1 /*
2 * Copyright 2022 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_xcp.h"
31 #include "amdgpu_ucode.h"
32 #include "amdgpu_trace.h"
33
34 #include "sdma/sdma_4_4_2_offset.h"
35 #include "sdma/sdma_4_4_2_sh_mask.h"
36
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43
44 #include "amdgpu_ras.h"
45
46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
47
48 #define WREG32_SDMA(instance, offset, value) \
49 WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
50 #define RREG32_SDMA(instance, offset) \
51 RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
52
53 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
54 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
55 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
56 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
57 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
58
sdma_v4_4_2_get_reg_offset(struct amdgpu_device * adev,u32 instance,u32 offset)59 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
60 u32 instance, u32 offset)
61 {
62 u32 dev_inst = GET_INST(SDMA0, instance);
63
64 return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
65 }
66
sdma_v4_4_2_seq_to_irq_id(int seq_num)67 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
68 {
69 switch (seq_num) {
70 case 0:
71 return SOC15_IH_CLIENTID_SDMA0;
72 case 1:
73 return SOC15_IH_CLIENTID_SDMA1;
74 case 2:
75 return SOC15_IH_CLIENTID_SDMA2;
76 case 3:
77 return SOC15_IH_CLIENTID_SDMA3;
78 default:
79 return -EINVAL;
80 }
81 }
82
sdma_v4_4_2_irq_id_to_seq(unsigned client_id)83 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id)
84 {
85 switch (client_id) {
86 case SOC15_IH_CLIENTID_SDMA0:
87 return 0;
88 case SOC15_IH_CLIENTID_SDMA1:
89 return 1;
90 case SOC15_IH_CLIENTID_SDMA2:
91 return 2;
92 case SOC15_IH_CLIENTID_SDMA3:
93 return 3;
94 default:
95 return -EINVAL;
96 }
97 }
98
sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device * adev,uint32_t inst_mask)99 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
100 uint32_t inst_mask)
101 {
102 u32 val;
103 int i;
104
105 for (i = 0; i < adev->sdma.num_instances; i++) {
106 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
107 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
108 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
109 PIPE_INTERLEAVE_SIZE, 0);
110 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
111
112 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
113 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
114 4);
115 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
116 PIPE_INTERLEAVE_SIZE, 0);
117 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
118 }
119 }
120
121 /**
122 * sdma_v4_4_2_init_microcode - load ucode images from disk
123 *
124 * @adev: amdgpu_device pointer
125 *
126 * Use the firmware interface to load the ucode images into
127 * the driver (not loaded into hw).
128 * Returns 0 on success, error on failure.
129 */
sdma_v4_4_2_init_microcode(struct amdgpu_device * adev)130 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
131 {
132 int ret, i;
133
134 for (i = 0; i < adev->sdma.num_instances; i++) {
135 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 2)) {
136 ret = amdgpu_sdma_init_microcode(adev, 0, true);
137 break;
138 } else {
139 ret = amdgpu_sdma_init_microcode(adev, i, false);
140 if (ret)
141 return ret;
142 }
143 }
144
145 return ret;
146 }
147
148 /**
149 * sdma_v4_4_2_ring_get_rptr - get the current read pointer
150 *
151 * @ring: amdgpu ring pointer
152 *
153 * Get the current rptr from the hardware.
154 */
sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring * ring)155 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
156 {
157 u64 *rptr;
158
159 /* XXX check if swapping is necessary on BE */
160 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
161
162 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
163 return ((*rptr) >> 2);
164 }
165
166 /**
167 * sdma_v4_4_2_ring_get_wptr - get the current write pointer
168 *
169 * @ring: amdgpu ring pointer
170 *
171 * Get the current wptr from the hardware.
172 */
sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring * ring)173 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
174 {
175 struct amdgpu_device *adev = ring->adev;
176 u64 wptr;
177
178 if (ring->use_doorbell) {
179 /* XXX check if swapping is necessary on BE */
180 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
181 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
182 } else {
183 wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
184 wptr = wptr << 32;
185 wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
186 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
187 ring->me, wptr);
188 }
189
190 return wptr >> 2;
191 }
192
193 /**
194 * sdma_v4_4_2_ring_set_wptr - commit the write pointer
195 *
196 * @ring: amdgpu ring pointer
197 *
198 * Write the wptr back to the hardware.
199 */
sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring * ring)200 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
201 {
202 struct amdgpu_device *adev = ring->adev;
203
204 DRM_DEBUG("Setting write pointer\n");
205 if (ring->use_doorbell) {
206 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
207
208 DRM_DEBUG("Using doorbell -- "
209 "wptr_offs == 0x%08x "
210 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
211 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
212 ring->wptr_offs,
213 lower_32_bits(ring->wptr << 2),
214 upper_32_bits(ring->wptr << 2));
215 /* XXX check if swapping is necessary on BE */
216 WRITE_ONCE(*wb, (ring->wptr << 2));
217 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
218 ring->doorbell_index, ring->wptr << 2);
219 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
220 } else {
221 DRM_DEBUG("Not using doorbell -- "
222 "regSDMA%i_GFX_RB_WPTR == 0x%08x "
223 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
224 ring->me,
225 lower_32_bits(ring->wptr << 2),
226 ring->me,
227 upper_32_bits(ring->wptr << 2));
228 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
229 lower_32_bits(ring->wptr << 2));
230 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
231 upper_32_bits(ring->wptr << 2));
232 }
233 }
234
235 /**
236 * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
237 *
238 * @ring: amdgpu ring pointer
239 *
240 * Get the current wptr from the hardware.
241 */
sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring * ring)242 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
243 {
244 struct amdgpu_device *adev = ring->adev;
245 u64 wptr;
246
247 if (ring->use_doorbell) {
248 /* XXX check if swapping is necessary on BE */
249 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
250 } else {
251 wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
252 wptr = wptr << 32;
253 wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
254 }
255
256 return wptr >> 2;
257 }
258
259 /**
260 * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
261 *
262 * @ring: amdgpu ring pointer
263 *
264 * Write the wptr back to the hardware.
265 */
sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring * ring)266 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
267 {
268 struct amdgpu_device *adev = ring->adev;
269
270 if (ring->use_doorbell) {
271 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
272
273 /* XXX check if swapping is necessary on BE */
274 WRITE_ONCE(*wb, (ring->wptr << 2));
275 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
276 } else {
277 uint64_t wptr = ring->wptr << 2;
278
279 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
280 lower_32_bits(wptr));
281 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
282 upper_32_bits(wptr));
283 }
284 }
285
sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)286 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
287 {
288 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
289 int i;
290
291 for (i = 0; i < count; i++)
292 if (sdma && sdma->burst_nop && (i == 0))
293 amdgpu_ring_write(ring, ring->funcs->nop |
294 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
295 else
296 amdgpu_ring_write(ring, ring->funcs->nop);
297 }
298
299 /**
300 * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
301 *
302 * @ring: amdgpu ring pointer
303 * @job: job to retrieve vmid from
304 * @ib: IB object to schedule
305 * @flags: unused
306 *
307 * Schedule an IB in the DMA ring.
308 */
sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)309 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
310 struct amdgpu_job *job,
311 struct amdgpu_ib *ib,
312 uint32_t flags)
313 {
314 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
315
316 /* IB packet must end on a 8 DW boundary */
317 sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
318
319 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
320 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
321 /* base must be 32 byte aligned */
322 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
323 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
324 amdgpu_ring_write(ring, ib->length_dw);
325 amdgpu_ring_write(ring, 0);
326 amdgpu_ring_write(ring, 0);
327
328 }
329
sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring * ring,int mem_space,int hdp,uint32_t addr0,uint32_t addr1,uint32_t ref,uint32_t mask,uint32_t inv)330 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
331 int mem_space, int hdp,
332 uint32_t addr0, uint32_t addr1,
333 uint32_t ref, uint32_t mask,
334 uint32_t inv)
335 {
336 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
337 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
338 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
339 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
340 if (mem_space) {
341 /* memory */
342 amdgpu_ring_write(ring, addr0);
343 amdgpu_ring_write(ring, addr1);
344 } else {
345 /* registers */
346 amdgpu_ring_write(ring, addr0 << 2);
347 amdgpu_ring_write(ring, addr1 << 2);
348 }
349 amdgpu_ring_write(ring, ref); /* reference */
350 amdgpu_ring_write(ring, mask); /* mask */
351 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
352 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
353 }
354
355 /**
356 * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
357 *
358 * @ring: amdgpu ring pointer
359 *
360 * Emit an hdp flush packet on the requested DMA ring.
361 */
sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring * ring)362 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
363 {
364 struct amdgpu_device *adev = ring->adev;
365 u32 ref_and_mask = 0;
366 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
367
368 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0
369 << (ring->me % adev->sdma.num_inst_per_aid);
370
371 sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
372 adev->nbio.funcs->get_hdp_flush_done_offset(adev),
373 adev->nbio.funcs->get_hdp_flush_req_offset(adev),
374 ref_and_mask, ref_and_mask, 10);
375 }
376
377 /**
378 * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
379 *
380 * @ring: amdgpu ring pointer
381 * @addr: address
382 * @seq: sequence number
383 * @flags: fence related flags
384 *
385 * Add a DMA fence packet to the ring to write
386 * the fence seq number and DMA trap packet to generate
387 * an interrupt if needed.
388 */
sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)389 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
390 unsigned flags)
391 {
392 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
393 /* write the fence */
394 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
395 /* zero in first two bits */
396 BUG_ON(addr & 0x3);
397 amdgpu_ring_write(ring, lower_32_bits(addr));
398 amdgpu_ring_write(ring, upper_32_bits(addr));
399 amdgpu_ring_write(ring, lower_32_bits(seq));
400
401 /* optionally write high bits as well */
402 if (write64bit) {
403 addr += 4;
404 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
405 /* zero in first two bits */
406 BUG_ON(addr & 0x3);
407 amdgpu_ring_write(ring, lower_32_bits(addr));
408 amdgpu_ring_write(ring, upper_32_bits(addr));
409 amdgpu_ring_write(ring, upper_32_bits(seq));
410 }
411
412 /* generate an interrupt */
413 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
414 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
415 }
416
417
418 /**
419 * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
420 *
421 * @adev: amdgpu_device pointer
422 * @inst_mask: mask of dma engine instances to be disabled
423 *
424 * Stop the gfx async dma ring buffers.
425 */
sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device * adev,uint32_t inst_mask)426 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
427 uint32_t inst_mask)
428 {
429 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
430 u32 rb_cntl, ib_cntl;
431 int i, unset = 0;
432
433 for_each_inst(i, inst_mask) {
434 sdma[i] = &adev->sdma.instance[i].ring;
435
436 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
437 amdgpu_ttm_set_buffer_funcs_status(adev, false);
438 unset = 1;
439 }
440
441 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
442 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
443 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
444 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
445 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
446 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
447 }
448 }
449
450 /**
451 * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
452 *
453 * @adev: amdgpu_device pointer
454 * @inst_mask: mask of dma engine instances to be disabled
455 *
456 * Stop the compute async dma queues.
457 */
sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device * adev,uint32_t inst_mask)458 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
459 uint32_t inst_mask)
460 {
461 /* XXX todo */
462 }
463
464 /**
465 * sdma_v4_4_2_inst_page_stop - stop the page async dma engines
466 *
467 * @adev: amdgpu_device pointer
468 * @inst_mask: mask of dma engine instances to be disabled
469 *
470 * Stop the page async dma ring buffers.
471 */
sdma_v4_4_2_inst_page_stop(struct amdgpu_device * adev,uint32_t inst_mask)472 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
473 uint32_t inst_mask)
474 {
475 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
476 u32 rb_cntl, ib_cntl;
477 int i;
478 bool unset = false;
479
480 for_each_inst(i, inst_mask) {
481 sdma[i] = &adev->sdma.instance[i].page;
482
483 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
484 (!unset)) {
485 amdgpu_ttm_set_buffer_funcs_status(adev, false);
486 unset = true;
487 }
488
489 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
490 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
491 RB_ENABLE, 0);
492 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
493 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
494 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
495 IB_ENABLE, 0);
496 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
497 }
498 }
499
500 /**
501 * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
502 *
503 * @adev: amdgpu_device pointer
504 * @enable: enable/disable the DMA MEs context switch.
505 * @inst_mask: mask of dma engine instances to be enabled
506 *
507 * Halt or unhalt the async dma engines context switch.
508 */
sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device * adev,bool enable,uint32_t inst_mask)509 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
510 bool enable, uint32_t inst_mask)
511 {
512 u32 f32_cntl, phase_quantum = 0;
513 int i;
514
515 if (amdgpu_sdma_phase_quantum) {
516 unsigned value = amdgpu_sdma_phase_quantum;
517 unsigned unit = 0;
518
519 while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
520 SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
521 value = (value + 1) >> 1;
522 unit++;
523 }
524 if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
525 SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
526 value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
527 SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
528 unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
529 SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
530 WARN_ONCE(1,
531 "clamping sdma_phase_quantum to %uK clock cycles\n",
532 value << unit);
533 }
534 phase_quantum =
535 value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
536 unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
537 }
538
539 for_each_inst(i, inst_mask) {
540 f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
541 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
542 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
543 if (enable && amdgpu_sdma_phase_quantum) {
544 WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
545 WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
546 WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
547 }
548 WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
549
550 /* Extend page fault timeout to avoid interrupt storm */
551 WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
552 }
553 }
554
555 /**
556 * sdma_v4_4_2_inst_enable - stop the async dma engines
557 *
558 * @adev: amdgpu_device pointer
559 * @enable: enable/disable the DMA MEs.
560 * @inst_mask: mask of dma engine instances to be enabled
561 *
562 * Halt or unhalt the async dma engines.
563 */
sdma_v4_4_2_inst_enable(struct amdgpu_device * adev,bool enable,uint32_t inst_mask)564 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
565 uint32_t inst_mask)
566 {
567 u32 f32_cntl;
568 int i;
569
570 if (!enable) {
571 sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
572 sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
573 if (adev->sdma.has_page_queue)
574 sdma_v4_4_2_inst_page_stop(adev, inst_mask);
575
576 /* SDMA FW needs to respond to FREEZE requests during reset.
577 * Keep it running during reset */
578 if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
579 return;
580 }
581
582 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
583 return;
584
585 for_each_inst(i, inst_mask) {
586 f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
587 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
588 WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
589 }
590 }
591
592 /*
593 * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
594 */
sdma_v4_4_2_rb_cntl(struct amdgpu_ring * ring,uint32_t rb_cntl)595 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
596 {
597 /* Set ring buffer size in dwords */
598 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
599
600 barrier(); /* work around https://bugs.llvm.org/show_bug.cgi?id=42576 */
601 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
602 #ifdef __BIG_ENDIAN
603 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
604 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
605 RPTR_WRITEBACK_SWAP_ENABLE, 1);
606 #endif
607 return rb_cntl;
608 }
609
610 /**
611 * sdma_v4_4_2_gfx_resume - setup and start the async dma engines
612 *
613 * @adev: amdgpu_device pointer
614 * @i: instance to resume
615 *
616 * Set up the gfx DMA ring buffers and enable them.
617 * Returns 0 for success, error for failure.
618 */
sdma_v4_4_2_gfx_resume(struct amdgpu_device * adev,unsigned int i)619 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
620 {
621 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
622 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
623 u32 wb_offset;
624 u32 doorbell;
625 u32 doorbell_offset;
626 u64 wptr_gpu_addr;
627
628 wb_offset = (ring->rptr_offs * 4);
629
630 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
631 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
632 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
633
634 /* Initialize the ring buffer's read and write pointers */
635 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
636 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
637 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
638 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
639
640 /* set the wb address whether it's enabled or not */
641 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
642 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
643 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
644 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
645
646 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
647 RPTR_WRITEBACK_ENABLE, 1);
648
649 WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
650 WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
651
652 ring->wptr = 0;
653
654 /* before programing wptr to a less value, need set minor_ptr_update first */
655 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
656
657 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
658 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
659
660 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
661 ring->use_doorbell);
662 doorbell_offset = REG_SET_FIELD(doorbell_offset,
663 SDMA_GFX_DOORBELL_OFFSET,
664 OFFSET, ring->doorbell_index);
665 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
666 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
667
668 sdma_v4_4_2_ring_set_wptr(ring);
669
670 /* set minor_ptr_update to 0 after wptr programed */
671 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
672
673 /* setup the wptr shadow polling */
674 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
675 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
676 lower_32_bits(wptr_gpu_addr));
677 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
678 upper_32_bits(wptr_gpu_addr));
679 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
680 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
681 SDMA_GFX_RB_WPTR_POLL_CNTL,
682 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
683 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
684
685 /* enable DMA RB */
686 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
687 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
688
689 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
690 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
691 #ifdef __BIG_ENDIAN
692 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
693 #endif
694 /* enable DMA IBs */
695 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
696 }
697
698 /**
699 * sdma_v4_4_2_page_resume - setup and start the async dma engines
700 *
701 * @adev: amdgpu_device pointer
702 * @i: instance to resume
703 *
704 * Set up the page DMA ring buffers and enable them.
705 * Returns 0 for success, error for failure.
706 */
sdma_v4_4_2_page_resume(struct amdgpu_device * adev,unsigned int i)707 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
708 {
709 struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
710 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
711 u32 wb_offset;
712 u32 doorbell;
713 u32 doorbell_offset;
714 u64 wptr_gpu_addr;
715
716 wb_offset = (ring->rptr_offs * 4);
717
718 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
719 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
720 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
721
722 /* Initialize the ring buffer's read and write pointers */
723 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
724 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
725 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
726 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
727
728 /* set the wb address whether it's enabled or not */
729 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
730 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
731 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
732 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
733
734 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
735 RPTR_WRITEBACK_ENABLE, 1);
736
737 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
738 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
739
740 ring->wptr = 0;
741
742 /* before programing wptr to a less value, need set minor_ptr_update first */
743 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
744
745 doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
746 doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
747
748 doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
749 ring->use_doorbell);
750 doorbell_offset = REG_SET_FIELD(doorbell_offset,
751 SDMA_PAGE_DOORBELL_OFFSET,
752 OFFSET, ring->doorbell_index);
753 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
754 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
755
756 /* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
757 sdma_v4_4_2_page_ring_set_wptr(ring);
758
759 /* set minor_ptr_update to 0 after wptr programed */
760 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
761
762 /* setup the wptr shadow polling */
763 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
764 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
765 lower_32_bits(wptr_gpu_addr));
766 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
767 upper_32_bits(wptr_gpu_addr));
768 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
769 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
770 SDMA_PAGE_RB_WPTR_POLL_CNTL,
771 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
772 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
773
774 /* enable DMA RB */
775 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
776 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
777
778 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
779 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
780 #ifdef __BIG_ENDIAN
781 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
782 #endif
783 /* enable DMA IBs */
784 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
785 }
786
sdma_v4_4_2_init_pg(struct amdgpu_device * adev)787 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
788 {
789
790 }
791
792 /**
793 * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
794 *
795 * @adev: amdgpu_device pointer
796 * @inst_mask: mask of dma engine instances to be enabled
797 *
798 * Set up the compute DMA queues and enable them.
799 * Returns 0 for success, error for failure.
800 */
sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device * adev,uint32_t inst_mask)801 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
802 uint32_t inst_mask)
803 {
804 sdma_v4_4_2_init_pg(adev);
805
806 return 0;
807 }
808
809 /**
810 * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
811 *
812 * @adev: amdgpu_device pointer
813 * @inst_mask: mask of dma engine instances to be enabled
814 *
815 * Loads the sDMA0/1 ucode.
816 * Returns 0 for success, -EINVAL if the ucode is not available.
817 */
sdma_v4_4_2_inst_load_microcode(struct amdgpu_device * adev,uint32_t inst_mask)818 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
819 uint32_t inst_mask)
820 {
821 const struct sdma_firmware_header_v1_0 *hdr;
822 const __le32 *fw_data;
823 u32 fw_size;
824 int i, j;
825
826 /* halt the MEs */
827 sdma_v4_4_2_inst_enable(adev, false, inst_mask);
828
829 for_each_inst(i, inst_mask) {
830 if (!adev->sdma.instance[i].fw)
831 return -EINVAL;
832
833 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
834 amdgpu_ucode_print_sdma_hdr(&hdr->header);
835 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
836
837 fw_data = (const __le32 *)
838 (adev->sdma.instance[i].fw->data +
839 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
840
841 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
842
843 for (j = 0; j < fw_size; j++)
844 WREG32_SDMA(i, regSDMA_UCODE_DATA,
845 le32_to_cpup(fw_data++));
846
847 WREG32_SDMA(i, regSDMA_UCODE_ADDR,
848 adev->sdma.instance[i].fw_version);
849 }
850
851 return 0;
852 }
853
854 /**
855 * sdma_v4_4_2_inst_start - setup and start the async dma engines
856 *
857 * @adev: amdgpu_device pointer
858 * @inst_mask: mask of dma engine instances to be enabled
859 *
860 * Set up the DMA engines and enable them.
861 * Returns 0 for success, error for failure.
862 */
sdma_v4_4_2_inst_start(struct amdgpu_device * adev,uint32_t inst_mask)863 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
864 uint32_t inst_mask)
865 {
866 struct amdgpu_ring *ring;
867 uint32_t tmp_mask;
868 int i, r = 0;
869
870 if (amdgpu_sriov_vf(adev)) {
871 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
872 sdma_v4_4_2_inst_enable(adev, false, inst_mask);
873 } else {
874 /* bypass sdma microcode loading on Gopher */
875 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
876 adev->sdma.instance[0].fw) {
877 r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
878 if (r)
879 return r;
880 }
881
882 /* unhalt the MEs */
883 sdma_v4_4_2_inst_enable(adev, true, inst_mask);
884 /* enable sdma ring preemption */
885 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
886 }
887
888 /* start the gfx rings and rlc compute queues */
889 tmp_mask = inst_mask;
890 for_each_inst(i, tmp_mask) {
891 uint32_t temp;
892
893 WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
894 sdma_v4_4_2_gfx_resume(adev, i);
895 if (adev->sdma.has_page_queue)
896 sdma_v4_4_2_page_resume(adev, i);
897
898 /* set utc l1 enable flag always to 1 */
899 temp = RREG32_SDMA(i, regSDMA_CNTL);
900 temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
901 /* enable context empty interrupt during initialization */
902 temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
903 WREG32_SDMA(i, regSDMA_CNTL, temp);
904
905 if (!amdgpu_sriov_vf(adev)) {
906 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
907 /* unhalt engine */
908 temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
909 temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
910 WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
911 }
912 }
913 }
914
915 if (amdgpu_sriov_vf(adev)) {
916 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
917 sdma_v4_4_2_inst_enable(adev, true, inst_mask);
918 } else {
919 r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
920 if (r)
921 return r;
922 }
923
924 tmp_mask = inst_mask;
925 for_each_inst(i, tmp_mask) {
926 ring = &adev->sdma.instance[i].ring;
927
928 r = amdgpu_ring_test_helper(ring);
929 if (r)
930 return r;
931
932 if (adev->sdma.has_page_queue) {
933 struct amdgpu_ring *page = &adev->sdma.instance[i].page;
934
935 r = amdgpu_ring_test_helper(page);
936 if (r)
937 return r;
938
939 if (adev->mman.buffer_funcs_ring == page)
940 amdgpu_ttm_set_buffer_funcs_status(adev, true);
941 }
942
943 if (adev->mman.buffer_funcs_ring == ring)
944 amdgpu_ttm_set_buffer_funcs_status(adev, true);
945 }
946
947 return r;
948 }
949
950 /**
951 * sdma_v4_4_2_ring_test_ring - simple async dma engine test
952 *
953 * @ring: amdgpu_ring structure holding ring information
954 *
955 * Test the DMA engine by writing using it to write an
956 * value to memory.
957 * Returns 0 for success, error for failure.
958 */
sdma_v4_4_2_ring_test_ring(struct amdgpu_ring * ring)959 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
960 {
961 struct amdgpu_device *adev = ring->adev;
962 unsigned i;
963 unsigned index;
964 int r;
965 u32 tmp;
966 u64 gpu_addr;
967
968 r = amdgpu_device_wb_get(adev, &index);
969 if (r)
970 return r;
971
972 gpu_addr = adev->wb.gpu_addr + (index * 4);
973 tmp = 0xCAFEDEAD;
974 adev->wb.wb[index] = cpu_to_le32(tmp);
975
976 r = amdgpu_ring_alloc(ring, 5);
977 if (r)
978 goto error_free_wb;
979
980 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
981 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
982 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
983 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
984 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
985 amdgpu_ring_write(ring, 0xDEADBEEF);
986 amdgpu_ring_commit(ring);
987
988 for (i = 0; i < adev->usec_timeout; i++) {
989 tmp = le32_to_cpu(adev->wb.wb[index]);
990 if (tmp == 0xDEADBEEF)
991 break;
992 udelay(1);
993 }
994
995 if (i >= adev->usec_timeout)
996 r = -ETIMEDOUT;
997
998 error_free_wb:
999 amdgpu_device_wb_free(adev, index);
1000 return r;
1001 }
1002
1003 /**
1004 * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
1005 *
1006 * @ring: amdgpu_ring structure holding ring information
1007 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1008 *
1009 * Test a simple IB in the DMA ring.
1010 * Returns 0 on success, error on failure.
1011 */
sdma_v4_4_2_ring_test_ib(struct amdgpu_ring * ring,long timeout)1012 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1013 {
1014 struct amdgpu_device *adev = ring->adev;
1015 struct amdgpu_ib ib;
1016 struct dma_fence *f = NULL;
1017 unsigned index;
1018 long r;
1019 u32 tmp = 0;
1020 u64 gpu_addr;
1021
1022 r = amdgpu_device_wb_get(adev, &index);
1023 if (r)
1024 return r;
1025
1026 gpu_addr = adev->wb.gpu_addr + (index * 4);
1027 tmp = 0xCAFEDEAD;
1028 adev->wb.wb[index] = cpu_to_le32(tmp);
1029 memset(&ib, 0, sizeof(ib));
1030 r = amdgpu_ib_get(adev, NULL, 256,
1031 AMDGPU_IB_POOL_DIRECT, &ib);
1032 if (r)
1033 goto err0;
1034
1035 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1036 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1037 ib.ptr[1] = lower_32_bits(gpu_addr);
1038 ib.ptr[2] = upper_32_bits(gpu_addr);
1039 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1040 ib.ptr[4] = 0xDEADBEEF;
1041 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1042 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1043 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1044 ib.length_dw = 8;
1045
1046 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1047 if (r)
1048 goto err1;
1049
1050 r = dma_fence_wait_timeout(f, false, timeout);
1051 if (r == 0) {
1052 r = -ETIMEDOUT;
1053 goto err1;
1054 } else if (r < 0) {
1055 goto err1;
1056 }
1057 tmp = le32_to_cpu(adev->wb.wb[index]);
1058 if (tmp == 0xDEADBEEF)
1059 r = 0;
1060 else
1061 r = -EINVAL;
1062
1063 err1:
1064 amdgpu_ib_free(adev, &ib, NULL);
1065 dma_fence_put(f);
1066 err0:
1067 amdgpu_device_wb_free(adev, index);
1068 return r;
1069 }
1070
1071
1072 /**
1073 * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
1074 *
1075 * @ib: indirect buffer to fill with commands
1076 * @pe: addr of the page entry
1077 * @src: src addr to copy from
1078 * @count: number of page entries to update
1079 *
1080 * Update PTEs by copying them from the GART using sDMA.
1081 */
sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)1082 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
1083 uint64_t pe, uint64_t src,
1084 unsigned count)
1085 {
1086 unsigned bytes = count * 8;
1087
1088 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1089 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1090 ib->ptr[ib->length_dw++] = bytes - 1;
1091 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1092 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1093 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1094 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1095 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1096
1097 }
1098
1099 /**
1100 * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
1101 *
1102 * @ib: indirect buffer to fill with commands
1103 * @pe: addr of the page entry
1104 * @value: dst addr to write into pe
1105 * @count: number of page entries to update
1106 * @incr: increase next addr by incr bytes
1107 *
1108 * Update PTEs by writing them manually using sDMA.
1109 */
sdma_v4_4_2_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)1110 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1111 uint64_t value, unsigned count,
1112 uint32_t incr)
1113 {
1114 unsigned ndw = count * 2;
1115
1116 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1117 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1118 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1119 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1120 ib->ptr[ib->length_dw++] = ndw - 1;
1121 for (; ndw > 0; ndw -= 2) {
1122 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1123 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1124 value += incr;
1125 }
1126 }
1127
1128 /**
1129 * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
1130 *
1131 * @ib: indirect buffer to fill with commands
1132 * @pe: addr of the page entry
1133 * @addr: dst addr to write into pe
1134 * @count: number of page entries to update
1135 * @incr: increase next addr by incr bytes
1136 * @flags: access flags
1137 *
1138 * Update the page tables using sDMA.
1139 */
sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1140 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
1141 uint64_t pe,
1142 uint64_t addr, unsigned count,
1143 uint32_t incr, uint64_t flags)
1144 {
1145 /* for physically contiguous pages (vram) */
1146 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1147 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1148 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1149 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1150 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1151 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1152 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1153 ib->ptr[ib->length_dw++] = incr; /* increment size */
1154 ib->ptr[ib->length_dw++] = 0;
1155 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1156 }
1157
1158 /**
1159 * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
1160 *
1161 * @ring: amdgpu_ring structure holding ring information
1162 * @ib: indirect buffer to fill with padding
1163 */
sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1164 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1165 {
1166 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1167 u32 pad_count;
1168 int i;
1169
1170 pad_count = (-ib->length_dw) & 7;
1171 for (i = 0; i < pad_count; i++)
1172 if (sdma && sdma->burst_nop && (i == 0))
1173 ib->ptr[ib->length_dw++] =
1174 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1175 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1176 else
1177 ib->ptr[ib->length_dw++] =
1178 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1179 }
1180
1181
1182 /**
1183 * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
1184 *
1185 * @ring: amdgpu_ring pointer
1186 *
1187 * Make sure all previous operations are completed (CIK).
1188 */
sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1189 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1190 {
1191 uint32_t seq = ring->fence_drv.sync_seq;
1192 uint64_t addr = ring->fence_drv.gpu_addr;
1193
1194 /* wait for idle */
1195 sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
1196 addr & 0xfffffffc,
1197 upper_32_bits(addr) & 0xffffffff,
1198 seq, 0xffffffff, 4);
1199 }
1200
1201
1202 /**
1203 * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
1204 *
1205 * @ring: amdgpu_ring pointer
1206 * @vmid: vmid number to use
1207 * @pd_addr: address
1208 *
1209 * Update the page table base and flush the VM TLB
1210 * using sDMA.
1211 */
sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1212 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
1213 unsigned vmid, uint64_t pd_addr)
1214 {
1215 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1216 }
1217
sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1218 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
1219 uint32_t reg, uint32_t val)
1220 {
1221 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1222 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1223 amdgpu_ring_write(ring, reg);
1224 amdgpu_ring_write(ring, val);
1225 }
1226
sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring * ring,uint32_t reg,uint32_t val,uint32_t mask)1227 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1228 uint32_t val, uint32_t mask)
1229 {
1230 sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1231 }
1232
sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device * adev)1233 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
1234 {
1235 switch (adev->ip_versions[SDMA0_HWIP][0]) {
1236 case IP_VERSION(4, 4, 2):
1237 return false;
1238 default:
1239 return false;
1240 }
1241 }
1242
sdma_v4_4_2_early_init(void * handle)1243 static int sdma_v4_4_2_early_init(void *handle)
1244 {
1245 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1246 int r;
1247
1248 r = sdma_v4_4_2_init_microcode(adev);
1249 if (r) {
1250 DRM_ERROR("Failed to load sdma firmware!\n");
1251 return r;
1252 }
1253
1254 /* TODO: Page queue breaks driver reload under SRIOV */
1255 if (sdma_v4_4_2_fw_support_paging_queue(adev))
1256 adev->sdma.has_page_queue = true;
1257
1258 sdma_v4_4_2_set_ring_funcs(adev);
1259 sdma_v4_4_2_set_buffer_funcs(adev);
1260 sdma_v4_4_2_set_vm_pte_funcs(adev);
1261 sdma_v4_4_2_set_irq_funcs(adev);
1262 sdma_v4_4_2_set_ras_funcs(adev);
1263
1264 return 0;
1265 }
1266
1267 #if 0
1268 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1269 void *err_data,
1270 struct amdgpu_iv_entry *entry);
1271 #endif
1272
sdma_v4_4_2_late_init(void * handle)1273 static int sdma_v4_4_2_late_init(void *handle)
1274 {
1275 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1276 #if 0
1277 struct ras_ih_if ih_info = {
1278 .cb = sdma_v4_4_2_process_ras_data_cb,
1279 };
1280 #endif
1281 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1282 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1283 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1284 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1285 }
1286
1287 return 0;
1288 }
1289
sdma_v4_4_2_sw_init(void * handle)1290 static int sdma_v4_4_2_sw_init(void *handle)
1291 {
1292 struct amdgpu_ring *ring;
1293 int r, i;
1294 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1295 u32 aid_id;
1296
1297 /* SDMA trap event */
1298 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1299 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1300 SDMA0_4_0__SRCID__SDMA_TRAP,
1301 &adev->sdma.trap_irq);
1302 if (r)
1303 return r;
1304 }
1305
1306 /* SDMA SRAM ECC event */
1307 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1308 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1309 SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1310 &adev->sdma.ecc_irq);
1311 if (r)
1312 return r;
1313 }
1314
1315 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1316 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
1317 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1318 SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1319 &adev->sdma.vm_hole_irq);
1320 if (r)
1321 return r;
1322
1323 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1324 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1325 &adev->sdma.doorbell_invalid_irq);
1326 if (r)
1327 return r;
1328
1329 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1330 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1331 &adev->sdma.pool_timeout_irq);
1332 if (r)
1333 return r;
1334
1335 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
1336 SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1337 &adev->sdma.srbm_write_irq);
1338 if (r)
1339 return r;
1340 }
1341
1342 for (i = 0; i < adev->sdma.num_instances; i++) {
1343 ring = &adev->sdma.instance[i].ring;
1344 ring->ring_obj = NULL;
1345 ring->use_doorbell = true;
1346 aid_id = adev->sdma.instance[i].aid_id;
1347
1348 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1349 ring->use_doorbell?"true":"false");
1350
1351 /* doorbell size is 2 dwords, get DWORD offset */
1352 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1353 ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1354
1355 sprintf(ring->name, "sdma%d.%d", aid_id,
1356 i % adev->sdma.num_inst_per_aid);
1357 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1358 AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1359 AMDGPU_RING_PRIO_DEFAULT, NULL);
1360 if (r)
1361 return r;
1362
1363 if (adev->sdma.has_page_queue) {
1364 ring = &adev->sdma.instance[i].page;
1365 ring->ring_obj = NULL;
1366 ring->use_doorbell = true;
1367
1368 /* doorbell index of page queue is assigned right after
1369 * gfx queue on the same instance
1370 */
1371 ring->doorbell_index =
1372 (adev->doorbell_index.sdma_engine[i] + 1) << 1;
1373 ring->vm_hub = AMDGPU_MMHUB0(aid_id);
1374
1375 sprintf(ring->name, "page%d.%d", aid_id,
1376 i % adev->sdma.num_inst_per_aid);
1377 r = amdgpu_ring_init(adev, ring, 1024,
1378 &adev->sdma.trap_irq,
1379 AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1380 AMDGPU_RING_PRIO_DEFAULT, NULL);
1381 if (r)
1382 return r;
1383 }
1384 }
1385
1386 if (amdgpu_sdma_ras_sw_init(adev)) {
1387 dev_err(adev->dev, "fail to initialize sdma ras block\n");
1388 return -EINVAL;
1389 }
1390
1391 return r;
1392 }
1393
sdma_v4_4_2_sw_fini(void * handle)1394 static int sdma_v4_4_2_sw_fini(void *handle)
1395 {
1396 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1397 int i;
1398
1399 for (i = 0; i < adev->sdma.num_instances; i++) {
1400 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1401 if (adev->sdma.has_page_queue)
1402 amdgpu_ring_fini(&adev->sdma.instance[i].page);
1403 }
1404
1405 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 2))
1406 amdgpu_sdma_destroy_inst_ctx(adev, true);
1407 else
1408 amdgpu_sdma_destroy_inst_ctx(adev, false);
1409
1410 return 0;
1411 }
1412
sdma_v4_4_2_hw_init(void * handle)1413 static int sdma_v4_4_2_hw_init(void *handle)
1414 {
1415 int r;
1416 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1417 uint32_t inst_mask;
1418
1419 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1420 if (!amdgpu_sriov_vf(adev))
1421 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
1422
1423 r = sdma_v4_4_2_inst_start(adev, inst_mask);
1424
1425 return r;
1426 }
1427
sdma_v4_4_2_hw_fini(void * handle)1428 static int sdma_v4_4_2_hw_fini(void *handle)
1429 {
1430 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1431 uint32_t inst_mask;
1432 int i;
1433
1434 if (amdgpu_sriov_vf(adev))
1435 return 0;
1436
1437 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1438 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
1439 for (i = 0; i < adev->sdma.num_instances; i++) {
1440 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1441 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1442 }
1443 }
1444
1445 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
1446 sdma_v4_4_2_inst_enable(adev, false, inst_mask);
1447
1448 return 0;
1449 }
1450
1451 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1452 enum amd_clockgating_state state);
1453
sdma_v4_4_2_suspend(void * handle)1454 static int sdma_v4_4_2_suspend(void *handle)
1455 {
1456 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1457
1458 if (amdgpu_in_reset(adev))
1459 sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
1460
1461 return sdma_v4_4_2_hw_fini(adev);
1462 }
1463
sdma_v4_4_2_resume(void * handle)1464 static int sdma_v4_4_2_resume(void *handle)
1465 {
1466 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1467
1468 return sdma_v4_4_2_hw_init(adev);
1469 }
1470
sdma_v4_4_2_is_idle(void * handle)1471 static bool sdma_v4_4_2_is_idle(void *handle)
1472 {
1473 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1474 u32 i;
1475
1476 for (i = 0; i < adev->sdma.num_instances; i++) {
1477 u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
1478
1479 if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
1480 return false;
1481 }
1482
1483 return true;
1484 }
1485
sdma_v4_4_2_wait_for_idle(void * handle)1486 static int sdma_v4_4_2_wait_for_idle(void *handle)
1487 {
1488 unsigned i, j;
1489 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1490 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1491
1492 for (i = 0; i < adev->usec_timeout; i++) {
1493 for (j = 0; j < adev->sdma.num_instances; j++) {
1494 sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
1495 if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
1496 break;
1497 }
1498 if (j == adev->sdma.num_instances)
1499 return 0;
1500 udelay(1);
1501 }
1502 return -ETIMEDOUT;
1503 }
1504
sdma_v4_4_2_soft_reset(void * handle)1505 static int sdma_v4_4_2_soft_reset(void *handle)
1506 {
1507 /* todo */
1508
1509 return 0;
1510 }
1511
sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1512 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
1513 struct amdgpu_irq_src *source,
1514 unsigned type,
1515 enum amdgpu_interrupt_state state)
1516 {
1517 u32 sdma_cntl;
1518
1519 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1520 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
1521 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1522 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1523
1524 return 0;
1525 }
1526
sdma_v4_4_2_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1527 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
1528 struct amdgpu_irq_src *source,
1529 struct amdgpu_iv_entry *entry)
1530 {
1531 uint32_t instance, i;
1532
1533 DRM_DEBUG("IH: SDMA trap\n");
1534 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1535
1536 /* Client id gives the SDMA instance in AID. To know the exact SDMA
1537 * instance, interrupt entry gives the node id which corresponds to the AID instance.
1538 * Match node id with the AID id associated with the SDMA instance. */
1539 for (i = instance; i < adev->sdma.num_instances;
1540 i += adev->sdma.num_inst_per_aid) {
1541 if (adev->sdma.instance[i].aid_id ==
1542 node_id_to_phys_map[entry->node_id])
1543 break;
1544 }
1545
1546 if (i >= adev->sdma.num_instances) {
1547 dev_WARN_ONCE(
1548 adev->dev, 1,
1549 "Couldn't find the right sdma instance in trap handler");
1550 return 0;
1551 }
1552
1553 switch (entry->ring_id) {
1554 case 0:
1555 amdgpu_fence_process(&adev->sdma.instance[i].ring);
1556 break;
1557 default:
1558 break;
1559 }
1560 return 0;
1561 }
1562
1563 #if 0
1564 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
1565 void *err_data,
1566 struct amdgpu_iv_entry *entry)
1567 {
1568 int instance;
1569
1570 /* When “Full RAS” is enabled, the per-IP interrupt sources should
1571 * be disabled and the driver should only look for the aggregated
1572 * interrupt via sync flood
1573 */
1574 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
1575 goto out;
1576
1577 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1578 if (instance < 0)
1579 goto out;
1580
1581 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
1582
1583 out:
1584 return AMDGPU_RAS_SUCCESS;
1585 }
1586 #endif
1587
sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1588 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
1589 struct amdgpu_irq_src *source,
1590 struct amdgpu_iv_entry *entry)
1591 {
1592 int instance;
1593
1594 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1595
1596 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1597 if (instance < 0)
1598 return 0;
1599
1600 switch (entry->ring_id) {
1601 case 0:
1602 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1603 break;
1604 }
1605 return 0;
1606 }
1607
sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1608 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
1609 struct amdgpu_irq_src *source,
1610 unsigned type,
1611 enum amdgpu_interrupt_state state)
1612 {
1613 u32 sdma_cntl;
1614
1615 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
1616 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE,
1617 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1618 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
1619
1620 return 0;
1621 }
1622
sdma_v4_4_2_print_iv_entry(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)1623 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
1624 struct amdgpu_iv_entry *entry)
1625 {
1626 int instance;
1627 struct amdgpu_task_info task_info;
1628 u64 addr;
1629
1630 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
1631 if (instance < 0 || instance >= adev->sdma.num_instances) {
1632 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
1633 return -EINVAL;
1634 }
1635
1636 addr = (u64)entry->src_data[0] << 12;
1637 addr |= ((u64)entry->src_data[1] & 0xf) << 44;
1638
1639 memset(&task_info, 0, sizeof(struct amdgpu_task_info));
1640 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
1641
1642 dev_dbg_ratelimited(adev->dev,
1643 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
1644 "pasid:%u, for process %s pid %d thread %s pid %d\n",
1645 instance, addr, entry->src_id, entry->ring_id, entry->vmid,
1646 entry->pasid, task_info.process_name, task_info.tgid,
1647 task_info.task_name, task_info.pid);
1648 return 0;
1649 }
1650
sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1651 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
1652 struct amdgpu_irq_src *source,
1653 struct amdgpu_iv_entry *entry)
1654 {
1655 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
1656 sdma_v4_4_2_print_iv_entry(adev, entry);
1657 return 0;
1658 }
1659
sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1660 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
1661 struct amdgpu_irq_src *source,
1662 struct amdgpu_iv_entry *entry)
1663 {
1664
1665 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
1666 sdma_v4_4_2_print_iv_entry(adev, entry);
1667 return 0;
1668 }
1669
sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1670 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
1671 struct amdgpu_irq_src *source,
1672 struct amdgpu_iv_entry *entry)
1673 {
1674 dev_dbg_ratelimited(adev->dev,
1675 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
1676 sdma_v4_4_2_print_iv_entry(adev, entry);
1677 return 0;
1678 }
1679
sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1680 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
1681 struct amdgpu_irq_src *source,
1682 struct amdgpu_iv_entry *entry)
1683 {
1684 dev_dbg_ratelimited(adev->dev,
1685 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
1686 sdma_v4_4_2_print_iv_entry(adev, entry);
1687 return 0;
1688 }
1689
sdma_v4_4_2_inst_update_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable,uint32_t inst_mask)1690 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1691 struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1692 {
1693 uint32_t data, def;
1694 int i;
1695
1696 /* leave as default if it is not driver controlled */
1697 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
1698 return;
1699
1700 if (enable) {
1701 for_each_inst(i, inst_mask) {
1702 /* 1-not override: enable sdma mem light sleep */
1703 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1704 data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1705 if (def != data)
1706 WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1707 }
1708 } else {
1709 for_each_inst(i, inst_mask) {
1710 /* 0-override:disable sdma mem light sleep */
1711 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
1712 data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1713 if (def != data)
1714 WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
1715 }
1716 }
1717 }
1718
sdma_v4_4_2_inst_update_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable,uint32_t inst_mask)1719 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1720 struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
1721 {
1722 uint32_t data, def;
1723 int i;
1724
1725 /* leave as default if it is not driver controlled */
1726 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
1727 return;
1728
1729 if (enable) {
1730 for_each_inst(i, inst_mask) {
1731 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1732 data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1733 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1734 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1735 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1736 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1737 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1738 if (def != data)
1739 WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1740 }
1741 } else {
1742 for_each_inst(i, inst_mask) {
1743 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
1744 data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1745 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1746 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1747 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1748 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1749 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1750 if (def != data)
1751 WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
1752 }
1753 }
1754 }
1755
sdma_v4_4_2_set_clockgating_state(void * handle,enum amd_clockgating_state state)1756 static int sdma_v4_4_2_set_clockgating_state(void *handle,
1757 enum amd_clockgating_state state)
1758 {
1759 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1760 uint32_t inst_mask;
1761
1762 if (amdgpu_sriov_vf(adev))
1763 return 0;
1764
1765 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
1766
1767 sdma_v4_4_2_inst_update_medium_grain_clock_gating(
1768 adev, state == AMD_CG_STATE_GATE, inst_mask);
1769 sdma_v4_4_2_inst_update_medium_grain_light_sleep(
1770 adev, state == AMD_CG_STATE_GATE, inst_mask);
1771 return 0;
1772 }
1773
sdma_v4_4_2_set_powergating_state(void * handle,enum amd_powergating_state state)1774 static int sdma_v4_4_2_set_powergating_state(void *handle,
1775 enum amd_powergating_state state)
1776 {
1777 return 0;
1778 }
1779
sdma_v4_4_2_get_clockgating_state(void * handle,u64 * flags)1780 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
1781 {
1782 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1783 int data;
1784
1785 if (amdgpu_sriov_vf(adev))
1786 *flags = 0;
1787
1788 /* AMD_CG_SUPPORT_SDMA_MGCG */
1789 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
1790 if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
1791 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1792
1793 /* AMD_CG_SUPPORT_SDMA_LS */
1794 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
1795 if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1796 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1797 }
1798
1799 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
1800 .name = "sdma_v4_4_2",
1801 .early_init = sdma_v4_4_2_early_init,
1802 .late_init = sdma_v4_4_2_late_init,
1803 .sw_init = sdma_v4_4_2_sw_init,
1804 .sw_fini = sdma_v4_4_2_sw_fini,
1805 .hw_init = sdma_v4_4_2_hw_init,
1806 .hw_fini = sdma_v4_4_2_hw_fini,
1807 .suspend = sdma_v4_4_2_suspend,
1808 .resume = sdma_v4_4_2_resume,
1809 .is_idle = sdma_v4_4_2_is_idle,
1810 .wait_for_idle = sdma_v4_4_2_wait_for_idle,
1811 .soft_reset = sdma_v4_4_2_soft_reset,
1812 .set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
1813 .set_powergating_state = sdma_v4_4_2_set_powergating_state,
1814 .get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
1815 };
1816
1817 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
1818 .type = AMDGPU_RING_TYPE_SDMA,
1819 .align_mask = 0xff,
1820 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1821 .support_64bit_ptrs = true,
1822 .get_rptr = sdma_v4_4_2_ring_get_rptr,
1823 .get_wptr = sdma_v4_4_2_ring_get_wptr,
1824 .set_wptr = sdma_v4_4_2_ring_set_wptr,
1825 .emit_frame_size =
1826 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1827 3 + /* hdp invalidate */
1828 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1829 /* sdma_v4_4_2_ring_emit_vm_flush */
1830 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1831 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1832 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1833 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1834 .emit_ib = sdma_v4_4_2_ring_emit_ib,
1835 .emit_fence = sdma_v4_4_2_ring_emit_fence,
1836 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1837 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1838 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1839 .test_ring = sdma_v4_4_2_ring_test_ring,
1840 .test_ib = sdma_v4_4_2_ring_test_ib,
1841 .insert_nop = sdma_v4_4_2_ring_insert_nop,
1842 .pad_ib = sdma_v4_4_2_ring_pad_ib,
1843 .emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1844 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1845 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1846 };
1847
1848 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
1849 .type = AMDGPU_RING_TYPE_SDMA,
1850 .align_mask = 0xff,
1851 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1852 .support_64bit_ptrs = true,
1853 .get_rptr = sdma_v4_4_2_ring_get_rptr,
1854 .get_wptr = sdma_v4_4_2_page_ring_get_wptr,
1855 .set_wptr = sdma_v4_4_2_page_ring_set_wptr,
1856 .emit_frame_size =
1857 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
1858 3 + /* hdp invalidate */
1859 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
1860 /* sdma_v4_4_2_ring_emit_vm_flush */
1861 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1862 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1863 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
1864 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
1865 .emit_ib = sdma_v4_4_2_ring_emit_ib,
1866 .emit_fence = sdma_v4_4_2_ring_emit_fence,
1867 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
1868 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
1869 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
1870 .test_ring = sdma_v4_4_2_ring_test_ring,
1871 .test_ib = sdma_v4_4_2_ring_test_ib,
1872 .insert_nop = sdma_v4_4_2_ring_insert_nop,
1873 .pad_ib = sdma_v4_4_2_ring_pad_ib,
1874 .emit_wreg = sdma_v4_4_2_ring_emit_wreg,
1875 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
1876 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1877 };
1878
sdma_v4_4_2_set_ring_funcs(struct amdgpu_device * adev)1879 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
1880 {
1881 int i, dev_inst;
1882
1883 for (i = 0; i < adev->sdma.num_instances; i++) {
1884 adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
1885 adev->sdma.instance[i].ring.me = i;
1886 if (adev->sdma.has_page_queue) {
1887 adev->sdma.instance[i].page.funcs =
1888 &sdma_v4_4_2_page_ring_funcs;
1889 adev->sdma.instance[i].page.me = i;
1890 }
1891
1892 dev_inst = GET_INST(SDMA0, i);
1893 /* AID to which SDMA belongs depends on physical instance */
1894 adev->sdma.instance[i].aid_id =
1895 dev_inst / adev->sdma.num_inst_per_aid;
1896 }
1897 }
1898
1899 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
1900 .set = sdma_v4_4_2_set_trap_irq_state,
1901 .process = sdma_v4_4_2_process_trap_irq,
1902 };
1903
1904 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
1905 .process = sdma_v4_4_2_process_illegal_inst_irq,
1906 };
1907
1908 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
1909 .set = sdma_v4_4_2_set_ecc_irq_state,
1910 .process = amdgpu_sdma_process_ecc_irq,
1911 };
1912
1913 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
1914 .process = sdma_v4_4_2_process_vm_hole_irq,
1915 };
1916
1917 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
1918 .process = sdma_v4_4_2_process_doorbell_invalid_irq,
1919 };
1920
1921 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
1922 .process = sdma_v4_4_2_process_pool_timeout_irq,
1923 };
1924
1925 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
1926 .process = sdma_v4_4_2_process_srbm_write_irq,
1927 };
1928
sdma_v4_4_2_set_irq_funcs(struct amdgpu_device * adev)1929 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
1930 {
1931 adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
1932 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
1933 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
1934 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
1935 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
1936 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
1937
1938 adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
1939 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
1940 adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
1941 adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
1942 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
1943 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
1944 adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
1945 }
1946
1947 /**
1948 * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
1949 *
1950 * @ib: indirect buffer to copy to
1951 * @src_offset: src GPU address
1952 * @dst_offset: dst GPU address
1953 * @byte_count: number of bytes to xfer
1954 * @tmz: if a secure copy should be used
1955 *
1956 * Copy GPU buffers using the DMA engine.
1957 * Used by the amdgpu ttm implementation to move pages if
1958 * registered as the asic copy callback.
1959 */
sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,bool tmz)1960 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
1961 uint64_t src_offset,
1962 uint64_t dst_offset,
1963 uint32_t byte_count,
1964 bool tmz)
1965 {
1966 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1967 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
1968 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
1969 ib->ptr[ib->length_dw++] = byte_count - 1;
1970 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1971 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1972 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1973 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1974 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1975 }
1976
1977 /**
1978 * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
1979 *
1980 * @ib: indirect buffer to copy to
1981 * @src_data: value to write to buffer
1982 * @dst_offset: dst GPU address
1983 * @byte_count: number of bytes to xfer
1984 *
1985 * Fill GPU buffers using the DMA engine.
1986 */
sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)1987 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
1988 uint32_t src_data,
1989 uint64_t dst_offset,
1990 uint32_t byte_count)
1991 {
1992 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1993 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1994 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1995 ib->ptr[ib->length_dw++] = src_data;
1996 ib->ptr[ib->length_dw++] = byte_count - 1;
1997 }
1998
1999 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
2000 .copy_max_bytes = 0x400000,
2001 .copy_num_dw = 7,
2002 .emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
2003
2004 .fill_max_bytes = 0x400000,
2005 .fill_num_dw = 5,
2006 .emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
2007 };
2008
sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device * adev)2009 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
2010 {
2011 adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
2012 if (adev->sdma.has_page_queue)
2013 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2014 else
2015 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2016 }
2017
2018 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
2019 .copy_pte_num_dw = 7,
2020 .copy_pte = sdma_v4_4_2_vm_copy_pte,
2021
2022 .write_pte = sdma_v4_4_2_vm_write_pte,
2023 .set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
2024 };
2025
sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device * adev)2026 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
2027 {
2028 struct drm_gpu_scheduler *sched;
2029 unsigned i;
2030
2031 adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
2032 for (i = 0; i < adev->sdma.num_instances; i++) {
2033 if (adev->sdma.has_page_queue)
2034 sched = &adev->sdma.instance[i].page.sched;
2035 else
2036 sched = &adev->sdma.instance[i].ring.sched;
2037 adev->vm_manager.vm_pte_scheds[i] = sched;
2038 }
2039 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2040 }
2041
2042 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
2043 .type = AMD_IP_BLOCK_TYPE_SDMA,
2044 .major = 4,
2045 .minor = 4,
2046 .rev = 0,
2047 .funcs = &sdma_v4_4_2_ip_funcs,
2048 };
2049
sdma_v4_4_2_xcp_resume(void * handle,uint32_t inst_mask)2050 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
2051 {
2052 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2053 int r;
2054
2055 if (!amdgpu_sriov_vf(adev))
2056 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
2057
2058 r = sdma_v4_4_2_inst_start(adev, inst_mask);
2059
2060 return r;
2061 }
2062
sdma_v4_4_2_xcp_suspend(void * handle,uint32_t inst_mask)2063 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
2064 {
2065 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2066 uint32_t tmp_mask = inst_mask;
2067 int i;
2068
2069 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2070 for_each_inst(i, tmp_mask) {
2071 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
2072 AMDGPU_SDMA_IRQ_INSTANCE0 + i);
2073 }
2074 }
2075
2076 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
2077 sdma_v4_4_2_inst_enable(adev, false, inst_mask);
2078
2079 return 0;
2080 }
2081
2082 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
2083 .suspend = &sdma_v4_4_2_xcp_suspend,
2084 .resume = &sdma_v4_4_2_xcp_resume
2085 };
2086
2087 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
2088 {AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
2089 1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
2090 };
2091
2092 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
2093 {AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
2094 {AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
2095 {AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
2096 {AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
2097 {AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
2098 {AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
2099 {AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
2100 {AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
2101 {AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
2102 {AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
2103 {AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
2104 {AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
2105 {AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
2106 {AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
2107 {AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
2108 {AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
2109 {AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
2110 {AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
2111 {AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
2112 {AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
2113 {AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
2114 {AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
2115 {AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
2116 {AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
2117 };
2118
sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device * adev,uint32_t sdma_inst,void * ras_err_status)2119 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
2120 uint32_t sdma_inst,
2121 void *ras_err_status)
2122 {
2123 struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
2124 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2125
2126 /* sdma v4_4_2 doesn't support query ce counts */
2127 amdgpu_ras_inst_query_ras_error_count(adev,
2128 sdma_v4_2_2_ue_reg_list,
2129 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2130 sdma_v4_4_2_ras_memory_list,
2131 ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
2132 sdma_dev_inst,
2133 AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
2134 &err_data->ue_count);
2135 }
2136
sdma_v4_4_2_query_ras_error_count(struct amdgpu_device * adev,void * ras_err_status)2137 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
2138 void *ras_err_status)
2139 {
2140 uint32_t inst_mask;
2141 int i = 0;
2142
2143 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2144 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2145 for_each_inst(i, inst_mask)
2146 sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
2147 } else {
2148 dev_warn(adev->dev, "SDMA RAS is not supported\n");
2149 }
2150 }
2151
sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device * adev,uint32_t sdma_inst)2152 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
2153 uint32_t sdma_inst)
2154 {
2155 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
2156
2157 amdgpu_ras_inst_reset_ras_error_count(adev,
2158 sdma_v4_2_2_ue_reg_list,
2159 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
2160 sdma_dev_inst);
2161 }
2162
sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device * adev)2163 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
2164 {
2165 uint32_t inst_mask;
2166 int i = 0;
2167
2168 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
2169 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2170 for_each_inst(i, inst_mask)
2171 sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
2172 } else {
2173 dev_warn(adev->dev, "SDMA RAS is not supported\n");
2174 }
2175 }
2176
2177 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
2178 .query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
2179 .reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
2180 };
2181
2182 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
2183 .ras_block = {
2184 .hw_ops = &sdma_v4_4_2_ras_hw_ops,
2185 },
2186 };
2187
sdma_v4_4_2_set_ras_funcs(struct amdgpu_device * adev)2188 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
2189 {
2190 adev->sdma.ras = &sdma_v4_4_2_ras;
2191 }
2192