Home
last modified time | relevance | path

Searched full:multiplication (Results 1 – 25 of 281) sorted by relevance

12345678910>>...12

/openbmc/linux/crypto/
H A Dpolyval-generic.c15 * modulus for finite field multiplication which makes hardware accelerated
30 * fields. This trick allows multiplication in the POLYVAL field to be
31 * implemented by using multiplication in the GHASH field as a subroutine. An
80 * Performs multiplication in the POLYVAL field using the GHASH field as a
85 * lookup table implementation for finite field multiplication.
101 * Perform a POLYVAL update using non4k multiplication. This function is used
106 * lookup table implementation of finite field multiplication.
/openbmc/linux/arch/x86/crypto/
H A Dpolyval-clmulni_asm.S9 * allows us to split finite field multiplication into two steps.
12 * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
13 * is simply polynomial multiplication.
19 * multiplication is finite field multiplication. The advantage is that the
85 * extra multiplication of SUM and h^8.
175 * Compute schoolbook multiplication for 8 blocks
181 * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
264 * Perform montgomery multiplication in GF(2^128) and store result in op1.
H A DKconfig412 - CLMUL-NI (carry-less multiplication new instructions)
488 - CLMUL-NI (carry-less multiplication new instructions)
499 - PCLMULQDQ (carry-less multiplication)
510 - PCLMULQDQ (carry-less multiplication)
520 - PCLMULQDQ (carry-less multiplication)
/openbmc/linux/arch/arm64/crypto/
H A Dpolyval-ce-core.S11 * finite field multiplication into two steps.
14 * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
15 * is simply polynomial multiplication.
21 * multiplication is finite field multiplication. The advantage is that the
89 * Karatsuba multiplication is used instead of Schoolbook multiplication because
214 * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
303 * Perform montgomery multiplication in GF(2^128) and store result in op1.
/openbmc/linux/drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/
H A Dphy_qmath.c9 * Description: This function make 16 bit unsigned multiplication.
10 * To fit the output into 16 bits the 32 bit multiplication result is right
19 * Description: This function make 16 bit multiplication and return the result
20 * in 16 bits. To fit the multiplication result into 16 bits the multiplication
22 * is done to remove the extra sign bit formed due to the multiplication.
/openbmc/linux/drivers/net/wireless/broadcom/b43/
H A Dphy_n.h574 #define B43_NPHY_RSSIMC_0I_RSSI_X B43_PHY_N(0x1A4) /* RSSI multiplication coefficient 0 I RSSI X */
575 #define B43_NPHY_RSSIMC_0I_RSSI_Y B43_PHY_N(0x1A5) /* RSSI multiplication coefficient 0 I RSSI Y */
576 #define B43_NPHY_RSSIMC_0I_RSSI_Z B43_PHY_N(0x1A6) /* RSSI multiplication coefficient 0 I RSSI Z */
577 #define B43_NPHY_RSSIMC_0I_TBD B43_PHY_N(0x1A7) /* RSSI multiplication coefficient 0 I TBD */
578 #define B43_NPHY_RSSIMC_0I_PWRDET B43_PHY_N(0x1A8) /* RSSI multiplication coefficient 0 I power de…
579 #define B43_NPHY_RSSIMC_0I_TSSI B43_PHY_N(0x1A9) /* RSSI multiplication coefficient 0 I TSSI */
580 #define B43_NPHY_RSSIMC_0Q_RSSI_X B43_PHY_N(0x1AA) /* RSSI multiplication coefficient 0 Q RSSI X */
581 #define B43_NPHY_RSSIMC_0Q_RSSI_Y B43_PHY_N(0x1AB) /* RSSI multiplication coefficient 0 Q RSSI Y */
582 #define B43_NPHY_RSSIMC_0Q_RSSI_Z B43_PHY_N(0x1AC) /* RSSI multiplication coefficient 0 Q RSSI Z */
583 #define B43_NPHY_RSSIMC_0Q_TBD B43_PHY_N(0x1AD) /* RSSI multiplication coefficient 0 Q TBD */
[all …]
/openbmc/qemu/docs/system/arm/
H A Demulation.rst16 - FEAT_AA32I8MM (AArch32 Int8 matrix multiplication instructions)
59 - FEAT_F32MM (Single-precision Matrix Multiplication)
60 - FEAT_F64MM (Double-precision Matrix Multiplication)
63 - FEAT_FHM (Floating-point half-precision multiplication instructions)
79 - FEAT_I8MM (AArch64 Int8 matrix multiplication instructions)
/openbmc/linux/tools/perf/pmu-events/arch/riscv/sifive/u74/
H A Dinstructions.json50 "BriefDescription": "Integer multiplication instruction retired"
75 "BriefDescription": "Floating-point multiplication retired"
H A Dmicroarch.json50 "BriefDescription": "Integer multiplication interlock"
/openbmc/linux/include/linux/iio/
H A Diio-gts-helper.h21 * @gain: Gain (multiplication) value. Gain must be positive, negative
41 * respective multiplication values could be 50 mS => 1, 100 mS => 2,
50 * @mul: Multiplication to the values caused by this time.
/openbmc/entity-manager/src/
H A Dexpression.cpp37 return Operation::multiplication; in parseOperation()
63 case Operation::multiplication: in evaluate()
/openbmc/linux/arch/arm/include/asm/
H A Ddelay.h25 * scale up this constant by 2^31, perform the actual multiplication,
70 * division by multiplication: you don't have to worry about
/openbmc/linux/drivers/gpu/drm/sun4i/
H A Dsun8i_csc.c19 * First tree values in each line are multiplication factor and last
52 * First three factors in a row are multiplication factors which have 17 bits
55 * value before multiplication and lower 16 bits represents constant, which
/openbmc/linux/include/linux/
H A Dreciprocal_div.h9 * Integers Using Multiplication" by Torbjörn Granlund and Peter
19 * a much faster multiplication operation with a variable dividend A
H A Dmath64.h222 * multiplication, the high 32-bits are carried into the next step. in mul_u64_u64_shr()
229 * The 128-bit result of the multiplication is in rl.ll and rh.ll, in mul_u64_u64_shr()
248 * Extract the sign before the multiplication and put it back in mul_s64_u64_shr()
H A Dpolynomial.h12 * @coef: multiplication factor of the term.
/openbmc/linux/include/math-emu/
H A Dop-2.h231 * Multiplication algorithms:
234 /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
262 /* Given a 1W * 1W => 2W primitive, do the extended multiplication.
264 where multiplication is much more expensive than subtraction. */
323 /* Do at most 120x120=240 bits multiplication using double floating
324 point multiplication. This is useful if floating point
325 multiplication has much bigger throughput than integer multiply.
/openbmc/linux/arch/nios2/kernel/
H A Dinsnemu.S95 * remaining multiplication opcodes.
180 * Prepare for either multiplication or division loop.
355 /* MULTIPLICATION
361 * Actual multiplication algorithms don't use repeated addition, however.
407 /* Initialize the multiplication loop. */
/openbmc/linux/arch/x86/math-emu/
H A Dreg_u_mul.S6 | Core multiplication routine |
16 | Basic multiplication routine. |
/openbmc/qemu/tests/tcg/hexagon/
H A Dtest_mpyi.S1 /* Purpose: test a simple multiplication operation */
/openbmc/u-boot/doc/device-tree-bindings/clock/
H A Dst,stm32h7-rcc.txt95 - st,clock-mult: DIVN multiplication factor : <4..512>
101 - st,frac: Fractional part of the multiplication factor : <0..8191>
/openbmc/qemu/include/qemu/
H A Dhost-utils.h559 * smul32_overflow - multiplication with overflow indication
572 * smul64_overflow - multiplication with overflow indication
585 * umul32_overflow - multiplication with overflow indication
598 * umul64_overflow - multiplication with overflow indication
611 * Unsigned 128x64 multiplication.
613 * Otherwise, returns false and the multiplication result via plow and phigh.
/openbmc/u-boot/include/
H A Dmpc8xx.h127 #define PLPRCR_MFN_MSK 0xF8000000 /* Multiplication factor numerator bits */
128 #define PLPRCR_MFN_SHIFT 27 /* Multiplication factor numerator shift*/
129 #define PLPRCR_MFD_MSK 0x07C00000 /* Multiplication factor denominator bits */
130 #define PLPRCR_MFD_SHIFT 22 /* Multiplication factor denominator shift*/
131 #define PLPRCR_S_MSK 0x00300000 /* Multiplication factor integer bits */
132 #define PLPRCR_S_SHIFT 20 /* Multiplication factor integer shift */
133 #define PLPRCR_MFI_MSK 0x000F0000 /* Multiplication factor integer bits */
134 #define PLPRCR_MFI_SHIFT 16 /* Multiplication factor integer shift */
140 /* Multiplication factor + PDF bits */
/openbmc/linux/lib/crypto/
H A Dcurve25519-generic.c23 MODULE_DESCRIPTION("Curve25519 scalar multiplication");
H A Dcurve25519.c32 MODULE_DESCRIPTION("Curve25519 scalar multiplication");

12345678910>>...12