1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS 16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117 "write through", "none", "write back",
118 "write back, no read (daft)"
119 };
120
sd_set_flush_flag(struct scsi_disk * sdkp)121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123 bool wc = false, fua = false;
124
125 if (sdkp->WCE) {
126 wc = true;
127 if (sdkp->DPOFUA)
128 fua = true;
129 }
130
131 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)135 cache_type_store(struct device *dev, struct device_attribute *attr,
136 const char *buf, size_t count)
137 {
138 int ct, rcd, wce, sp;
139 struct scsi_disk *sdkp = to_scsi_disk(dev);
140 struct scsi_device *sdp = sdkp->device;
141 char buffer[64];
142 char *buffer_data;
143 struct scsi_mode_data data;
144 struct scsi_sense_hdr sshdr;
145 static const char temp[] = "temporary ";
146 int len;
147
148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 /* no cache control on RBC devices; theoretically they
150 * can do it, but there's probably so many exceptions
151 * it's not worth the risk */
152 return -EINVAL;
153
154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 buf += sizeof(temp) - 1;
156 sdkp->cache_override = 1;
157 } else {
158 sdkp->cache_override = 0;
159 }
160
161 ct = sysfs_match_string(sd_cache_types, buf);
162 if (ct < 0)
163 return -EINVAL;
164
165 rcd = ct & 0x01 ? 1 : 0;
166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168 if (sdkp->cache_override) {
169 sdkp->WCE = wce;
170 sdkp->RCD = rcd;
171 sd_set_flush_flag(sdkp);
172 return count;
173 }
174
175 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176 sdkp->max_retries, &data, NULL))
177 return -EINVAL;
178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 data.block_descriptor_length);
180 buffer_data = buffer + data.header_length +
181 data.block_descriptor_length;
182 buffer_data[2] &= ~0x05;
183 buffer_data[2] |= wce << 2 | rcd;
184 sp = buffer_data[0] & 0x80 ? 1 : 0;
185 buffer_data[0] &= ~0x80;
186
187 /*
188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 * received mode parameter buffer before doing MODE SELECT.
190 */
191 data.device_specific = 0;
192
193 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194 sdkp->max_retries, &data, &sshdr)) {
195 if (scsi_sense_valid(&sshdr))
196 sd_print_sense_hdr(sdkp, &sshdr);
197 return -EINVAL;
198 }
199 sd_revalidate_disk(sdkp->disk);
200 return count;
201 }
202
203 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)204 manage_start_stop_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
206 {
207 struct scsi_disk *sdkp = to_scsi_disk(dev);
208 struct scsi_device *sdp = sdkp->device;
209
210 return sysfs_emit(buf, "%u\n",
211 sdp->manage_system_start_stop &&
212 sdp->manage_runtime_start_stop &&
213 sdp->manage_shutdown);
214 }
215 static DEVICE_ATTR_RO(manage_start_stop);
216
217 static ssize_t
manage_system_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)218 manage_system_start_stop_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220 {
221 struct scsi_disk *sdkp = to_scsi_disk(dev);
222 struct scsi_device *sdp = sdkp->device;
223
224 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
225 }
226
227 static ssize_t
manage_system_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)228 manage_system_start_stop_store(struct device *dev,
229 struct device_attribute *attr,
230 const char *buf, size_t count)
231 {
232 struct scsi_disk *sdkp = to_scsi_disk(dev);
233 struct scsi_device *sdp = sdkp->device;
234 bool v;
235
236 if (!capable(CAP_SYS_ADMIN))
237 return -EACCES;
238
239 if (kstrtobool(buf, &v))
240 return -EINVAL;
241
242 sdp->manage_system_start_stop = v;
243
244 return count;
245 }
246 static DEVICE_ATTR_RW(manage_system_start_stop);
247
248 static ssize_t
manage_runtime_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)249 manage_runtime_start_stop_show(struct device *dev,
250 struct device_attribute *attr, char *buf)
251 {
252 struct scsi_disk *sdkp = to_scsi_disk(dev);
253 struct scsi_device *sdp = sdkp->device;
254
255 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
256 }
257
258 static ssize_t
manage_runtime_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)259 manage_runtime_start_stop_store(struct device *dev,
260 struct device_attribute *attr,
261 const char *buf, size_t count)
262 {
263 struct scsi_disk *sdkp = to_scsi_disk(dev);
264 struct scsi_device *sdp = sdkp->device;
265 bool v;
266
267 if (!capable(CAP_SYS_ADMIN))
268 return -EACCES;
269
270 if (kstrtobool(buf, &v))
271 return -EINVAL;
272
273 sdp->manage_runtime_start_stop = v;
274
275 return count;
276 }
277 static DEVICE_ATTR_RW(manage_runtime_start_stop);
278
manage_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)279 static ssize_t manage_shutdown_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
281 {
282 struct scsi_disk *sdkp = to_scsi_disk(dev);
283 struct scsi_device *sdp = sdkp->device;
284
285 return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
286 }
287
manage_shutdown_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)288 static ssize_t manage_shutdown_store(struct device *dev,
289 struct device_attribute *attr,
290 const char *buf, size_t count)
291 {
292 struct scsi_disk *sdkp = to_scsi_disk(dev);
293 struct scsi_device *sdp = sdkp->device;
294 bool v;
295
296 if (!capable(CAP_SYS_ADMIN))
297 return -EACCES;
298
299 if (kstrtobool(buf, &v))
300 return -EINVAL;
301
302 sdp->manage_shutdown = v;
303
304 return count;
305 }
306 static DEVICE_ATTR_RW(manage_shutdown);
307
308 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)309 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
310 {
311 struct scsi_disk *sdkp = to_scsi_disk(dev);
312
313 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
314 }
315
316 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)317 allow_restart_store(struct device *dev, struct device_attribute *attr,
318 const char *buf, size_t count)
319 {
320 bool v;
321 struct scsi_disk *sdkp = to_scsi_disk(dev);
322 struct scsi_device *sdp = sdkp->device;
323
324 if (!capable(CAP_SYS_ADMIN))
325 return -EACCES;
326
327 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
328 return -EINVAL;
329
330 if (kstrtobool(buf, &v))
331 return -EINVAL;
332
333 sdp->allow_restart = v;
334
335 return count;
336 }
337 static DEVICE_ATTR_RW(allow_restart);
338
339 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)340 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
341 {
342 struct scsi_disk *sdkp = to_scsi_disk(dev);
343 int ct = sdkp->RCD + 2*sdkp->WCE;
344
345 return sprintf(buf, "%s\n", sd_cache_types[ct]);
346 }
347 static DEVICE_ATTR_RW(cache_type);
348
349 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)350 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354 return sprintf(buf, "%u\n", sdkp->DPOFUA);
355 }
356 static DEVICE_ATTR_RO(FUA);
357
358 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)359 protection_type_show(struct device *dev, struct device_attribute *attr,
360 char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return sprintf(buf, "%u\n", sdkp->protection_type);
365 }
366
367 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)368 protection_type_store(struct device *dev, struct device_attribute *attr,
369 const char *buf, size_t count)
370 {
371 struct scsi_disk *sdkp = to_scsi_disk(dev);
372 unsigned int val;
373 int err;
374
375 if (!capable(CAP_SYS_ADMIN))
376 return -EACCES;
377
378 err = kstrtouint(buf, 10, &val);
379
380 if (err)
381 return err;
382
383 if (val <= T10_PI_TYPE3_PROTECTION)
384 sdkp->protection_type = val;
385
386 return count;
387 }
388 static DEVICE_ATTR_RW(protection_type);
389
390 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)391 protection_mode_show(struct device *dev, struct device_attribute *attr,
392 char *buf)
393 {
394 struct scsi_disk *sdkp = to_scsi_disk(dev);
395 struct scsi_device *sdp = sdkp->device;
396 unsigned int dif, dix;
397
398 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
399 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
400
401 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
402 dif = 0;
403 dix = 1;
404 }
405
406 if (!dif && !dix)
407 return sprintf(buf, "none\n");
408
409 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
410 }
411 static DEVICE_ATTR_RO(protection_mode);
412
413 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)414 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
415 {
416 struct scsi_disk *sdkp = to_scsi_disk(dev);
417
418 return sprintf(buf, "%u\n", sdkp->ATO);
419 }
420 static DEVICE_ATTR_RO(app_tag_own);
421
422 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)423 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
424 char *buf)
425 {
426 struct scsi_disk *sdkp = to_scsi_disk(dev);
427
428 return sprintf(buf, "%u\n", sdkp->lbpme);
429 }
430 static DEVICE_ATTR_RO(thin_provisioning);
431
432 /* sysfs_match_string() requires dense arrays */
433 static const char *lbp_mode[] = {
434 [SD_LBP_FULL] = "full",
435 [SD_LBP_UNMAP] = "unmap",
436 [SD_LBP_WS16] = "writesame_16",
437 [SD_LBP_WS10] = "writesame_10",
438 [SD_LBP_ZERO] = "writesame_zero",
439 [SD_LBP_DISABLE] = "disabled",
440 };
441
442 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)443 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
444 char *buf)
445 {
446 struct scsi_disk *sdkp = to_scsi_disk(dev);
447
448 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
449 }
450
451 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)452 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 struct scsi_disk *sdkp = to_scsi_disk(dev);
456 struct scsi_device *sdp = sdkp->device;
457 int mode;
458
459 if (!capable(CAP_SYS_ADMIN))
460 return -EACCES;
461
462 if (sd_is_zoned(sdkp)) {
463 sd_config_discard(sdkp, SD_LBP_DISABLE);
464 return count;
465 }
466
467 if (sdp->type != TYPE_DISK)
468 return -EINVAL;
469
470 mode = sysfs_match_string(lbp_mode, buf);
471 if (mode < 0)
472 return -EINVAL;
473
474 sd_config_discard(sdkp, mode);
475
476 return count;
477 }
478 static DEVICE_ATTR_RW(provisioning_mode);
479
480 /* sysfs_match_string() requires dense arrays */
481 static const char *zeroing_mode[] = {
482 [SD_ZERO_WRITE] = "write",
483 [SD_ZERO_WS] = "writesame",
484 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
485 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
486 };
487
488 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)489 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
495 }
496
497 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)498 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t count)
500 {
501 struct scsi_disk *sdkp = to_scsi_disk(dev);
502 int mode;
503
504 if (!capable(CAP_SYS_ADMIN))
505 return -EACCES;
506
507 mode = sysfs_match_string(zeroing_mode, buf);
508 if (mode < 0)
509 return -EINVAL;
510
511 sdkp->zeroing_mode = mode;
512
513 return count;
514 }
515 static DEVICE_ATTR_RW(zeroing_mode);
516
517 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)518 max_medium_access_timeouts_show(struct device *dev,
519 struct device_attribute *attr, char *buf)
520 {
521 struct scsi_disk *sdkp = to_scsi_disk(dev);
522
523 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
524 }
525
526 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)527 max_medium_access_timeouts_store(struct device *dev,
528 struct device_attribute *attr, const char *buf,
529 size_t count)
530 {
531 struct scsi_disk *sdkp = to_scsi_disk(dev);
532 int err;
533
534 if (!capable(CAP_SYS_ADMIN))
535 return -EACCES;
536
537 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
538
539 return err ? err : count;
540 }
541 static DEVICE_ATTR_RW(max_medium_access_timeouts);
542
543 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)544 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
545 char *buf)
546 {
547 struct scsi_disk *sdkp = to_scsi_disk(dev);
548
549 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
550 }
551
552 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)553 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
554 const char *buf, size_t count)
555 {
556 struct scsi_disk *sdkp = to_scsi_disk(dev);
557 struct scsi_device *sdp = sdkp->device;
558 unsigned long max;
559 int err;
560
561 if (!capable(CAP_SYS_ADMIN))
562 return -EACCES;
563
564 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
565 return -EINVAL;
566
567 err = kstrtoul(buf, 10, &max);
568
569 if (err)
570 return err;
571
572 if (max == 0)
573 sdp->no_write_same = 1;
574 else if (max <= SD_MAX_WS16_BLOCKS) {
575 sdp->no_write_same = 0;
576 sdkp->max_ws_blocks = max;
577 }
578
579 sd_config_write_same(sdkp);
580
581 return count;
582 }
583 static DEVICE_ATTR_RW(max_write_same_blocks);
584
585 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)586 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
587 {
588 struct scsi_disk *sdkp = to_scsi_disk(dev);
589
590 if (sdkp->device->type == TYPE_ZBC)
591 return sprintf(buf, "host-managed\n");
592 if (sdkp->zoned == 1)
593 return sprintf(buf, "host-aware\n");
594 if (sdkp->zoned == 2)
595 return sprintf(buf, "drive-managed\n");
596 return sprintf(buf, "none\n");
597 }
598 static DEVICE_ATTR_RO(zoned_cap);
599
600 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)601 max_retries_store(struct device *dev, struct device_attribute *attr,
602 const char *buf, size_t count)
603 {
604 struct scsi_disk *sdkp = to_scsi_disk(dev);
605 struct scsi_device *sdev = sdkp->device;
606 int retries, err;
607
608 err = kstrtoint(buf, 10, &retries);
609 if (err)
610 return err;
611
612 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
613 sdkp->max_retries = retries;
614 return count;
615 }
616
617 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
618 SD_MAX_RETRIES);
619 return -EINVAL;
620 }
621
622 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)623 max_retries_show(struct device *dev, struct device_attribute *attr,
624 char *buf)
625 {
626 struct scsi_disk *sdkp = to_scsi_disk(dev);
627
628 return sprintf(buf, "%d\n", sdkp->max_retries);
629 }
630
631 static DEVICE_ATTR_RW(max_retries);
632
633 static struct attribute *sd_disk_attrs[] = {
634 &dev_attr_cache_type.attr,
635 &dev_attr_FUA.attr,
636 &dev_attr_allow_restart.attr,
637 &dev_attr_manage_start_stop.attr,
638 &dev_attr_manage_system_start_stop.attr,
639 &dev_attr_manage_runtime_start_stop.attr,
640 &dev_attr_manage_shutdown.attr,
641 &dev_attr_protection_type.attr,
642 &dev_attr_protection_mode.attr,
643 &dev_attr_app_tag_own.attr,
644 &dev_attr_thin_provisioning.attr,
645 &dev_attr_provisioning_mode.attr,
646 &dev_attr_zeroing_mode.attr,
647 &dev_attr_max_write_same_blocks.attr,
648 &dev_attr_max_medium_access_timeouts.attr,
649 &dev_attr_zoned_cap.attr,
650 &dev_attr_max_retries.attr,
651 NULL,
652 };
653 ATTRIBUTE_GROUPS(sd_disk);
654
655 static struct class sd_disk_class = {
656 .name = "scsi_disk",
657 .dev_release = scsi_disk_release,
658 .dev_groups = sd_disk_groups,
659 };
660
661 /*
662 * Don't request a new module, as that could deadlock in multipath
663 * environment.
664 */
sd_default_probe(dev_t devt)665 static void sd_default_probe(dev_t devt)
666 {
667 }
668
669 /*
670 * Device no to disk mapping:
671 *
672 * major disc2 disc p1
673 * |............|.............|....|....| <- dev_t
674 * 31 20 19 8 7 4 3 0
675 *
676 * Inside a major, we have 16k disks, however mapped non-
677 * contiguously. The first 16 disks are for major0, the next
678 * ones with major1, ... Disk 256 is for major0 again, disk 272
679 * for major1, ...
680 * As we stay compatible with our numbering scheme, we can reuse
681 * the well-know SCSI majors 8, 65--71, 136--143.
682 */
sd_major(int major_idx)683 static int sd_major(int major_idx)
684 {
685 switch (major_idx) {
686 case 0:
687 return SCSI_DISK0_MAJOR;
688 case 1 ... 7:
689 return SCSI_DISK1_MAJOR + major_idx - 1;
690 case 8 ... 15:
691 return SCSI_DISK8_MAJOR + major_idx - 8;
692 default:
693 BUG();
694 return 0; /* shut up gcc */
695 }
696 }
697
698 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 size_t len, bool send)
701 {
702 struct scsi_disk *sdkp = data;
703 struct scsi_device *sdev = sdkp->device;
704 u8 cdb[12] = { 0, };
705 const struct scsi_exec_args exec_args = {
706 .req_flags = BLK_MQ_REQ_PM,
707 };
708 int ret;
709
710 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
711 cdb[1] = secp;
712 put_unaligned_be16(spsp, &cdb[2]);
713 put_unaligned_be32(len, &cdb[6]);
714
715 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
716 buffer, len, SD_TIMEOUT, sdkp->max_retries,
717 &exec_args);
718 return ret <= 0 ? ret : -EIO;
719 }
720 #endif /* CONFIG_BLK_SED_OPAL */
721
722 /*
723 * Look up the DIX operation based on whether the command is read or
724 * write and whether dix and dif are enabled.
725 */
sd_prot_op(bool write,bool dix,bool dif)726 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
727 {
728 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
729 static const unsigned int ops[] = { /* wrt dix dif */
730 SCSI_PROT_NORMAL, /* 0 0 0 */
731 SCSI_PROT_READ_STRIP, /* 0 0 1 */
732 SCSI_PROT_READ_INSERT, /* 0 1 0 */
733 SCSI_PROT_READ_PASS, /* 0 1 1 */
734 SCSI_PROT_NORMAL, /* 1 0 0 */
735 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
736 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
737 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
738 };
739
740 return ops[write << 2 | dix << 1 | dif];
741 }
742
743 /*
744 * Returns a mask of the protection flags that are valid for a given DIX
745 * operation.
746 */
sd_prot_flag_mask(unsigned int prot_op)747 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
748 {
749 static const unsigned int flag_mask[] = {
750 [SCSI_PROT_NORMAL] = 0,
751
752 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
753 SCSI_PROT_GUARD_CHECK |
754 SCSI_PROT_REF_CHECK |
755 SCSI_PROT_REF_INCREMENT,
756
757 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
758 SCSI_PROT_IP_CHECKSUM,
759
760 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
761 SCSI_PROT_GUARD_CHECK |
762 SCSI_PROT_REF_CHECK |
763 SCSI_PROT_REF_INCREMENT |
764 SCSI_PROT_IP_CHECKSUM,
765
766 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
767 SCSI_PROT_REF_INCREMENT,
768
769 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
770 SCSI_PROT_REF_CHECK |
771 SCSI_PROT_REF_INCREMENT |
772 SCSI_PROT_IP_CHECKSUM,
773
774 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
775 SCSI_PROT_GUARD_CHECK |
776 SCSI_PROT_REF_CHECK |
777 SCSI_PROT_REF_INCREMENT |
778 SCSI_PROT_IP_CHECKSUM,
779 };
780
781 return flag_mask[prot_op];
782 }
783
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)784 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
785 unsigned int dix, unsigned int dif)
786 {
787 struct request *rq = scsi_cmd_to_rq(scmd);
788 struct bio *bio = rq->bio;
789 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
790 unsigned int protect = 0;
791
792 if (dix) { /* DIX Type 0, 1, 2, 3 */
793 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
794 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
795
796 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
798 }
799
800 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
801 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
802
803 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
804 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
805 }
806
807 if (dif) { /* DIX/DIF Type 1, 2, 3 */
808 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
809
810 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
811 protect = 3 << 5; /* Disable target PI checking */
812 else
813 protect = 1 << 5; /* Enable target PI checking */
814 }
815
816 scsi_set_prot_op(scmd, prot_op);
817 scsi_set_prot_type(scmd, dif);
818 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
819
820 return protect;
821 }
822
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)823 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
824 {
825 struct request_queue *q = sdkp->disk->queue;
826 unsigned int logical_block_size = sdkp->device->sector_size;
827 unsigned int max_blocks = 0;
828
829 q->limits.discard_alignment =
830 sdkp->unmap_alignment * logical_block_size;
831 q->limits.discard_granularity =
832 max(sdkp->physical_block_size,
833 sdkp->unmap_granularity * logical_block_size);
834 sdkp->provisioning_mode = mode;
835
836 switch (mode) {
837
838 case SD_LBP_FULL:
839 case SD_LBP_DISABLE:
840 blk_queue_max_discard_sectors(q, 0);
841 return;
842
843 case SD_LBP_UNMAP:
844 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
845 (u32)SD_MAX_WS16_BLOCKS);
846 break;
847
848 case SD_LBP_WS16:
849 if (sdkp->device->unmap_limit_for_ws)
850 max_blocks = sdkp->max_unmap_blocks;
851 else
852 max_blocks = sdkp->max_ws_blocks;
853
854 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
855 break;
856
857 case SD_LBP_WS10:
858 if (sdkp->device->unmap_limit_for_ws)
859 max_blocks = sdkp->max_unmap_blocks;
860 else
861 max_blocks = sdkp->max_ws_blocks;
862
863 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
864 break;
865
866 case SD_LBP_ZERO:
867 max_blocks = min_not_zero(sdkp->max_ws_blocks,
868 (u32)SD_MAX_WS10_BLOCKS);
869 break;
870 }
871
872 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
873 }
874
sd_set_special_bvec(struct request * rq,unsigned int data_len)875 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
876 {
877 struct page *page;
878
879 page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880 if (!page)
881 return NULL;
882 clear_highpage(page);
883 bvec_set_page(&rq->special_vec, page, data_len, 0);
884 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
885 return bvec_virt(&rq->special_vec);
886 }
887
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)888 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
889 {
890 struct scsi_device *sdp = cmd->device;
891 struct request *rq = scsi_cmd_to_rq(cmd);
892 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895 unsigned int data_len = 24;
896 char *buf;
897
898 buf = sd_set_special_bvec(rq, data_len);
899 if (!buf)
900 return BLK_STS_RESOURCE;
901
902 cmd->cmd_len = 10;
903 cmd->cmnd[0] = UNMAP;
904 cmd->cmnd[8] = 24;
905
906 put_unaligned_be16(6 + 16, &buf[0]);
907 put_unaligned_be16(16, &buf[2]);
908 put_unaligned_be64(lba, &buf[8]);
909 put_unaligned_be32(nr_blocks, &buf[16]);
910
911 cmd->allowed = sdkp->max_retries;
912 cmd->transfersize = data_len;
913 rq->timeout = SD_TIMEOUT;
914
915 return scsi_alloc_sgtables(cmd);
916 }
917
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)918 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
919 bool unmap)
920 {
921 struct scsi_device *sdp = cmd->device;
922 struct request *rq = scsi_cmd_to_rq(cmd);
923 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
924 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
925 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926 u32 data_len = sdp->sector_size;
927
928 if (!sd_set_special_bvec(rq, data_len))
929 return BLK_STS_RESOURCE;
930
931 cmd->cmd_len = 16;
932 cmd->cmnd[0] = WRITE_SAME_16;
933 if (unmap)
934 cmd->cmnd[1] = 0x8; /* UNMAP */
935 put_unaligned_be64(lba, &cmd->cmnd[2]);
936 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
937
938 cmd->allowed = sdkp->max_retries;
939 cmd->transfersize = data_len;
940 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
941
942 return scsi_alloc_sgtables(cmd);
943 }
944
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)945 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
946 bool unmap)
947 {
948 struct scsi_device *sdp = cmd->device;
949 struct request *rq = scsi_cmd_to_rq(cmd);
950 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
951 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
952 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
953 u32 data_len = sdp->sector_size;
954
955 if (!sd_set_special_bvec(rq, data_len))
956 return BLK_STS_RESOURCE;
957
958 cmd->cmd_len = 10;
959 cmd->cmnd[0] = WRITE_SAME;
960 if (unmap)
961 cmd->cmnd[1] = 0x8; /* UNMAP */
962 put_unaligned_be32(lba, &cmd->cmnd[2]);
963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964
965 cmd->allowed = sdkp->max_retries;
966 cmd->transfersize = data_len;
967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968
969 return scsi_alloc_sgtables(cmd);
970 }
971
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 struct request *rq = scsi_cmd_to_rq(cmd);
975 struct scsi_device *sdp = cmd->device;
976 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979
980 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 switch (sdkp->zeroing_mode) {
982 case SD_ZERO_WS16_UNMAP:
983 return sd_setup_write_same16_cmnd(cmd, true);
984 case SD_ZERO_WS10_UNMAP:
985 return sd_setup_write_same10_cmnd(cmd, true);
986 }
987 }
988
989 if (sdp->no_write_same) {
990 rq->rq_flags |= RQF_QUIET;
991 return BLK_STS_TARGET;
992 }
993
994 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
995 return sd_setup_write_same16_cmnd(cmd, false);
996
997 return sd_setup_write_same10_cmnd(cmd, false);
998 }
999
sd_config_write_same(struct scsi_disk * sdkp)1000 static void sd_config_write_same(struct scsi_disk *sdkp)
1001 {
1002 struct request_queue *q = sdkp->disk->queue;
1003 unsigned int logical_block_size = sdkp->device->sector_size;
1004
1005 if (sdkp->device->no_write_same) {
1006 sdkp->max_ws_blocks = 0;
1007 goto out;
1008 }
1009
1010 /* Some devices can not handle block counts above 0xffff despite
1011 * supporting WRITE SAME(16). Consequently we default to 64k
1012 * blocks per I/O unless the device explicitly advertises a
1013 * bigger limit.
1014 */
1015 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 (u32)SD_MAX_WS16_BLOCKS);
1018 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1019 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020 (u32)SD_MAX_WS10_BLOCKS);
1021 else {
1022 sdkp->device->no_write_same = 1;
1023 sdkp->max_ws_blocks = 0;
1024 }
1025
1026 if (sdkp->lbprz && sdkp->lbpws)
1027 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1028 else if (sdkp->lbprz && sdkp->lbpws10)
1029 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1030 else if (sdkp->max_ws_blocks)
1031 sdkp->zeroing_mode = SD_ZERO_WS;
1032 else
1033 sdkp->zeroing_mode = SD_ZERO_WRITE;
1034
1035 if (sdkp->max_ws_blocks &&
1036 sdkp->physical_block_size > logical_block_size) {
1037 /*
1038 * Reporting a maximum number of blocks that is not aligned
1039 * on the device physical size would cause a large write same
1040 * request to be split into physically unaligned chunks by
1041 * __blkdev_issue_write_zeroes() even if the caller of this
1042 * functions took care to align the large request. So make sure
1043 * the maximum reported is aligned to the device physical block
1044 * size. This is only an optional optimization for regular
1045 * disks, but this is mandatory to avoid failure of large write
1046 * same requests directed at sequential write required zones of
1047 * host-managed ZBC disks.
1048 */
1049 sdkp->max_ws_blocks =
1050 round_down(sdkp->max_ws_blocks,
1051 bytes_to_logical(sdkp->device,
1052 sdkp->physical_block_size));
1053 }
1054
1055 out:
1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 }
1059
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1060 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1061 {
1062 struct request *rq = scsi_cmd_to_rq(cmd);
1063 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1064
1065 /* flush requests don't perform I/O, zero the S/G table */
1066 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1067
1068 if (cmd->device->use_16_for_sync) {
1069 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1070 cmd->cmd_len = 16;
1071 } else {
1072 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1073 cmd->cmd_len = 10;
1074 }
1075 cmd->transfersize = 0;
1076 cmd->allowed = sdkp->max_retries;
1077
1078 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1079 return BLK_STS_OK;
1080 }
1081
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1082 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1083 sector_t lba, unsigned int nr_blocks,
1084 unsigned char flags, unsigned int dld)
1085 {
1086 cmd->cmd_len = SD_EXT_CDB_SIZE;
1087 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1088 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1089 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1090 cmd->cmnd[10] = flags;
1091 cmd->cmnd[11] = dld & 0x07;
1092 put_unaligned_be64(lba, &cmd->cmnd[12]);
1093 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1094 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1095
1096 return BLK_STS_OK;
1097 }
1098
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags,unsigned int dld)1099 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1100 sector_t lba, unsigned int nr_blocks,
1101 unsigned char flags, unsigned int dld)
1102 {
1103 cmd->cmd_len = 16;
1104 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1105 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1106 cmd->cmnd[14] = (dld & 0x03) << 6;
1107 cmd->cmnd[15] = 0;
1108 put_unaligned_be64(lba, &cmd->cmnd[2]);
1109 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1110
1111 return BLK_STS_OK;
1112 }
1113
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1114 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1115 sector_t lba, unsigned int nr_blocks,
1116 unsigned char flags)
1117 {
1118 cmd->cmd_len = 10;
1119 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1120 cmd->cmnd[1] = flags;
1121 cmd->cmnd[6] = 0;
1122 cmd->cmnd[9] = 0;
1123 put_unaligned_be32(lba, &cmd->cmnd[2]);
1124 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1125
1126 return BLK_STS_OK;
1127 }
1128
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1129 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1130 sector_t lba, unsigned int nr_blocks,
1131 unsigned char flags)
1132 {
1133 /* Avoid that 0 blocks gets translated into 256 blocks. */
1134 if (WARN_ON_ONCE(nr_blocks == 0))
1135 return BLK_STS_IOERR;
1136
1137 if (unlikely(flags & 0x8)) {
1138 /*
1139 * This happens only if this drive failed 10byte rw
1140 * command with ILLEGAL_REQUEST during operation and
1141 * thus turned off use_10_for_rw.
1142 */
1143 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1144 return BLK_STS_IOERR;
1145 }
1146
1147 cmd->cmd_len = 6;
1148 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1149 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1150 cmd->cmnd[2] = (lba >> 8) & 0xff;
1151 cmd->cmnd[3] = lba & 0xff;
1152 cmd->cmnd[4] = nr_blocks;
1153 cmd->cmnd[5] = 0;
1154
1155 return BLK_STS_OK;
1156 }
1157
1158 /*
1159 * Check if a command has a duration limit set. If it does, and the target
1160 * device supports CDL and the feature is enabled, return the limit
1161 * descriptor index to use. Return 0 (no limit) otherwise.
1162 */
sd_cdl_dld(struct scsi_disk * sdkp,struct scsi_cmnd * scmd)1163 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1164 {
1165 struct scsi_device *sdp = sdkp->device;
1166 int hint;
1167
1168 if (!sdp->cdl_supported || !sdp->cdl_enable)
1169 return 0;
1170
1171 /*
1172 * Use "no limit" if the request ioprio does not specify a duration
1173 * limit hint.
1174 */
1175 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1176 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1177 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1178 return 0;
1179
1180 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1181 }
1182
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1183 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1184 {
1185 struct request *rq = scsi_cmd_to_rq(cmd);
1186 struct scsi_device *sdp = cmd->device;
1187 struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1188 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1189 sector_t threshold;
1190 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1191 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1192 bool write = rq_data_dir(rq) == WRITE;
1193 unsigned char protect, fua;
1194 unsigned int dld;
1195 blk_status_t ret;
1196 unsigned int dif;
1197 bool dix;
1198
1199 ret = scsi_alloc_sgtables(cmd);
1200 if (ret != BLK_STS_OK)
1201 return ret;
1202
1203 ret = BLK_STS_IOERR;
1204 if (!scsi_device_online(sdp) || sdp->changed) {
1205 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1206 goto fail;
1207 }
1208
1209 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1210 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1211 goto fail;
1212 }
1213
1214 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1215 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1216 goto fail;
1217 }
1218
1219 /*
1220 * Some SD card readers can't handle accesses which touch the
1221 * last one or two logical blocks. Split accesses as needed.
1222 */
1223 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1224
1225 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1226 if (lba < threshold) {
1227 /* Access up to the threshold but not beyond */
1228 nr_blocks = threshold - lba;
1229 } else {
1230 /* Access only a single logical block */
1231 nr_blocks = 1;
1232 }
1233 }
1234
1235 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1236 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1237 if (ret)
1238 goto fail;
1239 }
1240
1241 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1242 dix = scsi_prot_sg_count(cmd);
1243 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1244 dld = sd_cdl_dld(sdkp, cmd);
1245
1246 if (dif || dix)
1247 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1248 else
1249 protect = 0;
1250
1251 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1252 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1253 protect | fua, dld);
1254 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1255 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1256 protect | fua, dld);
1257 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1258 sdp->use_10_for_rw || protect) {
1259 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1260 protect | fua);
1261 } else {
1262 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1263 protect | fua);
1264 }
1265
1266 if (unlikely(ret != BLK_STS_OK))
1267 goto fail;
1268
1269 /*
1270 * We shouldn't disconnect in the middle of a sector, so with a dumb
1271 * host adapter, it's safe to assume that we can at least transfer
1272 * this many bytes between each connect / disconnect.
1273 */
1274 cmd->transfersize = sdp->sector_size;
1275 cmd->underflow = nr_blocks << 9;
1276 cmd->allowed = sdkp->max_retries;
1277 cmd->sdb.length = nr_blocks * sdp->sector_size;
1278
1279 SCSI_LOG_HLQUEUE(1,
1280 scmd_printk(KERN_INFO, cmd,
1281 "%s: block=%llu, count=%d\n", __func__,
1282 (unsigned long long)blk_rq_pos(rq),
1283 blk_rq_sectors(rq)));
1284 SCSI_LOG_HLQUEUE(2,
1285 scmd_printk(KERN_INFO, cmd,
1286 "%s %d/%u 512 byte blocks.\n",
1287 write ? "writing" : "reading", nr_blocks,
1288 blk_rq_sectors(rq)));
1289
1290 /*
1291 * This indicates that the command is ready from our end to be queued.
1292 */
1293 return BLK_STS_OK;
1294 fail:
1295 scsi_free_sgtables(cmd);
1296 return ret;
1297 }
1298
sd_init_command(struct scsi_cmnd * cmd)1299 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1300 {
1301 struct request *rq = scsi_cmd_to_rq(cmd);
1302
1303 switch (req_op(rq)) {
1304 case REQ_OP_DISCARD:
1305 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1306 case SD_LBP_UNMAP:
1307 return sd_setup_unmap_cmnd(cmd);
1308 case SD_LBP_WS16:
1309 return sd_setup_write_same16_cmnd(cmd, true);
1310 case SD_LBP_WS10:
1311 return sd_setup_write_same10_cmnd(cmd, true);
1312 case SD_LBP_ZERO:
1313 return sd_setup_write_same10_cmnd(cmd, false);
1314 default:
1315 return BLK_STS_TARGET;
1316 }
1317 case REQ_OP_WRITE_ZEROES:
1318 return sd_setup_write_zeroes_cmnd(cmd);
1319 case REQ_OP_FLUSH:
1320 return sd_setup_flush_cmnd(cmd);
1321 case REQ_OP_READ:
1322 case REQ_OP_WRITE:
1323 case REQ_OP_ZONE_APPEND:
1324 return sd_setup_read_write_cmnd(cmd);
1325 case REQ_OP_ZONE_RESET:
1326 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1327 false);
1328 case REQ_OP_ZONE_RESET_ALL:
1329 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1330 true);
1331 case REQ_OP_ZONE_OPEN:
1332 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1333 case REQ_OP_ZONE_CLOSE:
1334 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1335 case REQ_OP_ZONE_FINISH:
1336 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1337 default:
1338 WARN_ON_ONCE(1);
1339 return BLK_STS_NOTSUPP;
1340 }
1341 }
1342
sd_uninit_command(struct scsi_cmnd * SCpnt)1343 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1344 {
1345 struct request *rq = scsi_cmd_to_rq(SCpnt);
1346
1347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1348 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1349 }
1350
sd_need_revalidate(struct gendisk * disk,struct scsi_disk * sdkp)1351 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1352 {
1353 if (sdkp->device->removable || sdkp->write_prot) {
1354 if (disk_check_media_change(disk))
1355 return true;
1356 }
1357
1358 /*
1359 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1360 * nothing to do with partitions, BLKRRPART is used to force a full
1361 * revalidate after things like a format for historical reasons.
1362 */
1363 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1364 }
1365
1366 /**
1367 * sd_open - open a scsi disk device
1368 * @disk: disk to open
1369 * @mode: open mode
1370 *
1371 * Returns 0 if successful. Returns a negated errno value in case
1372 * of error.
1373 *
1374 * Note: This can be called from a user context (e.g. fsck(1) )
1375 * or from within the kernel (e.g. as a result of a mount(1) ).
1376 * In the latter case @inode and @filp carry an abridged amount
1377 * of information as noted above.
1378 *
1379 * Locking: called with disk->open_mutex held.
1380 **/
sd_open(struct gendisk * disk,blk_mode_t mode)1381 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1382 {
1383 struct scsi_disk *sdkp = scsi_disk(disk);
1384 struct scsi_device *sdev = sdkp->device;
1385 int retval;
1386
1387 if (scsi_device_get(sdev))
1388 return -ENXIO;
1389
1390 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1391
1392 /*
1393 * If the device is in error recovery, wait until it is done.
1394 * If the device is offline, then disallow any access to it.
1395 */
1396 retval = -ENXIO;
1397 if (!scsi_block_when_processing_errors(sdev))
1398 goto error_out;
1399
1400 if (sd_need_revalidate(disk, sdkp))
1401 sd_revalidate_disk(disk);
1402
1403 /*
1404 * If the drive is empty, just let the open fail.
1405 */
1406 retval = -ENOMEDIUM;
1407 if (sdev->removable && !sdkp->media_present &&
1408 !(mode & BLK_OPEN_NDELAY))
1409 goto error_out;
1410
1411 /*
1412 * If the device has the write protect tab set, have the open fail
1413 * if the user expects to be able to write to the thing.
1414 */
1415 retval = -EROFS;
1416 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1417 goto error_out;
1418
1419 /*
1420 * It is possible that the disk changing stuff resulted in
1421 * the device being taken offline. If this is the case,
1422 * report this to the user, and don't pretend that the
1423 * open actually succeeded.
1424 */
1425 retval = -ENXIO;
1426 if (!scsi_device_online(sdev))
1427 goto error_out;
1428
1429 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1430 if (scsi_block_when_processing_errors(sdev))
1431 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1432 }
1433
1434 return 0;
1435
1436 error_out:
1437 scsi_device_put(sdev);
1438 return retval;
1439 }
1440
1441 /**
1442 * sd_release - invoked when the (last) close(2) is called on this
1443 * scsi disk.
1444 * @disk: disk to release
1445 *
1446 * Returns 0.
1447 *
1448 * Note: may block (uninterruptible) if error recovery is underway
1449 * on this disk.
1450 *
1451 * Locking: called with disk->open_mutex held.
1452 **/
sd_release(struct gendisk * disk)1453 static void sd_release(struct gendisk *disk)
1454 {
1455 struct scsi_disk *sdkp = scsi_disk(disk);
1456 struct scsi_device *sdev = sdkp->device;
1457
1458 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1459
1460 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1461 if (scsi_block_when_processing_errors(sdev))
1462 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1463 }
1464
1465 scsi_device_put(sdev);
1466 }
1467
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1468 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1469 {
1470 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1471 struct scsi_device *sdp = sdkp->device;
1472 struct Scsi_Host *host = sdp->host;
1473 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1474 int diskinfo[4];
1475
1476 /* default to most commonly used values */
1477 diskinfo[0] = 0x40; /* 1 << 6 */
1478 diskinfo[1] = 0x20; /* 1 << 5 */
1479 diskinfo[2] = capacity >> 11;
1480
1481 /* override with calculated, extended default, or driver values */
1482 if (host->hostt->bios_param)
1483 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1484 else
1485 scsicam_bios_param(bdev, capacity, diskinfo);
1486
1487 geo->heads = diskinfo[0];
1488 geo->sectors = diskinfo[1];
1489 geo->cylinders = diskinfo[2];
1490 return 0;
1491 }
1492
1493 /**
1494 * sd_ioctl - process an ioctl
1495 * @bdev: target block device
1496 * @mode: open mode
1497 * @cmd: ioctl command number
1498 * @arg: this is third argument given to ioctl(2) system call.
1499 * Often contains a pointer.
1500 *
1501 * Returns 0 if successful (some ioctls return positive numbers on
1502 * success as well). Returns a negated errno value in case of error.
1503 *
1504 * Note: most ioctls are forward onto the block subsystem or further
1505 * down in the scsi subsystem.
1506 **/
sd_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1507 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1508 unsigned int cmd, unsigned long arg)
1509 {
1510 struct gendisk *disk = bdev->bd_disk;
1511 struct scsi_disk *sdkp = scsi_disk(disk);
1512 struct scsi_device *sdp = sdkp->device;
1513 void __user *p = (void __user *)arg;
1514 int error;
1515
1516 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1517 "cmd=0x%x\n", disk->disk_name, cmd));
1518
1519 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1520 return -ENOIOCTLCMD;
1521
1522 /*
1523 * If we are in the middle of error recovery, don't let anyone
1524 * else try and use this device. Also, if error recovery fails, it
1525 * may try and take the device offline, in which case all further
1526 * access to the device is prohibited.
1527 */
1528 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1529 (mode & BLK_OPEN_NDELAY));
1530 if (error)
1531 return error;
1532
1533 if (is_sed_ioctl(cmd))
1534 return sed_ioctl(sdkp->opal_dev, cmd, p);
1535 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1536 }
1537
set_media_not_present(struct scsi_disk * sdkp)1538 static void set_media_not_present(struct scsi_disk *sdkp)
1539 {
1540 if (sdkp->media_present)
1541 sdkp->device->changed = 1;
1542
1543 if (sdkp->device->removable) {
1544 sdkp->media_present = 0;
1545 sdkp->capacity = 0;
1546 }
1547 }
1548
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1549 static int media_not_present(struct scsi_disk *sdkp,
1550 struct scsi_sense_hdr *sshdr)
1551 {
1552 if (!scsi_sense_valid(sshdr))
1553 return 0;
1554
1555 /* not invoked for commands that could return deferred errors */
1556 switch (sshdr->sense_key) {
1557 case UNIT_ATTENTION:
1558 case NOT_READY:
1559 /* medium not present */
1560 if (sshdr->asc == 0x3A) {
1561 set_media_not_present(sdkp);
1562 return 1;
1563 }
1564 }
1565 return 0;
1566 }
1567
1568 /**
1569 * sd_check_events - check media events
1570 * @disk: kernel device descriptor
1571 * @clearing: disk events currently being cleared
1572 *
1573 * Returns mask of DISK_EVENT_*.
1574 *
1575 * Note: this function is invoked from the block subsystem.
1576 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578 {
1579 struct scsi_disk *sdkp = disk->private_data;
1580 struct scsi_device *sdp;
1581 int retval;
1582 bool disk_changed;
1583
1584 if (!sdkp)
1585 return 0;
1586
1587 sdp = sdkp->device;
1588 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1589
1590 /*
1591 * If the device is offline, don't send any commands - just pretend as
1592 * if the command failed. If the device ever comes back online, we
1593 * can deal with it then. It is only because of unrecoverable errors
1594 * that we would ever take a device offline in the first place.
1595 */
1596 if (!scsi_device_online(sdp)) {
1597 set_media_not_present(sdkp);
1598 goto out;
1599 }
1600
1601 /*
1602 * Using TEST_UNIT_READY enables differentiation between drive with
1603 * no cartridge loaded - NOT READY, drive with changed cartridge -
1604 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1605 *
1606 * Drives that auto spin down. eg iomega jaz 1G, will be started
1607 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1608 * sd_revalidate() is called.
1609 */
1610 if (scsi_block_when_processing_errors(sdp)) {
1611 struct scsi_sense_hdr sshdr = { 0, };
1612
1613 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1614 &sshdr);
1615
1616 /* failed to execute TUR, assume media not present */
1617 if (retval < 0 || host_byte(retval)) {
1618 set_media_not_present(sdkp);
1619 goto out;
1620 }
1621
1622 if (media_not_present(sdkp, &sshdr))
1623 goto out;
1624 }
1625
1626 /*
1627 * For removable scsi disk we have to recognise the presence
1628 * of a disk in the drive.
1629 */
1630 if (!sdkp->media_present)
1631 sdp->changed = 1;
1632 sdkp->media_present = 1;
1633 out:
1634 /*
1635 * sdp->changed is set under the following conditions:
1636 *
1637 * Medium present state has changed in either direction.
1638 * Device has indicated UNIT_ATTENTION.
1639 */
1640 disk_changed = sdp->changed;
1641 sdp->changed = 0;
1642 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1643 }
1644
sd_sync_cache(struct scsi_disk * sdkp)1645 static int sd_sync_cache(struct scsi_disk *sdkp)
1646 {
1647 int retries, res;
1648 struct scsi_device *sdp = sdkp->device;
1649 const int timeout = sdp->request_queue->rq_timeout
1650 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1651 struct scsi_sense_hdr sshdr;
1652 const struct scsi_exec_args exec_args = {
1653 .req_flags = BLK_MQ_REQ_PM,
1654 .sshdr = &sshdr,
1655 };
1656
1657 if (!scsi_device_online(sdp))
1658 return -ENODEV;
1659
1660 for (retries = 3; retries > 0; --retries) {
1661 unsigned char cmd[16] = { 0 };
1662
1663 if (sdp->use_16_for_sync)
1664 cmd[0] = SYNCHRONIZE_CACHE_16;
1665 else
1666 cmd[0] = SYNCHRONIZE_CACHE;
1667 /*
1668 * Leave the rest of the command zero to indicate
1669 * flush everything.
1670 */
1671 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1672 timeout, sdkp->max_retries, &exec_args);
1673 if (res == 0)
1674 break;
1675 }
1676
1677 if (res) {
1678 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1679
1680 if (res < 0)
1681 return res;
1682
1683 if (scsi_status_is_check_condition(res) &&
1684 scsi_sense_valid(&sshdr)) {
1685 sd_print_sense_hdr(sdkp, &sshdr);
1686
1687 /* we need to evaluate the error return */
1688 if (sshdr.asc == 0x3a || /* medium not present */
1689 sshdr.asc == 0x20 || /* invalid command */
1690 (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */
1691 /* this is no error here */
1692 return 0;
1693
1694 /*
1695 * If a format is in progress or if the drive does not
1696 * support sync, there is not much we can do because
1697 * this is called during shutdown or suspend so just
1698 * return success so those operations can proceed.
1699 */
1700 if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1701 sshdr.sense_key == ILLEGAL_REQUEST)
1702 return 0;
1703 }
1704
1705 switch (host_byte(res)) {
1706 /* ignore errors due to racing a disconnection */
1707 case DID_BAD_TARGET:
1708 case DID_NO_CONNECT:
1709 return 0;
1710 /* signal the upper layer it might try again */
1711 case DID_BUS_BUSY:
1712 case DID_IMM_RETRY:
1713 case DID_REQUEUE:
1714 case DID_SOFT_ERROR:
1715 return -EBUSY;
1716 default:
1717 return -EIO;
1718 }
1719 }
1720 return 0;
1721 }
1722
sd_rescan(struct device * dev)1723 static void sd_rescan(struct device *dev)
1724 {
1725 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1726
1727 sd_revalidate_disk(sdkp->disk);
1728 }
1729
sd_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)1730 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1731 enum blk_unique_id type)
1732 {
1733 struct scsi_device *sdev = scsi_disk(disk)->device;
1734 const struct scsi_vpd *vpd;
1735 const unsigned char *d;
1736 int ret = -ENXIO, len;
1737
1738 rcu_read_lock();
1739 vpd = rcu_dereference(sdev->vpd_pg83);
1740 if (!vpd)
1741 goto out_unlock;
1742
1743 ret = -EINVAL;
1744 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1745 /* we only care about designators with LU association */
1746 if (((d[1] >> 4) & 0x3) != 0x00)
1747 continue;
1748 if ((d[1] & 0xf) != type)
1749 continue;
1750
1751 /*
1752 * Only exit early if a 16-byte descriptor was found. Otherwise
1753 * keep looking as one with more entropy might still show up.
1754 */
1755 len = d[3];
1756 if (len != 8 && len != 12 && len != 16)
1757 continue;
1758 ret = len;
1759 memcpy(id, d + 4, len);
1760 if (len == 16)
1761 break;
1762 }
1763 out_unlock:
1764 rcu_read_unlock();
1765 return ret;
1766 }
1767
sd_scsi_to_pr_err(struct scsi_sense_hdr * sshdr,int result)1768 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1769 {
1770 switch (host_byte(result)) {
1771 case DID_TRANSPORT_MARGINAL:
1772 case DID_TRANSPORT_DISRUPTED:
1773 case DID_BUS_BUSY:
1774 return PR_STS_RETRY_PATH_FAILURE;
1775 case DID_NO_CONNECT:
1776 return PR_STS_PATH_FAILED;
1777 case DID_TRANSPORT_FAILFAST:
1778 return PR_STS_PATH_FAST_FAILED;
1779 }
1780
1781 switch (status_byte(result)) {
1782 case SAM_STAT_RESERVATION_CONFLICT:
1783 return PR_STS_RESERVATION_CONFLICT;
1784 case SAM_STAT_CHECK_CONDITION:
1785 if (!scsi_sense_valid(sshdr))
1786 return PR_STS_IOERR;
1787
1788 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1789 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1790 return -EINVAL;
1791
1792 fallthrough;
1793 default:
1794 return PR_STS_IOERR;
1795 }
1796 }
1797
sd_pr_in_command(struct block_device * bdev,u8 sa,unsigned char * data,int data_len)1798 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1799 unsigned char *data, int data_len)
1800 {
1801 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1802 struct scsi_device *sdev = sdkp->device;
1803 struct scsi_sense_hdr sshdr;
1804 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1805 const struct scsi_exec_args exec_args = {
1806 .sshdr = &sshdr,
1807 };
1808 int result;
1809
1810 put_unaligned_be16(data_len, &cmd[7]);
1811
1812 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1813 SD_TIMEOUT, sdkp->max_retries, &exec_args);
1814 if (scsi_status_is_check_condition(result) &&
1815 scsi_sense_valid(&sshdr)) {
1816 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1817 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1818 }
1819
1820 if (result <= 0)
1821 return result;
1822
1823 return sd_scsi_to_pr_err(&sshdr, result);
1824 }
1825
sd_pr_read_keys(struct block_device * bdev,struct pr_keys * keys_info)1826 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1827 {
1828 int result, i, data_offset, num_copy_keys;
1829 u32 num_keys = keys_info->num_keys;
1830 int data_len = num_keys * 8 + 8;
1831 u8 *data;
1832
1833 data = kzalloc(data_len, GFP_KERNEL);
1834 if (!data)
1835 return -ENOMEM;
1836
1837 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1838 if (result)
1839 goto free_data;
1840
1841 keys_info->generation = get_unaligned_be32(&data[0]);
1842 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1843
1844 data_offset = 8;
1845 num_copy_keys = min(num_keys, keys_info->num_keys);
1846
1847 for (i = 0; i < num_copy_keys; i++) {
1848 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1849 data_offset += 8;
1850 }
1851
1852 free_data:
1853 kfree(data);
1854 return result;
1855 }
1856
sd_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)1857 static int sd_pr_read_reservation(struct block_device *bdev,
1858 struct pr_held_reservation *rsv)
1859 {
1860 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1861 struct scsi_device *sdev = sdkp->device;
1862 u8 data[24] = { };
1863 int result, len;
1864
1865 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1866 if (result)
1867 return result;
1868
1869 len = get_unaligned_be32(&data[4]);
1870 if (!len)
1871 return 0;
1872
1873 /* Make sure we have at least the key and type */
1874 if (len < 14) {
1875 sdev_printk(KERN_INFO, sdev,
1876 "READ RESERVATION failed due to short return buffer of %d bytes\n",
1877 len);
1878 return -EINVAL;
1879 }
1880
1881 rsv->generation = get_unaligned_be32(&data[0]);
1882 rsv->key = get_unaligned_be64(&data[8]);
1883 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1884 return 0;
1885 }
1886
sd_pr_out_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,enum scsi_pr_type type,u8 flags)1887 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1888 u64 sa_key, enum scsi_pr_type type, u8 flags)
1889 {
1890 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1891 struct scsi_device *sdev = sdkp->device;
1892 struct scsi_sense_hdr sshdr;
1893 const struct scsi_exec_args exec_args = {
1894 .sshdr = &sshdr,
1895 };
1896 int result;
1897 u8 cmd[16] = { 0, };
1898 u8 data[24] = { 0, };
1899
1900 cmd[0] = PERSISTENT_RESERVE_OUT;
1901 cmd[1] = sa;
1902 cmd[2] = type;
1903 put_unaligned_be32(sizeof(data), &cmd[5]);
1904
1905 put_unaligned_be64(key, &data[0]);
1906 put_unaligned_be64(sa_key, &data[8]);
1907 data[20] = flags;
1908
1909 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1910 sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1911 &exec_args);
1912
1913 if (scsi_status_is_check_condition(result) &&
1914 scsi_sense_valid(&sshdr)) {
1915 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1916 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1917 }
1918
1919 if (result <= 0)
1920 return result;
1921
1922 return sd_scsi_to_pr_err(&sshdr, result);
1923 }
1924
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1925 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1926 u32 flags)
1927 {
1928 if (flags & ~PR_FL_IGNORE_KEY)
1929 return -EOPNOTSUPP;
1930 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1931 old_key, new_key, 0,
1932 (1 << 0) /* APTPL */);
1933 }
1934
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1935 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1936 u32 flags)
1937 {
1938 if (flags)
1939 return -EOPNOTSUPP;
1940 return sd_pr_out_command(bdev, 0x01, key, 0,
1941 block_pr_type_to_scsi(type), 0);
1942 }
1943
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1944 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1945 {
1946 return sd_pr_out_command(bdev, 0x02, key, 0,
1947 block_pr_type_to_scsi(type), 0);
1948 }
1949
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1950 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1951 enum pr_type type, bool abort)
1952 {
1953 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1954 block_pr_type_to_scsi(type), 0);
1955 }
1956
sd_pr_clear(struct block_device * bdev,u64 key)1957 static int sd_pr_clear(struct block_device *bdev, u64 key)
1958 {
1959 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1960 }
1961
1962 static const struct pr_ops sd_pr_ops = {
1963 .pr_register = sd_pr_register,
1964 .pr_reserve = sd_pr_reserve,
1965 .pr_release = sd_pr_release,
1966 .pr_preempt = sd_pr_preempt,
1967 .pr_clear = sd_pr_clear,
1968 .pr_read_keys = sd_pr_read_keys,
1969 .pr_read_reservation = sd_pr_read_reservation,
1970 };
1971
scsi_disk_free_disk(struct gendisk * disk)1972 static void scsi_disk_free_disk(struct gendisk *disk)
1973 {
1974 struct scsi_disk *sdkp = scsi_disk(disk);
1975
1976 put_device(&sdkp->disk_dev);
1977 }
1978
1979 static const struct block_device_operations sd_fops = {
1980 .owner = THIS_MODULE,
1981 .open = sd_open,
1982 .release = sd_release,
1983 .ioctl = sd_ioctl,
1984 .getgeo = sd_getgeo,
1985 .compat_ioctl = blkdev_compat_ptr_ioctl,
1986 .check_events = sd_check_events,
1987 .unlock_native_capacity = sd_unlock_native_capacity,
1988 .report_zones = sd_zbc_report_zones,
1989 .get_unique_id = sd_get_unique_id,
1990 .free_disk = scsi_disk_free_disk,
1991 .pr_ops = &sd_pr_ops,
1992 };
1993
1994 /**
1995 * sd_eh_reset - reset error handling callback
1996 * @scmd: sd-issued command that has failed
1997 *
1998 * This function is called by the SCSI midlayer before starting
1999 * SCSI EH. When counting medium access failures we have to be
2000 * careful to register it only only once per device and SCSI EH run;
2001 * there might be several timed out commands which will cause the
2002 * 'max_medium_access_timeouts' counter to trigger after the first
2003 * SCSI EH run already and set the device to offline.
2004 * So this function resets the internal counter before starting SCSI EH.
2005 **/
sd_eh_reset(struct scsi_cmnd * scmd)2006 static void sd_eh_reset(struct scsi_cmnd *scmd)
2007 {
2008 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2009
2010 /* New SCSI EH run, reset gate variable */
2011 sdkp->ignore_medium_access_errors = false;
2012 }
2013
2014 /**
2015 * sd_eh_action - error handling callback
2016 * @scmd: sd-issued command that has failed
2017 * @eh_disp: The recovery disposition suggested by the midlayer
2018 *
2019 * This function is called by the SCSI midlayer upon completion of an
2020 * error test command (currently TEST UNIT READY). The result of sending
2021 * the eh command is passed in eh_disp. We're looking for devices that
2022 * fail medium access commands but are OK with non access commands like
2023 * test unit ready (so wrongly see the device as having a successful
2024 * recovery)
2025 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)2026 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2027 {
2028 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2029 struct scsi_device *sdev = scmd->device;
2030
2031 if (!scsi_device_online(sdev) ||
2032 !scsi_medium_access_command(scmd) ||
2033 host_byte(scmd->result) != DID_TIME_OUT ||
2034 eh_disp != SUCCESS)
2035 return eh_disp;
2036
2037 /*
2038 * The device has timed out executing a medium access command.
2039 * However, the TEST UNIT READY command sent during error
2040 * handling completed successfully. Either the device is in the
2041 * process of recovering or has it suffered an internal failure
2042 * that prevents access to the storage medium.
2043 */
2044 if (!sdkp->ignore_medium_access_errors) {
2045 sdkp->medium_access_timed_out++;
2046 sdkp->ignore_medium_access_errors = true;
2047 }
2048
2049 /*
2050 * If the device keeps failing read/write commands but TEST UNIT
2051 * READY always completes successfully we assume that medium
2052 * access is no longer possible and take the device offline.
2053 */
2054 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2055 scmd_printk(KERN_ERR, scmd,
2056 "Medium access timeout failure. Offlining disk!\n");
2057 mutex_lock(&sdev->state_mutex);
2058 scsi_device_set_state(sdev, SDEV_OFFLINE);
2059 mutex_unlock(&sdev->state_mutex);
2060
2061 return SUCCESS;
2062 }
2063
2064 return eh_disp;
2065 }
2066
sd_completed_bytes(struct scsi_cmnd * scmd)2067 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2068 {
2069 struct request *req = scsi_cmd_to_rq(scmd);
2070 struct scsi_device *sdev = scmd->device;
2071 unsigned int transferred, good_bytes;
2072 u64 start_lba, end_lba, bad_lba;
2073
2074 /*
2075 * Some commands have a payload smaller than the device logical
2076 * block size (e.g. INQUIRY on a 4K disk).
2077 */
2078 if (scsi_bufflen(scmd) <= sdev->sector_size)
2079 return 0;
2080
2081 /* Check if we have a 'bad_lba' information */
2082 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2083 SCSI_SENSE_BUFFERSIZE,
2084 &bad_lba))
2085 return 0;
2086
2087 /*
2088 * If the bad lba was reported incorrectly, we have no idea where
2089 * the error is.
2090 */
2091 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2092 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2093 if (bad_lba < start_lba || bad_lba >= end_lba)
2094 return 0;
2095
2096 /*
2097 * resid is optional but mostly filled in. When it's unused,
2098 * its value is zero, so we assume the whole buffer transferred
2099 */
2100 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2101
2102 /* This computation should always be done in terms of the
2103 * resolution of the device's medium.
2104 */
2105 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2106
2107 return min(good_bytes, transferred);
2108 }
2109
2110 /**
2111 * sd_done - bottom half handler: called when the lower level
2112 * driver has completed (successfully or otherwise) a scsi command.
2113 * @SCpnt: mid-level's per command structure.
2114 *
2115 * Note: potentially run from within an ISR. Must not block.
2116 **/
sd_done(struct scsi_cmnd * SCpnt)2117 static int sd_done(struct scsi_cmnd *SCpnt)
2118 {
2119 int result = SCpnt->result;
2120 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2121 unsigned int sector_size = SCpnt->device->sector_size;
2122 unsigned int resid;
2123 struct scsi_sense_hdr sshdr;
2124 struct request *req = scsi_cmd_to_rq(SCpnt);
2125 struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2126 int sense_valid = 0;
2127 int sense_deferred = 0;
2128
2129 switch (req_op(req)) {
2130 case REQ_OP_DISCARD:
2131 case REQ_OP_WRITE_ZEROES:
2132 case REQ_OP_ZONE_RESET:
2133 case REQ_OP_ZONE_RESET_ALL:
2134 case REQ_OP_ZONE_OPEN:
2135 case REQ_OP_ZONE_CLOSE:
2136 case REQ_OP_ZONE_FINISH:
2137 if (!result) {
2138 good_bytes = blk_rq_bytes(req);
2139 scsi_set_resid(SCpnt, 0);
2140 } else {
2141 good_bytes = 0;
2142 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2143 }
2144 break;
2145 default:
2146 /*
2147 * In case of bogus fw or device, we could end up having
2148 * an unaligned partial completion. Check this here and force
2149 * alignment.
2150 */
2151 resid = scsi_get_resid(SCpnt);
2152 if (resid & (sector_size - 1)) {
2153 sd_printk(KERN_INFO, sdkp,
2154 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2155 resid, sector_size);
2156 scsi_print_command(SCpnt);
2157 resid = min(scsi_bufflen(SCpnt),
2158 round_up(resid, sector_size));
2159 scsi_set_resid(SCpnt, resid);
2160 }
2161 }
2162
2163 if (result) {
2164 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2165 if (sense_valid)
2166 sense_deferred = scsi_sense_is_deferred(&sshdr);
2167 }
2168 sdkp->medium_access_timed_out = 0;
2169
2170 if (!scsi_status_is_check_condition(result) &&
2171 (!sense_valid || sense_deferred))
2172 goto out;
2173
2174 switch (sshdr.sense_key) {
2175 case HARDWARE_ERROR:
2176 case MEDIUM_ERROR:
2177 good_bytes = sd_completed_bytes(SCpnt);
2178 break;
2179 case RECOVERED_ERROR:
2180 good_bytes = scsi_bufflen(SCpnt);
2181 break;
2182 case NO_SENSE:
2183 /* This indicates a false check condition, so ignore it. An
2184 * unknown amount of data was transferred so treat it as an
2185 * error.
2186 */
2187 SCpnt->result = 0;
2188 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2189 break;
2190 case ABORTED_COMMAND:
2191 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2192 good_bytes = sd_completed_bytes(SCpnt);
2193 break;
2194 case ILLEGAL_REQUEST:
2195 switch (sshdr.asc) {
2196 case 0x10: /* DIX: Host detected corruption */
2197 good_bytes = sd_completed_bytes(SCpnt);
2198 break;
2199 case 0x20: /* INVALID COMMAND OPCODE */
2200 case 0x24: /* INVALID FIELD IN CDB */
2201 switch (SCpnt->cmnd[0]) {
2202 case UNMAP:
2203 sd_config_discard(sdkp, SD_LBP_DISABLE);
2204 break;
2205 case WRITE_SAME_16:
2206 case WRITE_SAME:
2207 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2208 sd_config_discard(sdkp, SD_LBP_DISABLE);
2209 } else {
2210 sdkp->device->no_write_same = 1;
2211 sd_config_write_same(sdkp);
2212 req->rq_flags |= RQF_QUIET;
2213 }
2214 break;
2215 }
2216 }
2217 break;
2218 default:
2219 break;
2220 }
2221
2222 out:
2223 if (sd_is_zoned(sdkp))
2224 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2225
2226 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2227 "sd_done: completed %d of %d bytes\n",
2228 good_bytes, scsi_bufflen(SCpnt)));
2229
2230 return good_bytes;
2231 }
2232
2233 /*
2234 * spinup disk - called only in sd_revalidate_disk()
2235 */
2236 static void
sd_spinup_disk(struct scsi_disk * sdkp)2237 sd_spinup_disk(struct scsi_disk *sdkp)
2238 {
2239 unsigned char cmd[10];
2240 unsigned long spintime_expire = 0;
2241 int retries, spintime;
2242 unsigned int the_result;
2243 struct scsi_sense_hdr sshdr;
2244 const struct scsi_exec_args exec_args = {
2245 .sshdr = &sshdr,
2246 };
2247 int sense_valid = 0;
2248
2249 spintime = 0;
2250
2251 /* Spin up drives, as required. Only do this at boot time */
2252 /* Spinup needs to be done for module loads too. */
2253 do {
2254 retries = 0;
2255
2256 do {
2257 bool media_was_present = sdkp->media_present;
2258
2259 cmd[0] = TEST_UNIT_READY;
2260 memset((void *) &cmd[1], 0, 9);
2261
2262 the_result = scsi_execute_cmd(sdkp->device, cmd,
2263 REQ_OP_DRV_IN, NULL, 0,
2264 SD_TIMEOUT,
2265 sdkp->max_retries,
2266 &exec_args);
2267
2268 /*
2269 * If the drive has indicated to us that it
2270 * doesn't have any media in it, don't bother
2271 * with any more polling.
2272 */
2273 if (media_not_present(sdkp, &sshdr)) {
2274 if (media_was_present)
2275 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2276 return;
2277 }
2278
2279 if (the_result)
2280 sense_valid = scsi_sense_valid(&sshdr);
2281 retries++;
2282 } while (retries < 3 &&
2283 (!scsi_status_is_good(the_result) ||
2284 (scsi_status_is_check_condition(the_result) &&
2285 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2286
2287 if (!scsi_status_is_check_condition(the_result)) {
2288 /* no sense, TUR either succeeded or failed
2289 * with a status error */
2290 if(!spintime && !scsi_status_is_good(the_result)) {
2291 sd_print_result(sdkp, "Test Unit Ready failed",
2292 the_result);
2293 }
2294 break;
2295 }
2296
2297 /*
2298 * The device does not want the automatic start to be issued.
2299 */
2300 if (sdkp->device->no_start_on_add)
2301 break;
2302
2303 if (sense_valid && sshdr.sense_key == NOT_READY) {
2304 if (sshdr.asc == 4 && sshdr.ascq == 3)
2305 break; /* manual intervention required */
2306 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2307 break; /* standby */
2308 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2309 break; /* unavailable */
2310 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2311 break; /* sanitize in progress */
2312 /*
2313 * Issue command to spin up drive when not ready
2314 */
2315 if (!spintime) {
2316 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2317 cmd[0] = START_STOP;
2318 cmd[1] = 1; /* Return immediately */
2319 memset((void *) &cmd[2], 0, 8);
2320 cmd[4] = 1; /* Start spin cycle */
2321 if (sdkp->device->start_stop_pwr_cond)
2322 cmd[4] |= 1 << 4;
2323 scsi_execute_cmd(sdkp->device, cmd,
2324 REQ_OP_DRV_IN, NULL, 0,
2325 SD_TIMEOUT, sdkp->max_retries,
2326 &exec_args);
2327 spintime_expire = jiffies + 100 * HZ;
2328 spintime = 1;
2329 }
2330 /* Wait 1 second for next try */
2331 msleep(1000);
2332 printk(KERN_CONT ".");
2333
2334 /*
2335 * Wait for USB flash devices with slow firmware.
2336 * Yes, this sense key/ASC combination shouldn't
2337 * occur here. It's characteristic of these devices.
2338 */
2339 } else if (sense_valid &&
2340 sshdr.sense_key == UNIT_ATTENTION &&
2341 sshdr.asc == 0x28) {
2342 if (!spintime) {
2343 spintime_expire = jiffies + 5 * HZ;
2344 spintime = 1;
2345 }
2346 /* Wait 1 second for next try */
2347 msleep(1000);
2348 } else {
2349 /* we don't understand the sense code, so it's
2350 * probably pointless to loop */
2351 if(!spintime) {
2352 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2353 sd_print_sense_hdr(sdkp, &sshdr);
2354 }
2355 break;
2356 }
2357
2358 } while (spintime && time_before_eq(jiffies, spintime_expire));
2359
2360 if (spintime) {
2361 if (scsi_status_is_good(the_result))
2362 printk(KERN_CONT "ready\n");
2363 else
2364 printk(KERN_CONT "not responding...\n");
2365 }
2366 }
2367
2368 /*
2369 * Determine whether disk supports Data Integrity Field.
2370 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2371 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2372 {
2373 struct scsi_device *sdp = sdkp->device;
2374 u8 type;
2375
2376 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2377 sdkp->protection_type = 0;
2378 return 0;
2379 }
2380
2381 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2382
2383 if (type > T10_PI_TYPE3_PROTECTION) {
2384 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2385 " protection type %u. Disabling disk!\n",
2386 type);
2387 sdkp->protection_type = 0;
2388 return -ENODEV;
2389 }
2390
2391 sdkp->protection_type = type;
2392
2393 return 0;
2394 }
2395
sd_config_protection(struct scsi_disk * sdkp)2396 static void sd_config_protection(struct scsi_disk *sdkp)
2397 {
2398 struct scsi_device *sdp = sdkp->device;
2399
2400 sd_dif_config_host(sdkp);
2401
2402 if (!sdkp->protection_type)
2403 return;
2404
2405 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2406 sd_first_printk(KERN_NOTICE, sdkp,
2407 "Disabling DIF Type %u protection\n",
2408 sdkp->protection_type);
2409 sdkp->protection_type = 0;
2410 }
2411
2412 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2413 sdkp->protection_type);
2414 }
2415
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2416 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2417 struct scsi_sense_hdr *sshdr, int sense_valid,
2418 int the_result)
2419 {
2420 if (sense_valid)
2421 sd_print_sense_hdr(sdkp, sshdr);
2422 else
2423 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2424
2425 /*
2426 * Set dirty bit for removable devices if not ready -
2427 * sometimes drives will not report this properly.
2428 */
2429 if (sdp->removable &&
2430 sense_valid && sshdr->sense_key == NOT_READY)
2431 set_media_not_present(sdkp);
2432
2433 /*
2434 * We used to set media_present to 0 here to indicate no media
2435 * in the drive, but some drives fail read capacity even with
2436 * media present, so we can't do that.
2437 */
2438 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2439 }
2440
2441 #define RC16_LEN 32
2442 #if RC16_LEN > SD_BUF_SIZE
2443 #error RC16_LEN must not be more than SD_BUF_SIZE
2444 #endif
2445
2446 #define READ_CAPACITY_RETRIES_ON_RESET 10
2447
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2448 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2449 unsigned char *buffer)
2450 {
2451 unsigned char cmd[16];
2452 struct scsi_sense_hdr sshdr;
2453 const struct scsi_exec_args exec_args = {
2454 .sshdr = &sshdr,
2455 };
2456 int sense_valid = 0;
2457 int the_result;
2458 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2459 unsigned int alignment;
2460 unsigned long long lba;
2461 unsigned sector_size;
2462
2463 if (sdp->no_read_capacity_16)
2464 return -EINVAL;
2465
2466 do {
2467 memset(cmd, 0, 16);
2468 cmd[0] = SERVICE_ACTION_IN_16;
2469 cmd[1] = SAI_READ_CAPACITY_16;
2470 cmd[13] = RC16_LEN;
2471 memset(buffer, 0, RC16_LEN);
2472
2473 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2474 buffer, RC16_LEN, SD_TIMEOUT,
2475 sdkp->max_retries, &exec_args);
2476
2477 if (media_not_present(sdkp, &sshdr))
2478 return -ENODEV;
2479
2480 if (the_result > 0) {
2481 sense_valid = scsi_sense_valid(&sshdr);
2482 if (sense_valid &&
2483 sshdr.sense_key == ILLEGAL_REQUEST &&
2484 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2485 sshdr.ascq == 0x00)
2486 /* Invalid Command Operation Code or
2487 * Invalid Field in CDB, just retry
2488 * silently with RC10 */
2489 return -EINVAL;
2490 if (sense_valid &&
2491 sshdr.sense_key == UNIT_ATTENTION &&
2492 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2493 /* Device reset might occur several times,
2494 * give it one more chance */
2495 if (--reset_retries > 0)
2496 continue;
2497 }
2498 retries--;
2499
2500 } while (the_result && retries);
2501
2502 if (the_result) {
2503 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2504 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2505 return -EINVAL;
2506 }
2507
2508 sector_size = get_unaligned_be32(&buffer[8]);
2509 lba = get_unaligned_be64(&buffer[0]);
2510
2511 if (sd_read_protection_type(sdkp, buffer) < 0) {
2512 sdkp->capacity = 0;
2513 return -ENODEV;
2514 }
2515
2516 /* Logical blocks per physical block exponent */
2517 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2518
2519 /* RC basis */
2520 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2521
2522 /* Lowest aligned logical block */
2523 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2524 blk_queue_alignment_offset(sdp->request_queue, alignment);
2525 if (alignment && sdkp->first_scan)
2526 sd_printk(KERN_NOTICE, sdkp,
2527 "physical block alignment offset: %u\n", alignment);
2528
2529 if (buffer[14] & 0x80) { /* LBPME */
2530 sdkp->lbpme = 1;
2531
2532 if (buffer[14] & 0x40) /* LBPRZ */
2533 sdkp->lbprz = 1;
2534
2535 sd_config_discard(sdkp, SD_LBP_WS16);
2536 }
2537
2538 sdkp->capacity = lba + 1;
2539 return sector_size;
2540 }
2541
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2542 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2543 unsigned char *buffer)
2544 {
2545 unsigned char cmd[16];
2546 struct scsi_sense_hdr sshdr;
2547 const struct scsi_exec_args exec_args = {
2548 .sshdr = &sshdr,
2549 };
2550 int sense_valid = 0;
2551 int the_result;
2552 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2553 sector_t lba;
2554 unsigned sector_size;
2555
2556 do {
2557 cmd[0] = READ_CAPACITY;
2558 memset(&cmd[1], 0, 9);
2559 memset(buffer, 0, 8);
2560
2561 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2562 8, SD_TIMEOUT, sdkp->max_retries,
2563 &exec_args);
2564
2565 if (media_not_present(sdkp, &sshdr))
2566 return -ENODEV;
2567
2568 if (the_result > 0) {
2569 sense_valid = scsi_sense_valid(&sshdr);
2570 if (sense_valid &&
2571 sshdr.sense_key == UNIT_ATTENTION &&
2572 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2573 /* Device reset might occur several times,
2574 * give it one more chance */
2575 if (--reset_retries > 0)
2576 continue;
2577 }
2578 retries--;
2579
2580 } while (the_result && retries);
2581
2582 if (the_result) {
2583 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2584 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2585 return -EINVAL;
2586 }
2587
2588 sector_size = get_unaligned_be32(&buffer[4]);
2589 lba = get_unaligned_be32(&buffer[0]);
2590
2591 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2592 /* Some buggy (usb cardreader) devices return an lba of
2593 0xffffffff when the want to report a size of 0 (with
2594 which they really mean no media is present) */
2595 sdkp->capacity = 0;
2596 sdkp->physical_block_size = sector_size;
2597 return sector_size;
2598 }
2599
2600 sdkp->capacity = lba + 1;
2601 sdkp->physical_block_size = sector_size;
2602 return sector_size;
2603 }
2604
sd_try_rc16_first(struct scsi_device * sdp)2605 static int sd_try_rc16_first(struct scsi_device *sdp)
2606 {
2607 if (sdp->host->max_cmd_len < 16)
2608 return 0;
2609 if (sdp->try_rc_10_first)
2610 return 0;
2611 if (sdp->scsi_level > SCSI_SPC_2)
2612 return 1;
2613 if (scsi_device_protection(sdp))
2614 return 1;
2615 return 0;
2616 }
2617
2618 /*
2619 * read disk capacity
2620 */
2621 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2622 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2623 {
2624 int sector_size;
2625 struct scsi_device *sdp = sdkp->device;
2626
2627 if (sd_try_rc16_first(sdp)) {
2628 sector_size = read_capacity_16(sdkp, sdp, buffer);
2629 if (sector_size == -EOVERFLOW)
2630 goto got_data;
2631 if (sector_size == -ENODEV)
2632 return;
2633 if (sector_size < 0)
2634 sector_size = read_capacity_10(sdkp, sdp, buffer);
2635 if (sector_size < 0)
2636 return;
2637 } else {
2638 sector_size = read_capacity_10(sdkp, sdp, buffer);
2639 if (sector_size == -EOVERFLOW)
2640 goto got_data;
2641 if (sector_size < 0)
2642 return;
2643 if ((sizeof(sdkp->capacity) > 4) &&
2644 (sdkp->capacity > 0xffffffffULL)) {
2645 int old_sector_size = sector_size;
2646 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2647 "Trying to use READ CAPACITY(16).\n");
2648 sector_size = read_capacity_16(sdkp, sdp, buffer);
2649 if (sector_size < 0) {
2650 sd_printk(KERN_NOTICE, sdkp,
2651 "Using 0xffffffff as device size\n");
2652 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2653 sector_size = old_sector_size;
2654 goto got_data;
2655 }
2656 /* Remember that READ CAPACITY(16) succeeded */
2657 sdp->try_rc_10_first = 0;
2658 }
2659 }
2660
2661 /* Some devices are known to return the total number of blocks,
2662 * not the highest block number. Some devices have versions
2663 * which do this and others which do not. Some devices we might
2664 * suspect of doing this but we don't know for certain.
2665 *
2666 * If we know the reported capacity is wrong, decrement it. If
2667 * we can only guess, then assume the number of blocks is even
2668 * (usually true but not always) and err on the side of lowering
2669 * the capacity.
2670 */
2671 if (sdp->fix_capacity ||
2672 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2673 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2674 "from its reported value: %llu\n",
2675 (unsigned long long) sdkp->capacity);
2676 --sdkp->capacity;
2677 }
2678
2679 got_data:
2680 if (sector_size == 0) {
2681 sector_size = 512;
2682 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2683 "assuming 512.\n");
2684 }
2685
2686 if (sector_size != 512 &&
2687 sector_size != 1024 &&
2688 sector_size != 2048 &&
2689 sector_size != 4096) {
2690 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2691 sector_size);
2692 /*
2693 * The user might want to re-format the drive with
2694 * a supported sectorsize. Once this happens, it
2695 * would be relatively trivial to set the thing up.
2696 * For this reason, we leave the thing in the table.
2697 */
2698 sdkp->capacity = 0;
2699 /*
2700 * set a bogus sector size so the normal read/write
2701 * logic in the block layer will eventually refuse any
2702 * request on this device without tripping over power
2703 * of two sector size assumptions
2704 */
2705 sector_size = 512;
2706 }
2707 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2708 blk_queue_physical_block_size(sdp->request_queue,
2709 sdkp->physical_block_size);
2710 sdkp->device->sector_size = sector_size;
2711
2712 if (sdkp->capacity > 0xffffffff)
2713 sdp->use_16_for_rw = 1;
2714
2715 }
2716
2717 /*
2718 * Print disk capacity
2719 */
2720 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2721 sd_print_capacity(struct scsi_disk *sdkp,
2722 sector_t old_capacity)
2723 {
2724 int sector_size = sdkp->device->sector_size;
2725 char cap_str_2[10], cap_str_10[10];
2726
2727 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2728 return;
2729
2730 string_get_size(sdkp->capacity, sector_size,
2731 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2732 string_get_size(sdkp->capacity, sector_size,
2733 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2734
2735 sd_printk(KERN_NOTICE, sdkp,
2736 "%llu %d-byte logical blocks: (%s/%s)\n",
2737 (unsigned long long)sdkp->capacity,
2738 sector_size, cap_str_10, cap_str_2);
2739
2740 if (sdkp->physical_block_size != sector_size)
2741 sd_printk(KERN_NOTICE, sdkp,
2742 "%u-byte physical blocks\n",
2743 sdkp->physical_block_size);
2744 }
2745
2746 /* called with buffer of length 512 */
2747 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2748 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2749 unsigned char *buffer, int len, struct scsi_mode_data *data,
2750 struct scsi_sense_hdr *sshdr)
2751 {
2752 /*
2753 * If we must use MODE SENSE(10), make sure that the buffer length
2754 * is at least 8 bytes so that the mode sense header fits.
2755 */
2756 if (sdkp->device->use_10_for_ms && len < 8)
2757 len = 8;
2758
2759 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2760 SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2761 }
2762
2763 /*
2764 * read write protect setting, if possible - called only in sd_revalidate_disk()
2765 * called with buffer of length SD_BUF_SIZE
2766 */
2767 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2768 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2769 {
2770 int res;
2771 struct scsi_device *sdp = sdkp->device;
2772 struct scsi_mode_data data;
2773 int old_wp = sdkp->write_prot;
2774
2775 set_disk_ro(sdkp->disk, 0);
2776 if (sdp->skip_ms_page_3f) {
2777 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2778 return;
2779 }
2780
2781 if (sdp->use_192_bytes_for_3f) {
2782 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2783 } else {
2784 /*
2785 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2786 * We have to start carefully: some devices hang if we ask
2787 * for more than is available.
2788 */
2789 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2790
2791 /*
2792 * Second attempt: ask for page 0 When only page 0 is
2793 * implemented, a request for page 3F may return Sense Key
2794 * 5: Illegal Request, Sense Code 24: Invalid field in
2795 * CDB.
2796 */
2797 if (res < 0)
2798 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2799
2800 /*
2801 * Third attempt: ask 255 bytes, as we did earlier.
2802 */
2803 if (res < 0)
2804 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2805 &data, NULL);
2806 }
2807
2808 if (res < 0) {
2809 sd_first_printk(KERN_WARNING, sdkp,
2810 "Test WP failed, assume Write Enabled\n");
2811 } else {
2812 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2813 set_disk_ro(sdkp->disk, sdkp->write_prot);
2814 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2815 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2816 sdkp->write_prot ? "on" : "off");
2817 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2818 }
2819 }
2820 }
2821
2822 /*
2823 * sd_read_cache_type - called only from sd_revalidate_disk()
2824 * called with buffer of length SD_BUF_SIZE
2825 */
2826 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2827 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2828 {
2829 int len = 0, res;
2830 struct scsi_device *sdp = sdkp->device;
2831
2832 int dbd;
2833 int modepage;
2834 int first_len;
2835 struct scsi_mode_data data;
2836 struct scsi_sense_hdr sshdr;
2837 int old_wce = sdkp->WCE;
2838 int old_rcd = sdkp->RCD;
2839 int old_dpofua = sdkp->DPOFUA;
2840
2841
2842 if (sdkp->cache_override)
2843 return;
2844
2845 first_len = 4;
2846 if (sdp->skip_ms_page_8) {
2847 if (sdp->type == TYPE_RBC)
2848 goto defaults;
2849 else {
2850 if (sdp->skip_ms_page_3f)
2851 goto defaults;
2852 modepage = 0x3F;
2853 if (sdp->use_192_bytes_for_3f)
2854 first_len = 192;
2855 dbd = 0;
2856 }
2857 } else if (sdp->type == TYPE_RBC) {
2858 modepage = 6;
2859 dbd = 8;
2860 } else {
2861 modepage = 8;
2862 dbd = 0;
2863 }
2864
2865 /* cautiously ask */
2866 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2867 &data, &sshdr);
2868
2869 if (res < 0)
2870 goto bad_sense;
2871
2872 if (!data.header_length) {
2873 modepage = 6;
2874 first_len = 0;
2875 sd_first_printk(KERN_ERR, sdkp,
2876 "Missing header in MODE_SENSE response\n");
2877 }
2878
2879 /* that went OK, now ask for the proper length */
2880 len = data.length;
2881
2882 /*
2883 * We're only interested in the first three bytes, actually.
2884 * But the data cache page is defined for the first 20.
2885 */
2886 if (len < 3)
2887 goto bad_sense;
2888 else if (len > SD_BUF_SIZE) {
2889 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2890 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2891 len = SD_BUF_SIZE;
2892 }
2893 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2894 len = 192;
2895
2896 /* Get the data */
2897 if (len > first_len)
2898 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2899 &data, &sshdr);
2900
2901 if (!res) {
2902 int offset = data.header_length + data.block_descriptor_length;
2903
2904 while (offset < len) {
2905 u8 page_code = buffer[offset] & 0x3F;
2906 u8 spf = buffer[offset] & 0x40;
2907
2908 if (page_code == 8 || page_code == 6) {
2909 /* We're interested only in the first 3 bytes.
2910 */
2911 if (len - offset <= 2) {
2912 sd_first_printk(KERN_ERR, sdkp,
2913 "Incomplete mode parameter "
2914 "data\n");
2915 goto defaults;
2916 } else {
2917 modepage = page_code;
2918 goto Page_found;
2919 }
2920 } else {
2921 /* Go to the next page */
2922 if (spf && len - offset > 3)
2923 offset += 4 + (buffer[offset+2] << 8) +
2924 buffer[offset+3];
2925 else if (!spf && len - offset > 1)
2926 offset += 2 + buffer[offset+1];
2927 else {
2928 sd_first_printk(KERN_ERR, sdkp,
2929 "Incomplete mode "
2930 "parameter data\n");
2931 goto defaults;
2932 }
2933 }
2934 }
2935
2936 sd_first_printk(KERN_WARNING, sdkp,
2937 "No Caching mode page found\n");
2938 goto defaults;
2939
2940 Page_found:
2941 if (modepage == 8) {
2942 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2943 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2944 } else {
2945 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2946 sdkp->RCD = 0;
2947 }
2948
2949 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2950 if (sdp->broken_fua) {
2951 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2952 sdkp->DPOFUA = 0;
2953 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2954 !sdkp->device->use_16_for_rw) {
2955 sd_first_printk(KERN_NOTICE, sdkp,
2956 "Uses READ/WRITE(6), disabling FUA\n");
2957 sdkp->DPOFUA = 0;
2958 }
2959
2960 /* No cache flush allowed for write protected devices */
2961 if (sdkp->WCE && sdkp->write_prot)
2962 sdkp->WCE = 0;
2963
2964 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2965 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2966 sd_printk(KERN_NOTICE, sdkp,
2967 "Write cache: %s, read cache: %s, %s\n",
2968 sdkp->WCE ? "enabled" : "disabled",
2969 sdkp->RCD ? "disabled" : "enabled",
2970 sdkp->DPOFUA ? "supports DPO and FUA"
2971 : "doesn't support DPO or FUA");
2972
2973 return;
2974 }
2975
2976 bad_sense:
2977 if (scsi_sense_valid(&sshdr) &&
2978 sshdr.sense_key == ILLEGAL_REQUEST &&
2979 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2980 /* Invalid field in CDB */
2981 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2982 else
2983 sd_first_printk(KERN_ERR, sdkp,
2984 "Asking for cache data failed\n");
2985
2986 defaults:
2987 if (sdp->wce_default_on) {
2988 sd_first_printk(KERN_NOTICE, sdkp,
2989 "Assuming drive cache: write back\n");
2990 sdkp->WCE = 1;
2991 } else {
2992 sd_first_printk(KERN_WARNING, sdkp,
2993 "Assuming drive cache: write through\n");
2994 sdkp->WCE = 0;
2995 }
2996 sdkp->RCD = 0;
2997 sdkp->DPOFUA = 0;
2998 }
2999
3000 /*
3001 * The ATO bit indicates whether the DIF application tag is available
3002 * for use by the operating system.
3003 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)3004 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3005 {
3006 int res, offset;
3007 struct scsi_device *sdp = sdkp->device;
3008 struct scsi_mode_data data;
3009 struct scsi_sense_hdr sshdr;
3010
3011 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3012 return;
3013
3014 if (sdkp->protection_type == 0)
3015 return;
3016
3017 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3018 sdkp->max_retries, &data, &sshdr);
3019
3020 if (res < 0 || !data.header_length ||
3021 data.length < 6) {
3022 sd_first_printk(KERN_WARNING, sdkp,
3023 "getting Control mode page failed, assume no ATO\n");
3024
3025 if (scsi_sense_valid(&sshdr))
3026 sd_print_sense_hdr(sdkp, &sshdr);
3027
3028 return;
3029 }
3030
3031 offset = data.header_length + data.block_descriptor_length;
3032
3033 if ((buffer[offset] & 0x3f) != 0x0a) {
3034 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3035 return;
3036 }
3037
3038 if ((buffer[offset + 5] & 0x80) == 0)
3039 return;
3040
3041 sdkp->ATO = 1;
3042
3043 return;
3044 }
3045
3046 /**
3047 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3048 * @sdkp: disk to query
3049 */
sd_read_block_limits(struct scsi_disk * sdkp)3050 static void sd_read_block_limits(struct scsi_disk *sdkp)
3051 {
3052 struct scsi_vpd *vpd;
3053
3054 rcu_read_lock();
3055
3056 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3057 if (!vpd || vpd->len < 16)
3058 goto out;
3059
3060 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3061 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3062 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3063
3064 if (vpd->len >= 64) {
3065 unsigned int lba_count, desc_count;
3066
3067 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3068
3069 if (!sdkp->lbpme)
3070 goto out;
3071
3072 lba_count = get_unaligned_be32(&vpd->data[20]);
3073 desc_count = get_unaligned_be32(&vpd->data[24]);
3074
3075 if (lba_count && desc_count)
3076 sdkp->max_unmap_blocks = lba_count;
3077
3078 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3079
3080 if (vpd->data[32] & 0x80)
3081 sdkp->unmap_alignment =
3082 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3083
3084 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3085
3086 if (sdkp->max_unmap_blocks)
3087 sd_config_discard(sdkp, SD_LBP_UNMAP);
3088 else
3089 sd_config_discard(sdkp, SD_LBP_WS16);
3090
3091 } else { /* LBP VPD page tells us what to use */
3092 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3093 sd_config_discard(sdkp, SD_LBP_UNMAP);
3094 else if (sdkp->lbpws)
3095 sd_config_discard(sdkp, SD_LBP_WS16);
3096 else if (sdkp->lbpws10)
3097 sd_config_discard(sdkp, SD_LBP_WS10);
3098 else
3099 sd_config_discard(sdkp, SD_LBP_DISABLE);
3100 }
3101 }
3102
3103 out:
3104 rcu_read_unlock();
3105 }
3106
3107 /**
3108 * sd_read_block_characteristics - Query block dev. characteristics
3109 * @sdkp: disk to query
3110 */
sd_read_block_characteristics(struct scsi_disk * sdkp)3111 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3112 {
3113 struct request_queue *q = sdkp->disk->queue;
3114 struct scsi_vpd *vpd;
3115 u16 rot;
3116 u8 zoned;
3117
3118 rcu_read_lock();
3119 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3120
3121 if (!vpd || vpd->len <= 8) {
3122 rcu_read_unlock();
3123 return;
3124 }
3125
3126 rot = get_unaligned_be16(&vpd->data[4]);
3127 zoned = (vpd->data[8] >> 4) & 3;
3128 rcu_read_unlock();
3129
3130 if (rot == 1) {
3131 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3132 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3133 }
3134
3135 if (sdkp->device->type == TYPE_ZBC) {
3136 /*
3137 * Host-managed: Per ZBC and ZAC specifications, writes in
3138 * sequential write required zones of host-managed devices must
3139 * be aligned to the device physical block size.
3140 */
3141 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3142 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3143 } else {
3144 sdkp->zoned = zoned;
3145 if (sdkp->zoned == 1) {
3146 /* Host-aware */
3147 disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3148 } else {
3149 /* Regular disk or drive managed disk */
3150 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3151 }
3152 }
3153
3154 if (!sdkp->first_scan)
3155 return;
3156
3157 if (blk_queue_is_zoned(q)) {
3158 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3159 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3160 } else {
3161 if (sdkp->zoned == 1)
3162 sd_printk(KERN_NOTICE, sdkp,
3163 "Host-aware SMR disk used as regular disk\n");
3164 else if (sdkp->zoned == 2)
3165 sd_printk(KERN_NOTICE, sdkp,
3166 "Drive-managed SMR disk\n");
3167 }
3168 }
3169
3170 /**
3171 * sd_read_block_provisioning - Query provisioning VPD page
3172 * @sdkp: disk to query
3173 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3174 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3175 {
3176 struct scsi_vpd *vpd;
3177
3178 if (sdkp->lbpme == 0)
3179 return;
3180
3181 rcu_read_lock();
3182 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3183
3184 if (!vpd || vpd->len < 8) {
3185 rcu_read_unlock();
3186 return;
3187 }
3188
3189 sdkp->lbpvpd = 1;
3190 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3191 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3192 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3193 rcu_read_unlock();
3194 }
3195
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3196 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3197 {
3198 struct scsi_device *sdev = sdkp->device;
3199
3200 if (sdev->host->no_write_same) {
3201 sdev->no_write_same = 1;
3202
3203 return;
3204 }
3205
3206 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3207 struct scsi_vpd *vpd;
3208
3209 sdev->no_report_opcodes = 1;
3210
3211 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3212 * CODES is unsupported and the device has an ATA
3213 * Information VPD page (SAT).
3214 */
3215 rcu_read_lock();
3216 vpd = rcu_dereference(sdev->vpd_pg89);
3217 if (vpd)
3218 sdev->no_write_same = 1;
3219 rcu_read_unlock();
3220 }
3221
3222 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3223 sdkp->ws16 = 1;
3224
3225 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3226 sdkp->ws10 = 1;
3227 }
3228
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3229 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3230 {
3231 struct scsi_device *sdev = sdkp->device;
3232
3233 if (!sdev->security_supported)
3234 return;
3235
3236 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3237 SECURITY_PROTOCOL_IN, 0) == 1 &&
3238 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3239 SECURITY_PROTOCOL_OUT, 0) == 1)
3240 sdkp->security = 1;
3241 }
3242
sd64_to_sectors(struct scsi_disk * sdkp,u8 * buf)3243 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3244 {
3245 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3246 }
3247
3248 /**
3249 * sd_read_cpr - Query concurrent positioning ranges
3250 * @sdkp: disk to query
3251 */
sd_read_cpr(struct scsi_disk * sdkp)3252 static void sd_read_cpr(struct scsi_disk *sdkp)
3253 {
3254 struct blk_independent_access_ranges *iars = NULL;
3255 unsigned char *buffer = NULL;
3256 unsigned int nr_cpr = 0;
3257 int i, vpd_len, buf_len = SD_BUF_SIZE;
3258 u8 *desc;
3259
3260 /*
3261 * We need to have the capacity set first for the block layer to be
3262 * able to check the ranges.
3263 */
3264 if (sdkp->first_scan)
3265 return;
3266
3267 if (!sdkp->capacity)
3268 goto out;
3269
3270 /*
3271 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3272 * leading to a maximum page size of 64 + 256*32 bytes.
3273 */
3274 buf_len = 64 + 256*32;
3275 buffer = kmalloc(buf_len, GFP_KERNEL);
3276 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3277 goto out;
3278
3279 /* We must have at least a 64B header and one 32B range descriptor */
3280 vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3281 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3282 sd_printk(KERN_ERR, sdkp,
3283 "Invalid Concurrent Positioning Ranges VPD page\n");
3284 goto out;
3285 }
3286
3287 nr_cpr = (vpd_len - 64) / 32;
3288 if (nr_cpr == 1) {
3289 nr_cpr = 0;
3290 goto out;
3291 }
3292
3293 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3294 if (!iars) {
3295 nr_cpr = 0;
3296 goto out;
3297 }
3298
3299 desc = &buffer[64];
3300 for (i = 0; i < nr_cpr; i++, desc += 32) {
3301 if (desc[0] != i) {
3302 sd_printk(KERN_ERR, sdkp,
3303 "Invalid Concurrent Positioning Range number\n");
3304 nr_cpr = 0;
3305 break;
3306 }
3307
3308 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3309 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3310 }
3311
3312 out:
3313 disk_set_independent_access_ranges(sdkp->disk, iars);
3314 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3315 sd_printk(KERN_NOTICE, sdkp,
3316 "%u concurrent positioning ranges\n", nr_cpr);
3317 sdkp->nr_actuators = nr_cpr;
3318 }
3319
3320 kfree(buffer);
3321 }
3322
sd_validate_min_xfer_size(struct scsi_disk * sdkp)3323 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3324 {
3325 struct scsi_device *sdp = sdkp->device;
3326 unsigned int min_xfer_bytes =
3327 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3328
3329 if (sdkp->min_xfer_blocks == 0)
3330 return false;
3331
3332 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3333 sd_first_printk(KERN_WARNING, sdkp,
3334 "Preferred minimum I/O size %u bytes not a " \
3335 "multiple of physical block size (%u bytes)\n",
3336 min_xfer_bytes, sdkp->physical_block_size);
3337 sdkp->min_xfer_blocks = 0;
3338 return false;
3339 }
3340
3341 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3342 min_xfer_bytes);
3343 return true;
3344 }
3345
3346 /*
3347 * Determine the device's preferred I/O size for reads and writes
3348 * unless the reported value is unreasonably small, large, not a
3349 * multiple of the physical block size, or simply garbage.
3350 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3351 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3352 unsigned int dev_max)
3353 {
3354 struct scsi_device *sdp = sdkp->device;
3355 unsigned int opt_xfer_bytes =
3356 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3357 unsigned int min_xfer_bytes =
3358 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3359
3360 if (sdkp->opt_xfer_blocks == 0)
3361 return false;
3362
3363 if (sdkp->opt_xfer_blocks > dev_max) {
3364 sd_first_printk(KERN_WARNING, sdkp,
3365 "Optimal transfer size %u logical blocks " \
3366 "> dev_max (%u logical blocks)\n",
3367 sdkp->opt_xfer_blocks, dev_max);
3368 return false;
3369 }
3370
3371 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3372 sd_first_printk(KERN_WARNING, sdkp,
3373 "Optimal transfer size %u logical blocks " \
3374 "> sd driver limit (%u logical blocks)\n",
3375 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3376 return false;
3377 }
3378
3379 if (opt_xfer_bytes < PAGE_SIZE) {
3380 sd_first_printk(KERN_WARNING, sdkp,
3381 "Optimal transfer size %u bytes < " \
3382 "PAGE_SIZE (%u bytes)\n",
3383 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3384 return false;
3385 }
3386
3387 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3388 sd_first_printk(KERN_WARNING, sdkp,
3389 "Optimal transfer size %u bytes not a " \
3390 "multiple of preferred minimum block " \
3391 "size (%u bytes)\n",
3392 opt_xfer_bytes, min_xfer_bytes);
3393 return false;
3394 }
3395
3396 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3397 sd_first_printk(KERN_WARNING, sdkp,
3398 "Optimal transfer size %u bytes not a " \
3399 "multiple of physical block size (%u bytes)\n",
3400 opt_xfer_bytes, sdkp->physical_block_size);
3401 return false;
3402 }
3403
3404 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3405 opt_xfer_bytes);
3406 return true;
3407 }
3408
sd_read_block_zero(struct scsi_disk * sdkp)3409 static void sd_read_block_zero(struct scsi_disk *sdkp)
3410 {
3411 struct scsi_device *sdev = sdkp->device;
3412 unsigned int buf_len = sdev->sector_size;
3413 u8 *buffer, cmd[16] = { };
3414
3415 buffer = kmalloc(buf_len, GFP_KERNEL);
3416 if (!buffer)
3417 return;
3418
3419 if (sdev->use_16_for_rw) {
3420 cmd[0] = READ_16;
3421 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3422 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3423 } else {
3424 cmd[0] = READ_10;
3425 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3426 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3427 }
3428
3429 scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3430 SD_TIMEOUT, sdkp->max_retries, NULL);
3431 kfree(buffer);
3432 }
3433
3434 /**
3435 * sd_revalidate_disk - called the first time a new disk is seen,
3436 * performs disk spin up, read_capacity, etc.
3437 * @disk: struct gendisk we care about
3438 **/
sd_revalidate_disk(struct gendisk * disk)3439 static int sd_revalidate_disk(struct gendisk *disk)
3440 {
3441 struct scsi_disk *sdkp = scsi_disk(disk);
3442 struct scsi_device *sdp = sdkp->device;
3443 struct request_queue *q = sdkp->disk->queue;
3444 sector_t old_capacity = sdkp->capacity;
3445 unsigned char *buffer;
3446 unsigned int dev_max, rw_max;
3447
3448 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3449 "sd_revalidate_disk\n"));
3450
3451 /*
3452 * If the device is offline, don't try and read capacity or any
3453 * of the other niceties.
3454 */
3455 if (!scsi_device_online(sdp))
3456 goto out;
3457
3458 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3459 if (!buffer) {
3460 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3461 "allocation failure.\n");
3462 goto out;
3463 }
3464
3465 sd_spinup_disk(sdkp);
3466
3467 /*
3468 * Without media there is no reason to ask; moreover, some devices
3469 * react badly if we do.
3470 */
3471 if (sdkp->media_present) {
3472 sd_read_capacity(sdkp, buffer);
3473 /*
3474 * Some USB/UAS devices return generic values for mode pages
3475 * until the media has been accessed. Trigger a READ operation
3476 * to force the device to populate mode pages.
3477 */
3478 if (sdp->read_before_ms)
3479 sd_read_block_zero(sdkp);
3480 /*
3481 * set the default to rotational. All non-rotational devices
3482 * support the block characteristics VPD page, which will
3483 * cause this to be updated correctly and any device which
3484 * doesn't support it should be treated as rotational.
3485 */
3486 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3487 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3488
3489 if (scsi_device_supports_vpd(sdp)) {
3490 sd_read_block_provisioning(sdkp);
3491 sd_read_block_limits(sdkp);
3492 sd_read_block_characteristics(sdkp);
3493 sd_zbc_read_zones(sdkp, buffer);
3494 sd_read_cpr(sdkp);
3495 }
3496
3497 sd_print_capacity(sdkp, old_capacity);
3498
3499 sd_read_write_protect_flag(sdkp, buffer);
3500 sd_read_cache_type(sdkp, buffer);
3501 sd_read_app_tag_own(sdkp, buffer);
3502 sd_read_write_same(sdkp, buffer);
3503 sd_read_security(sdkp, buffer);
3504 sd_config_protection(sdkp);
3505 }
3506
3507 /*
3508 * We now have all cache related info, determine how we deal
3509 * with flush requests.
3510 */
3511 sd_set_flush_flag(sdkp);
3512
3513 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3514 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3515
3516 /* Some devices report a maximum block count for READ/WRITE requests. */
3517 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3518 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3519
3520 if (sd_validate_min_xfer_size(sdkp))
3521 blk_queue_io_min(sdkp->disk->queue,
3522 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3523 else
3524 blk_queue_io_min(sdkp->disk->queue, 0);
3525
3526 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3527 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3528 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3529 } else {
3530 q->limits.io_opt = 0;
3531 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3532 (sector_t)BLK_DEF_MAX_SECTORS);
3533 }
3534
3535 /*
3536 * Limit default to SCSI host optimal sector limit if set. There may be
3537 * an impact on performance for when the size of a request exceeds this
3538 * host limit.
3539 */
3540 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3541
3542 /* Do not exceed controller limit */
3543 rw_max = min(rw_max, queue_max_hw_sectors(q));
3544
3545 /*
3546 * Only update max_sectors if previously unset or if the current value
3547 * exceeds the capabilities of the hardware.
3548 */
3549 if (sdkp->first_scan ||
3550 q->limits.max_sectors > q->limits.max_dev_sectors ||
3551 q->limits.max_sectors > q->limits.max_hw_sectors)
3552 q->limits.max_sectors = rw_max;
3553
3554 sdkp->first_scan = 0;
3555
3556 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3557 sd_config_write_same(sdkp);
3558 kfree(buffer);
3559
3560 /*
3561 * For a zoned drive, revalidating the zones can be done only once
3562 * the gendisk capacity is set. So if this fails, set back the gendisk
3563 * capacity to 0.
3564 */
3565 if (sd_zbc_revalidate_zones(sdkp))
3566 set_capacity_and_notify(disk, 0);
3567
3568 out:
3569 return 0;
3570 }
3571
3572 /**
3573 * sd_unlock_native_capacity - unlock native capacity
3574 * @disk: struct gendisk to set capacity for
3575 *
3576 * Block layer calls this function if it detects that partitions
3577 * on @disk reach beyond the end of the device. If the SCSI host
3578 * implements ->unlock_native_capacity() method, it's invoked to
3579 * give it a chance to adjust the device capacity.
3580 *
3581 * CONTEXT:
3582 * Defined by block layer. Might sleep.
3583 */
sd_unlock_native_capacity(struct gendisk * disk)3584 static void sd_unlock_native_capacity(struct gendisk *disk)
3585 {
3586 struct scsi_device *sdev = scsi_disk(disk)->device;
3587
3588 if (sdev->host->hostt->unlock_native_capacity)
3589 sdev->host->hostt->unlock_native_capacity(sdev);
3590 }
3591
3592 /**
3593 * sd_format_disk_name - format disk name
3594 * @prefix: name prefix - ie. "sd" for SCSI disks
3595 * @index: index of the disk to format name for
3596 * @buf: output buffer
3597 * @buflen: length of the output buffer
3598 *
3599 * SCSI disk names starts at sda. The 26th device is sdz and the
3600 * 27th is sdaa. The last one for two lettered suffix is sdzz
3601 * which is followed by sdaaa.
3602 *
3603 * This is basically 26 base counting with one extra 'nil' entry
3604 * at the beginning from the second digit on and can be
3605 * determined using similar method as 26 base conversion with the
3606 * index shifted -1 after each digit is computed.
3607 *
3608 * CONTEXT:
3609 * Don't care.
3610 *
3611 * RETURNS:
3612 * 0 on success, -errno on failure.
3613 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3614 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3615 {
3616 const int base = 'z' - 'a' + 1;
3617 char *begin = buf + strlen(prefix);
3618 char *end = buf + buflen;
3619 char *p;
3620 int unit;
3621
3622 p = end - 1;
3623 *p = '\0';
3624 unit = base;
3625 do {
3626 if (p == begin)
3627 return -EINVAL;
3628 *--p = 'a' + (index % unit);
3629 index = (index / unit) - 1;
3630 } while (index >= 0);
3631
3632 memmove(begin, p, end - p);
3633 memcpy(buf, prefix, strlen(prefix));
3634
3635 return 0;
3636 }
3637
3638 /**
3639 * sd_probe - called during driver initialization and whenever a
3640 * new scsi device is attached to the system. It is called once
3641 * for each scsi device (not just disks) present.
3642 * @dev: pointer to device object
3643 *
3644 * Returns 0 if successful (or not interested in this scsi device
3645 * (e.g. scanner)); 1 when there is an error.
3646 *
3647 * Note: this function is invoked from the scsi mid-level.
3648 * This function sets up the mapping between a given
3649 * <host,channel,id,lun> (found in sdp) and new device name
3650 * (e.g. /dev/sda). More precisely it is the block device major
3651 * and minor number that is chosen here.
3652 *
3653 * Assume sd_probe is not re-entrant (for time being)
3654 * Also think about sd_probe() and sd_remove() running coincidentally.
3655 **/
sd_probe(struct device * dev)3656 static int sd_probe(struct device *dev)
3657 {
3658 struct scsi_device *sdp = to_scsi_device(dev);
3659 struct scsi_disk *sdkp;
3660 struct gendisk *gd;
3661 int index;
3662 int error;
3663
3664 scsi_autopm_get_device(sdp);
3665 error = -ENODEV;
3666 if (sdp->type != TYPE_DISK &&
3667 sdp->type != TYPE_ZBC &&
3668 sdp->type != TYPE_MOD &&
3669 sdp->type != TYPE_RBC)
3670 goto out;
3671
3672 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3673 sdev_printk(KERN_WARNING, sdp,
3674 "Unsupported ZBC host-managed device.\n");
3675 goto out;
3676 }
3677
3678 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3679 "sd_probe\n"));
3680
3681 error = -ENOMEM;
3682 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3683 if (!sdkp)
3684 goto out;
3685
3686 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3687 &sd_bio_compl_lkclass);
3688 if (!gd)
3689 goto out_free;
3690
3691 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3692 if (index < 0) {
3693 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3694 goto out_put;
3695 }
3696
3697 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3698 if (error) {
3699 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3700 goto out_free_index;
3701 }
3702
3703 sdkp->device = sdp;
3704 sdkp->disk = gd;
3705 sdkp->index = index;
3706 sdkp->max_retries = SD_MAX_RETRIES;
3707 atomic_set(&sdkp->openers, 0);
3708 atomic_set(&sdkp->device->ioerr_cnt, 0);
3709
3710 if (!sdp->request_queue->rq_timeout) {
3711 if (sdp->type != TYPE_MOD)
3712 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3713 else
3714 blk_queue_rq_timeout(sdp->request_queue,
3715 SD_MOD_TIMEOUT);
3716 }
3717
3718 device_initialize(&sdkp->disk_dev);
3719 sdkp->disk_dev.parent = get_device(dev);
3720 sdkp->disk_dev.class = &sd_disk_class;
3721 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3722
3723 error = device_add(&sdkp->disk_dev);
3724 if (error) {
3725 put_device(&sdkp->disk_dev);
3726 goto out;
3727 }
3728
3729 dev_set_drvdata(dev, sdkp);
3730
3731 gd->major = sd_major((index & 0xf0) >> 4);
3732 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3733 gd->minors = SD_MINORS;
3734
3735 gd->fops = &sd_fops;
3736 gd->private_data = sdkp;
3737
3738 /* defaults, until the device tells us otherwise */
3739 sdp->sector_size = 512;
3740 sdkp->capacity = 0;
3741 sdkp->media_present = 1;
3742 sdkp->write_prot = 0;
3743 sdkp->cache_override = 0;
3744 sdkp->WCE = 0;
3745 sdkp->RCD = 0;
3746 sdkp->ATO = 0;
3747 sdkp->first_scan = 1;
3748 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3749
3750 sd_revalidate_disk(gd);
3751
3752 if (sdp->removable) {
3753 gd->flags |= GENHD_FL_REMOVABLE;
3754 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3755 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3756 }
3757
3758 blk_pm_runtime_init(sdp->request_queue, dev);
3759 if (sdp->rpm_autosuspend) {
3760 pm_runtime_set_autosuspend_delay(dev,
3761 sdp->host->hostt->rpm_autosuspend_delay);
3762 }
3763
3764 error = device_add_disk(dev, gd, NULL);
3765 if (error) {
3766 device_unregister(&sdkp->disk_dev);
3767 put_disk(gd);
3768 goto out;
3769 }
3770
3771 if (sdkp->security) {
3772 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3773 if (sdkp->opal_dev)
3774 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3775 }
3776
3777 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3778 sdp->removable ? "removable " : "");
3779 scsi_autopm_put_device(sdp);
3780
3781 return 0;
3782
3783 out_free_index:
3784 ida_free(&sd_index_ida, index);
3785 out_put:
3786 put_disk(gd);
3787 out_free:
3788 kfree(sdkp);
3789 out:
3790 scsi_autopm_put_device(sdp);
3791 return error;
3792 }
3793
3794 /**
3795 * sd_remove - called whenever a scsi disk (previously recognized by
3796 * sd_probe) is detached from the system. It is called (potentially
3797 * multiple times) during sd module unload.
3798 * @dev: pointer to device object
3799 *
3800 * Note: this function is invoked from the scsi mid-level.
3801 * This function potentially frees up a device name (e.g. /dev/sdc)
3802 * that could be re-used by a subsequent sd_probe().
3803 * This function is not called when the built-in sd driver is "exit-ed".
3804 **/
sd_remove(struct device * dev)3805 static int sd_remove(struct device *dev)
3806 {
3807 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3808
3809 scsi_autopm_get_device(sdkp->device);
3810
3811 device_del(&sdkp->disk_dev);
3812 del_gendisk(sdkp->disk);
3813 if (!sdkp->suspended)
3814 sd_shutdown(dev);
3815
3816 put_disk(sdkp->disk);
3817 return 0;
3818 }
3819
scsi_disk_release(struct device * dev)3820 static void scsi_disk_release(struct device *dev)
3821 {
3822 struct scsi_disk *sdkp = to_scsi_disk(dev);
3823
3824 ida_free(&sd_index_ida, sdkp->index);
3825 sd_zbc_free_zone_info(sdkp);
3826 put_device(&sdkp->device->sdev_gendev);
3827 free_opal_dev(sdkp->opal_dev);
3828
3829 kfree(sdkp);
3830 }
3831
sd_start_stop_device(struct scsi_disk * sdkp,int start)3832 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3833 {
3834 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3835 struct scsi_sense_hdr sshdr;
3836 const struct scsi_exec_args exec_args = {
3837 .sshdr = &sshdr,
3838 .req_flags = BLK_MQ_REQ_PM,
3839 };
3840 struct scsi_device *sdp = sdkp->device;
3841 int res;
3842
3843 if (start)
3844 cmd[4] |= 1; /* START */
3845
3846 if (sdp->start_stop_pwr_cond)
3847 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3848
3849 if (!scsi_device_online(sdp))
3850 return -ENODEV;
3851
3852 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3853 sdkp->max_retries, &exec_args);
3854 if (res) {
3855 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3856 if (res > 0 && scsi_sense_valid(&sshdr)) {
3857 sd_print_sense_hdr(sdkp, &sshdr);
3858 /* 0x3a is medium not present */
3859 if (sshdr.asc == 0x3a)
3860 res = 0;
3861 }
3862 }
3863
3864 /* SCSI error codes must not go to the generic layer */
3865 if (res)
3866 return -EIO;
3867
3868 return 0;
3869 }
3870
3871 /*
3872 * Send a SYNCHRONIZE CACHE instruction down to the device through
3873 * the normal SCSI command structure. Wait for the command to
3874 * complete.
3875 */
sd_shutdown(struct device * dev)3876 static void sd_shutdown(struct device *dev)
3877 {
3878 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3879
3880 if (!sdkp)
3881 return; /* this can happen */
3882
3883 if (pm_runtime_suspended(dev))
3884 return;
3885
3886 if (sdkp->WCE && sdkp->media_present) {
3887 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3888 sd_sync_cache(sdkp);
3889 }
3890
3891 if ((system_state != SYSTEM_RESTART &&
3892 sdkp->device->manage_system_start_stop) ||
3893 (system_state == SYSTEM_POWER_OFF &&
3894 sdkp->device->manage_shutdown)) {
3895 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3896 sd_start_stop_device(sdkp, 0);
3897 }
3898 }
3899
sd_do_start_stop(struct scsi_device * sdev,bool runtime)3900 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3901 {
3902 return (sdev->manage_system_start_stop && !runtime) ||
3903 (sdev->manage_runtime_start_stop && runtime);
3904 }
3905
sd_suspend_common(struct device * dev,bool runtime)3906 static int sd_suspend_common(struct device *dev, bool runtime)
3907 {
3908 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3909 int ret = 0;
3910
3911 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3912 return 0;
3913
3914 if (sdkp->WCE && sdkp->media_present) {
3915 if (!sdkp->device->silence_suspend)
3916 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3917 ret = sd_sync_cache(sdkp);
3918 /* ignore OFFLINE device */
3919 if (ret == -ENODEV)
3920 return 0;
3921
3922 if (ret)
3923 return ret;
3924 }
3925
3926 if (sd_do_start_stop(sdkp->device, runtime)) {
3927 if (!sdkp->device->silence_suspend)
3928 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3929 /* an error is not worth aborting a system sleep */
3930 ret = sd_start_stop_device(sdkp, 0);
3931 if (!runtime)
3932 ret = 0;
3933 }
3934
3935 if (!ret)
3936 sdkp->suspended = true;
3937
3938 return ret;
3939 }
3940
sd_suspend_system(struct device * dev)3941 static int sd_suspend_system(struct device *dev)
3942 {
3943 if (pm_runtime_suspended(dev))
3944 return 0;
3945
3946 return sd_suspend_common(dev, false);
3947 }
3948
sd_suspend_runtime(struct device * dev)3949 static int sd_suspend_runtime(struct device *dev)
3950 {
3951 return sd_suspend_common(dev, true);
3952 }
3953
sd_resume(struct device * dev)3954 static int sd_resume(struct device *dev)
3955 {
3956 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3957
3958 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3959
3960 if (opal_unlock_from_suspend(sdkp->opal_dev)) {
3961 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
3962 return -EIO;
3963 }
3964
3965 return 0;
3966 }
3967
sd_resume_common(struct device * dev,bool runtime)3968 static int sd_resume_common(struct device *dev, bool runtime)
3969 {
3970 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3971 int ret;
3972
3973 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3974 return 0;
3975
3976 if (!sd_do_start_stop(sdkp->device, runtime)) {
3977 sdkp->suspended = false;
3978 return 0;
3979 }
3980
3981 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3982 ret = sd_start_stop_device(sdkp, 1);
3983 if (!ret) {
3984 sd_resume(dev);
3985 sdkp->suspended = false;
3986 }
3987
3988 return ret;
3989 }
3990
sd_resume_system(struct device * dev)3991 static int sd_resume_system(struct device *dev)
3992 {
3993 if (pm_runtime_suspended(dev)) {
3994 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3995 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
3996
3997 if (sdp && sdp->force_runtime_start_on_system_start)
3998 pm_request_resume(dev);
3999
4000 return 0;
4001 }
4002
4003 return sd_resume_common(dev, false);
4004 }
4005
sd_resume_runtime(struct device * dev)4006 static int sd_resume_runtime(struct device *dev)
4007 {
4008 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4009 struct scsi_device *sdp;
4010
4011 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
4012 return 0;
4013
4014 sdp = sdkp->device;
4015
4016 if (sdp->ignore_media_change) {
4017 /* clear the device's sense data */
4018 static const u8 cmd[10] = { REQUEST_SENSE };
4019 const struct scsi_exec_args exec_args = {
4020 .req_flags = BLK_MQ_REQ_PM,
4021 };
4022
4023 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4024 sdp->request_queue->rq_timeout, 1,
4025 &exec_args))
4026 sd_printk(KERN_NOTICE, sdkp,
4027 "Failed to clear sense data\n");
4028 }
4029
4030 return sd_resume_common(dev, true);
4031 }
4032
4033 static const struct dev_pm_ops sd_pm_ops = {
4034 .suspend = sd_suspend_system,
4035 .resume = sd_resume_system,
4036 .poweroff = sd_suspend_system,
4037 .restore = sd_resume_system,
4038 .runtime_suspend = sd_suspend_runtime,
4039 .runtime_resume = sd_resume_runtime,
4040 };
4041
4042 static struct scsi_driver sd_template = {
4043 .gendrv = {
4044 .name = "sd",
4045 .owner = THIS_MODULE,
4046 .probe = sd_probe,
4047 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4048 .remove = sd_remove,
4049 .shutdown = sd_shutdown,
4050 .pm = &sd_pm_ops,
4051 },
4052 .rescan = sd_rescan,
4053 .resume = sd_resume,
4054 .init_command = sd_init_command,
4055 .uninit_command = sd_uninit_command,
4056 .done = sd_done,
4057 .eh_action = sd_eh_action,
4058 .eh_reset = sd_eh_reset,
4059 };
4060
4061 /**
4062 * init_sd - entry point for this driver (both when built in or when
4063 * a module).
4064 *
4065 * Note: this function registers this driver with the scsi mid-level.
4066 **/
init_sd(void)4067 static int __init init_sd(void)
4068 {
4069 int majors = 0, i, err;
4070
4071 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4072
4073 for (i = 0; i < SD_MAJORS; i++) {
4074 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4075 continue;
4076 majors++;
4077 }
4078
4079 if (!majors)
4080 return -ENODEV;
4081
4082 err = class_register(&sd_disk_class);
4083 if (err)
4084 goto err_out;
4085
4086 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4087 if (!sd_page_pool) {
4088 printk(KERN_ERR "sd: can't init discard page pool\n");
4089 err = -ENOMEM;
4090 goto err_out_class;
4091 }
4092
4093 err = scsi_register_driver(&sd_template.gendrv);
4094 if (err)
4095 goto err_out_driver;
4096
4097 return 0;
4098
4099 err_out_driver:
4100 mempool_destroy(sd_page_pool);
4101 err_out_class:
4102 class_unregister(&sd_disk_class);
4103 err_out:
4104 for (i = 0; i < SD_MAJORS; i++)
4105 unregister_blkdev(sd_major(i), "sd");
4106 return err;
4107 }
4108
4109 /**
4110 * exit_sd - exit point for this driver (when it is a module).
4111 *
4112 * Note: this function unregisters this driver from the scsi mid-level.
4113 **/
exit_sd(void)4114 static void __exit exit_sd(void)
4115 {
4116 int i;
4117
4118 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4119
4120 scsi_unregister_driver(&sd_template.gendrv);
4121 mempool_destroy(sd_page_pool);
4122
4123 class_unregister(&sd_disk_class);
4124
4125 for (i = 0; i < SD_MAJORS; i++)
4126 unregister_blkdev(sd_major(i), "sd");
4127 }
4128
4129 module_init(init_sd);
4130 module_exit(exit_sd);
4131
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)4132 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4133 {
4134 scsi_print_sense_hdr(sdkp->device,
4135 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4136 }
4137
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)4138 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4139 {
4140 const char *hb_string = scsi_hostbyte_string(result);
4141
4142 if (hb_string)
4143 sd_printk(KERN_INFO, sdkp,
4144 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4145 hb_string ? hb_string : "invalid",
4146 "DRIVER_OK");
4147 else
4148 sd_printk(KERN_INFO, sdkp,
4149 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4150 msg, host_byte(result), "DRIVER_OK");
4151 }
4152