xref: /openbmc/linux/drivers/bluetooth/hci_qca.c (revision a22cbf1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW,
82 	QCA_DEBUGFS_CREATED,
83 };
84 
85 enum qca_capabilities {
86 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87 	QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89 
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92 	HCI_IBS_TX_ASLEEP,
93 	HCI_IBS_TX_WAKING,
94 	HCI_IBS_TX_AWAKE,
95 };
96 
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99 	HCI_IBS_RX_ASLEEP,
100 	HCI_IBS_RX_AWAKE,
101 };
102 
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105 	HCI_IBS_VOTE_STATS_UPDATE,
106 	HCI_IBS_TX_VOTE_CLOCK_ON,
107 	HCI_IBS_TX_VOTE_CLOCK_OFF,
108 	HCI_IBS_RX_VOTE_CLOCK_ON,
109 	HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111 
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114 	QCA_MEMDUMP_IDLE,
115 	QCA_MEMDUMP_COLLECTING,
116 	QCA_MEMDUMP_COLLECTED,
117 	QCA_MEMDUMP_TIMEOUT,
118 };
119 
120 struct qca_memdump_info {
121 	u32 current_seq_no;
122 	u32 received_dump;
123 	u32 ram_dump_size;
124 };
125 
126 struct qca_memdump_event_hdr {
127 	__u8    evt;
128 	__u8    plen;
129 	__u16   opcode;
130 	__le16   seq_no;
131 	__u8    reserved;
132 } __packed;
133 
134 
135 struct qca_dump_size {
136 	__le32 dump_size;
137 } __packed;
138 
139 struct qca_data {
140 	struct hci_uart *hu;
141 	struct sk_buff *rx_skb;
142 	struct sk_buff_head txq;
143 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
144 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
145 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
146 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
147 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
148 	bool tx_vote;		/* Clock must be on for TX */
149 	bool rx_vote;		/* Clock must be on for RX */
150 	struct timer_list tx_idle_timer;
151 	u32 tx_idle_delay;
152 	struct timer_list wake_retrans_timer;
153 	u32 wake_retrans;
154 	struct workqueue_struct *workqueue;
155 	struct work_struct ws_awake_rx;
156 	struct work_struct ws_awake_device;
157 	struct work_struct ws_rx_vote_off;
158 	struct work_struct ws_tx_vote_off;
159 	struct work_struct ctrl_memdump_evt;
160 	struct delayed_work ctrl_memdump_timeout;
161 	struct qca_memdump_info *qca_memdump;
162 	unsigned long flags;
163 	struct completion drop_ev_comp;
164 	wait_queue_head_t suspend_wait_q;
165 	enum qca_memdump_states memdump_state;
166 	struct mutex hci_memdump_lock;
167 
168 	u16 fw_version;
169 	u16 controller_id;
170 	/* For debugging purpose */
171 	u64 ibs_sent_wacks;
172 	u64 ibs_sent_slps;
173 	u64 ibs_sent_wakes;
174 	u64 ibs_recv_wacks;
175 	u64 ibs_recv_slps;
176 	u64 ibs_recv_wakes;
177 	u64 vote_last_jif;
178 	u32 vote_on_ms;
179 	u32 vote_off_ms;
180 	u64 tx_votes_on;
181 	u64 rx_votes_on;
182 	u64 tx_votes_off;
183 	u64 rx_votes_off;
184 	u64 votes_on;
185 	u64 votes_off;
186 };
187 
188 enum qca_speed_type {
189 	QCA_INIT_SPEED = 1,
190 	QCA_OPER_SPEED
191 };
192 
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198 	const char *name;
199 	unsigned int load_uA;
200 };
201 
202 struct qca_device_data {
203 	enum qca_btsoc_type soc_type;
204 	struct qca_vreg *vregs;
205 	size_t num_vregs;
206 	uint32_t capabilities;
207 };
208 
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213 	struct device *dev;
214 	struct regulator_bulk_data *vreg_bulk;
215 	int num_vregs;
216 	bool vregs_on;
217 };
218 
219 struct qca_serdev {
220 	struct hci_uart	 serdev_hu;
221 	struct gpio_desc *bt_en;
222 	struct gpio_desc *sw_ctrl;
223 	struct clk	 *susclk;
224 	enum qca_btsoc_type btsoc_type;
225 	struct qca_power *bt_power;
226 	u32 init_speed;
227 	u32 oper_speed;
228 	bool bdaddr_property_broken;
229 	const char *firmware_name;
230 };
231 
232 static int qca_regulator_enable(struct qca_serdev *qcadev);
233 static void qca_regulator_disable(struct qca_serdev *qcadev);
234 static void qca_power_shutdown(struct hci_uart *hu);
235 static int qca_power_off(struct hci_dev *hdev);
236 static void qca_controller_memdump(struct work_struct *work);
237 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
238 
qca_soc_type(struct hci_uart * hu)239 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
240 {
241 	enum qca_btsoc_type soc_type;
242 
243 	if (hu->serdev) {
244 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
245 
246 		soc_type = qsd->btsoc_type;
247 	} else {
248 		soc_type = QCA_ROME;
249 	}
250 
251 	return soc_type;
252 }
253 
qca_get_firmware_name(struct hci_uart * hu)254 static const char *qca_get_firmware_name(struct hci_uart *hu)
255 {
256 	if (hu->serdev) {
257 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
258 
259 		return qsd->firmware_name;
260 	} else {
261 		return NULL;
262 	}
263 }
264 
__serial_clock_on(struct tty_struct * tty)265 static void __serial_clock_on(struct tty_struct *tty)
266 {
267 	/* TODO: Some chipset requires to enable UART clock on client
268 	 * side to save power consumption or manual work is required.
269 	 * Please put your code to control UART clock here if needed
270 	 */
271 }
272 
__serial_clock_off(struct tty_struct * tty)273 static void __serial_clock_off(struct tty_struct *tty)
274 {
275 	/* TODO: Some chipset requires to disable UART clock on client
276 	 * side to save power consumption or manual work is required.
277 	 * Please put your code to control UART clock off here if needed
278 	 */
279 }
280 
281 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)282 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
283 {
284 	struct qca_data *qca = hu->priv;
285 	unsigned int diff;
286 
287 	bool old_vote = (qca->tx_vote | qca->rx_vote);
288 	bool new_vote;
289 
290 	switch (vote) {
291 	case HCI_IBS_VOTE_STATS_UPDATE:
292 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
293 
294 		if (old_vote)
295 			qca->vote_off_ms += diff;
296 		else
297 			qca->vote_on_ms += diff;
298 		return;
299 
300 	case HCI_IBS_TX_VOTE_CLOCK_ON:
301 		qca->tx_vote = true;
302 		qca->tx_votes_on++;
303 		break;
304 
305 	case HCI_IBS_RX_VOTE_CLOCK_ON:
306 		qca->rx_vote = true;
307 		qca->rx_votes_on++;
308 		break;
309 
310 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
311 		qca->tx_vote = false;
312 		qca->tx_votes_off++;
313 		break;
314 
315 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
316 		qca->rx_vote = false;
317 		qca->rx_votes_off++;
318 		break;
319 
320 	default:
321 		BT_ERR("Voting irregularity");
322 		return;
323 	}
324 
325 	new_vote = qca->rx_vote | qca->tx_vote;
326 
327 	if (new_vote != old_vote) {
328 		if (new_vote)
329 			__serial_clock_on(hu->tty);
330 		else
331 			__serial_clock_off(hu->tty);
332 
333 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
334 		       vote ? "true" : "false");
335 
336 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
337 
338 		if (new_vote) {
339 			qca->votes_on++;
340 			qca->vote_off_ms += diff;
341 		} else {
342 			qca->votes_off++;
343 			qca->vote_on_ms += diff;
344 		}
345 		qca->vote_last_jif = jiffies;
346 	}
347 }
348 
349 /* Builds and sends an HCI_IBS command packet.
350  * These are very simple packets with only 1 cmd byte.
351  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)352 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
353 {
354 	int err = 0;
355 	struct sk_buff *skb = NULL;
356 	struct qca_data *qca = hu->priv;
357 
358 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
359 
360 	skb = bt_skb_alloc(1, GFP_ATOMIC);
361 	if (!skb) {
362 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
363 		return -ENOMEM;
364 	}
365 
366 	/* Assign HCI_IBS type */
367 	skb_put_u8(skb, cmd);
368 
369 	skb_queue_tail(&qca->txq, skb);
370 
371 	return err;
372 }
373 
qca_wq_awake_device(struct work_struct * work)374 static void qca_wq_awake_device(struct work_struct *work)
375 {
376 	struct qca_data *qca = container_of(work, struct qca_data,
377 					    ws_awake_device);
378 	struct hci_uart *hu = qca->hu;
379 	unsigned long retrans_delay;
380 	unsigned long flags;
381 
382 	BT_DBG("hu %p wq awake device", hu);
383 
384 	/* Vote for serial clock */
385 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
386 
387 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
388 
389 	/* Send wake indication to device */
390 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
391 		BT_ERR("Failed to send WAKE to device");
392 
393 	qca->ibs_sent_wakes++;
394 
395 	/* Start retransmit timer */
396 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
397 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
398 
399 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
400 
401 	/* Actually send the packets */
402 	hci_uart_tx_wakeup(hu);
403 }
404 
qca_wq_awake_rx(struct work_struct * work)405 static void qca_wq_awake_rx(struct work_struct *work)
406 {
407 	struct qca_data *qca = container_of(work, struct qca_data,
408 					    ws_awake_rx);
409 	struct hci_uart *hu = qca->hu;
410 	unsigned long flags;
411 
412 	BT_DBG("hu %p wq awake rx", hu);
413 
414 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
415 
416 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
417 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
418 
419 	/* Always acknowledge device wake up,
420 	 * sending IBS message doesn't count as TX ON.
421 	 */
422 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
423 		BT_ERR("Failed to acknowledge device wake up");
424 
425 	qca->ibs_sent_wacks++;
426 
427 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
428 
429 	/* Actually send the packets */
430 	hci_uart_tx_wakeup(hu);
431 }
432 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)433 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
434 {
435 	struct qca_data *qca = container_of(work, struct qca_data,
436 					    ws_rx_vote_off);
437 	struct hci_uart *hu = qca->hu;
438 
439 	BT_DBG("hu %p rx clock vote off", hu);
440 
441 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
442 }
443 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)444 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
445 {
446 	struct qca_data *qca = container_of(work, struct qca_data,
447 					    ws_tx_vote_off);
448 	struct hci_uart *hu = qca->hu;
449 
450 	BT_DBG("hu %p tx clock vote off", hu);
451 
452 	/* Run HCI tx handling unlocked */
453 	hci_uart_tx_wakeup(hu);
454 
455 	/* Now that message queued to tty driver, vote for tty clocks off.
456 	 * It is up to the tty driver to pend the clocks off until tx done.
457 	 */
458 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
459 }
460 
hci_ibs_tx_idle_timeout(struct timer_list * t)461 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
462 {
463 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
464 	struct hci_uart *hu = qca->hu;
465 	unsigned long flags;
466 
467 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
468 
469 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
470 				 flags, SINGLE_DEPTH_NESTING);
471 
472 	switch (qca->tx_ibs_state) {
473 	case HCI_IBS_TX_AWAKE:
474 		/* TX_IDLE, go to SLEEP */
475 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
476 			BT_ERR("Failed to send SLEEP to device");
477 			break;
478 		}
479 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
480 		qca->ibs_sent_slps++;
481 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
482 		break;
483 
484 	case HCI_IBS_TX_ASLEEP:
485 	case HCI_IBS_TX_WAKING:
486 	default:
487 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
488 		break;
489 	}
490 
491 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
492 }
493 
hci_ibs_wake_retrans_timeout(struct timer_list * t)494 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
495 {
496 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
497 	struct hci_uart *hu = qca->hu;
498 	unsigned long flags, retrans_delay;
499 	bool retransmit = false;
500 
501 	BT_DBG("hu %p wake retransmit timeout in %d state",
502 		hu, qca->tx_ibs_state);
503 
504 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
505 				 flags, SINGLE_DEPTH_NESTING);
506 
507 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
508 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
509 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
510 		return;
511 	}
512 
513 	switch (qca->tx_ibs_state) {
514 	case HCI_IBS_TX_WAKING:
515 		/* No WAKE_ACK, retransmit WAKE */
516 		retransmit = true;
517 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
518 			BT_ERR("Failed to acknowledge device wake up");
519 			break;
520 		}
521 		qca->ibs_sent_wakes++;
522 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
523 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
524 		break;
525 
526 	case HCI_IBS_TX_ASLEEP:
527 	case HCI_IBS_TX_AWAKE:
528 	default:
529 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
530 		break;
531 	}
532 
533 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
534 
535 	if (retransmit)
536 		hci_uart_tx_wakeup(hu);
537 }
538 
539 
qca_controller_memdump_timeout(struct work_struct * work)540 static void qca_controller_memdump_timeout(struct work_struct *work)
541 {
542 	struct qca_data *qca = container_of(work, struct qca_data,
543 					ctrl_memdump_timeout.work);
544 	struct hci_uart *hu = qca->hu;
545 
546 	mutex_lock(&qca->hci_memdump_lock);
547 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
548 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
549 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
550 			/* Inject hw error event to reset the device
551 			 * and driver.
552 			 */
553 			hci_reset_dev(hu->hdev);
554 		}
555 	}
556 
557 	mutex_unlock(&qca->hci_memdump_lock);
558 }
559 
560 
561 /* Initialize protocol */
qca_open(struct hci_uart * hu)562 static int qca_open(struct hci_uart *hu)
563 {
564 	struct qca_serdev *qcadev;
565 	struct qca_data *qca;
566 
567 	BT_DBG("hu %p qca_open", hu);
568 
569 	if (!hci_uart_has_flow_control(hu))
570 		return -EOPNOTSUPP;
571 
572 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
573 	if (!qca)
574 		return -ENOMEM;
575 
576 	skb_queue_head_init(&qca->txq);
577 	skb_queue_head_init(&qca->tx_wait_q);
578 	skb_queue_head_init(&qca->rx_memdump_q);
579 	spin_lock_init(&qca->hci_ibs_lock);
580 	mutex_init(&qca->hci_memdump_lock);
581 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
582 	if (!qca->workqueue) {
583 		BT_ERR("QCA Workqueue not initialized properly");
584 		kfree(qca);
585 		return -ENOMEM;
586 	}
587 
588 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
589 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
590 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
591 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
592 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
593 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
594 			  qca_controller_memdump_timeout);
595 	init_waitqueue_head(&qca->suspend_wait_q);
596 
597 	qca->hu = hu;
598 	init_completion(&qca->drop_ev_comp);
599 
600 	/* Assume we start with both sides asleep -- extra wakes OK */
601 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
602 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
603 
604 	qca->vote_last_jif = jiffies;
605 
606 	hu->priv = qca;
607 
608 	if (hu->serdev) {
609 		qcadev = serdev_device_get_drvdata(hu->serdev);
610 
611 		switch (qcadev->btsoc_type) {
612 		case QCA_WCN3988:
613 		case QCA_WCN3990:
614 		case QCA_WCN3991:
615 		case QCA_WCN3998:
616 		case QCA_WCN6750:
617 			hu->init_speed = qcadev->init_speed;
618 			break;
619 
620 		default:
621 			break;
622 		}
623 
624 		if (qcadev->oper_speed)
625 			hu->oper_speed = qcadev->oper_speed;
626 	}
627 
628 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
629 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
630 
631 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
632 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
633 
634 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
635 	       qca->tx_idle_delay, qca->wake_retrans);
636 
637 	return 0;
638 }
639 
qca_debugfs_init(struct hci_dev * hdev)640 static void qca_debugfs_init(struct hci_dev *hdev)
641 {
642 	struct hci_uart *hu = hci_get_drvdata(hdev);
643 	struct qca_data *qca = hu->priv;
644 	struct dentry *ibs_dir;
645 	umode_t mode;
646 
647 	if (!hdev->debugfs)
648 		return;
649 
650 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
651 		return;
652 
653 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
654 
655 	/* read only */
656 	mode = 0444;
657 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
658 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
659 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
660 			   &qca->ibs_sent_slps);
661 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
662 			   &qca->ibs_sent_wakes);
663 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
664 			   &qca->ibs_sent_wacks);
665 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
666 			   &qca->ibs_recv_slps);
667 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
668 			   &qca->ibs_recv_wakes);
669 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
670 			   &qca->ibs_recv_wacks);
671 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
672 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
673 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
674 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
675 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
676 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
677 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
678 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
679 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
680 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
681 
682 	/* read/write */
683 	mode = 0644;
684 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
685 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
686 			   &qca->tx_idle_delay);
687 }
688 
689 /* Flush protocol data */
qca_flush(struct hci_uart * hu)690 static int qca_flush(struct hci_uart *hu)
691 {
692 	struct qca_data *qca = hu->priv;
693 
694 	BT_DBG("hu %p qca flush", hu);
695 
696 	skb_queue_purge(&qca->tx_wait_q);
697 	skb_queue_purge(&qca->txq);
698 
699 	return 0;
700 }
701 
702 /* Close protocol */
qca_close(struct hci_uart * hu)703 static int qca_close(struct hci_uart *hu)
704 {
705 	struct qca_data *qca = hu->priv;
706 
707 	BT_DBG("hu %p qca close", hu);
708 
709 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
710 
711 	skb_queue_purge(&qca->tx_wait_q);
712 	skb_queue_purge(&qca->txq);
713 	skb_queue_purge(&qca->rx_memdump_q);
714 	/*
715 	 * Shut the timers down so they can't be rearmed when
716 	 * destroy_workqueue() drains pending work which in turn might try
717 	 * to arm a timer.  After shutdown rearm attempts are silently
718 	 * ignored by the timer core code.
719 	 */
720 	timer_shutdown_sync(&qca->tx_idle_timer);
721 	timer_shutdown_sync(&qca->wake_retrans_timer);
722 	destroy_workqueue(qca->workqueue);
723 	qca->hu = NULL;
724 
725 	kfree_skb(qca->rx_skb);
726 
727 	hu->priv = NULL;
728 
729 	kfree(qca);
730 
731 	return 0;
732 }
733 
734 /* Called upon a wake-up-indication from the device.
735  */
device_want_to_wakeup(struct hci_uart * hu)736 static void device_want_to_wakeup(struct hci_uart *hu)
737 {
738 	unsigned long flags;
739 	struct qca_data *qca = hu->priv;
740 
741 	BT_DBG("hu %p want to wake up", hu);
742 
743 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
744 
745 	qca->ibs_recv_wakes++;
746 
747 	/* Don't wake the rx up when suspending. */
748 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
749 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
750 		return;
751 	}
752 
753 	switch (qca->rx_ibs_state) {
754 	case HCI_IBS_RX_ASLEEP:
755 		/* Make sure clock is on - we may have turned clock off since
756 		 * receiving the wake up indicator awake rx clock.
757 		 */
758 		queue_work(qca->workqueue, &qca->ws_awake_rx);
759 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
760 		return;
761 
762 	case HCI_IBS_RX_AWAKE:
763 		/* Always acknowledge device wake up,
764 		 * sending IBS message doesn't count as TX ON.
765 		 */
766 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
767 			BT_ERR("Failed to acknowledge device wake up");
768 			break;
769 		}
770 		qca->ibs_sent_wacks++;
771 		break;
772 
773 	default:
774 		/* Any other state is illegal */
775 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
776 		       qca->rx_ibs_state);
777 		break;
778 	}
779 
780 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
781 
782 	/* Actually send the packets */
783 	hci_uart_tx_wakeup(hu);
784 }
785 
786 /* Called upon a sleep-indication from the device.
787  */
device_want_to_sleep(struct hci_uart * hu)788 static void device_want_to_sleep(struct hci_uart *hu)
789 {
790 	unsigned long flags;
791 	struct qca_data *qca = hu->priv;
792 
793 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
794 
795 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
796 
797 	qca->ibs_recv_slps++;
798 
799 	switch (qca->rx_ibs_state) {
800 	case HCI_IBS_RX_AWAKE:
801 		/* Update state */
802 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
803 		/* Vote off rx clock under workqueue */
804 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
805 		break;
806 
807 	case HCI_IBS_RX_ASLEEP:
808 		break;
809 
810 	default:
811 		/* Any other state is illegal */
812 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
813 		       qca->rx_ibs_state);
814 		break;
815 	}
816 
817 	wake_up_interruptible(&qca->suspend_wait_q);
818 
819 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
820 }
821 
822 /* Called upon wake-up-acknowledgement from the device
823  */
device_woke_up(struct hci_uart * hu)824 static void device_woke_up(struct hci_uart *hu)
825 {
826 	unsigned long flags, idle_delay;
827 	struct qca_data *qca = hu->priv;
828 	struct sk_buff *skb = NULL;
829 
830 	BT_DBG("hu %p woke up", hu);
831 
832 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
833 
834 	qca->ibs_recv_wacks++;
835 
836 	/* Don't react to the wake-up-acknowledgment when suspending. */
837 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
838 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
839 		return;
840 	}
841 
842 	switch (qca->tx_ibs_state) {
843 	case HCI_IBS_TX_AWAKE:
844 		/* Expect one if we send 2 WAKEs */
845 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
846 		       qca->tx_ibs_state);
847 		break;
848 
849 	case HCI_IBS_TX_WAKING:
850 		/* Send pending packets */
851 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
852 			skb_queue_tail(&qca->txq, skb);
853 
854 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
855 		del_timer(&qca->wake_retrans_timer);
856 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
857 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
858 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
859 		break;
860 
861 	case HCI_IBS_TX_ASLEEP:
862 	default:
863 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
864 		       qca->tx_ibs_state);
865 		break;
866 	}
867 
868 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
869 
870 	/* Actually send the packets */
871 	hci_uart_tx_wakeup(hu);
872 }
873 
874 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
875  * two simultaneous tasklets.
876  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)877 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
878 {
879 	unsigned long flags = 0, idle_delay;
880 	struct qca_data *qca = hu->priv;
881 
882 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
883 	       qca->tx_ibs_state);
884 
885 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
886 		/* As SSR is in progress, ignore the packets */
887 		bt_dev_dbg(hu->hdev, "SSR is in progress");
888 		kfree_skb(skb);
889 		return 0;
890 	}
891 
892 	/* Prepend skb with frame type */
893 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
894 
895 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
896 
897 	/* Don't go to sleep in middle of patch download or
898 	 * Out-Of-Band(GPIOs control) sleep is selected.
899 	 * Don't wake the device up when suspending.
900 	 */
901 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
902 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
903 		skb_queue_tail(&qca->txq, skb);
904 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
905 		return 0;
906 	}
907 
908 	/* Act according to current state */
909 	switch (qca->tx_ibs_state) {
910 	case HCI_IBS_TX_AWAKE:
911 		BT_DBG("Device awake, sending normally");
912 		skb_queue_tail(&qca->txq, skb);
913 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
914 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
915 		break;
916 
917 	case HCI_IBS_TX_ASLEEP:
918 		BT_DBG("Device asleep, waking up and queueing packet");
919 		/* Save packet for later */
920 		skb_queue_tail(&qca->tx_wait_q, skb);
921 
922 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
923 		/* Schedule a work queue to wake up device */
924 		queue_work(qca->workqueue, &qca->ws_awake_device);
925 		break;
926 
927 	case HCI_IBS_TX_WAKING:
928 		BT_DBG("Device waking up, queueing packet");
929 		/* Transient state; just keep packet for later */
930 		skb_queue_tail(&qca->tx_wait_q, skb);
931 		break;
932 
933 	default:
934 		BT_ERR("Illegal tx state: %d (losing packet)",
935 		       qca->tx_ibs_state);
936 		dev_kfree_skb_irq(skb);
937 		break;
938 	}
939 
940 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
941 
942 	return 0;
943 }
944 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)945 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
946 {
947 	struct hci_uart *hu = hci_get_drvdata(hdev);
948 
949 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
950 
951 	device_want_to_sleep(hu);
952 
953 	kfree_skb(skb);
954 	return 0;
955 }
956 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)957 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
958 {
959 	struct hci_uart *hu = hci_get_drvdata(hdev);
960 
961 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
962 
963 	device_want_to_wakeup(hu);
964 
965 	kfree_skb(skb);
966 	return 0;
967 }
968 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)969 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
970 {
971 	struct hci_uart *hu = hci_get_drvdata(hdev);
972 
973 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
974 
975 	device_woke_up(hu);
976 
977 	kfree_skb(skb);
978 	return 0;
979 }
980 
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)981 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
982 {
983 	/* We receive debug logs from chip as an ACL packets.
984 	 * Instead of sending the data to ACL to decode the
985 	 * received data, we are pushing them to the above layers
986 	 * as a diagnostic packet.
987 	 */
988 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
989 		return hci_recv_diag(hdev, skb);
990 
991 	return hci_recv_frame(hdev, skb);
992 }
993 
qca_dmp_hdr(struct hci_dev * hdev,struct sk_buff * skb)994 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
995 {
996 	struct hci_uart *hu = hci_get_drvdata(hdev);
997 	struct qca_data *qca = hu->priv;
998 	char buf[80];
999 
1000 	snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1001 		qca->controller_id);
1002 	skb_put_data(skb, buf, strlen(buf));
1003 
1004 	snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1005 		qca->fw_version);
1006 	skb_put_data(skb, buf, strlen(buf));
1007 
1008 	snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1009 	skb_put_data(skb, buf, strlen(buf));
1010 
1011 	snprintf(buf, sizeof(buf), "Driver: %s\n",
1012 		hu->serdev->dev.driver->name);
1013 	skb_put_data(skb, buf, strlen(buf));
1014 }
1015 
qca_controller_memdump(struct work_struct * work)1016 static void qca_controller_memdump(struct work_struct *work)
1017 {
1018 	struct qca_data *qca = container_of(work, struct qca_data,
1019 					    ctrl_memdump_evt);
1020 	struct hci_uart *hu = qca->hu;
1021 	struct sk_buff *skb;
1022 	struct qca_memdump_event_hdr *cmd_hdr;
1023 	struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1024 	struct qca_dump_size *dump;
1025 	u16 seq_no;
1026 	u32 rx_size;
1027 	int ret = 0;
1028 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1029 
1030 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1031 
1032 		mutex_lock(&qca->hci_memdump_lock);
1033 		/* Skip processing the received packets if timeout detected
1034 		 * or memdump collection completed.
1035 		 */
1036 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1037 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1038 			mutex_unlock(&qca->hci_memdump_lock);
1039 			return;
1040 		}
1041 
1042 		if (!qca_memdump) {
1043 			qca_memdump = kzalloc(sizeof(struct qca_memdump_info),
1044 					      GFP_ATOMIC);
1045 			if (!qca_memdump) {
1046 				mutex_unlock(&qca->hci_memdump_lock);
1047 				return;
1048 			}
1049 
1050 			qca->qca_memdump = qca_memdump;
1051 		}
1052 
1053 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1054 		cmd_hdr = (void *) skb->data;
1055 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1056 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1057 
1058 		if (!seq_no) {
1059 
1060 			/* This is the first frame of memdump packet from
1061 			 * the controller, Disable IBS to recevie dump
1062 			 * with out any interruption, ideally time required for
1063 			 * the controller to send the dump is 8 seconds. let us
1064 			 * start timer to handle this asynchronous activity.
1065 			 */
1066 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1067 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1068 			dump = (void *) skb->data;
1069 			qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1070 			if (!(qca_memdump->ram_dump_size)) {
1071 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1072 				kfree(qca_memdump);
1073 				kfree_skb(skb);
1074 				mutex_unlock(&qca->hci_memdump_lock);
1075 				return;
1076 			}
1077 
1078 			queue_delayed_work(qca->workqueue,
1079 					   &qca->ctrl_memdump_timeout,
1080 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1081 			skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1082 			qca_memdump->current_seq_no = 0;
1083 			qca_memdump->received_dump = 0;
1084 			ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1085 			bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1086 				    ret);
1087 			if (ret < 0) {
1088 				kfree(qca->qca_memdump);
1089 				qca->qca_memdump = NULL;
1090 				qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1091 				cancel_delayed_work(&qca->ctrl_memdump_timeout);
1092 				clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1093 				clear_bit(QCA_IBS_DISABLED, &qca->flags);
1094 				mutex_unlock(&qca->hci_memdump_lock);
1095 				return;
1096 			}
1097 
1098 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1099 				    qca_memdump->ram_dump_size);
1100 
1101 		}
1102 
1103 		/* If sequence no 0 is missed then there is no point in
1104 		 * accepting the other sequences.
1105 		 */
1106 		if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1107 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1108 			kfree(qca_memdump);
1109 			kfree_skb(skb);
1110 			mutex_unlock(&qca->hci_memdump_lock);
1111 			return;
1112 		}
1113 		/* There could be chance of missing some packets from
1114 		 * the controller. In such cases let us store the dummy
1115 		 * packets in the buffer.
1116 		 */
1117 		/* For QCA6390, controller does not lost packets but
1118 		 * sequence number field of packet sometimes has error
1119 		 * bits, so skip this checking for missing packet.
1120 		 */
1121 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1122 			(soc_type != QCA_QCA6390) &&
1123 			seq_no != QCA_LAST_SEQUENCE_NUM) {
1124 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1125 				   qca_memdump->current_seq_no);
1126 			rx_size = qca_memdump->received_dump;
1127 			rx_size += QCA_DUMP_PACKET_SIZE;
1128 			if (rx_size > qca_memdump->ram_dump_size) {
1129 				bt_dev_err(hu->hdev,
1130 					   "QCA memdump received %d, no space for missed packet",
1131 					   qca_memdump->received_dump);
1132 				break;
1133 			}
1134 			hci_devcd_append_pattern(hu->hdev, 0x00,
1135 				QCA_DUMP_PACKET_SIZE);
1136 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1137 			qca_memdump->current_seq_no++;
1138 		}
1139 
1140 		rx_size = qca_memdump->received_dump  + skb->len;
1141 		if (rx_size <= qca_memdump->ram_dump_size) {
1142 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1143 			    (seq_no != qca_memdump->current_seq_no)) {
1144 				bt_dev_err(hu->hdev,
1145 					   "QCA memdump unexpected packet %d",
1146 					   seq_no);
1147 			}
1148 			bt_dev_dbg(hu->hdev,
1149 				   "QCA memdump packet %d with length %d",
1150 				   seq_no, skb->len);
1151 			hci_devcd_append(hu->hdev, skb);
1152 			qca_memdump->current_seq_no += 1;
1153 			qca_memdump->received_dump = rx_size;
1154 		} else {
1155 			bt_dev_err(hu->hdev,
1156 				   "QCA memdump received no space for packet %d",
1157 				    qca_memdump->current_seq_no);
1158 		}
1159 
1160 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1161 			bt_dev_info(hu->hdev,
1162 				"QCA memdump Done, received %d, total %d",
1163 				qca_memdump->received_dump,
1164 				qca_memdump->ram_dump_size);
1165 			hci_devcd_complete(hu->hdev);
1166 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1167 			kfree(qca->qca_memdump);
1168 			qca->qca_memdump = NULL;
1169 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1170 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1171 		}
1172 
1173 		mutex_unlock(&qca->hci_memdump_lock);
1174 	}
1175 
1176 }
1177 
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1178 static int qca_controller_memdump_event(struct hci_dev *hdev,
1179 					struct sk_buff *skb)
1180 {
1181 	struct hci_uart *hu = hci_get_drvdata(hdev);
1182 	struct qca_data *qca = hu->priv;
1183 
1184 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1185 	skb_queue_tail(&qca->rx_memdump_q, skb);
1186 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1187 
1188 	return 0;
1189 }
1190 
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1191 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1192 {
1193 	struct hci_uart *hu = hci_get_drvdata(hdev);
1194 	struct qca_data *qca = hu->priv;
1195 
1196 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1197 		struct hci_event_hdr *hdr = (void *)skb->data;
1198 
1199 		/* For the WCN3990 the vendor command for a baudrate change
1200 		 * isn't sent as synchronous HCI command, because the
1201 		 * controller sends the corresponding vendor event with the
1202 		 * new baudrate. The event is received and properly decoded
1203 		 * after changing the baudrate of the host port. It needs to
1204 		 * be dropped, otherwise it can be misinterpreted as
1205 		 * response to a later firmware download command (also a
1206 		 * vendor command).
1207 		 */
1208 
1209 		if (hdr->evt == HCI_EV_VENDOR)
1210 			complete(&qca->drop_ev_comp);
1211 
1212 		kfree_skb(skb);
1213 
1214 		return 0;
1215 	}
1216 	/* We receive chip memory dump as an event packet, With a dedicated
1217 	 * handler followed by a hardware error event. When this event is
1218 	 * received we store dump into a file before closing hci. This
1219 	 * dump will help in triaging the issues.
1220 	 */
1221 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1222 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1223 		return qca_controller_memdump_event(hdev, skb);
1224 
1225 	return hci_recv_frame(hdev, skb);
1226 }
1227 
1228 #define QCA_IBS_SLEEP_IND_EVENT \
1229 	.type = HCI_IBS_SLEEP_IND, \
1230 	.hlen = 0, \
1231 	.loff = 0, \
1232 	.lsize = 0, \
1233 	.maxlen = HCI_MAX_IBS_SIZE
1234 
1235 #define QCA_IBS_WAKE_IND_EVENT \
1236 	.type = HCI_IBS_WAKE_IND, \
1237 	.hlen = 0, \
1238 	.loff = 0, \
1239 	.lsize = 0, \
1240 	.maxlen = HCI_MAX_IBS_SIZE
1241 
1242 #define QCA_IBS_WAKE_ACK_EVENT \
1243 	.type = HCI_IBS_WAKE_ACK, \
1244 	.hlen = 0, \
1245 	.loff = 0, \
1246 	.lsize = 0, \
1247 	.maxlen = HCI_MAX_IBS_SIZE
1248 
1249 static const struct h4_recv_pkt qca_recv_pkts[] = {
1250 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1251 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1252 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1253 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1254 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1255 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1256 };
1257 
qca_recv(struct hci_uart * hu,const void * data,int count)1258 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1259 {
1260 	struct qca_data *qca = hu->priv;
1261 
1262 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1263 		return -EUNATCH;
1264 
1265 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1266 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1267 	if (IS_ERR(qca->rx_skb)) {
1268 		int err = PTR_ERR(qca->rx_skb);
1269 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1270 		qca->rx_skb = NULL;
1271 		return err;
1272 	}
1273 
1274 	return count;
1275 }
1276 
qca_dequeue(struct hci_uart * hu)1277 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1278 {
1279 	struct qca_data *qca = hu->priv;
1280 
1281 	return skb_dequeue(&qca->txq);
1282 }
1283 
qca_get_baudrate_value(int speed)1284 static uint8_t qca_get_baudrate_value(int speed)
1285 {
1286 	switch (speed) {
1287 	case 9600:
1288 		return QCA_BAUDRATE_9600;
1289 	case 19200:
1290 		return QCA_BAUDRATE_19200;
1291 	case 38400:
1292 		return QCA_BAUDRATE_38400;
1293 	case 57600:
1294 		return QCA_BAUDRATE_57600;
1295 	case 115200:
1296 		return QCA_BAUDRATE_115200;
1297 	case 230400:
1298 		return QCA_BAUDRATE_230400;
1299 	case 460800:
1300 		return QCA_BAUDRATE_460800;
1301 	case 500000:
1302 		return QCA_BAUDRATE_500000;
1303 	case 921600:
1304 		return QCA_BAUDRATE_921600;
1305 	case 1000000:
1306 		return QCA_BAUDRATE_1000000;
1307 	case 2000000:
1308 		return QCA_BAUDRATE_2000000;
1309 	case 3000000:
1310 		return QCA_BAUDRATE_3000000;
1311 	case 3200000:
1312 		return QCA_BAUDRATE_3200000;
1313 	case 3500000:
1314 		return QCA_BAUDRATE_3500000;
1315 	default:
1316 		return QCA_BAUDRATE_115200;
1317 	}
1318 }
1319 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1320 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1321 {
1322 	struct hci_uart *hu = hci_get_drvdata(hdev);
1323 	struct qca_data *qca = hu->priv;
1324 	struct sk_buff *skb;
1325 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1326 
1327 	if (baudrate > QCA_BAUDRATE_3200000)
1328 		return -EINVAL;
1329 
1330 	cmd[4] = baudrate;
1331 
1332 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1333 	if (!skb) {
1334 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1335 		return -ENOMEM;
1336 	}
1337 
1338 	/* Assign commands to change baudrate and packet type. */
1339 	skb_put_data(skb, cmd, sizeof(cmd));
1340 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1341 
1342 	skb_queue_tail(&qca->txq, skb);
1343 	hci_uart_tx_wakeup(hu);
1344 
1345 	/* Wait for the baudrate change request to be sent */
1346 
1347 	while (!skb_queue_empty(&qca->txq))
1348 		usleep_range(100, 200);
1349 
1350 	if (hu->serdev)
1351 		serdev_device_wait_until_sent(hu->serdev,
1352 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1353 
1354 	/* Give the controller time to process the request */
1355 	switch (qca_soc_type(hu)) {
1356 	case QCA_WCN3988:
1357 	case QCA_WCN3990:
1358 	case QCA_WCN3991:
1359 	case QCA_WCN3998:
1360 	case QCA_WCN6750:
1361 	case QCA_WCN6855:
1362 	case QCA_WCN7850:
1363 		usleep_range(1000, 10000);
1364 		break;
1365 
1366 	default:
1367 		msleep(300);
1368 	}
1369 
1370 	return 0;
1371 }
1372 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1373 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1374 {
1375 	if (hu->serdev)
1376 		serdev_device_set_baudrate(hu->serdev, speed);
1377 	else
1378 		hci_uart_set_baudrate(hu, speed);
1379 }
1380 
qca_send_power_pulse(struct hci_uart * hu,bool on)1381 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1382 {
1383 	int ret;
1384 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1385 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1386 
1387 	/* These power pulses are single byte command which are sent
1388 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1389 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1390 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1391 	 * and also we use the same power inputs to turn on and off for
1392 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1393 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1394 	 * save power. Disabling hardware flow control is mandatory while
1395 	 * sending power pulses to SoC.
1396 	 */
1397 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1398 
1399 	serdev_device_write_flush(hu->serdev);
1400 	hci_uart_set_flow_control(hu, true);
1401 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1402 	if (ret < 0) {
1403 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1404 		return ret;
1405 	}
1406 
1407 	serdev_device_wait_until_sent(hu->serdev, timeout);
1408 	hci_uart_set_flow_control(hu, false);
1409 
1410 	/* Give to controller time to boot/shutdown */
1411 	if (on)
1412 		msleep(100);
1413 	else
1414 		usleep_range(1000, 10000);
1415 
1416 	return 0;
1417 }
1418 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1419 static unsigned int qca_get_speed(struct hci_uart *hu,
1420 				  enum qca_speed_type speed_type)
1421 {
1422 	unsigned int speed = 0;
1423 
1424 	if (speed_type == QCA_INIT_SPEED) {
1425 		if (hu->init_speed)
1426 			speed = hu->init_speed;
1427 		else if (hu->proto->init_speed)
1428 			speed = hu->proto->init_speed;
1429 	} else {
1430 		if (hu->oper_speed)
1431 			speed = hu->oper_speed;
1432 		else if (hu->proto->oper_speed)
1433 			speed = hu->proto->oper_speed;
1434 	}
1435 
1436 	return speed;
1437 }
1438 
qca_check_speeds(struct hci_uart * hu)1439 static int qca_check_speeds(struct hci_uart *hu)
1440 {
1441 	switch (qca_soc_type(hu)) {
1442 	case QCA_WCN3988:
1443 	case QCA_WCN3990:
1444 	case QCA_WCN3991:
1445 	case QCA_WCN3998:
1446 	case QCA_WCN6750:
1447 	case QCA_WCN6855:
1448 	case QCA_WCN7850:
1449 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1450 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1451 			return -EINVAL;
1452 		break;
1453 
1454 	default:
1455 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1456 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1457 			return -EINVAL;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1463 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1464 {
1465 	unsigned int speed, qca_baudrate;
1466 	struct qca_data *qca = hu->priv;
1467 	int ret = 0;
1468 
1469 	if (speed_type == QCA_INIT_SPEED) {
1470 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1471 		if (speed)
1472 			host_set_baudrate(hu, speed);
1473 	} else {
1474 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1475 
1476 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1477 		if (!speed)
1478 			return 0;
1479 
1480 		/* Disable flow control for wcn3990 to deassert RTS while
1481 		 * changing the baudrate of chip and host.
1482 		 */
1483 		switch (soc_type) {
1484 		case QCA_WCN3988:
1485 		case QCA_WCN3990:
1486 		case QCA_WCN3991:
1487 		case QCA_WCN3998:
1488 		case QCA_WCN6750:
1489 		case QCA_WCN6855:
1490 		case QCA_WCN7850:
1491 			hci_uart_set_flow_control(hu, true);
1492 			break;
1493 
1494 		default:
1495 			break;
1496 		}
1497 
1498 		switch (soc_type) {
1499 		case QCA_WCN3990:
1500 			reinit_completion(&qca->drop_ev_comp);
1501 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1502 			break;
1503 
1504 		default:
1505 			break;
1506 		}
1507 
1508 		qca_baudrate = qca_get_baudrate_value(speed);
1509 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1510 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1511 		if (ret)
1512 			goto error;
1513 
1514 		host_set_baudrate(hu, speed);
1515 
1516 error:
1517 		switch (soc_type) {
1518 		case QCA_WCN3988:
1519 		case QCA_WCN3990:
1520 		case QCA_WCN3991:
1521 		case QCA_WCN3998:
1522 		case QCA_WCN6750:
1523 		case QCA_WCN6855:
1524 		case QCA_WCN7850:
1525 			hci_uart_set_flow_control(hu, false);
1526 			break;
1527 
1528 		default:
1529 			break;
1530 		}
1531 
1532 		switch (soc_type) {
1533 		case QCA_WCN3990:
1534 			/* Wait for the controller to send the vendor event
1535 			 * for the baudrate change command.
1536 			 */
1537 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1538 						 msecs_to_jiffies(100))) {
1539 				bt_dev_err(hu->hdev,
1540 					   "Failed to change controller baudrate\n");
1541 				ret = -ETIMEDOUT;
1542 			}
1543 
1544 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1545 			break;
1546 
1547 		default:
1548 			break;
1549 		}
1550 	}
1551 
1552 	return ret;
1553 }
1554 
qca_send_crashbuffer(struct hci_uart * hu)1555 static int qca_send_crashbuffer(struct hci_uart *hu)
1556 {
1557 	struct qca_data *qca = hu->priv;
1558 	struct sk_buff *skb;
1559 
1560 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1561 	if (!skb) {
1562 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1563 		return -ENOMEM;
1564 	}
1565 
1566 	/* We forcefully crash the controller, by sending 0xfb byte for
1567 	 * 1024 times. We also might have chance of losing data, To be
1568 	 * on safer side we send 1096 bytes to the SoC.
1569 	 */
1570 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1571 	       QCA_CRASHBYTE_PACKET_LEN);
1572 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1573 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1574 	skb_queue_tail(&qca->txq, skb);
1575 	hci_uart_tx_wakeup(hu);
1576 
1577 	return 0;
1578 }
1579 
qca_wait_for_dump_collection(struct hci_dev * hdev)1580 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1581 {
1582 	struct hci_uart *hu = hci_get_drvdata(hdev);
1583 	struct qca_data *qca = hu->priv;
1584 
1585 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1586 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1587 
1588 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1589 }
1590 
qca_hw_error(struct hci_dev * hdev,u8 code)1591 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1592 {
1593 	struct hci_uart *hu = hci_get_drvdata(hdev);
1594 	struct qca_data *qca = hu->priv;
1595 
1596 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1597 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1598 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1599 
1600 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1601 		/* If hardware error event received for other than QCA
1602 		 * soc memory dump event, then we need to crash the SOC
1603 		 * and wait here for 8 seconds to get the dump packets.
1604 		 * This will block main thread to be on hold until we
1605 		 * collect dump.
1606 		 */
1607 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1608 		qca_send_crashbuffer(hu);
1609 		qca_wait_for_dump_collection(hdev);
1610 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1611 		/* Let us wait here until memory dump collected or
1612 		 * memory dump timer expired.
1613 		 */
1614 		bt_dev_info(hdev, "waiting for dump to complete");
1615 		qca_wait_for_dump_collection(hdev);
1616 	}
1617 
1618 	mutex_lock(&qca->hci_memdump_lock);
1619 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1620 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1621 		hci_devcd_abort(hu->hdev);
1622 		if (qca->qca_memdump) {
1623 			kfree(qca->qca_memdump);
1624 			qca->qca_memdump = NULL;
1625 		}
1626 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1627 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1628 	}
1629 	mutex_unlock(&qca->hci_memdump_lock);
1630 
1631 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1632 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1633 		cancel_work_sync(&qca->ctrl_memdump_evt);
1634 		skb_queue_purge(&qca->rx_memdump_q);
1635 	}
1636 
1637 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1638 }
1639 
qca_cmd_timeout(struct hci_dev * hdev)1640 static void qca_cmd_timeout(struct hci_dev *hdev)
1641 {
1642 	struct hci_uart *hu = hci_get_drvdata(hdev);
1643 	struct qca_data *qca = hu->priv;
1644 
1645 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1646 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1647 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1648 		qca_send_crashbuffer(hu);
1649 		qca_wait_for_dump_collection(hdev);
1650 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1651 		/* Let us wait here until memory dump collected or
1652 		 * memory dump timer expired.
1653 		 */
1654 		bt_dev_info(hdev, "waiting for dump to complete");
1655 		qca_wait_for_dump_collection(hdev);
1656 	}
1657 
1658 	mutex_lock(&qca->hci_memdump_lock);
1659 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1660 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1661 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1662 			/* Inject hw error event to reset the device
1663 			 * and driver.
1664 			 */
1665 			hci_reset_dev(hu->hdev);
1666 		}
1667 	}
1668 	mutex_unlock(&qca->hci_memdump_lock);
1669 }
1670 
qca_wakeup(struct hci_dev * hdev)1671 static bool qca_wakeup(struct hci_dev *hdev)
1672 {
1673 	struct hci_uart *hu = hci_get_drvdata(hdev);
1674 	bool wakeup;
1675 
1676 	if (!hu->serdev)
1677 		return true;
1678 
1679 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1680 	 * So we need to use the device handle of the serdev driver to get the
1681 	 * status of device may wakeup.
1682 	 */
1683 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1684 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1685 
1686 	return wakeup;
1687 }
1688 
qca_regulator_init(struct hci_uart * hu)1689 static int qca_regulator_init(struct hci_uart *hu)
1690 {
1691 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1692 	struct qca_serdev *qcadev;
1693 	int ret;
1694 	bool sw_ctrl_state;
1695 
1696 	/* Check for vregs status, may be hci down has turned
1697 	 * off the voltage regulator.
1698 	 */
1699 	qcadev = serdev_device_get_drvdata(hu->serdev);
1700 	if (!qcadev->bt_power->vregs_on) {
1701 		serdev_device_close(hu->serdev);
1702 		ret = qca_regulator_enable(qcadev);
1703 		if (ret)
1704 			return ret;
1705 
1706 		ret = serdev_device_open(hu->serdev);
1707 		if (ret) {
1708 			bt_dev_err(hu->hdev, "failed to open port");
1709 			return ret;
1710 		}
1711 	}
1712 
1713 	switch (soc_type) {
1714 	case QCA_WCN3988:
1715 	case QCA_WCN3990:
1716 	case QCA_WCN3991:
1717 	case QCA_WCN3998:
1718 		/* Forcefully enable wcn399x to enter in to boot mode. */
1719 		host_set_baudrate(hu, 2400);
1720 		ret = qca_send_power_pulse(hu, false);
1721 		if (ret)
1722 			return ret;
1723 		break;
1724 
1725 	default:
1726 		break;
1727 	}
1728 
1729 	/* For wcn6750 need to enable gpio bt_en */
1730 	if (qcadev->bt_en) {
1731 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1732 		msleep(50);
1733 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1734 		msleep(50);
1735 		if (qcadev->sw_ctrl) {
1736 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1737 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1738 		}
1739 	}
1740 
1741 	qca_set_speed(hu, QCA_INIT_SPEED);
1742 
1743 	switch (soc_type) {
1744 	case QCA_WCN3988:
1745 	case QCA_WCN3990:
1746 	case QCA_WCN3991:
1747 	case QCA_WCN3998:
1748 		ret = qca_send_power_pulse(hu, true);
1749 		if (ret)
1750 			return ret;
1751 		break;
1752 
1753 	default:
1754 		break;
1755 	}
1756 
1757 	/* Now the device is in ready state to communicate with host.
1758 	 * To sync host with device we need to reopen port.
1759 	 * Without this, we will have RTS and CTS synchronization
1760 	 * issues.
1761 	 */
1762 	serdev_device_close(hu->serdev);
1763 	ret = serdev_device_open(hu->serdev);
1764 	if (ret) {
1765 		bt_dev_err(hu->hdev, "failed to open port");
1766 		return ret;
1767 	}
1768 
1769 	hci_uart_set_flow_control(hu, false);
1770 
1771 	return 0;
1772 }
1773 
qca_power_on(struct hci_dev * hdev)1774 static int qca_power_on(struct hci_dev *hdev)
1775 {
1776 	struct hci_uart *hu = hci_get_drvdata(hdev);
1777 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1778 	struct qca_serdev *qcadev;
1779 	struct qca_data *qca = hu->priv;
1780 	int ret = 0;
1781 
1782 	/* Non-serdev device usually is powered by external power
1783 	 * and don't need additional action in driver for power on
1784 	 */
1785 	if (!hu->serdev)
1786 		return 0;
1787 
1788 	switch (soc_type) {
1789 	case QCA_WCN3988:
1790 	case QCA_WCN3990:
1791 	case QCA_WCN3991:
1792 	case QCA_WCN3998:
1793 	case QCA_WCN6750:
1794 	case QCA_WCN6855:
1795 	case QCA_WCN7850:
1796 		ret = qca_regulator_init(hu);
1797 		break;
1798 
1799 	default:
1800 		qcadev = serdev_device_get_drvdata(hu->serdev);
1801 		if (qcadev->bt_en) {
1802 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1803 			/* Controller needs time to bootup. */
1804 			msleep(150);
1805 		}
1806 	}
1807 
1808 	clear_bit(QCA_BT_OFF, &qca->flags);
1809 	return ret;
1810 }
1811 
hci_coredump_qca(struct hci_dev * hdev)1812 static void hci_coredump_qca(struct hci_dev *hdev)
1813 {
1814 	int err;
1815 	static const u8 param[] = { 0x26 };
1816 
1817 	err = __hci_cmd_send(hdev, 0xfc0c, 1, param);
1818 	if (err < 0)
1819 		bt_dev_err(hdev, "%s: trigger crash failed (%d)", __func__, err);
1820 }
1821 
qca_setup(struct hci_uart * hu)1822 static int qca_setup(struct hci_uart *hu)
1823 {
1824 	struct hci_dev *hdev = hu->hdev;
1825 	struct qca_data *qca = hu->priv;
1826 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1827 	unsigned int retries = 0;
1828 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1829 	const char *firmware_name = qca_get_firmware_name(hu);
1830 	int ret;
1831 	struct qca_btsoc_version ver;
1832 	struct qca_serdev *qcadev;
1833 	const char *soc_name;
1834 
1835 	ret = qca_check_speeds(hu);
1836 	if (ret)
1837 		return ret;
1838 
1839 	clear_bit(QCA_ROM_FW, &qca->flags);
1840 	/* Patch downloading has to be done without IBS mode */
1841 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1842 
1843 	/* Enable controller to do both LE scan and BR/EDR inquiry
1844 	 * simultaneously.
1845 	 */
1846 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1847 
1848 	switch (soc_type) {
1849 	case QCA_QCA2066:
1850 		soc_name = "qca2066";
1851 		break;
1852 
1853 	case QCA_WCN3988:
1854 	case QCA_WCN3990:
1855 	case QCA_WCN3991:
1856 	case QCA_WCN3998:
1857 		soc_name = "wcn399x";
1858 		break;
1859 
1860 	case QCA_WCN6750:
1861 		soc_name = "wcn6750";
1862 		break;
1863 
1864 	case QCA_WCN6855:
1865 		soc_name = "wcn6855";
1866 		break;
1867 
1868 	case QCA_WCN7850:
1869 		soc_name = "wcn7850";
1870 		break;
1871 
1872 	default:
1873 		soc_name = "ROME/QCA6390";
1874 	}
1875 	bt_dev_info(hdev, "setting up %s", soc_name);
1876 
1877 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1878 
1879 retry:
1880 	ret = qca_power_on(hdev);
1881 	if (ret)
1882 		goto out;
1883 
1884 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1885 
1886 	switch (soc_type) {
1887 	case QCA_WCN3988:
1888 	case QCA_WCN3990:
1889 	case QCA_WCN3991:
1890 	case QCA_WCN3998:
1891 	case QCA_WCN6750:
1892 	case QCA_WCN6855:
1893 	case QCA_WCN7850:
1894 		qcadev = serdev_device_get_drvdata(hu->serdev);
1895 		if (qcadev->bdaddr_property_broken)
1896 			set_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks);
1897 
1898 		hci_set_aosp_capable(hdev);
1899 
1900 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1901 		if (ret)
1902 			goto out;
1903 		break;
1904 
1905 	default:
1906 		qca_set_speed(hu, QCA_INIT_SPEED);
1907 	}
1908 
1909 	/* Setup user speed if needed */
1910 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1911 	if (speed) {
1912 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1913 		if (ret)
1914 			goto out;
1915 
1916 		qca_baudrate = qca_get_baudrate_value(speed);
1917 	}
1918 
1919 	switch (soc_type) {
1920 	case QCA_WCN3988:
1921 	case QCA_WCN3990:
1922 	case QCA_WCN3991:
1923 	case QCA_WCN3998:
1924 	case QCA_WCN6750:
1925 	case QCA_WCN6855:
1926 	case QCA_WCN7850:
1927 		break;
1928 
1929 	default:
1930 		/* Get QCA version information */
1931 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1932 		if (ret)
1933 			goto out;
1934 	}
1935 
1936 	/* Setup patch / NVM configurations */
1937 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1938 			firmware_name);
1939 	if (!ret) {
1940 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1941 		qca_debugfs_init(hdev);
1942 		hu->hdev->hw_error = qca_hw_error;
1943 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1944 		if (hu->serdev) {
1945 			if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1946 				hu->hdev->wakeup = qca_wakeup;
1947 		}
1948 	} else if (ret == -ENOENT) {
1949 		/* No patch/nvm-config found, run with original fw/config */
1950 		set_bit(QCA_ROM_FW, &qca->flags);
1951 		ret = 0;
1952 	} else if (ret == -EAGAIN) {
1953 		/*
1954 		 * Userspace firmware loader will return -EAGAIN in case no
1955 		 * patch/nvm-config is found, so run with original fw/config.
1956 		 */
1957 		set_bit(QCA_ROM_FW, &qca->flags);
1958 		ret = 0;
1959 	}
1960 
1961 out:
1962 	if (ret && retries < MAX_INIT_RETRIES) {
1963 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1964 		qca_power_shutdown(hu);
1965 		if (hu->serdev) {
1966 			serdev_device_close(hu->serdev);
1967 			ret = serdev_device_open(hu->serdev);
1968 			if (ret) {
1969 				bt_dev_err(hdev, "failed to open port");
1970 				return ret;
1971 			}
1972 		}
1973 		retries++;
1974 		goto retry;
1975 	}
1976 
1977 	/* Setup bdaddr */
1978 	if (soc_type == QCA_ROME)
1979 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1980 	else
1981 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1982 	qca->fw_version = le16_to_cpu(ver.patch_ver);
1983 	qca->controller_id = le16_to_cpu(ver.rom_ver);
1984 	hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
1985 
1986 	return ret;
1987 }
1988 
1989 static const struct hci_uart_proto qca_proto = {
1990 	.id		= HCI_UART_QCA,
1991 	.name		= "QCA",
1992 	.manufacturer	= 29,
1993 	.init_speed	= 115200,
1994 	.oper_speed	= 3000000,
1995 	.open		= qca_open,
1996 	.close		= qca_close,
1997 	.flush		= qca_flush,
1998 	.setup		= qca_setup,
1999 	.recv		= qca_recv,
2000 	.enqueue	= qca_enqueue,
2001 	.dequeue	= qca_dequeue,
2002 };
2003 
2004 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
2005 	.soc_type = QCA_WCN3988,
2006 	.vregs = (struct qca_vreg []) {
2007 		{ "vddio", 15000  },
2008 		{ "vddxo", 80000  },
2009 		{ "vddrf", 300000 },
2010 		{ "vddch0", 450000 },
2011 	},
2012 	.num_vregs = 4,
2013 };
2014 
2015 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2016 	.soc_type = QCA_WCN3990,
2017 	.vregs = (struct qca_vreg []) {
2018 		{ "vddio", 15000  },
2019 		{ "vddxo", 80000  },
2020 		{ "vddrf", 300000 },
2021 		{ "vddch0", 450000 },
2022 	},
2023 	.num_vregs = 4,
2024 };
2025 
2026 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2027 	.soc_type = QCA_WCN3991,
2028 	.vregs = (struct qca_vreg []) {
2029 		{ "vddio", 15000  },
2030 		{ "vddxo", 80000  },
2031 		{ "vddrf", 300000 },
2032 		{ "vddch0", 450000 },
2033 	},
2034 	.num_vregs = 4,
2035 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2036 };
2037 
2038 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2039 	.soc_type = QCA_WCN3998,
2040 	.vregs = (struct qca_vreg []) {
2041 		{ "vddio", 10000  },
2042 		{ "vddxo", 80000  },
2043 		{ "vddrf", 300000 },
2044 		{ "vddch0", 450000 },
2045 	},
2046 	.num_vregs = 4,
2047 };
2048 
2049 static const struct qca_device_data qca_soc_data_qca2066 __maybe_unused = {
2050 	.soc_type = QCA_QCA2066,
2051 	.num_vregs = 0,
2052 };
2053 
2054 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2055 	.soc_type = QCA_QCA6390,
2056 	.num_vregs = 0,
2057 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2058 };
2059 
2060 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2061 	.soc_type = QCA_WCN6750,
2062 	.vregs = (struct qca_vreg []) {
2063 		{ "vddio", 5000 },
2064 		{ "vddaon", 26000 },
2065 		{ "vddbtcxmx", 126000 },
2066 		{ "vddrfacmn", 12500 },
2067 		{ "vddrfa0p8", 102000 },
2068 		{ "vddrfa1p7", 302000 },
2069 		{ "vddrfa1p2", 257000 },
2070 		{ "vddrfa2p2", 1700000 },
2071 		{ "vddasd", 200 },
2072 	},
2073 	.num_vregs = 9,
2074 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2075 };
2076 
2077 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2078 	.soc_type = QCA_WCN6855,
2079 	.vregs = (struct qca_vreg []) {
2080 		{ "vddio", 5000 },
2081 		{ "vddbtcxmx", 126000 },
2082 		{ "vddrfacmn", 12500 },
2083 		{ "vddrfa0p8", 102000 },
2084 		{ "vddrfa1p7", 302000 },
2085 		{ "vddrfa1p2", 257000 },
2086 	},
2087 	.num_vregs = 6,
2088 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2089 };
2090 
2091 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2092 	.soc_type = QCA_WCN7850,
2093 	.vregs = (struct qca_vreg []) {
2094 		{ "vddio", 5000 },
2095 		{ "vddaon", 26000 },
2096 		{ "vdddig", 126000 },
2097 		{ "vddrfa0p8", 102000 },
2098 		{ "vddrfa1p2", 257000 },
2099 		{ "vddrfa1p9", 302000 },
2100 	},
2101 	.num_vregs = 6,
2102 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2103 };
2104 
qca_power_shutdown(struct hci_uart * hu)2105 static void qca_power_shutdown(struct hci_uart *hu)
2106 {
2107 	struct qca_serdev *qcadev;
2108 	struct qca_data *qca = hu->priv;
2109 	unsigned long flags;
2110 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2111 	bool sw_ctrl_state;
2112 
2113 	/* From this point we go into power off state. But serial port is
2114 	 * still open, stop queueing the IBS data and flush all the buffered
2115 	 * data in skb's.
2116 	 */
2117 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2118 	set_bit(QCA_IBS_DISABLED, &qca->flags);
2119 	qca_flush(hu);
2120 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2121 
2122 	/* Non-serdev device usually is powered by external power
2123 	 * and don't need additional action in driver for power down
2124 	 */
2125 	if (!hu->serdev)
2126 		return;
2127 
2128 	qcadev = serdev_device_get_drvdata(hu->serdev);
2129 
2130 	switch (soc_type) {
2131 	case QCA_WCN3988:
2132 	case QCA_WCN3990:
2133 	case QCA_WCN3991:
2134 	case QCA_WCN3998:
2135 		host_set_baudrate(hu, 2400);
2136 		qca_send_power_pulse(hu, false);
2137 		qca_regulator_disable(qcadev);
2138 		break;
2139 
2140 	case QCA_WCN6750:
2141 	case QCA_WCN6855:
2142 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2143 		msleep(100);
2144 		qca_regulator_disable(qcadev);
2145 		if (qcadev->sw_ctrl) {
2146 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2147 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2148 		}
2149 		break;
2150 
2151 	default:
2152 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
2153 	}
2154 
2155 	set_bit(QCA_BT_OFF, &qca->flags);
2156 }
2157 
qca_power_off(struct hci_dev * hdev)2158 static int qca_power_off(struct hci_dev *hdev)
2159 {
2160 	struct hci_uart *hu = hci_get_drvdata(hdev);
2161 	struct qca_data *qca = hu->priv;
2162 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
2163 
2164 	hu->hdev->hw_error = NULL;
2165 	hu->hdev->cmd_timeout = NULL;
2166 
2167 	del_timer_sync(&qca->wake_retrans_timer);
2168 	del_timer_sync(&qca->tx_idle_timer);
2169 
2170 	/* Stop sending shutdown command if soc crashes. */
2171 	if (soc_type != QCA_ROME
2172 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
2173 		qca_send_pre_shutdown_cmd(hdev);
2174 		usleep_range(8000, 10000);
2175 	}
2176 
2177 	qca_power_shutdown(hu);
2178 	return 0;
2179 }
2180 
qca_regulator_enable(struct qca_serdev * qcadev)2181 static int qca_regulator_enable(struct qca_serdev *qcadev)
2182 {
2183 	struct qca_power *power = qcadev->bt_power;
2184 	int ret;
2185 
2186 	/* Already enabled */
2187 	if (power->vregs_on)
2188 		return 0;
2189 
2190 	BT_DBG("enabling %d regulators)", power->num_vregs);
2191 
2192 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2193 	if (ret)
2194 		return ret;
2195 
2196 	power->vregs_on = true;
2197 
2198 	ret = clk_prepare_enable(qcadev->susclk);
2199 	if (ret)
2200 		qca_regulator_disable(qcadev);
2201 
2202 	return ret;
2203 }
2204 
qca_regulator_disable(struct qca_serdev * qcadev)2205 static void qca_regulator_disable(struct qca_serdev *qcadev)
2206 {
2207 	struct qca_power *power;
2208 
2209 	if (!qcadev)
2210 		return;
2211 
2212 	power = qcadev->bt_power;
2213 
2214 	/* Already disabled? */
2215 	if (!power->vregs_on)
2216 		return;
2217 
2218 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2219 	power->vregs_on = false;
2220 
2221 	clk_disable_unprepare(qcadev->susclk);
2222 }
2223 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)2224 static int qca_init_regulators(struct qca_power *qca,
2225 				const struct qca_vreg *vregs, size_t num_vregs)
2226 {
2227 	struct regulator_bulk_data *bulk;
2228 	int ret;
2229 	int i;
2230 
2231 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2232 	if (!bulk)
2233 		return -ENOMEM;
2234 
2235 	for (i = 0; i < num_vregs; i++)
2236 		bulk[i].supply = vregs[i].name;
2237 
2238 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2239 	if (ret < 0)
2240 		return ret;
2241 
2242 	for (i = 0; i < num_vregs; i++) {
2243 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2244 		if (ret)
2245 			return ret;
2246 	}
2247 
2248 	qca->vreg_bulk = bulk;
2249 	qca->num_vregs = num_vregs;
2250 
2251 	return 0;
2252 }
2253 
qca_serdev_probe(struct serdev_device * serdev)2254 static int qca_serdev_probe(struct serdev_device *serdev)
2255 {
2256 	struct qca_serdev *qcadev;
2257 	struct hci_dev *hdev;
2258 	const struct qca_device_data *data;
2259 	int err;
2260 	bool power_ctrl_enabled = true;
2261 
2262 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2263 	if (!qcadev)
2264 		return -ENOMEM;
2265 
2266 	qcadev->serdev_hu.serdev = serdev;
2267 	data = device_get_match_data(&serdev->dev);
2268 	serdev_device_set_drvdata(serdev, qcadev);
2269 	device_property_read_string(&serdev->dev, "firmware-name",
2270 					 &qcadev->firmware_name);
2271 	device_property_read_u32(&serdev->dev, "max-speed",
2272 				 &qcadev->oper_speed);
2273 	if (!qcadev->oper_speed)
2274 		BT_DBG("UART will pick default operating speed");
2275 
2276 	qcadev->bdaddr_property_broken = device_property_read_bool(&serdev->dev,
2277 			"qcom,local-bd-address-broken");
2278 
2279 	if (data)
2280 		qcadev->btsoc_type = data->soc_type;
2281 	else
2282 		qcadev->btsoc_type = QCA_ROME;
2283 
2284 	switch (qcadev->btsoc_type) {
2285 	case QCA_WCN3988:
2286 	case QCA_WCN3990:
2287 	case QCA_WCN3991:
2288 	case QCA_WCN3998:
2289 	case QCA_WCN6750:
2290 	case QCA_WCN6855:
2291 	case QCA_WCN7850:
2292 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2293 						sizeof(struct qca_power),
2294 						GFP_KERNEL);
2295 		if (!qcadev->bt_power)
2296 			return -ENOMEM;
2297 
2298 		qcadev->bt_power->dev = &serdev->dev;
2299 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2300 					  data->num_vregs);
2301 		if (err) {
2302 			BT_ERR("Failed to init regulators:%d", err);
2303 			return err;
2304 		}
2305 
2306 		qcadev->bt_power->vregs_on = false;
2307 
2308 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2309 					       GPIOD_OUT_LOW);
2310 		if (IS_ERR(qcadev->bt_en) &&
2311 		    (data->soc_type == QCA_WCN6750 ||
2312 		     data->soc_type == QCA_WCN6855)) {
2313 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2314 			return PTR_ERR(qcadev->bt_en);
2315 		}
2316 
2317 		if (!qcadev->bt_en)
2318 			power_ctrl_enabled = false;
2319 
2320 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2321 					       GPIOD_IN);
2322 		if (IS_ERR(qcadev->sw_ctrl) &&
2323 		    (data->soc_type == QCA_WCN6750 ||
2324 		     data->soc_type == QCA_WCN6855 ||
2325 		     data->soc_type == QCA_WCN7850)) {
2326 			dev_err(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2327 			return PTR_ERR(qcadev->sw_ctrl);
2328 		}
2329 
2330 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2331 		if (IS_ERR(qcadev->susclk)) {
2332 			dev_err(&serdev->dev, "failed to acquire clk\n");
2333 			return PTR_ERR(qcadev->susclk);
2334 		}
2335 
2336 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2337 		if (err) {
2338 			BT_ERR("wcn3990 serdev registration failed");
2339 			return err;
2340 		}
2341 		break;
2342 
2343 	default:
2344 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2345 					       GPIOD_OUT_LOW);
2346 		if (IS_ERR(qcadev->bt_en)) {
2347 			dev_err(&serdev->dev, "failed to acquire enable gpio\n");
2348 			return PTR_ERR(qcadev->bt_en);
2349 		}
2350 
2351 		if (!qcadev->bt_en)
2352 			power_ctrl_enabled = false;
2353 
2354 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2355 		if (IS_ERR(qcadev->susclk)) {
2356 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2357 			return PTR_ERR(qcadev->susclk);
2358 		}
2359 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2360 		if (err)
2361 			return err;
2362 
2363 		err = clk_prepare_enable(qcadev->susclk);
2364 		if (err)
2365 			return err;
2366 
2367 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2368 		if (err) {
2369 			BT_ERR("Rome serdev registration failed");
2370 			clk_disable_unprepare(qcadev->susclk);
2371 			return err;
2372 		}
2373 	}
2374 
2375 	hdev = qcadev->serdev_hu.hdev;
2376 
2377 	if (power_ctrl_enabled) {
2378 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2379 		hdev->shutdown = qca_power_off;
2380 	}
2381 
2382 	if (data) {
2383 		/* Wideband speech support must be set per driver since it can't
2384 		 * be queried via hci. Same with the valid le states quirk.
2385 		 */
2386 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2387 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2388 				&hdev->quirks);
2389 
2390 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2391 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2392 	}
2393 
2394 	return 0;
2395 }
2396 
qca_serdev_remove(struct serdev_device * serdev)2397 static void qca_serdev_remove(struct serdev_device *serdev)
2398 {
2399 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2400 	struct qca_power *power = qcadev->bt_power;
2401 
2402 	switch (qcadev->btsoc_type) {
2403 	case QCA_WCN3988:
2404 	case QCA_WCN3990:
2405 	case QCA_WCN3991:
2406 	case QCA_WCN3998:
2407 	case QCA_WCN6750:
2408 	case QCA_WCN6855:
2409 	case QCA_WCN7850:
2410 		if (power->vregs_on) {
2411 			qca_power_shutdown(&qcadev->serdev_hu);
2412 			break;
2413 		}
2414 		fallthrough;
2415 
2416 	default:
2417 		if (qcadev->susclk)
2418 			clk_disable_unprepare(qcadev->susclk);
2419 	}
2420 
2421 	hci_uart_unregister_device(&qcadev->serdev_hu);
2422 }
2423 
qca_serdev_shutdown(struct device * dev)2424 static void qca_serdev_shutdown(struct device *dev)
2425 {
2426 	int ret;
2427 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2428 	struct serdev_device *serdev = to_serdev_device(dev);
2429 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2430 	struct hci_uart *hu = &qcadev->serdev_hu;
2431 	struct hci_dev *hdev = hu->hdev;
2432 	const u8 ibs_wake_cmd[] = { 0xFD };
2433 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2434 
2435 	if (qcadev->btsoc_type == QCA_QCA6390) {
2436 		/* The purpose of sending the VSC is to reset SOC into a initial
2437 		 * state and the state will ensure next hdev->setup() success.
2438 		 * if HCI_QUIRK_NON_PERSISTENT_SETUP is set, it means that
2439 		 * hdev->setup() can do its job regardless of SoC state, so
2440 		 * don't need to send the VSC.
2441 		 * if HCI_SETUP is set, it means that hdev->setup() was never
2442 		 * invoked and the SOC is already in the initial state, so
2443 		 * don't also need to send the VSC.
2444 		 */
2445 		if (test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks) ||
2446 		    hci_dev_test_flag(hdev, HCI_SETUP))
2447 			return;
2448 
2449 		/* The serdev must be in open state when conrol logic arrives
2450 		 * here, so also fix the use-after-free issue caused by that
2451 		 * the serdev is flushed or wrote after it is closed.
2452 		 */
2453 		serdev_device_write_flush(serdev);
2454 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2455 					      sizeof(ibs_wake_cmd));
2456 		if (ret < 0) {
2457 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2458 			return;
2459 		}
2460 		serdev_device_wait_until_sent(serdev, timeout);
2461 		usleep_range(8000, 10000);
2462 
2463 		serdev_device_write_flush(serdev);
2464 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2465 					      sizeof(edl_reset_soc_cmd));
2466 		if (ret < 0) {
2467 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2468 			return;
2469 		}
2470 		serdev_device_wait_until_sent(serdev, timeout);
2471 		usleep_range(8000, 10000);
2472 	}
2473 }
2474 
qca_suspend(struct device * dev)2475 static int __maybe_unused qca_suspend(struct device *dev)
2476 {
2477 	struct serdev_device *serdev = to_serdev_device(dev);
2478 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2479 	struct hci_uart *hu = &qcadev->serdev_hu;
2480 	struct qca_data *qca = hu->priv;
2481 	unsigned long flags;
2482 	bool tx_pending = false;
2483 	int ret = 0;
2484 	u8 cmd;
2485 	u32 wait_timeout = 0;
2486 
2487 	set_bit(QCA_SUSPENDING, &qca->flags);
2488 
2489 	/* if BT SoC is running with default firmware then it does not
2490 	 * support in-band sleep
2491 	 */
2492 	if (test_bit(QCA_ROM_FW, &qca->flags))
2493 		return 0;
2494 
2495 	/* During SSR after memory dump collection, controller will be
2496 	 * powered off and then powered on.If controller is powered off
2497 	 * during SSR then we should wait until SSR is completed.
2498 	 */
2499 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2500 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2501 		return 0;
2502 
2503 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2504 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2505 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2506 					IBS_DISABLE_SSR_TIMEOUT_MS :
2507 					FW_DOWNLOAD_TIMEOUT_MS;
2508 
2509 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2510 		 * and during memory dump collection. It is reset to false,
2511 		 * After FW download complete.
2512 		 */
2513 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2514 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2515 
2516 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2517 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2518 			ret = -ETIMEDOUT;
2519 			goto error;
2520 		}
2521 	}
2522 
2523 	cancel_work_sync(&qca->ws_awake_device);
2524 	cancel_work_sync(&qca->ws_awake_rx);
2525 
2526 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2527 				 flags, SINGLE_DEPTH_NESTING);
2528 
2529 	switch (qca->tx_ibs_state) {
2530 	case HCI_IBS_TX_WAKING:
2531 		del_timer(&qca->wake_retrans_timer);
2532 		fallthrough;
2533 	case HCI_IBS_TX_AWAKE:
2534 		del_timer(&qca->tx_idle_timer);
2535 
2536 		serdev_device_write_flush(hu->serdev);
2537 		cmd = HCI_IBS_SLEEP_IND;
2538 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2539 
2540 		if (ret < 0) {
2541 			BT_ERR("Failed to send SLEEP to device");
2542 			break;
2543 		}
2544 
2545 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2546 		qca->ibs_sent_slps++;
2547 		tx_pending = true;
2548 		break;
2549 
2550 	case HCI_IBS_TX_ASLEEP:
2551 		break;
2552 
2553 	default:
2554 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2555 		ret = -EINVAL;
2556 		break;
2557 	}
2558 
2559 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2560 
2561 	if (ret < 0)
2562 		goto error;
2563 
2564 	if (tx_pending) {
2565 		serdev_device_wait_until_sent(hu->serdev,
2566 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2567 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2568 	}
2569 
2570 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2571 	 * to sleep, so that the packet does not wake the system later.
2572 	 */
2573 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2574 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2575 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2576 	if (ret == 0) {
2577 		ret = -ETIMEDOUT;
2578 		goto error;
2579 	}
2580 
2581 	return 0;
2582 
2583 error:
2584 	clear_bit(QCA_SUSPENDING, &qca->flags);
2585 
2586 	return ret;
2587 }
2588 
qca_resume(struct device * dev)2589 static int __maybe_unused qca_resume(struct device *dev)
2590 {
2591 	struct serdev_device *serdev = to_serdev_device(dev);
2592 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2593 	struct hci_uart *hu = &qcadev->serdev_hu;
2594 	struct qca_data *qca = hu->priv;
2595 
2596 	clear_bit(QCA_SUSPENDING, &qca->flags);
2597 
2598 	return 0;
2599 }
2600 
2601 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2602 
2603 #ifdef CONFIG_OF
2604 static const struct of_device_id qca_bluetooth_of_match[] = {
2605 	{ .compatible = "qcom,qca2066-bt", .data = &qca_soc_data_qca2066},
2606 	{ .compatible = "qcom,qca6174-bt" },
2607 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2608 	{ .compatible = "qcom,qca9377-bt" },
2609 	{ .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2610 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2611 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2612 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2613 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2614 	{ .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2615 	{ .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2616 	{ /* sentinel */ }
2617 };
2618 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2619 #endif
2620 
2621 #ifdef CONFIG_ACPI
2622 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2623 	{ "QCOM2066", (kernel_ulong_t)&qca_soc_data_qca2066 },
2624 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2625 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2626 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2627 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2628 	{ },
2629 };
2630 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2631 #endif
2632 
2633 #ifdef CONFIG_DEV_COREDUMP
hciqca_coredump(struct device * dev)2634 static void hciqca_coredump(struct device *dev)
2635 {
2636 	struct serdev_device *serdev = to_serdev_device(dev);
2637 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2638 	struct hci_uart *hu = &qcadev->serdev_hu;
2639 	struct hci_dev  *hdev = hu->hdev;
2640 
2641 	if (hdev->dump.coredump)
2642 		hdev->dump.coredump(hdev);
2643 }
2644 #endif
2645 
2646 static struct serdev_device_driver qca_serdev_driver = {
2647 	.probe = qca_serdev_probe,
2648 	.remove = qca_serdev_remove,
2649 	.driver = {
2650 		.name = "hci_uart_qca",
2651 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2652 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2653 		.shutdown = qca_serdev_shutdown,
2654 		.pm = &qca_pm_ops,
2655 #ifdef CONFIG_DEV_COREDUMP
2656 		.coredump = hciqca_coredump,
2657 #endif
2658 	},
2659 };
2660 
qca_init(void)2661 int __init qca_init(void)
2662 {
2663 	serdev_device_driver_register(&qca_serdev_driver);
2664 
2665 	return hci_uart_register_proto(&qca_proto);
2666 }
2667 
qca_deinit(void)2668 int __exit qca_deinit(void)
2669 {
2670 	serdev_device_driver_unregister(&qca_serdev_driver);
2671 
2672 	return hci_uart_unregister_proto(&qca_proto);
2673 }
2674