(Faulty, &rdev->flags)
8207 && !test_and_set_bit(In_sync, &rdev->flags)) {
8208 count++;
8209 sysfs_notify_dirent_safe(rdev->sysfs_state);
8210 }
8211 }
8212 spin_lock_irqsave(&conf->device_lock, flags);
8213 mddev->degraded = raid5_calc_degraded(conf);
8214 spin_unlock_irqrestore(&conf->device_lock, flags);
8215 print_raid5_conf(conf);
8216 return count;
8217 }
8218
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8219 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8220 {
8221 struct r5conf *conf = mddev->private;
8222 int err = 0;
8223 int number = rdev->raid_disk;
8224 struct md_rdev __rcu **rdevp;
8225 struct disk_info *p;
8226 struct md_rdev *tmp;
8227
8228 print_raid5_conf(conf);
8229 if (test_bit(Journal, &rdev->flags) && conf->log) {
8230 /*
8231 * we can't wait pending write here, as this is called in
8232 * raid5d, wait will deadlock.
8233 * neilb: there is no locking about new writes here,
8234 * so this cannot be safe.
8235 */
8236 if (atomic_read(&conf->active_stripes) ||
8237 atomic_read(&conf->r5c_cached_full_stripes) ||
8238 atomic_read(&conf->r5c_cached_partial_stripes)) {
8239 return -EBUSY;
8240 }
8241 log_exit(conf);
8242 return 0;
8243 }
8244 if (unlikely(number >= conf->pool_size))
8245 return 0;
8246 p = conf->disks + number;
8247 if (rdev == rcu_access_pointer(p->rdev))
8248 rdevp = &p->rdev;
8249 else if (rdev == rcu_access_pointer(p->replacement))
8250 rdevp = &p->replacement;
8251 else
8252 return 0;
8253
8254 if (number >= conf->raid_disks &&
8255 conf->reshape_progress == MaxSector)
8256 clear_bit(In_sync, &rdev->flags);
8257
8258 if (test_bit(In_sync, &rdev->flags) ||
8259 atomic_read(&rdev->nr_pending)) {
8260 err = -EBUSY;
8261 goto abort;
8262 }
8263 /* Only remove non-faulty devices if recovery
8264 * isn't possible.
8265 */
8266 if (!test_bit(Faulty, &rdev->flags) &&
8267 mddev->recovery_disabled != conf->recovery_disabled &&
8268 !has_failed(conf) &&
8269 (!rcu_access_pointer(p->replacement) ||
8270 rcu_access_pointer(p->replacement) == rdev) &&
8271 number < conf->raid_disks) {
8272 err = -EBUSY;
8273 goto abort;
8274 }
8275 *rdevp = NULL;
8276 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
8277 lockdep_assert_held(&mddev->reconfig_mutex);
8278 synchronize_rcu();
8279 if (atomic_read(&rdev->nr_pending)) {
8280 /* lost the race, try later */
8281 err = -EBUSY;
8282 rcu_assign_pointer(*rdevp, rdev);
8283 }
8284 }
8285 if (!err) {
8286 err = log_modify(conf, rdev, false);
8287 if (err)
8288 goto abort;
8289 }
8290
8291 tmp = rcu_access_pointer(p->replacement);
8292 if (tmp) {
8293 /* We must have just cleared 'rdev' */
8294 rcu_assign_pointer(p->rdev, tmp);
8295 clear_bit(Replacement, &tmp->flags);
8296 smp_mb(); /* Make sure other CPUs may see both as identical
8297 * but will never see neither - if they are careful
8298 */
8299 rcu_assign_pointer(p->replacement, NULL);
8300
8301 if (!err)
8302 err = log_modify(conf, tmp, true);
8303 }
8304
8305 clear_bit(WantReplacement, &rdev->flags);
8306 abort:
8307
8308 print_raid5_conf(conf);
8309 return err;
8310 }
8311
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8312 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8313 {
8314 struct r5conf *conf = mddev->private;
8315 int ret, err = -EEXIST;
8316 int disk;
8317 struct disk_info *p;
8318 struct md_rdev *tmp;
8319 int first = 0;
8320 int last = conf->raid_disks - 1;
8321
8322 if (test_bit(Journal, &rdev->flags)) {
8323 if (conf->log)
8324 return -EBUSY;
8325
8326 rdev->raid_disk = 0;
8327 /*
8328 * The array is in readonly mode if journal is missing, so no
8329 * write requests running. We should be safe
8330 */
8331 ret = log_init(conf, rdev, false);
8332 if (ret)
8333 return ret;
8334
8335 ret = r5l_start(conf->log);
8336 if (ret)
8337 return ret;
8338
8339 return 0;
8340 }
8341 if (mddev->recovery_disabled == conf->recovery_disabled)
8342 return -EBUSY;
8343
8344 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8345 /* no point adding a device */
8346 return -EINVAL;
8347
8348 if (rdev->raid_disk >= 0)
8349 first = last = rdev->raid_disk;
8350
8351 /*
8352 * find the disk ... but prefer rdev->saved_raid_disk
8353 * if possible.
8354 */
8355 if (rdev->saved_raid_disk >= first &&
8356 rdev->saved_raid_disk <= last &&
8357 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8358 first = rdev->saved_raid_disk;
8359
8360 for (disk = first; disk <= last; disk++) {
8361 p = conf->disks + disk;
8362 if (p->rdev == NULL) {
8363 clear_bit(In_sync, &rdev->flags);
8364 rdev->raid_disk = disk;
8365 if (rdev->saved_raid_disk != disk)
8366 conf->fullsync = 1;
8367 rcu_assign_pointer(p->rdev, rdev);
8368
8369 err = log_modify(conf, rdev, true);
8370
8371 goto out;
8372 }
8373 }
8374 for (disk = first; disk <= last; disk++) {
8375 p = conf->disks + disk;
8376 tmp = rdev_mdlock_deref(mddev, p->rdev);
8377 if (test_bit(WantReplacement, &tmp->flags) &&
8378 mddev->reshape_position == MaxSector &&
8379 p->replacement == NULL) {
8380 clear_bit(In_sync, &rdev->flags);
8381 set_bit(Replacement, &rdev->flags);
8382 rdev->raid_disk = disk;
8383 err = 0;
8384 conf->fullsync = 1;
8385 rcu_assign_pointer(p->replacement, rdev);
8386 break;
8387 }
8388 }
8389 out:
8390 print_raid5_conf(conf);
8391 return err;
8392 }
8393
raid5_resize(struct mddev * mddev,sector_t sectors)8394 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8395 {
8396 /* no resync is happening, and there is enough space
8397 * on all devices, so we can resize.
8398 * We need to make sure resync covers any new space.
8399 * If the array is shrinking we should possibly wait until
8400 * any io in the removed space completes, but it hardly seems
8401 * worth it.
8402 */
8403 sector_t newsize;
8404 struct r5conf *conf = mddev->private;
8405
8406 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8407 return -EINVAL;
8408 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8409 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8410 if (mddev->external_size &&
8411 mddev->array_sectors > newsize)
8412 return -EINVAL;
8413 if (mddev->bitmap) {
8414 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8415 if (ret)
8416 return ret;
8417 }
8418 md_set_array_sectors(mddev, newsize);
8419 if (sectors > mddev->dev_sectors &&
8420 mddev->recovery_cp > mddev->dev_sectors) {
8421 mddev->recovery_cp = mddev->dev_sectors;
8422 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8423 }
8424 mddev->dev_sectors = sectors;
8425 mddev->resync_max_sectors = sectors;
8426 return 0;
8427 }
8428
check_stripe_cache(struct mddev * mddev)8429 static int check_stripe_cache(struct mddev *mddev)
8430 {
8431 /* Can only proceed if there are plenty of stripe_heads.
8432 * We need a minimum of one full stripe,, and for sensible progress
8433 * it is best to have about 4 times that.
8434 * If we require 4 times, then the default 256 4K stripe_heads will
8435 * allow for chunk sizes up to 256K, which is probably OK.
8436 * If the chunk size is greater, user-space should request more
8437 * stripe_heads first.
8438 */
8439 struct r5conf *conf = mddev->private;
8440 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8441 > conf->min_nr_stripes ||
8442 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8443 > conf->min_nr_stripes) {
8444 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8445 mdname(mddev),
8446 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8447 / RAID5_STRIPE_SIZE(conf))*4);
8448 return 0;
8449 }
8450 return 1;
8451 }
8452
check_reshape(struct mddev * mddev)8453 static int check_reshape(struct mddev *mddev)
8454 {
8455 struct r5conf *conf = mddev->private;
8456
8457 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8458 return -EINVAL;
8459 if (mddev->delta_disks == 0 &&
8460 mddev->new_layout == mddev->layout &&
8461 mddev->new_chunk_sectors == mddev->chunk_sectors)
8462 return 0; /* nothing to do */
8463 if (has_failed(conf))
8464 return -EINVAL;
8465 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8466 /* We might be able to shrink, but the devices must
8467 * be made bigger first.
8468 * For raid6, 4 is the minimum size.
8469 * Otherwise 2 is the minimum
8470 */
8471 int min = 2;
8472 if (mddev->level == 6)
8473 min = 4;
8474 if (mddev->raid_disks + mddev->delta_disks < min)
8475 return -EINVAL;
8476 }
8477
8478 if (!check_stripe_cache(mddev))
8479 return -ENOSPC;
8480
8481 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8482 mddev->delta_disks > 0)
8483 if (resize_chunks(conf,
8484 conf->previous_raid_disks
8485 + max(0, mddev->delta_disks),
8486 max(mddev->new_chunk_sectors,
8487 mddev->chunk_sectors)
8488 ) < 0)
8489 return -ENOMEM;
8490
8491 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8492 return 0; /* never bother to shrink */
8493 return resize_stripes(conf, (conf->previous_raid_disks
8494 + mddev->delta_disks));
8495 }
8496
raid5_start_reshape(struct mddev * mddev)8497 static int raid5_start_reshape(struct mddev *mddev)
8498 {
8499 struct r5conf *conf = mddev->private;
8500 struct md_rdev *rdev;
8501 int spares = 0;
8502 int i;
8503 unsigned long flags;
8504
8505 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8506 return -EBUSY;
8507
8508 if (!check_stripe_cache(mddev))
8509 return -ENOSPC;
8510
8511 if (has_failed(conf))
8512 return -EINVAL;
8513
8514 /* raid5 can't handle concurrent reshape and recovery */
8515 if (mddev->recovery_cp < MaxSector)
8516 return -EBUSY;
8517 for (i = 0; i < conf->raid_disks; i++)
8518 if (rdev_mdlock_deref(mddev, conf->disks[i].replacement))
8519 return -EBUSY;
8520
8521 rdev_for_each(rdev, mddev) {
8522 if (!test_bit(In_sync, &rdev->flags)
8523 && !test_bit(Faulty, &rdev->flags))
8524 spares++;
8525 }
8526
8527 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8528 /* Not enough devices even to make a degraded array
8529 * of that size
8530 */
8531 return -EINVAL;
8532
8533 /* Refuse to reduce size of the array. Any reductions in
8534 * array size must be through explicit setting of array_size
8535 * attribute.
8536 */
8537 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8538 < mddev->array_sectors) {
8539 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8540 mdname(mddev));
8541 return -EINVAL;
8542 }
8543
8544 atomic_set(&conf->reshape_stripes, 0);
8545 spin_lock_irq(&conf->device_lock);
8546 write_seqcount_begin(&conf->gen_lock);
8547 conf->previous_raid_disks = conf->raid_disks;
8548 conf->raid_disks += mddev->delta_disks;
8549 conf->prev_chunk_sectors = conf->chunk_sectors;
8550 conf->chunk_sectors = mddev->new_chunk_sectors;
8551 conf->prev_algo = conf->algorithm;
8552 conf->algorithm = mddev->new_layout;
8553 conf->generation++;
8554 /* Code that selects data_offset needs to see the generation update
8555 * if reshape_progress has been set - so a memory barrier needed.
8556 */
8557 smp_mb();
8558 if (mddev->reshape_backwards)
8559 conf->reshape_progress = raid5_size(mddev, 0, 0);
8560 else
8561 conf->reshape_progress = 0;
8562 conf->reshape_safe = conf->reshape_progress;
8563 write_seqcount_end(&conf->gen_lock);
8564 spin_unlock_irq(&conf->device_lock);
8565
8566 /* Now make sure any requests that proceeded on the assumption
8567 * the reshape wasn't running - like Discard or Read - have
8568 * completed.
8569 */
8570 mddev_suspend(mddev);
8571 mddev_resume(mddev);
8572
8573 /* Add some new drives, as many as will fit.
8574 * We know there are enough to make the newly sized array work.
8575 * Don't add devices if we are reducing the number of
8576 * devices in the array. This is because it is not possible
8577 * to correctly record the "partially reconstructed" state of
8578 * such devices during the reshape and confusion could result.
8579 */
8580 if (mddev->delta_disks >= 0) {
8581 rdev_for_each(rdev, mddev)
8582 if (rdev->raid_disk < 0 &&
8583 !test_bit(Faulty, &rdev->flags)) {
8584 if (raid5_add_disk(mddev, rdev) == 0) {
8585 if (rdev->raid_disk
8586 >= conf->previous_raid_disks)
8587 set_bit(In_sync, &rdev->flags);
8588 else
8589 rdev->recovery_offset = 0;
8590
8591 /* Failure here is OK */
8592 sysfs_link_rdev(mddev, rdev);
8593 }
8594 } else if (rdev->raid_disk >= conf->previous_raid_disks
8595 && !test_bit(Faulty, &rdev->flags)) {
8596 /* This is a spare that was manually added */
8597 set_bit(In_sync, &rdev->flags);
8598 }
8599
8600 /* When a reshape changes the number of devices,
8601 * ->degraded is measured against the larger of the
8602 * pre and post number of devices.
8603 */
8604 spin_lock_irqsave(&conf->device_lock, flags);
8605 mddev->degraded = raid5_calc_degraded(conf);
8606 spin_unlock_irqrestore(&conf->device_lock, flags);
8607 }
8608 mddev->raid_disks = conf->raid_disks;
8609 mddev->reshape_position = conf->reshape_progress;
8610 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8611
8612 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8613 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8614 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8615 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8616 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8617 rcu_assign_pointer(mddev->sync_thread,
8618 md_register_thread(md_do_sync, mddev, "reshape"));
8619 if (!mddev->sync_thread) {
8620 mddev->recovery = 0;
8621 spin_lock_irq(&conf->device_lock);
8622 write_seqcount_begin(&conf->gen_lock);
8623 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8624 mddev->new_chunk_sectors =
8625 conf->chunk_sectors = conf->prev_chunk_sectors;
8626 mddev->new_layout = conf->algorithm = conf->prev_algo;
8627 rdev_for_each(rdev, mddev)
8628 rdev->new_data_offset = rdev->data_offset;
8629 smp_wmb();
8630 conf->generation --;
8631 conf->reshape_progress = MaxSector;
8632 mddev->reshape_position = MaxSector;
8633 write_seqcount_end(&conf->gen_lock);
8634 spin_unlock_irq(&conf->device_lock);
8635 return -EAGAIN;
8636 }
8637 conf->reshape_checkpoint = jiffies;
8638 md_wakeup_thread(mddev->sync_thread);
8639 md_new_event();
8640 return 0;
8641 }
8642
8643 /* This is called from the reshape thread and should make any
8644 * changes needed in 'conf'
8645 */
end_reshape(struct r5conf * conf)8646 static void end_reshape(struct r5conf *conf)
8647 {
8648
8649 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8650 struct md_rdev *rdev;
8651
8652 spin_lock_irq(&conf->device_lock);
8653 conf->previous_raid_disks = conf->raid_disks;
8654 md_finish_reshape(conf->mddev);
8655 smp_wmb();
8656 conf->reshape_progress = MaxSector;
8657 conf->mddev->reshape_position = MaxSector;
8658 rdev_for_each(rdev, conf->mddev)
8659 if (rdev->raid_disk >= 0 &&
8660 !test_bit(Journal, &rdev->flags) &&
8661 !test_bit(In_sync, &rdev->flags))
8662 rdev->recovery_offset = MaxSector;
8663 spin_unlock_irq(&conf->device_lock);
8664 wake_up(&conf->wait_for_overlap);
8665
8666 if (conf->mddev->queue)
8667 raid5_set_io_opt(conf);
8668 }
8669 }
8670
8671 /* This is called from the raid5d thread with mddev_lock held.
8672 * It makes config changes to the device.
8673 */
raid5_finish_reshape(struct mddev * mddev)8674 static void raid5_finish_reshape(struct mddev *mddev)
8675 {
8676 struct r5conf *conf = mddev->private;
8677 struct md_rdev *rdev;
8678
8679 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8680
8681 if (mddev->delta_disks <= 0) {
8682 int d;
8683 spin_lock_irq(&conf->device_lock);
8684 mddev->degraded = raid5_calc_degraded(conf);
8685 spin_unlock_irq(&conf->device_lock);
8686 for (d = conf->raid_disks ;
8687 d < conf->raid_disks - mddev->delta_disks;
8688 d++) {
8689 rdev = rdev_mdlock_deref(mddev,
8690 conf->disks[d].rdev);
8691 if (rdev)
8692 clear_bit(In_sync, &rdev->flags);
8693 rdev = rdev_mdlock_deref(mddev,
8694 conf->disks[d].replacement);
8695 if (rdev)
8696 clear_bit(In_sync, &rdev->flags);
8697 }
8698 }
8699 mddev->layout = conf->algorithm;
8700 mddev->chunk_sectors = conf->chunk_sectors;
8701 mddev->reshape_position = MaxSector;
8702 mddev->delta_disks = 0;
8703 mddev->reshape_backwards = 0;
8704 }
8705 }
8706
raid5_quiesce(struct mddev * mddev,int quiesce)8707 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8708 {
8709 struct r5conf *conf = mddev->private;
8710
8711 if (quiesce) {
8712 /* stop all writes */
8713 lock_all_device_hash_locks_irq(conf);
8714 /* '2' tells resync/reshape to pause so that all
8715 * active stripes can drain
8716 */
8717 r5c_flush_cache(conf, INT_MAX);
8718 /* need a memory barrier to make sure read_one_chunk() sees
8719 * quiesce started and reverts to slow (locked) path.
8720 */
8721 smp_store_release(&conf->quiesce, 2);
8722 wait_event_cmd(conf->wait_for_quiescent,
8723 atomic_read(&conf->active_stripes) == 0 &&
8724 atomic_read(&conf->active_aligned_reads) == 0,
8725 unlock_all_device_hash_locks_irq(conf),
8726 lock_all_device_hash_locks_irq(conf));
8727 conf->quiesce = 1;
8728 unlock_all_device_hash_locks_irq(conf);
8729 /* allow reshape to continue */
8730 wake_up(&conf->wait_for_overlap);
8731 } else {
8732 /* re-enable writes */
8733 lock_all_device_hash_locks_irq(conf);
8734 conf->quiesce = 0;
8735 wake_up(&conf->wait_for_quiescent);
8736 wake_up(&conf->wait_for_overlap);
8737 unlock_all_device_hash_locks_irq(conf);
8738 }
8739 log_quiesce(conf, quiesce);
8740 }
8741
raid45_takeover_raid0(struct mddev * mddev,int level)8742 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8743 {
8744 struct r0conf *raid0_conf = mddev->private;
8745 sector_t sectors;
8746
8747 /* for raid0 takeover only one zone is supported */
8748 if (raid0_conf->nr_strip_zones > 1) {
8749 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8750 mdname(mddev));
8751 return ERR_PTR(-EINVAL);
8752 }
8753
8754 sectors = raid0_conf->strip_zone[0].zone_end;
8755 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8756 mddev->dev_sectors = sectors;
8757 mddev->new_level = level;
8758 mddev->new_layout = ALGORITHM_PARITY_N;
8759 mddev->new_chunk_sectors = mddev->chunk_sectors;
8760 mddev->raid_disks += 1;
8761 mddev->delta_disks = 1;
8762 /* make sure it will be not marked as dirty */
8763 mddev->recovery_cp = MaxSector;
8764
8765 return setup_conf(mddev);
8766 }
8767
raid5_takeover_raid1(struct mddev * mddev)8768 static void *raid5_takeover_raid1(struct mddev *mddev)
8769 {
8770 int chunksect;
8771 void *ret;
8772
8773 if (mddev->raid_disks != 2 ||
8774 mddev->degraded > 1)
8775 return ERR_PTR(-EINVAL);
8776
8777 /* Should check if there are write-behind devices? */
8778
8779 chunksect = 64*2; /* 64K by default */
8780
8781 /* The array must be an exact multiple of chunksize */
8782 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8783 chunksect >>= 1;
8784
8785 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8786 /* array size does not allow a suitable chunk size */
8787 return ERR_PTR(-EINVAL);
8788
8789 mddev->new_level = 5;
8790 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8791 mddev->new_chunk_sectors = chunksect;
8792
8793 ret = setup_conf(mddev);
8794 if (!IS_ERR(ret))
8795 mddev_clear_unsupported_flags(mddev,
8796 UNSUPPORTED_MDDEV_FLAGS);
8797 return ret;
8798 }
8799
raid5_takeover_raid6(struct mddev * mddev)8800 static void *raid5_takeover_raid6(struct mddev *mddev)
8801 {
8802 int new_layout;
8803
8804 switch (mddev->layout) {
8805 case ALGORITHM_LEFT_ASYMMETRIC_6:
8806 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8807 break;
8808 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8809 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8810 break;
8811 case ALGORITHM_LEFT_SYMMETRIC_6:
8812 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8813 break;
8814 case ALGORITHM_RIGHT_SYMMETRIC_6:
8815 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8816 break;
8817 case ALGORITHM_PARITY_0_6:
8818 new_layout = ALGORITHM_PARITY_0;
8819 break;
8820 case ALGORITHM_PARITY_N:
8821 new_layout = ALGORITHM_PARITY_N;
8822 break;
8823 default:
8824 return ERR_PTR(-EINVAL);
8825 }
8826 mddev->new_level = 5;
8827 mddev->new_layout = new_layout;
8828 mddev->delta_disks = -1;
8829 mddev->raid_disks -= 1;
8830 return setup_conf(mddev);
8831 }
8832
raid5_check_reshape(struct mddev * mddev)8833 static int raid5_check_reshape(struct mddev *mddev)
8834 {
8835 /* For a 2-drive array, the layout and chunk size can be changed
8836 * immediately as not restriping is needed.
8837 * For larger arrays we record the new value - after validation
8838 * to be used by a reshape pass.
8839 */
8840 struct r5conf *conf = mddev->private;
8841 int new_chunk = mddev->new_chunk_sectors;
8842
8843 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8844 return -EINVAL;
8845 if (new_chunk > 0) {
8846 if (!is_power_of_2(new_chunk))
8847 return -EINVAL;
8848 if (new_chunk < (PAGE_SIZE>>9))
8849 return -EINVAL;
8850 if (mddev->array_sectors & (new_chunk-1))
8851 /* not factor of array size */
8852 return -EINVAL;
8853 }
8854
8855 /* They look valid */
8856
8857 if (mddev->raid_disks == 2) {
8858 /* can make the change immediately */
8859 if (mddev->new_layout >= 0) {
8860 conf->algorithm = mddev->new_layout;
8861 mddev->layout = mddev->new_layout;
8862 }
8863 if (new_chunk > 0) {
8864 conf->chunk_sectors = new_chunk ;
8865 mddev->chunk_sectors = new_chunk;
8866 }
8867 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8868 md_wakeup_thread(mddev->thread);
8869 }
8870 return check_reshape(mddev);
8871 }
8872
raid6_check_reshape(struct mddev * mddev)8873 static int raid6_check_reshape(struct mddev *mddev)
8874 {
8875 int new_chunk = mddev->new_chunk_sectors;
8876
8877 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8878 return -EINVAL;
8879 if (new_chunk > 0) {
8880 if (!is_power_of_2(new_chunk))
8881 return -EINVAL;
8882 if (new_chunk < (PAGE_SIZE >> 9))
8883 return -EINVAL;
8884 if (mddev->array_sectors & (new_chunk-1))
8885 /* not factor of array size */
8886 return -EINVAL;
8887 }
8888
8889 /* They look valid */
8890 return check_reshape(mddev);
8891 }
8892
raid5_takeover(struct mddev * mddev)8893 static void *raid5_takeover(struct mddev *mddev)
8894 {
8895 /* raid5 can take over:
8896 * raid0 - if there is only one strip zone - make it a raid4 layout
8897 * raid1 - if there are two drives. We need to know the chunk size
8898 * raid4 - trivial - just use a raid4 layout.
8899 * raid6 - Providing it is a *_6 layout
8900 */
8901 if (mddev->level == 0)
8902 return raid45_takeover_raid0(mddev, 5);
8903 if (mddev->level == 1)
8904 return raid5_takeover_raid1(mddev);
8905 if (mddev->level == 4) {
8906 mddev->new_layout = ALGORITHM_PARITY_N;
8907 mddev->new_level = 5;
8908 return setup_conf(mddev);
8909 }
8910 if (mddev->level == 6)
8911 return raid5_takeover_raid6(mddev);
8912
8913 return ERR_PTR(-EINVAL);
8914 }
8915
raid4_takeover(struct mddev * mddev)8916 static void *raid4_takeover(struct mddev *mddev)
8917 {
8918 /* raid4 can take over:
8919 * raid0 - if there is only one strip zone
8920 * raid5 - if layout is right
8921 */
8922 if (mddev->level == 0)
8923 return raid45_takeover_raid0(mddev, 4);
8924 if (mddev->level == 5 &&
8925 mddev->layout == ALGORITHM_PARITY_N) {
8926 mddev->new_layout = 0;
8927 mddev->new_level = 4;
8928 return setup_conf(mddev);
8929 }
8930 return ERR_PTR(-EINVAL);
8931 }
8932
8933 static struct md_personality raid5_personality;
8934
raid6_takeover(struct mddev * mddev)8935 static void *raid6_takeover(struct mddev *mddev)
8936 {
8937 /* Currently can only take over a raid5. We map the
8938 * personality to an equivalent raid6 personality
8939 * with the Q block at the end.
8940 */
8941 int new_layout;
8942
8943 if (mddev->pers != &raid5_personality)
8944 return ERR_PTR(-EINVAL);
8945 if (mddev->degraded > 1)
8946 return ERR_PTR(-EINVAL);
8947 if (mddev->raid_disks > 253)
8948 return ERR_PTR(-EINVAL);
8949 if (mddev->raid_disks < 3)
8950 return ERR_PTR(-EINVAL);
8951
8952 switch (mddev->layout) {
8953 case ALGORITHM_LEFT_ASYMMETRIC:
8954 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8955 break;
8956 case ALGORITHM_RIGHT_ASYMMETRIC:
8957 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8958 break;
8959 case ALGORITHM_LEFT_SYMMETRIC:
8960 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8961 break;
8962 case ALGORITHM_RIGHT_SYMMETRIC:
8963 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8964 break;
8965 case ALGORITHM_PARITY_0:
8966 new_layout = ALGORITHM_PARITY_0_6;
8967 break;
8968 case ALGORITHM_PARITY_N:
8969 new_layout = ALGORITHM_PARITY_N;
8970 break;
8971 default:
8972 return ERR_PTR(-EINVAL);
8973 }
8974 mddev->new_level = 6;
8975 mddev->new_layout = new_layout;
8976 mddev->delta_disks = 1;
8977 mddev->raid_disks += 1;
8978 return setup_conf(mddev);
8979 }
8980
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8981 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8982 {
8983 struct r5conf *conf;
8984 int err;
8985
8986 err = mddev_lock(mddev);
8987 if (err)
8988 return err;
8989 conf = mddev->private;
8990 if (!conf) {
8991 mddev_unlock(mddev);
8992 return -ENODEV;
8993 }
8994
8995 if (strncmp(buf, "ppl", 3) == 0) {
8996 /* ppl only works with RAID 5 */
8997 if (!raid5_has_ppl(conf) && conf->level == 5) {
8998 err = log_init(conf, NULL, true);
8999 if (!err) {
9000 err = resize_stripes(conf, conf->pool_size);
9001 if (err) {
9002 mddev_suspend(mddev);
9003 log_exit(conf);
9004 mddev_resume(mddev);
9005 }
9006 }
9007 } else
9008 err = -EINVAL;
9009 } else if (strncmp(buf, "resync", 6) == 0) {
9010 if (raid5_has_ppl(conf)) {
9011 mddev_suspend(mddev);
9012 log_exit(conf);
9013 mddev_resume(mddev);
9014 err = resize_stripes(conf, conf->pool_size);
9015 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
9016 r5l_log_disk_error(conf)) {
9017 bool journal_dev_exists = false;
9018 struct md_rdev *rdev;
9019
9020 rdev_for_each(rdev, mddev)
9021 if (test_bit(Journal, &rdev->flags)) {
9022 journal_dev_exists = true;
9023 break;
9024 }
9025
9026 if (!journal_dev_exists) {
9027 mddev_suspend(mddev);
9028 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
9029 mddev_resume(mddev);
9030 } else /* need remove journal device first */
9031 err = -EBUSY;
9032 } else
9033 err = -EINVAL;
9034 } else {
9035 err = -EINVAL;
9036 }
9037
9038 if (!err)
9039 md_update_sb(mddev, 1);
9040
9041 mddev_unlock(mddev);
9042
9043 return err;
9044 }
9045
raid5_start(struct mddev * mddev)9046 static int raid5_start(struct mddev *mddev)
9047 {
9048 struct r5conf *conf = mddev->private;
9049
9050 return r5l_start(conf->log);
9051 }
9052
raid5_prepare_suspend(struct mddev * mddev)9053 static void raid5_prepare_suspend(struct mddev *mddev)
9054 {
9055 struct r5conf *conf = mddev->private;
9056
9057 wait_event(mddev->sb_wait, !reshape_inprogress(mddev) ||
9058 percpu_ref_is_zero(&mddev->active_io));
9059 if (percpu_ref_is_zero(&mddev->active_io))
9060 return;
9061
9062 /*
9063 * Reshape is not in progress, and array is suspended, io that is
9064 * waiting for reshpape can never be done.
9065 */
9066 wake_up(&conf->wait_for_overlap);
9067 }
9068
9069 static struct md_personality raid6_personality =
9070 {
9071 .name = "raid6",
9072 .level = 6,
9073 .owner = THIS_MODULE,
9074 .make_request = raid5_make_request,
9075 .run = raid5_run,
9076 .start = raid5_start,
9077 .free = raid5_free,
9078 .status = raid5_status,
9079 .error_handler = raid5_error,
9080 .hot_add_disk = raid5_add_disk,
9081 .hot_remove_disk= raid5_remove_disk,
9082 .spare_active = raid5_spare_active,
9083 .sync_request = raid5_sync_request,
9084 .resize = raid5_resize,
9085 .size = raid5_size,
9086 .check_reshape = raid6_check_reshape,
9087 .start_reshape = raid5_start_reshape,
9088 .finish_reshape = raid5_finish_reshape,
9089 .prepare_suspend = raid5_prepare_suspend,
9090 .quiesce = raid5_quiesce,
9091 .takeover = raid6_takeover,
9092 .change_consistency_policy = raid5_change_consistency_policy,
9093 };
9094 static struct md_personality raid5_personality =
9095 {
9096 .name = "raid5",
9097 .level = 5,
9098 .owner = THIS_MODULE,
9099 .make_request = raid5_make_request,
9100 .run = raid5_run,
9101 .start = raid5_start,
9102 .free = raid5_free,
9103 .status = raid5_status,
9104 .error_handler = raid5_error,
9105 .hot_add_disk = raid5_add_disk,
9106 .hot_remove_disk= raid5_remove_disk,
9107 .spare_active = raid5_spare_active,
9108 .sync_request = raid5_sync_request,
9109 .resize = raid5_resize,
9110 .size = raid5_size,
9111 .check_reshape = raid5_check_reshape,
9112 .start_reshape = raid5_start_reshape,
9113 .finish_reshape = raid5_finish_reshape,
9114 .prepare_suspend = raid5_prepare_suspend,
9115 .quiesce = raid5_quiesce,
9116 .takeover = raid5_takeover,
9117 .change_consistency_policy = raid5_change_consistency_policy,
9118 };
9119
9120 static struct md_personality raid4_personality =
9121 {
9122 .name = "raid4",
9123 .level = 4,
9124 .owner = THIS_MODULE,
9125 .make_request = raid5_make_request,
9126 .run = raid5_run,
9127 .start = raid5_start,
9128 .free = raid5_free,
9129 .status = raid5_status,
9130 .error_handler = raid5_error,
9131 .hot_add_disk = raid5_add_disk,
9132 .hot_remove_disk= raid5_remove_disk,
9133 .spare_active = raid5_spare_active,
9134 .sync_request = raid5_sync_request,
9135 .resize = raid5_resize,
9136 .size = raid5_size,
9137 .check_reshape = raid5_check_reshape,
9138 .start_reshape = raid5_start_reshape,
9139 .finish_reshape = raid5_finish_reshape,
9140 .prepare_suspend = raid5_prepare_suspend,
9141 .quiesce = raid5_quiesce,
9142 .takeover = raid4_takeover,
9143 .change_consistency_policy = raid5_change_consistency_policy,
9144 };
9145
raid5_init(void)9146 static int __init raid5_init(void)
9147 {
9148 int ret;
9149
9150 raid5_wq = alloc_workqueue("raid5wq",
9151 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9152 if (!raid5_wq)
9153 return -ENOMEM;
9154
9155 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9156 "md/raid5:prepare",
9157 raid456_cpu_up_prepare,
9158 raid456_cpu_dead);
9159 if (ret) {
9160 destroy_workqueue(raid5_wq);
9161 return ret;
9162 }
9163 register_md_personality(&raid6_personality);
9164 register_md_personality(&raid5_personality);
9165 register_md_personality(&raid4_personality);
9166 return 0;
9167 }
9168
raid5_exit(void)9169 static void raid5_exit(void)
9170 {
9171 unregister_md_personality(&raid6_personality);
9172 unregister_md_personality(&raid5_personality);
9173 unregister_md_personality(&raid4_personality);
9174 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9175 destroy_workqueue(raid5_wq);
9176 }
9177
9178 module_init(raid5_init);
9179 module_exit(raid5_exit);
9180 MODULE_LICENSE("GPL");
9181 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9182 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9183 MODULE_ALIAS("md-raid5");
9184 MODULE_ALIAS("md-raid4");
9185 MODULE_ALIAS("md-level-5");
9186 MODULE_ALIAS("md-level-4");
9187 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9188 MODULE_ALIAS("md-raid6");
9189 MODULE_ALIAS("md-level-6");
9190
9191 /* This used to be two separate modules, they were: */
9192 MODULE_ALIAS("raid5");
9193 MODULE_ALIAS("raid6");
9194