// SPDX-License-Identifier: GPL-2.0-only /* * sd.c Copyright (C) 1992 Drew Eckhardt * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale * * Linux scsi disk driver * Initial versions: Drew Eckhardt * Subsequent revisions: Eric Youngdale * Modification history: * - Drew Eckhardt original * - Eric Youngdale add scatter-gather, multiple * outstanding request, and other enhancements. * Support loadable low-level scsi drivers. * - Jirka Hanika support more scsi disks using * eight major numbers. * - Richard Gooch support devfs. * - Torben Mathiasen Resource allocation fixes in * sd_init and cleanups. * - Alex Davis Fix problem where partition info * not being read in sd_open. Fix problem where removable media * could be ejected after sd_open. * - Douglas Gilbert cleanup for lk 2.5.x * - Badari Pulavarty , Matthew Wilcox * , Kurt Garloff : * Support 32k/1M disks. * * Logging policy (needs CONFIG_SCSI_LOGGING defined): * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 * - entering other commands: SCSI_LOG_HLQUEUE level 3 * Note: when the logging level is set by the user, it must be greater * than the level indicated above to trigger output. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sd.h" #include "scsi_priv.h" #include "scsi_logging.h" MODULE_AUTHOR("Eric Youngdale"); MODULE_DESCRIPTION("SCSI disk (sd) driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); #define SD_MINORS 16 static void sd_config_discard(struct scsi_disk *, unsigned int); static void sd_config_write_same(struct scsi_disk *); static int sd_revalidate_disk(struct gendisk *); static void sd_unlock_native_capacity(struct gendisk *disk); static void sd_shutdown(struct device *); static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); static void scsi_disk_release(struct device *cdev); static DEFINE_IDA(sd_index_ida); static mempool_t *sd_page_pool; static struct lock_class_key sd_bio_compl_lkclass; static const char *sd_cache_types[] = { "write through", "none", "write back", "write back, no read (daft)" }; static void sd_set_flush_flag(struct scsi_disk *sdkp) { bool wc = false, fua = false; if (sdkp->WCE) { wc = true; if (sdkp->DPOFUA) fua = true; } blk_queue_write_cache(sdkp->disk->queue, wc, fua); } static ssize_t cache_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ct, rcd, wce, sp; struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; char buffer[64]; char *buffer_data; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; static const char temp[] = "temporary "; int len; if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) /* no cache control on RBC devices; theoretically they * can do it, but there's probably so many exceptions * it's not worth the risk */ return -EINVAL; if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { buf += sizeof(temp) - 1; sdkp->cache_override = 1; } else { sdkp->cache_override = 0; } ct = sysfs_match_string(sd_cache_types, buf); if (ct < 0) return -EINVAL; rcd = ct & 0x01 ? 1 : 0; wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; if (sdkp->cache_override) { sdkp->WCE = wce; sdkp->RCD = rcd; sd_set_flush_flag(sdkp); return count; } if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, sdkp->max_retries, &data, NULL)) return -EINVAL; len = min_t(size_t, sizeof(buffer), data.length - data.header_length - data.block_descriptor_length); buffer_data = buffer + data.header_length + data.block_descriptor_length; buffer_data[2] &= ~0x05; buffer_data[2] |= wce << 2 | rcd; sp = buffer_data[0] & 0x80 ? 1 : 0; buffer_data[0] &= ~0x80; /* * Ensure WP, DPOFUA, and RESERVED fields are cleared in * received mode parameter buffer before doing MODE SELECT. */ data.device_specific = 0; if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, sdkp->max_retries, &data, &sshdr)) { if (scsi_sense_valid(&sshdr)) sd_print_sense_hdr(sdkp, &sshdr); return -EINVAL; } sd_revalidate_disk(sdkp->disk); return count; } static ssize_t manage_start_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop && sdp->manage_runtime_start_stop && sdp->manage_shutdown); } static DEVICE_ATTR_RO(manage_start_stop); static ssize_t manage_system_start_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); } static ssize_t manage_system_start_stop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; bool v; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (kstrtobool(buf, &v)) return -EINVAL; sdp->manage_system_start_stop = v; return count; } static DEVICE_ATTR_RW(manage_system_start_stop); static ssize_t manage_runtime_start_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); } static ssize_t manage_runtime_start_stop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; bool v; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (kstrtobool(buf, &v)) return -EINVAL; sdp->manage_runtime_start_stop = v; return count; } static DEVICE_ATTR_RW(manage_runtime_start_stop); static ssize_t manage_shutdown_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; return sysfs_emit(buf, "%u\n", sdp->manage_shutdown); } static ssize_t manage_shutdown_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; bool v; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (kstrtobool(buf, &v)) return -EINVAL; sdp->manage_shutdown = v; return count; } static DEVICE_ATTR_RW(manage_shutdown); static ssize_t allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->device->allow_restart); } static ssize_t allow_restart_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { bool v; struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) return -EINVAL; if (kstrtobool(buf, &v)) return -EINVAL; sdp->allow_restart = v; return count; } static DEVICE_ATTR_RW(allow_restart); static ssize_t cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); int ct = sdkp->RCD + 2*sdkp->WCE; return sprintf(buf, "%s\n", sd_cache_types[ct]); } static DEVICE_ATTR_RW(cache_type); static ssize_t FUA_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->DPOFUA); } static DEVICE_ATTR_RO(FUA); static ssize_t protection_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->protection_type); } static ssize_t protection_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); unsigned int val; int err; if (!capable(CAP_SYS_ADMIN)) return -EACCES; err = kstrtouint(buf, 10, &val); if (err) return err; if (val <= T10_PI_TYPE3_PROTECTION) sdkp->protection_type = val; return count; } static DEVICE_ATTR_RW(protection_type); static ssize_t protection_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; unsigned int dif, dix; dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { dif = 0; dix = 1; } if (!dif && !dix) return sprintf(buf, "none\n"); return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); } static DEVICE_ATTR_RO(protection_mode); static ssize_t app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->ATO); } static DEVICE_ATTR_RO(app_tag_own); static ssize_t thin_provisioning_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->lbpme); } static DEVICE_ATTR_RO(thin_provisioning); /* sysfs_match_string() requires dense arrays */ static const char *lbp_mode[] = { [SD_LBP_FULL] = "full", [SD_LBP_UNMAP] = "unmap", [SD_LBP_WS16] = "writesame_16", [SD_LBP_WS10] = "writesame_10", [SD_LBP_ZERO] = "writesame_zero", [SD_LBP_DISABLE] = "disabled", }; static ssize_t provisioning_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); } static ssize_t provisioning_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; int mode; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sd_is_zoned(sdkp)) { sd_config_discard(sdkp, SD_LBP_DISABLE); return count; } if (sdp->type != TYPE_DISK) return -EINVAL; mode = sysfs_match_string(lbp_mode, buf); if (mode < 0) return -EINVAL; sd_config_discard(sdkp, mode); return count; } static DEVICE_ATTR_RW(provisioning_mode); /* sysfs_match_string() requires dense arrays */ static const char *zeroing_mode[] = { [SD_ZERO_WRITE] = "write", [SD_ZERO_WS] = "writesame", [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", }; static ssize_t zeroing_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); } static ssize_t zeroing_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); int mode; if (!capable(CAP_SYS_ADMIN)) return -EACCES; mode = sysfs_match_string(zeroing_mode, buf); if (mode < 0) return -EINVAL; sdkp->zeroing_mode = mode; return count; } static DEVICE_ATTR_RW(zeroing_mode); static ssize_t max_medium_access_timeouts_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); } static ssize_t max_medium_access_timeouts_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); int err; if (!capable(CAP_SYS_ADMIN)) return -EACCES; err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); return err ? err : count; } static DEVICE_ATTR_RW(max_medium_access_timeouts); static ssize_t max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%u\n", sdkp->max_ws_blocks); } static ssize_t max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdp = sdkp->device; unsigned long max; int err; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) return -EINVAL; err = kstrtoul(buf, 10, &max); if (err) return err; if (max == 0) sdp->no_write_same = 1; else if (max <= SD_MAX_WS16_BLOCKS) { sdp->no_write_same = 0; sdkp->max_ws_blocks = max; } sd_config_write_same(sdkp); return count; } static DEVICE_ATTR_RW(max_write_same_blocks); static ssize_t zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); if (sdkp->device->type == TYPE_ZBC) return sprintf(buf, "host-managed\n"); if (sdkp->zoned == 1) return sprintf(buf, "host-aware\n"); if (sdkp->zoned == 2) return sprintf(buf, "drive-managed\n"); return sprintf(buf, "none\n"); } static DEVICE_ATTR_RO(zoned_cap); static ssize_t max_retries_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(dev); struct scsi_device *sdev = sdkp->device; int retries, err; err = kstrtoint(buf, 10, &retries); if (err) return err; if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { sdkp->max_retries = retries; return count; } sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", SD_MAX_RETRIES); return -EINVAL; } static ssize_t max_retries_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(dev); return sprintf(buf, "%d\n", sdkp->max_retries); } static DEVICE_ATTR_RW(max_retries); static struct attribute *sd_disk_attrs[] = { &dev_attr_cache_type.attr, &dev_attr_FUA.attr, &dev_attr_allow_restart.attr, &dev_attr_manage_start_stop.attr, &dev_attr_manage_system_start_stop.attr, &dev_attr_manage_runtime_start_stop.attr, &dev_attr_manage_shutdown.attr, &dev_attr_protection_type.attr, &dev_attr_protection_mode.attr, &dev_attr_app_tag_own.attr, &dev_attr_thin_provisioning.attr, &dev_attr_provisioning_mode.attr, &dev_attr_zeroing_mode.attr, &dev_attr_max_write_same_blocks.attr, &dev_attr_max_medium_access_timeouts.attr, &dev_attr_zoned_cap.attr, &dev_attr_max_retries.attr, NULL, }; ATTRIBUTE_GROUPS(sd_disk); static struct class sd_disk_class = { .name = "scsi_disk", .dev_release = scsi_disk_release, .dev_groups = sd_disk_groups, }; /* * Don't request a new module, as that could deadlock in multipath * environment. */ static void sd_default_probe(dev_t devt) { } /* * Device no to disk mapping: * * major disc2 disc p1 * |............|.............|....|....| <- dev_t * 31 20 19 8 7 4 3 0 * * Inside a major, we have 16k disks, however mapped non- * contiguously. The first 16 disks are for major0, the next * ones with major1, ... Disk 256 is for major0 again, disk 272 * for major1, ... * As we stay compatible with our numbering scheme, we can reuse * the well-know SCSI majors 8, 65--71, 136--143. */ static int sd_major(int major_idx) { switch (major_idx) { case 0: return SCSI_DISK0_MAJOR; case 1 ... 7: return SCSI_DISK1_MAJOR + major_idx - 1; case 8 ... 15: return SCSI_DISK8_MAJOR + major_idx - 8; default: BUG(); return 0; /* shut up gcc */ } } #ifdef CONFIG_BLK_SED_OPAL static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, bool send) { struct scsi_disk *sdkp = data; struct scsi_device *sdev = sdkp->device; u8 cdb[12] = { 0, }; const struct scsi_exec_args exec_args = { .req_flags = BLK_MQ_REQ_PM, }; int ret; cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; cdb[1] = secp; put_unaligned_be16(spsp, &cdb[2]); put_unaligned_be32(len, &cdb[6]); ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, buffer, len, SD_TIMEOUT, sdkp->max_retries, &exec_args); return ret <= 0 ? ret : -EIO; } #endif /* CONFIG_BLK_SED_OPAL */ /* * Look up the DIX operation based on whether the command is read or * write and whether dix and dif are enabled. */ static unsigned int sd_prot_op(bool write, bool dix, bool dif) { /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ static const unsigned int ops[] = { /* wrt dix dif */ SCSI_PROT_NORMAL, /* 0 0 0 */ SCSI_PROT_READ_STRIP, /* 0 0 1 */ SCSI_PROT_READ_INSERT, /* 0 1 0 */ SCSI_PROT_READ_PASS, /* 0 1 1 */ SCSI_PROT_NORMAL, /* 1 0 0 */ SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ SCSI_PROT_WRITE_PASS, /* 1 1 1 */ }; return ops[write << 2 | dix << 1 | dif]; } /* * Returns a mask of the protection flags that are valid for a given DIX * operation. */ static unsigned int sd_prot_flag_mask(unsigned int prot_op) { static const unsigned int flag_mask[] = { [SCSI_PROT_NORMAL] = 0, [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT, [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_REF_INCREMENT, [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | SCSI_PROT_GUARD_CHECK | SCSI_PROT_REF_CHECK | SCSI_PROT_REF_INCREMENT | SCSI_PROT_IP_CHECKSUM, }; return flag_mask[prot_op]; } static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, unsigned int dix, unsigned int dif) { struct request *rq = scsi_cmd_to_rq(scmd); struct bio *bio = rq->bio; unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); unsigned int protect = 0; if (dix) { /* DIX Type 0, 1, 2, 3 */ if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; } if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) scmd->prot_flags |= SCSI_PROT_REF_CHECK; } if (dif) { /* DIX/DIF Type 1, 2, 3 */ scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) protect = 3 << 5; /* Disable target PI checking */ else protect = 1 << 5; /* Enable target PI checking */ } scsi_set_prot_op(scmd, prot_op); scsi_set_prot_type(scmd, dif); scmd->prot_flags &= sd_prot_flag_mask(prot_op); return protect; } static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) { struct request_queue *q = sdkp->disk->queue; unsigned int logical_block_size = sdkp->device->sector_size; unsigned int max_blocks = 0; q->limits.discard_alignment = sdkp->unmap_alignment * logical_block_size; q->limits.discard_granularity = max(sdkp->physical_block_size, sdkp->unmap_granularity * logical_block_size); sdkp->provisioning_mode = mode; switch (mode) { case SD_LBP_FULL: case SD_LBP_DISABLE: blk_queue_max_discard_sectors(q, 0); return; case SD_LBP_UNMAP: max_blocks = min_not_zero(sdkp->max_unmap_blocks, (u32)SD_MAX_WS16_BLOCKS); break; case SD_LBP_WS16: if (sdkp->device->unmap_limit_for_ws) max_blocks = sdkp->max_unmap_blocks; else max_blocks = sdkp->max_ws_blocks; max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); break; case SD_LBP_WS10: if (sdkp->device->unmap_limit_for_ws) max_blocks = sdkp->max_unmap_blocks; else max_blocks = sdkp->max_ws_blocks; max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); break; case SD_LBP_ZERO: max_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS10_BLOCKS); break; } blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); } static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) { struct page *page; page = mempool_alloc(sd_page_pool, GFP_ATOMIC); if (!page) return NULL; clear_highpage(page); bvec_set_page(&rq->special_vec, page, data_len, 0); rq->rq_flags |= RQF_SPECIAL_PAYLOAD; return bvec_virt(&rq->special_vec); } static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) { struct scsi_device *sdp = cmd->device; struct request *rq = scsi_cmd_to_rq(cmd); struct scsi_disk *sdkp = scsi_disk(rq->q->disk); u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); unsigned int data_len = 24; char *buf; buf = sd_set_special_bvec(rq, data_len); if (!buf) return BLK_STS_RESOURCE; cmd->cmd_len = 10; cmd->cmnd[0] = UNMAP; cmd->cmnd[8] = 24; put_unaligned_be16(6 + 16, &buf[0]); put_unaligned_be16(16, &buf[2]); put_unaligned_be64(lba, &buf[8]); put_unaligned_be32(nr_blocks, &buf[16]); cmd->allowed = sdkp->max_retries; cmd->transfersize = data_len; rq->timeout = SD_TIMEOUT; return scsi_alloc_sgtables(cmd); } static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) { struct scsi_device *sdp = cmd->device; struct request *rq = scsi_cmd_to_rq(cmd); struct scsi_disk *sdkp = scsi_disk(rq->q->disk); u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); u32 data_len = sdp->sector_size; if (!sd_set_special_bvec(rq, data_len)) return BLK_STS_RESOURCE; cmd->cmd_len = 16; cmd->cmnd[0] = WRITE_SAME_16; if (unmap) cmd->cmnd[1] = 0x8; /* UNMAP */ put_unaligned_be64(lba, &cmd->cmnd[2]); put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); cmd->allowed = sdkp->max_retries; cmd->transfersize = data_len; rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; return scsi_alloc_sgtables(cmd); } static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) { struct scsi_device *sdp = cmd->device; struct request *rq = scsi_cmd_to_rq(cmd); struct scsi_disk *sdkp = scsi_disk(rq->q->disk); u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); u32 data_len = sdp->sector_size; if (!sd_set_special_bvec(rq, data_len)) return BLK_STS_RESOURCE; cmd->cmd_len = 10; cmd->cmnd[0] = WRITE_SAME; if (unmap) cmd->cmnd[1] = 0x8; /* UNMAP */ put_unaligned_be32(lba, &cmd->cmnd[2]); put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); cmd->allowed = sdkp->max_retries; cmd->transfersize = data_len; rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; return scsi_alloc_sgtables(cmd); } static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) { struct request *rq = scsi_cmd_to_rq(cmd); struct scsi_device *sdp = cmd->device; struct scsi_disk *sdkp = scsi_disk(rq->q->disk); u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); if (!(rq->cmd_flags & REQ_NOUNMAP)) { switch (sdkp->zeroing_mode) { case SD_ZERO_WS16_UNMAP: return sd_setup_write_same16_cmnd(cmd, true); case SD_ZERO_WS10_UNMAP: return sd_setup_write_same10_cmnd(cmd, true); } } if (sdp->no_write_same) { rq->rq_flags |= RQF_QUIET; return BLK_STS_TARGET; } if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) return sd_setup_write_same16_cmnd(cmd, false); return sd_setup_write_same10_cmnd(cmd, false); } static void sd_config_write_same(struct scsi_disk *sdkp) { struct request_queue *q = sdkp->disk->queue; unsigned int logical_block_size = sdkp->device->sector_size; if (sdkp->device->no_write_same) { sdkp->max_ws_blocks = 0; goto out; } /* Some devices can not handle block counts above 0xffff despite * supporting WRITE SAME(16). Consequently we default to 64k * blocks per I/O unless the device explicitly advertises a * bigger limit. */ if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS16_BLOCKS); else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, (u32)SD_MAX_WS10_BLOCKS); else { sdkp->device->no_write_same = 1; sdkp->max_ws_blocks = 0; } if (sdkp->lbprz && sdkp->lbpws) sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; else if (sdkp->lbprz && sdkp->lbpws10) sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; else if (sdkp->max_ws_blocks) sdkp->zeroing_mode = SD_ZERO_WS; else sdkp->zeroing_mode = SD_ZERO_WRITE; if (sdkp->max_ws_blocks && sdkp->physical_block_size > logical_block_size) { /* * Reporting a maximum number of blocks that is not aligned * on the device physical size would cause a large write same * request to be split into physically unaligned chunks by * __blkdev_issue_write_zeroes() even if the caller of this * functions took care to align the large request. So make sure * the maximum reported is aligned to the device physical block * size. This is only an optional optimization for regular * disks, but this is mandatory to avoid failure of large write * same requests directed at sequential write required zones of * host-managed ZBC disks. */ sdkp->max_ws_blocks = round_down(sdkp->max_ws_blocks, bytes_to_logical(sdkp->device, sdkp->physical_block_size)); } out: blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * (logical_block_size >> 9)); } static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) { struct request *rq = scsi_cmd_to_rq(cmd); struct scsi_disk *sdkp = scsi_disk(rq->q->disk); /* flush requests don't perform I/O, zero the S/G table */ memset(&cmd->sdb, 0, sizeof(cmd->sdb)); if (cmd->device->use_16_for_sync) { cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; cmd->cmd_len = 16; } else { cmd->cmnd[0] = SYNCHRONIZE_CACHE; cmd->cmd_len = 10; } cmd->transfersize = 0; cmd->allowed = sdkp->max_retries; rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; return BLK_STS_OK; } static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, sector_t lba, unsigned int nr_blocks, unsigned char flags, unsigned int dld) { cmd->cmd_len = SD_EXT_CDB_SIZE; cmd->cmnd[0] = VARIABLE_LENGTH_CMD; cmd->cmnd[7] = 0x18; /* Additional CDB len */ cmd->cmnd[9] = write ? WRITE_32 : READ_32; cmd->cmnd[10] = flags; cmd->cmnd[11] = dld & 0x07; put_unaligned_be64(lba, &cmd->cmnd[12]); put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); return BLK_STS_OK; } static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, sector_t lba, unsigned int nr_blocks, unsigned char flags, unsigned int dld) { cmd->cmd_len = 16; cmd->cmnd[0] = write ? WRITE_16 : READ_16; cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); cmd->cmnd[14] = (dld & 0x03) << 6; cmd->cmnd[15] = 0; put_unaligned_be64(lba, &cmd->cmnd[2]); put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); return BLK_STS_OK; } static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, sector_t lba, unsigned int nr_blocks, unsigned char flags) { cmd->cmd_len = 10; cmd->cmnd[0] = write ? WRITE_10 : READ_10; cmd->cmnd[1] = flags; cmd->cmnd[6] = 0; cmd->cmnd[9] = 0; put_unaligned_be32(lba, &cmd->cmnd[2]); put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); return BLK_STS_OK; } static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, sector_t lba, unsigned int nr_blocks, unsigned char flags) { /* Avoid that 0 blocks gets translated into 256 blocks. */ if (WARN_ON_ONCE(nr_blocks == 0)) return BLK_STS_IOERR; if (unlikely(flags & 0x8)) { /* * This happens only if this drive failed 10byte rw * command with ILLEGAL_REQUEST during operation and * thus turned off use_10_for_rw. */ scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); return BLK_STS_IOERR; } cmd->cmd_len = 6; cmd->cmnd[0] = write ? WRITE_6 : READ_6; cmd->cmnd[1] = (lba >> 16) & 0x1f; cmd->cmnd[2] = (lba >> 8) & 0xff; cmd->cmnd[3] = lba & 0xff; cmd->cmnd[4] = nr_blocks; cmd->cmnd[5] = 0; return BLK_STS_OK; } /* * Check if a command has a duration limit set. If it does, and the target * device supports CDL and the feature is enabled, return the limit * descriptor index to use. Return 0 (no limit) otherwise. */ static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) { struct scsi_device *sdp = sdkp->device; int hint; if (!sdp->cdl_supported || !sdp->cdl_enable) return 0; /* * Use "no limit" if the request ioprio does not specify a duration * limit hint. */ hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) return 0; return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; } static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) { struct request *rq = scsi_cmd_to_rq(cmd); struct scsi_device *sdp = cmd->device; struct scsi_disk *sdkp = scsi_disk(rq->q->disk); sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); sector_t threshold; unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); unsigned int mask = logical_to_sectors(sdp, 1) - 1; bool write = rq_data_dir(rq) == WRITE; unsigned char protect, fua; unsigned int dld; blk_status_t ret; unsigned int dif; bool dix; ret = scsi_alloc_sgtables(cmd); if (ret != BLK_STS_OK) return ret; ret = BLK_STS_IOERR; if (!scsi_device_online(sdp) || sdp->changed) { scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); goto fail; } if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); goto fail; } if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); goto fail; } /* * Some SD card readers can't handle accesses which touch the * last one or two logical blocks. Split accesses as needed. */ threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { if (lba < threshold) { /* Access up to the threshold but not beyond */ nr_blocks = threshold - lba; } else { /* Access only a single logical block */ nr_blocks = 1; } } if (req_op(rq) == REQ_OP_ZONE_APPEND) { ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); if (ret) goto fail; } fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; dix = scsi_prot_sg_count(cmd); dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); dld = sd_cdl_dld(sdkp, cmd); if (dif || dix) protect = sd_setup_protect_cmnd(cmd, dix, dif); else protect = 0; if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, protect | fua, dld); } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, protect | fua, dld); } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || sdp->use_10_for_rw || protect) { ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, protect | fua); } else { ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, protect | fua); } if (unlikely(ret != BLK_STS_OK)) goto fail; /* * We shouldn't disconnect in the middle of a sector, so with a dumb * host adapter, it's safe to assume that we can at least transfer * this many bytes between each connect / disconnect. */ cmd->transfersize = sdp->sector_size; cmd->underflow = nr_blocks << 9; cmd->allowed = sdkp->max_retries; cmd->sdb.length = nr_blocks * sdp->sector_size; SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, cmd, "%s: block=%llu, count=%d\n", __func__, (unsigned long long)blk_rq_pos(rq), blk_rq_sectors(rq))); SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, cmd, "%s %d/%u 512 byte blocks.\n", write ? "writing" : "reading", nr_blocks, blk_rq_sectors(rq))); /* * This indicates that the command is ready from our end to be queued. */ return BLK_STS_OK; fail: scsi_free_sgtables(cmd); return ret; } static blk_status_t sd_init_command(struct scsi_cmnd *cmd) { struct request *rq = scsi_cmd_to_rq(cmd); switch (req_op(rq)) { case REQ_OP_DISCARD: switch (scsi_disk(rq->q->disk)->provisioning_mode) { case SD_LBP_UNMAP: return sd_setup_unmap_cmnd(cmd); case SD_LBP_WS16: return sd_setup_write_same16_cmnd(cmd, true); case SD_LBP_WS10: return sd_setup_write_same10_cmnd(cmd, true); case SD_LBP_ZERO: return sd_setup_write_same10_cmnd(cmd, false); default: return BLK_STS_TARGET; } case REQ_OP_WRITE_ZEROES: return sd_setup_write_zeroes_cmnd(cmd); case REQ_OP_FLUSH: return sd_setup_flush_cmnd(cmd); case REQ_OP_READ: case REQ_OP_WRITE: case REQ_OP_ZONE_APPEND: return sd_setup_read_write_cmnd(cmd); case REQ_OP_ZONE_RESET: return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, false); case REQ_OP_ZONE_RESET_ALL: return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, true); case REQ_OP_ZONE_OPEN: return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); case REQ_OP_ZONE_CLOSE: return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); case REQ_OP_ZONE_FINISH: return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); default: WARN_ON_ONCE(1); return BLK_STS_NOTSUPP; } } static void sd_uninit_command(struct scsi_cmnd *SCpnt) { struct request *rq = scsi_cmd_to_rq(SCpnt); if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) mempool_free(rq->special_vec.bv_page, sd_page_pool); } static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) { if (sdkp->device->removable || sdkp->write_prot) { if (disk_check_media_change(disk)) return true; } /* * Force a full rescan after ioctl(BLKRRPART). While the disk state has * nothing to do with partitions, BLKRRPART is used to force a full * revalidate after things like a format for historical reasons. */ return test_bit(GD_NEED_PART_SCAN, &disk->state); } /** * sd_open - open a scsi disk device * @disk: disk to open * @mode: open mode * * Returns 0 if successful. Returns a negated errno value in case * of error. * * Note: This can be called from a user context (e.g. fsck(1) ) * or from within the kernel (e.g. as a result of a mount(1) ). * In the latter case @inode and @filp carry an abridged amount * of information as noted above. * * Locking: called with disk->open_mutex held. **/ static int sd_open(struct gendisk *disk, blk_mode_t mode) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdev = sdkp->device; int retval; if (scsi_device_get(sdev)) return -ENXIO; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); /* * If the device is in error recovery, wait until it is done. * If the device is offline, then disallow any access to it. */ retval = -ENXIO; if (!scsi_block_when_processing_errors(sdev)) goto error_out; if (sd_need_revalidate(disk, sdkp)) sd_revalidate_disk(disk); /* * If the drive is empty, just let the open fail. */ retval = -ENOMEDIUM; if (sdev->removable && !sdkp->media_present && !(mode & BLK_OPEN_NDELAY)) goto error_out; /* * If the device has the write protect tab set, have the open fail * if the user expects to be able to write to the thing. */ retval = -EROFS; if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) goto error_out; /* * It is possible that the disk changing stuff resulted in * the device being taken offline. If this is the case, * report this to the user, and don't pretend that the * open actually succeeded. */ retval = -ENXIO; if (!scsi_device_online(sdev)) goto error_out; if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { if (scsi_block_when_processing_errors(sdev)) scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); } return 0; error_out: scsi_device_put(sdev); return retval; } /** * sd_release - invoked when the (last) close(2) is called on this * scsi disk. * @disk: disk to release * * Returns 0. * * Note: may block (uninterruptible) if error recovery is underway * on this disk. * * Locking: called with disk->open_mutex held. **/ static void sd_release(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdev = sdkp->device; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { if (scsi_block_when_processing_errors(sdev)) scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); } scsi_device_put(sdev); } static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); struct scsi_device *sdp = sdkp->device; struct Scsi_Host *host = sdp->host; sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); int diskinfo[4]; /* default to most commonly used values */ diskinfo[0] = 0x40; /* 1 << 6 */ diskinfo[1] = 0x20; /* 1 << 5 */ diskinfo[2] = capacity >> 11; /* override with calculated, extended default, or driver values */ if (host->hostt->bios_param) host->hostt->bios_param(sdp, bdev, capacity, diskinfo); else scsicam_bios_param(bdev, capacity, diskinfo); geo->heads = diskinfo[0]; geo->sectors = diskinfo[1]; geo->cylinders = diskinfo[2]; return 0; } /** * sd_ioctl - process an ioctl * @bdev: target block device * @mode: open mode * @cmd: ioctl command number * @arg: this is third argument given to ioctl(2) system call. * Often contains a pointer. * * Returns 0 if successful (some ioctls return positive numbers on * success as well). Returns a negated errno value in case of error. * * Note: most ioctls are forward onto the block subsystem or further * down in the scsi subsystem. **/ static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { struct gendisk *disk = bdev->bd_disk; struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; void __user *p = (void __user *)arg; int error; SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " "cmd=0x%x\n", disk->disk_name, cmd)); if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) return -ENOIOCTLCMD; /* * If we are in the middle of error recovery, don't let anyone * else try and use this device. Also, if error recovery fails, it * may try and take the device offline, in which case all further * access to the device is prohibited. */ error = scsi_ioctl_block_when_processing_errors(sdp, cmd, (mode & BLK_OPEN_NDELAY)); if (error) return error; if (is_sed_ioctl(cmd)) return sed_ioctl(sdkp->opal_dev, cmd, p); return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); } static void set_media_not_present(struct scsi_disk *sdkp) { if (sdkp->media_present) sdkp->device->changed = 1; if (sdkp->device->removable) { sdkp->media_present = 0; sdkp->capacity = 0; } } static int media_not_present(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) { if (!scsi_sense_valid(sshdr)) return 0; /* not invoked for commands that could return deferred errors */ switch (sshdr->sense_key) { case UNIT_ATTENTION: case NOT_READY: /* medium not present */ if (sshdr->asc == 0x3A) { set_media_not_present(sdkp); return 1; } } return 0; } /** * sd_check_events - check media events * @disk: kernel device descriptor * @clearing: disk events currently being cleared * * Returns mask of DISK_EVENT_*. * * Note: this function is invoked from the block subsystem. **/ static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) { struct scsi_disk *sdkp = disk->private_data; struct scsi_device *sdp; int retval; bool disk_changed; if (!sdkp) return 0; sdp = sdkp->device; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); /* * If the device is offline, don't send any commands - just pretend as * if the command failed. If the device ever comes back online, we * can deal with it then. It is only because of unrecoverable errors * that we would ever take a device offline in the first place. */ if (!scsi_device_online(sdp)) { set_media_not_present(sdkp); goto out; } /* * Using TEST_UNIT_READY enables differentiation between drive with * no cartridge loaded - NOT READY, drive with changed cartridge - * UNIT ATTENTION, or with same cartridge - GOOD STATUS. * * Drives that auto spin down. eg iomega jaz 1G, will be started * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever * sd_revalidate() is called. */ if (scsi_block_when_processing_errors(sdp)) { struct scsi_sense_hdr sshdr = { 0, }; retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, &sshdr); /* failed to execute TUR, assume media not present */ if (retval < 0 || host_byte(retval)) { set_media_not_present(sdkp); goto out; } if (media_not_present(sdkp, &sshdr)) goto out; } /* * For removable scsi disk we have to recognise the presence * of a disk in the drive. */ if (!sdkp->media_present) sdp->changed = 1; sdkp->media_present = 1; out: /* * sdp->changed is set under the following conditions: * * Medium present state has changed in either direction. * Device has indicated UNIT_ATTENTION. */ disk_changed = sdp->changed; sdp->changed = 0; return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; } static int sd_sync_cache(struct scsi_disk *sdkp) { int retries, res; struct scsi_device *sdp = sdkp->device; const int timeout = sdp->request_queue->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .req_flags = BLK_MQ_REQ_PM, .sshdr = &sshdr, }; if (!scsi_device_online(sdp)) return -ENODEV; for (retries = 3; retries > 0; --retries) { unsigned char cmd[16] = { 0 }; if (sdp->use_16_for_sync) cmd[0] = SYNCHRONIZE_CACHE_16; else cmd[0] = SYNCHRONIZE_CACHE; /* * Leave the rest of the command zero to indicate * flush everything. */ res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout, sdkp->max_retries, &exec_args); if (res == 0) break; } if (res) { sd_print_result(sdkp, "Synchronize Cache(10) failed", res); if (res < 0) return res; if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr)) { sd_print_sense_hdr(sdkp, &sshdr); /* we need to evaluate the error return */ if (sshdr.asc == 0x3a || /* medium not present */ sshdr.asc == 0x20 || /* invalid command */ (sshdr.asc == 0x74 && sshdr.ascq == 0x71)) /* drive is password locked */ /* this is no error here */ return 0; /* * If a format is in progress or if the drive does not * support sync, there is not much we can do because * this is called during shutdown or suspend so just * return success so those operations can proceed. */ if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) || sshdr.sense_key == ILLEGAL_REQUEST) return 0; } switch (host_byte(res)) { /* ignore errors due to racing a disconnection */ case DID_BAD_TARGET: case DID_NO_CONNECT: return 0; /* signal the upper layer it might try again */ case DID_BUS_BUSY: case DID_IMM_RETRY: case DID_REQUEUE: case DID_SOFT_ERROR: return -EBUSY; default: return -EIO; } } return 0; } static void sd_rescan(struct device *dev) { struct scsi_disk *sdkp = dev_get_drvdata(dev); sd_revalidate_disk(sdkp->disk); } static int sd_get_unique_id(struct gendisk *disk, u8 id[16], enum blk_unique_id type) { struct scsi_device *sdev = scsi_disk(disk)->device; const struct scsi_vpd *vpd; const unsigned char *d; int ret = -ENXIO, len; rcu_read_lock(); vpd = rcu_dereference(sdev->vpd_pg83); if (!vpd) goto out_unlock; ret = -EINVAL; for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { /* we only care about designators with LU association */ if (((d[1] >> 4) & 0x3) != 0x00) continue; if ((d[1] & 0xf) != type) continue; /* * Only exit early if a 16-byte descriptor was found. Otherwise * keep looking as one with more entropy might still show up. */ len = d[3]; if (len != 8 && len != 12 && len != 16) continue; ret = len; memcpy(id, d + 4, len); if (len == 16) break; } out_unlock: rcu_read_unlock(); return ret; } static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) { switch (host_byte(result)) { case DID_TRANSPORT_MARGINAL: case DID_TRANSPORT_DISRUPTED: case DID_BUS_BUSY: return PR_STS_RETRY_PATH_FAILURE; case DID_NO_CONNECT: return PR_STS_PATH_FAILED; case DID_TRANSPORT_FAILFAST: return PR_STS_PATH_FAST_FAILED; } switch (status_byte(result)) { case SAM_STAT_RESERVATION_CONFLICT: return PR_STS_RESERVATION_CONFLICT; case SAM_STAT_CHECK_CONDITION: if (!scsi_sense_valid(sshdr)) return PR_STS_IOERR; if (sshdr->sense_key == ILLEGAL_REQUEST && (sshdr->asc == 0x26 || sshdr->asc == 0x24)) return -EINVAL; fallthrough; default: return PR_STS_IOERR; } } static int sd_pr_in_command(struct block_device *bdev, u8 sa, unsigned char *data, int data_len) { struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); struct scsi_device *sdev = sdkp->device; struct scsi_sense_hdr sshdr; u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, }; int result; put_unaligned_be16(data_len, &cmd[7]); result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, SD_TIMEOUT, sdkp->max_retries, &exec_args); if (scsi_status_is_check_condition(result) && scsi_sense_valid(&sshdr)) { sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); scsi_print_sense_hdr(sdev, NULL, &sshdr); } if (result <= 0) return result; return sd_scsi_to_pr_err(&sshdr, result); } static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) { int result, i, data_offset, num_copy_keys; u32 num_keys = keys_info->num_keys; int data_len = num_keys * 8 + 8; u8 *data; data = kzalloc(data_len, GFP_KERNEL); if (!data) return -ENOMEM; result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); if (result) goto free_data; keys_info->generation = get_unaligned_be32(&data[0]); keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; data_offset = 8; num_copy_keys = min(num_keys, keys_info->num_keys); for (i = 0; i < num_copy_keys; i++) { keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); data_offset += 8; } free_data: kfree(data); return result; } static int sd_pr_read_reservation(struct block_device *bdev, struct pr_held_reservation *rsv) { struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); struct scsi_device *sdev = sdkp->device; u8 data[24] = { }; int result, len; result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); if (result) return result; len = get_unaligned_be32(&data[4]); if (!len) return 0; /* Make sure we have at least the key and type */ if (len < 14) { sdev_printk(KERN_INFO, sdev, "READ RESERVATION failed due to short return buffer of %d bytes\n", len); return -EINVAL; } rsv->generation = get_unaligned_be32(&data[0]); rsv->key = get_unaligned_be64(&data[8]); rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); return 0; } static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, u64 sa_key, enum scsi_pr_type type, u8 flags) { struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); struct scsi_device *sdev = sdkp->device; struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, }; int result; u8 cmd[16] = { 0, }; u8 data[24] = { 0, }; cmd[0] = PERSISTENT_RESERVE_OUT; cmd[1] = sa; cmd[2] = type; put_unaligned_be32(sizeof(data), &cmd[5]); put_unaligned_be64(key, &data[0]); put_unaligned_be64(sa_key, &data[8]); data[20] = flags; result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, sizeof(data), SD_TIMEOUT, sdkp->max_retries, &exec_args); if (scsi_status_is_check_condition(result) && scsi_sense_valid(&sshdr)) { sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); scsi_print_sense_hdr(sdev, NULL, &sshdr); } if (result <= 0) return result; return sd_scsi_to_pr_err(&sshdr, result); } static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, u32 flags) { if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, old_key, new_key, 0, (1 << 0) /* APTPL */); } static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, u32 flags) { if (flags) return -EOPNOTSUPP; return sd_pr_out_command(bdev, 0x01, key, 0, block_pr_type_to_scsi(type), 0); } static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) { return sd_pr_out_command(bdev, 0x02, key, 0, block_pr_type_to_scsi(type), 0); } static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, enum pr_type type, bool abort) { return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, block_pr_type_to_scsi(type), 0); } static int sd_pr_clear(struct block_device *bdev, u64 key) { return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); } static const struct pr_ops sd_pr_ops = { .pr_register = sd_pr_register, .pr_reserve = sd_pr_reserve, .pr_release = sd_pr_release, .pr_preempt = sd_pr_preempt, .pr_clear = sd_pr_clear, .pr_read_keys = sd_pr_read_keys, .pr_read_reservation = sd_pr_read_reservation, }; static void scsi_disk_free_disk(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); put_device(&sdkp->disk_dev); } static const struct block_device_operations sd_fops = { .owner = THIS_MODULE, .open = sd_open, .release = sd_release, .ioctl = sd_ioctl, .getgeo = sd_getgeo, .compat_ioctl = blkdev_compat_ptr_ioctl, .check_events = sd_check_events, .unlock_native_capacity = sd_unlock_native_capacity, .report_zones = sd_zbc_report_zones, .get_unique_id = sd_get_unique_id, .free_disk = scsi_disk_free_disk, .pr_ops = &sd_pr_ops, }; /** * sd_eh_reset - reset error handling callback * @scmd: sd-issued command that has failed * * This function is called by the SCSI midlayer before starting * SCSI EH. When counting medium access failures we have to be * careful to register it only only once per device and SCSI EH run; * there might be several timed out commands which will cause the * 'max_medium_access_timeouts' counter to trigger after the first * SCSI EH run already and set the device to offline. * So this function resets the internal counter before starting SCSI EH. **/ static void sd_eh_reset(struct scsi_cmnd *scmd) { struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); /* New SCSI EH run, reset gate variable */ sdkp->ignore_medium_access_errors = false; } /** * sd_eh_action - error handling callback * @scmd: sd-issued command that has failed * @eh_disp: The recovery disposition suggested by the midlayer * * This function is called by the SCSI midlayer upon completion of an * error test command (currently TEST UNIT READY). The result of sending * the eh command is passed in eh_disp. We're looking for devices that * fail medium access commands but are OK with non access commands like * test unit ready (so wrongly see the device as having a successful * recovery) **/ static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) { struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); struct scsi_device *sdev = scmd->device; if (!scsi_device_online(sdev) || !scsi_medium_access_command(scmd) || host_byte(scmd->result) != DID_TIME_OUT || eh_disp != SUCCESS) return eh_disp; /* * The device has timed out executing a medium access command. * However, the TEST UNIT READY command sent during error * handling completed successfully. Either the device is in the * process of recovering or has it suffered an internal failure * that prevents access to the storage medium. */ if (!sdkp->ignore_medium_access_errors) { sdkp->medium_access_timed_out++; sdkp->ignore_medium_access_errors = true; } /* * If the device keeps failing read/write commands but TEST UNIT * READY always completes successfully we assume that medium * access is no longer possible and take the device offline. */ if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { scmd_printk(KERN_ERR, scmd, "Medium access timeout failure. Offlining disk!\n"); mutex_lock(&sdev->state_mutex); scsi_device_set_state(sdev, SDEV_OFFLINE); mutex_unlock(&sdev->state_mutex); return SUCCESS; } return eh_disp; } static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) { struct request *req = scsi_cmd_to_rq(scmd); struct scsi_device *sdev = scmd->device; unsigned int transferred, good_bytes; u64 start_lba, end_lba, bad_lba; /* * Some commands have a payload smaller than the device logical * block size (e.g. INQUIRY on a 4K disk). */ if (scsi_bufflen(scmd) <= sdev->sector_size) return 0; /* Check if we have a 'bad_lba' information */ if (!scsi_get_sense_info_fld(scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, &bad_lba)) return 0; /* * If the bad lba was reported incorrectly, we have no idea where * the error is. */ start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); if (bad_lba < start_lba || bad_lba >= end_lba) return 0; /* * resid is optional but mostly filled in. When it's unused, * its value is zero, so we assume the whole buffer transferred */ transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); /* This computation should always be done in terms of the * resolution of the device's medium. */ good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); return min(good_bytes, transferred); } /** * sd_done - bottom half handler: called when the lower level * driver has completed (successfully or otherwise) a scsi command. * @SCpnt: mid-level's per command structure. * * Note: potentially run from within an ISR. Must not block. **/ static int sd_done(struct scsi_cmnd *SCpnt) { int result = SCpnt->result; unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); unsigned int sector_size = SCpnt->device->sector_size; unsigned int resid; struct scsi_sense_hdr sshdr; struct request *req = scsi_cmd_to_rq(SCpnt); struct scsi_disk *sdkp = scsi_disk(req->q->disk); int sense_valid = 0; int sense_deferred = 0; switch (req_op(req)) { case REQ_OP_DISCARD: case REQ_OP_WRITE_ZEROES: case REQ_OP_ZONE_RESET: case REQ_OP_ZONE_RESET_ALL: case REQ_OP_ZONE_OPEN: case REQ_OP_ZONE_CLOSE: case REQ_OP_ZONE_FINISH: if (!result) { good_bytes = blk_rq_bytes(req); scsi_set_resid(SCpnt, 0); } else { good_bytes = 0; scsi_set_resid(SCpnt, blk_rq_bytes(req)); } break; default: /* * In case of bogus fw or device, we could end up having * an unaligned partial completion. Check this here and force * alignment. */ resid = scsi_get_resid(SCpnt); if (resid & (sector_size - 1)) { sd_printk(KERN_INFO, sdkp, "Unaligned partial completion (resid=%u, sector_sz=%u)\n", resid, sector_size); scsi_print_command(SCpnt); resid = min(scsi_bufflen(SCpnt), round_up(resid, sector_size)); scsi_set_resid(SCpnt, resid); } } if (result) { sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); if (sense_valid) sense_deferred = scsi_sense_is_deferred(&sshdr); } sdkp->medium_access_timed_out = 0; if (!scsi_status_is_check_condition(result) && (!sense_valid || sense_deferred)) goto out; switch (sshdr.sense_key) { case HARDWARE_ERROR: case MEDIUM_ERROR: good_bytes = sd_completed_bytes(SCpnt); break; case RECOVERED_ERROR: good_bytes = scsi_bufflen(SCpnt); break; case NO_SENSE: /* This indicates a false check condition, so ignore it. An * unknown amount of data was transferred so treat it as an * error. */ SCpnt->result = 0; memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); break; case ABORTED_COMMAND: if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ good_bytes = sd_completed_bytes(SCpnt); break; case ILLEGAL_REQUEST: switch (sshdr.asc) { case 0x10: /* DIX: Host detected corruption */ good_bytes = sd_completed_bytes(SCpnt); break; case 0x20: /* INVALID COMMAND OPCODE */ case 0x24: /* INVALID FIELD IN CDB */ switch (SCpnt->cmnd[0]) { case UNMAP: sd_config_discard(sdkp, SD_LBP_DISABLE); break; case WRITE_SAME_16: case WRITE_SAME: if (SCpnt->cmnd[1] & 8) { /* UNMAP */ sd_config_discard(sdkp, SD_LBP_DISABLE); } else { sdkp->device->no_write_same = 1; sd_config_write_same(sdkp); req->rq_flags |= RQF_QUIET; } break; } } break; default: break; } out: if (sd_is_zoned(sdkp)) good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, "sd_done: completed %d of %d bytes\n", good_bytes, scsi_bufflen(SCpnt))); return good_bytes; } /* * spinup disk - called only in sd_revalidate_disk() */ static void sd_spinup_disk(struct scsi_disk *sdkp) { unsigned char cmd[10]; unsigned long spintime_expire = 0; int retries, spintime; unsigned int the_result; struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, }; int sense_valid = 0; spintime = 0; /* Spin up drives, as required. Only do this at boot time */ /* Spinup needs to be done for module loads too. */ do { retries = 0; do { bool media_was_present = sdkp->media_present; cmd[0] = TEST_UNIT_READY; memset((void *) &cmd[1], 0, 9); the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, sdkp->max_retries, &exec_args); /* * If the drive has indicated to us that it * doesn't have any media in it, don't bother * with any more polling. */ if (media_not_present(sdkp, &sshdr)) { if (media_was_present) sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); return; } if (the_result) sense_valid = scsi_sense_valid(&sshdr); retries++; } while (retries < 3 && (!scsi_status_is_good(the_result) || (scsi_status_is_check_condition(the_result) && sense_valid && sshdr.sense_key == UNIT_ATTENTION))); if (!scsi_status_is_check_condition(the_result)) { /* no sense, TUR either succeeded or failed * with a status error */ if(!spintime && !scsi_status_is_good(the_result)) { sd_print_result(sdkp, "Test Unit Ready failed", the_result); } break; } /* * The device does not want the automatic start to be issued. */ if (sdkp->device->no_start_on_add) break; if (sense_valid && sshdr.sense_key == NOT_READY) { if (sshdr.asc == 4 && sshdr.ascq == 3) break; /* manual intervention required */ if (sshdr.asc == 4 && sshdr.ascq == 0xb) break; /* standby */ if (sshdr.asc == 4 && sshdr.ascq == 0xc) break; /* unavailable */ if (sshdr.asc == 4 && sshdr.ascq == 0x1b) break; /* sanitize in progress */ /* * Issue command to spin up drive when not ready */ if (!spintime) { sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); cmd[0] = START_STOP; cmd[1] = 1; /* Return immediately */ memset((void *) &cmd[2], 0, 8); cmd[4] = 1; /* Start spin cycle */ if (sdkp->device->start_stop_pwr_cond) cmd[4] |= 1 << 4; scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, sdkp->max_retries, &exec_args); spintime_expire = jiffies + 100 * HZ; spintime = 1; } /* Wait 1 second for next try */ msleep(1000); printk(KERN_CONT "."); /* * Wait for USB flash devices with slow firmware. * Yes, this sense key/ASC combination shouldn't * occur here. It's characteristic of these devices. */ } else if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x28) { if (!spintime) { spintime_expire = jiffies + 5 * HZ; spintime = 1; } /* Wait 1 second for next try */ msleep(1000); } else { /* we don't understand the sense code, so it's * probably pointless to loop */ if(!spintime) { sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); sd_print_sense_hdr(sdkp, &sshdr); } break; } } while (spintime && time_before_eq(jiffies, spintime_expire)); if (spintime) { if (scsi_status_is_good(the_result)) printk(KERN_CONT "ready\n"); else printk(KERN_CONT "not responding...\n"); } } /* * Determine whether disk supports Data Integrity Field. */ static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) { struct scsi_device *sdp = sdkp->device; u8 type; if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { sdkp->protection_type = 0; return 0; } type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ if (type > T10_PI_TYPE3_PROTECTION) { sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ " protection type %u. Disabling disk!\n", type); sdkp->protection_type = 0; return -ENODEV; } sdkp->protection_type = type; return 0; } static void sd_config_protection(struct scsi_disk *sdkp) { struct scsi_device *sdp = sdkp->device; sd_dif_config_host(sdkp); if (!sdkp->protection_type) return; if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { sd_first_printk(KERN_NOTICE, sdkp, "Disabling DIF Type %u protection\n", sdkp->protection_type); sdkp->protection_type = 0; } sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", sdkp->protection_type); } static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, struct scsi_sense_hdr *sshdr, int sense_valid, int the_result) { if (sense_valid) sd_print_sense_hdr(sdkp, sshdr); else sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); /* * Set dirty bit for removable devices if not ready - * sometimes drives will not report this properly. */ if (sdp->removable && sense_valid && sshdr->sense_key == NOT_READY) set_media_not_present(sdkp); /* * We used to set media_present to 0 here to indicate no media * in the drive, but some drives fail read capacity even with * media present, so we can't do that. */ sdkp->capacity = 0; /* unknown mapped to zero - as usual */ } #define RC16_LEN 32 #if RC16_LEN > SD_BUF_SIZE #error RC16_LEN must not be more than SD_BUF_SIZE #endif #define READ_CAPACITY_RETRIES_ON_RESET 10 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, unsigned char *buffer) { unsigned char cmd[16]; struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, }; int sense_valid = 0; int the_result; int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; unsigned int alignment; unsigned long long lba; unsigned sector_size; if (sdp->no_read_capacity_16) return -EINVAL; do { memset(cmd, 0, 16); cmd[0] = SERVICE_ACTION_IN_16; cmd[1] = SAI_READ_CAPACITY_16; cmd[13] = RC16_LEN; memset(buffer, 0, RC16_LEN); the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, RC16_LEN, SD_TIMEOUT, sdkp->max_retries, &exec_args); if (media_not_present(sdkp, &sshdr)) return -ENODEV; if (the_result > 0) { sense_valid = scsi_sense_valid(&sshdr); if (sense_valid && sshdr.sense_key == ILLEGAL_REQUEST && (sshdr.asc == 0x20 || sshdr.asc == 0x24) && sshdr.ascq == 0x00) /* Invalid Command Operation Code or * Invalid Field in CDB, just retry * silently with RC10 */ return -EINVAL; if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x29 && sshdr.ascq == 0x00) /* Device reset might occur several times, * give it one more chance */ if (--reset_retries > 0) continue; } retries--; } while (the_result && retries); if (the_result) { sd_print_result(sdkp, "Read Capacity(16) failed", the_result); read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); return -EINVAL; } sector_size = get_unaligned_be32(&buffer[8]); lba = get_unaligned_be64(&buffer[0]); if (sd_read_protection_type(sdkp, buffer) < 0) { sdkp->capacity = 0; return -ENODEV; } /* Logical blocks per physical block exponent */ sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; /* RC basis */ sdkp->rc_basis = (buffer[12] >> 4) & 0x3; /* Lowest aligned logical block */ alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; blk_queue_alignment_offset(sdp->request_queue, alignment); if (alignment && sdkp->first_scan) sd_printk(KERN_NOTICE, sdkp, "physical block alignment offset: %u\n", alignment); if (buffer[14] & 0x80) { /* LBPME */ sdkp->lbpme = 1; if (buffer[14] & 0x40) /* LBPRZ */ sdkp->lbprz = 1; sd_config_discard(sdkp, SD_LBP_WS16); } sdkp->capacity = lba + 1; return sector_size; } static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, unsigned char *buffer) { unsigned char cmd[16]; struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, }; int sense_valid = 0; int the_result; int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; sector_t lba; unsigned sector_size; do { cmd[0] = READ_CAPACITY; memset(&cmd[1], 0, 9); memset(buffer, 0, 8); the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 8, SD_TIMEOUT, sdkp->max_retries, &exec_args); if (media_not_present(sdkp, &sshdr)) return -ENODEV; if (the_result > 0) { sense_valid = scsi_sense_valid(&sshdr); if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x29 && sshdr.ascq == 0x00) /* Device reset might occur several times, * give it one more chance */ if (--reset_retries > 0) continue; } retries--; } while (the_result && retries); if (the_result) { sd_print_result(sdkp, "Read Capacity(10) failed", the_result); read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); return -EINVAL; } sector_size = get_unaligned_be32(&buffer[4]); lba = get_unaligned_be32(&buffer[0]); if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { /* Some buggy (usb cardreader) devices return an lba of 0xffffffff when the want to report a size of 0 (with which they really mean no media is present) */ sdkp->capacity = 0; sdkp->physical_block_size = sector_size; return sector_size; } sdkp->capacity = lba + 1; sdkp->physical_block_size = sector_size; return sector_size; } static int sd_try_rc16_first(struct scsi_device *sdp) { if (sdp->host->max_cmd_len < 16) return 0; if (sdp->try_rc_10_first) return 0; if (sdp->scsi_level > SCSI_SPC_2) return 1; if (scsi_device_protection(sdp)) return 1; return 0; } /* * read disk capacity */ static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) { int sector_size; struct scsi_device *sdp = sdkp->device; if (sd_try_rc16_first(sdp)) { sector_size = read_capacity_16(sdkp, sdp, buffer); if (sector_size == -EOVERFLOW) goto got_data; if (sector_size == -ENODEV) return; if (sector_size < 0) sector_size = read_capacity_10(sdkp, sdp, buffer); if (sector_size < 0) return; } else { sector_size = read_capacity_10(sdkp, sdp, buffer); if (sector_size == -EOVERFLOW) goto got_data; if (sector_size < 0) return; if ((sizeof(sdkp->capacity) > 4) && (sdkp->capacity > 0xffffffffULL)) { int old_sector_size = sector_size; sd_printk(KERN_NOTICE, sdkp, "Very big device. " "Trying to use READ CAPACITY(16).\n"); sector_size = read_capacity_16(sdkp, sdp, buffer); if (sector_size < 0) { sd_printk(KERN_NOTICE, sdkp, "Using 0xffffffff as device size\n"); sdkp->capacity = 1 + (sector_t) 0xffffffff; sector_size = old_sector_size; goto got_data; } /* Remember that READ CAPACITY(16) succeeded */ sdp->try_rc_10_first = 0; } } /* Some devices are known to return the total number of blocks, * not the highest block number. Some devices have versions * which do this and others which do not. Some devices we might * suspect of doing this but we don't know for certain. * * If we know the reported capacity is wrong, decrement it. If * we can only guess, then assume the number of blocks is even * (usually true but not always) and err on the side of lowering * the capacity. */ if (sdp->fix_capacity || (sdp->guess_capacity && (sdkp->capacity & 0x01))) { sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " "from its reported value: %llu\n", (unsigned long long) sdkp->capacity); --sdkp->capacity; } got_data: if (sector_size == 0) { sector_size = 512; sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " "assuming 512.\n"); } if (sector_size != 512 && sector_size != 1024 && sector_size != 2048 && sector_size != 4096) { sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", sector_size); /* * The user might want to re-format the drive with * a supported sectorsize. Once this happens, it * would be relatively trivial to set the thing up. * For this reason, we leave the thing in the table. */ sdkp->capacity = 0; /* * set a bogus sector size so the normal read/write * logic in the block layer will eventually refuse any * request on this device without tripping over power * of two sector size assumptions */ sector_size = 512; } blk_queue_logical_block_size(sdp->request_queue, sector_size); blk_queue_physical_block_size(sdp->request_queue, sdkp->physical_block_size); sdkp->device->sector_size = sector_size; if (sdkp->capacity > 0xffffffff) sdp->use_16_for_rw = 1; } /* * Print disk capacity */ static void sd_print_capacity(struct scsi_disk *sdkp, sector_t old_capacity) { int sector_size = sdkp->device->sector_size; char cap_str_2[10], cap_str_10[10]; if (!sdkp->first_scan && old_capacity == sdkp->capacity) return; string_get_size(sdkp->capacity, sector_size, STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); string_get_size(sdkp->capacity, sector_size, STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); sd_printk(KERN_NOTICE, sdkp, "%llu %d-byte logical blocks: (%s/%s)\n", (unsigned long long)sdkp->capacity, sector_size, cap_str_10, cap_str_2); if (sdkp->physical_block_size != sector_size) sd_printk(KERN_NOTICE, sdkp, "%u-byte physical blocks\n", sdkp->physical_block_size); } /* called with buffer of length 512 */ static inline int sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, unsigned char *buffer, int len, struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) { /* * If we must use MODE SENSE(10), make sure that the buffer length * is at least 8 bytes so that the mode sense header fits. */ if (sdkp->device->use_10_for_ms && len < 8) len = 8; return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, SD_TIMEOUT, sdkp->max_retries, data, sshdr); } /* * read write protect setting, if possible - called only in sd_revalidate_disk() * called with buffer of length SD_BUF_SIZE */ static void sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) { int res; struct scsi_device *sdp = sdkp->device; struct scsi_mode_data data; int old_wp = sdkp->write_prot; set_disk_ro(sdkp->disk, 0); if (sdp->skip_ms_page_3f) { sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); return; } if (sdp->use_192_bytes_for_3f) { res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); } else { /* * First attempt: ask for all pages (0x3F), but only 4 bytes. * We have to start carefully: some devices hang if we ask * for more than is available. */ res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); /* * Second attempt: ask for page 0 When only page 0 is * implemented, a request for page 3F may return Sense Key * 5: Illegal Request, Sense Code 24: Invalid field in * CDB. */ if (res < 0) res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); /* * Third attempt: ask 255 bytes, as we did earlier. */ if (res < 0) res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, &data, NULL); } if (res < 0) { sd_first_printk(KERN_WARNING, sdkp, "Test WP failed, assume Write Enabled\n"); } else { sdkp->write_prot = ((data.device_specific & 0x80) != 0); set_disk_ro(sdkp->disk, sdkp->write_prot); if (sdkp->first_scan || old_wp != sdkp->write_prot) { sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", sdkp->write_prot ? "on" : "off"); sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); } } } /* * sd_read_cache_type - called only from sd_revalidate_disk() * called with buffer of length SD_BUF_SIZE */ static void sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) { int len = 0, res; struct scsi_device *sdp = sdkp->device; int dbd; int modepage; int first_len; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; int old_wce = sdkp->WCE; int old_rcd = sdkp->RCD; int old_dpofua = sdkp->DPOFUA; if (sdkp->cache_override) return; first_len = 4; if (sdp->skip_ms_page_8) { if (sdp->type == TYPE_RBC) goto defaults; else { if (sdp->skip_ms_page_3f) goto defaults; modepage = 0x3F; if (sdp->use_192_bytes_for_3f) first_len = 192; dbd = 0; } } else if (sdp->type == TYPE_RBC) { modepage = 6; dbd = 8; } else { modepage = 8; dbd = 0; } /* cautiously ask */ res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, &data, &sshdr); if (res < 0) goto bad_sense; if (!data.header_length) { modepage = 6; first_len = 0; sd_first_printk(KERN_ERR, sdkp, "Missing header in MODE_SENSE response\n"); } /* that went OK, now ask for the proper length */ len = data.length; /* * We're only interested in the first three bytes, actually. * But the data cache page is defined for the first 20. */ if (len < 3) goto bad_sense; else if (len > SD_BUF_SIZE) { sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " "data from %d to %d bytes\n", len, SD_BUF_SIZE); len = SD_BUF_SIZE; } if (modepage == 0x3F && sdp->use_192_bytes_for_3f) len = 192; /* Get the data */ if (len > first_len) res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, &data, &sshdr); if (!res) { int offset = data.header_length + data.block_descriptor_length; while (offset < len) { u8 page_code = buffer[offset] & 0x3F; u8 spf = buffer[offset] & 0x40; if (page_code == 8 || page_code == 6) { /* We're interested only in the first 3 bytes. */ if (len - offset <= 2) { sd_first_printk(KERN_ERR, sdkp, "Incomplete mode parameter " "data\n"); goto defaults; } else { modepage = page_code; goto Page_found; } } else { /* Go to the next page */ if (spf && len - offset > 3) offset += 4 + (buffer[offset+2] << 8) + buffer[offset+3]; else if (!spf && len - offset > 1) offset += 2 + buffer[offset+1]; else { sd_first_printk(KERN_ERR, sdkp, "Incomplete mode " "parameter data\n"); goto defaults; } } } sd_first_printk(KERN_WARNING, sdkp, "No Caching mode page found\n"); goto defaults; Page_found: if (modepage == 8) { sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); } else { sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); sdkp->RCD = 0; } sdkp->DPOFUA = (data.device_specific & 0x10) != 0; if (sdp->broken_fua) { sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); sdkp->DPOFUA = 0; } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && !sdkp->device->use_16_for_rw) { sd_first_printk(KERN_NOTICE, sdkp, "Uses READ/WRITE(6), disabling FUA\n"); sdkp->DPOFUA = 0; } /* No cache flush allowed for write protected devices */ if (sdkp->WCE && sdkp->write_prot) sdkp->WCE = 0; if (sdkp->first_scan || old_wce != sdkp->WCE || old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) sd_printk(KERN_NOTICE, sdkp, "Write cache: %s, read cache: %s, %s\n", sdkp->WCE ? "enabled" : "disabled", sdkp->RCD ? "disabled" : "enabled", sdkp->DPOFUA ? "supports DPO and FUA" : "doesn't support DPO or FUA"); return; } bad_sense: if (scsi_sense_valid(&sshdr) && sshdr.sense_key == ILLEGAL_REQUEST && sshdr.asc == 0x24 && sshdr.ascq == 0x0) /* Invalid field in CDB */ sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); else sd_first_printk(KERN_ERR, sdkp, "Asking for cache data failed\n"); defaults: if (sdp->wce_default_on) { sd_first_printk(KERN_NOTICE, sdkp, "Assuming drive cache: write back\n"); sdkp->WCE = 1; } else { sd_first_printk(KERN_WARNING, sdkp, "Assuming drive cache: write through\n"); sdkp->WCE = 0; } sdkp->RCD = 0; sdkp->DPOFUA = 0; } /* * The ATO bit indicates whether the DIF application tag is available * for use by the operating system. */ static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) { int res, offset; struct scsi_device *sdp = sdkp->device; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) return; if (sdkp->protection_type == 0) return; res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, sdkp->max_retries, &data, &sshdr); if (res < 0 || !data.header_length || data.length < 6) { sd_first_printk(KERN_WARNING, sdkp, "getting Control mode page failed, assume no ATO\n"); if (scsi_sense_valid(&sshdr)) sd_print_sense_hdr(sdkp, &sshdr); return; } offset = data.header_length + data.block_descriptor_length; if ((buffer[offset] & 0x3f) != 0x0a) { sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); return; } if ((buffer[offset + 5] & 0x80) == 0) return; sdkp->ATO = 1; return; } /** * sd_read_block_limits - Query disk device for preferred I/O sizes. * @sdkp: disk to query */ static void sd_read_block_limits(struct scsi_disk *sdkp) { struct scsi_vpd *vpd; rcu_read_lock(); vpd = rcu_dereference(sdkp->device->vpd_pgb0); if (!vpd || vpd->len < 16) goto out; sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); if (vpd->len >= 64) { unsigned int lba_count, desc_count; sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); if (!sdkp->lbpme) goto out; lba_count = get_unaligned_be32(&vpd->data[20]); desc_count = get_unaligned_be32(&vpd->data[24]); if (lba_count && desc_count) sdkp->max_unmap_blocks = lba_count; sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); if (vpd->data[32] & 0x80) sdkp->unmap_alignment = get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ if (sdkp->max_unmap_blocks) sd_config_discard(sdkp, SD_LBP_UNMAP); else sd_config_discard(sdkp, SD_LBP_WS16); } else { /* LBP VPD page tells us what to use */ if (sdkp->lbpu && sdkp->max_unmap_blocks) sd_config_discard(sdkp, SD_LBP_UNMAP); else if (sdkp->lbpws) sd_config_discard(sdkp, SD_LBP_WS16); else if (sdkp->lbpws10) sd_config_discard(sdkp, SD_LBP_WS10); else sd_config_discard(sdkp, SD_LBP_DISABLE); } } out: rcu_read_unlock(); } /** * sd_read_block_characteristics - Query block dev. characteristics * @sdkp: disk to query */ static void sd_read_block_characteristics(struct scsi_disk *sdkp) { struct request_queue *q = sdkp->disk->queue; struct scsi_vpd *vpd; u16 rot; u8 zoned; rcu_read_lock(); vpd = rcu_dereference(sdkp->device->vpd_pgb1); if (!vpd || vpd->len <= 8) { rcu_read_unlock(); return; } rot = get_unaligned_be16(&vpd->data[4]); zoned = (vpd->data[8] >> 4) & 3; rcu_read_unlock(); if (rot == 1) { blk_queue_flag_set(QUEUE_FLAG_NONROT, q); blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); } if (sdkp->device->type == TYPE_ZBC) { /* * Host-managed: Per ZBC and ZAC specifications, writes in * sequential write required zones of host-managed devices must * be aligned to the device physical block size. */ disk_set_zoned(sdkp->disk, BLK_ZONED_HM); blk_queue_zone_write_granularity(q, sdkp->physical_block_size); } else { sdkp->zoned = zoned; if (sdkp->zoned == 1) { /* Host-aware */ disk_set_zoned(sdkp->disk, BLK_ZONED_HA); } else { /* Regular disk or drive managed disk */ disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); } } if (!sdkp->first_scan) return; if (blk_queue_is_zoned(q)) { sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); } else { if (sdkp->zoned == 1) sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n"); else if (sdkp->zoned == 2) sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n"); } } /** * sd_read_block_provisioning - Query provisioning VPD page * @sdkp: disk to query */ static void sd_read_block_provisioning(struct scsi_disk *sdkp) { struct scsi_vpd *vpd; if (sdkp->lbpme == 0) return; rcu_read_lock(); vpd = rcu_dereference(sdkp->device->vpd_pgb2); if (!vpd || vpd->len < 8) { rcu_read_unlock(); return; } sdkp->lbpvpd = 1; sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ rcu_read_unlock(); } static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) { struct scsi_device *sdev = sdkp->device; if (sdev->host->no_write_same) { sdev->no_write_same = 1; return; } if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { struct scsi_vpd *vpd; sdev->no_report_opcodes = 1; /* Disable WRITE SAME if REPORT SUPPORTED OPERATION * CODES is unsupported and the device has an ATA * Information VPD page (SAT). */ rcu_read_lock(); vpd = rcu_dereference(sdev->vpd_pg89); if (vpd) sdev->no_write_same = 1; rcu_read_unlock(); } if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) sdkp->ws16 = 1; if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) sdkp->ws10 = 1; } static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) { struct scsi_device *sdev = sdkp->device; if (!sdev->security_supported) return; if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, SECURITY_PROTOCOL_IN, 0) == 1 && scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, SECURITY_PROTOCOL_OUT, 0) == 1) sdkp->security = 1; } static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) { return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); } /** * sd_read_cpr - Query concurrent positioning ranges * @sdkp: disk to query */ static void sd_read_cpr(struct scsi_disk *sdkp) { struct blk_independent_access_ranges *iars = NULL; unsigned char *buffer = NULL; unsigned int nr_cpr = 0; int i, vpd_len, buf_len = SD_BUF_SIZE; u8 *desc; /* * We need to have the capacity set first for the block layer to be * able to check the ranges. */ if (sdkp->first_scan) return; if (!sdkp->capacity) goto out; /* * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, * leading to a maximum page size of 64 + 256*32 bytes. */ buf_len = 64 + 256*32; buffer = kmalloc(buf_len, GFP_KERNEL); if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) goto out; /* We must have at least a 64B header and one 32B range descriptor */ vpd_len = get_unaligned_be16(&buffer[2]) + 4; if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { sd_printk(KERN_ERR, sdkp, "Invalid Concurrent Positioning Ranges VPD page\n"); goto out; } nr_cpr = (vpd_len - 64) / 32; if (nr_cpr == 1) { nr_cpr = 0; goto out; } iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); if (!iars) { nr_cpr = 0; goto out; } desc = &buffer[64]; for (i = 0; i < nr_cpr; i++, desc += 32) { if (desc[0] != i) { sd_printk(KERN_ERR, sdkp, "Invalid Concurrent Positioning Range number\n"); nr_cpr = 0; break; } iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); } out: disk_set_independent_access_ranges(sdkp->disk, iars); if (nr_cpr && sdkp->nr_actuators != nr_cpr) { sd_printk(KERN_NOTICE, sdkp, "%u concurrent positioning ranges\n", nr_cpr); sdkp->nr_actuators = nr_cpr; } kfree(buffer); } static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) { struct scsi_device *sdp = sdkp->device; unsigned int min_xfer_bytes = logical_to_bytes(sdp, sdkp->min_xfer_blocks); if (sdkp->min_xfer_blocks == 0) return false; if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { sd_first_printk(KERN_WARNING, sdkp, "Preferred minimum I/O size %u bytes not a " \ "multiple of physical block size (%u bytes)\n", min_xfer_bytes, sdkp->physical_block_size); sdkp->min_xfer_blocks = 0; return false; } sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", min_xfer_bytes); return true; } /* * Determine the device's preferred I/O size for reads and writes * unless the reported value is unreasonably small, large, not a * multiple of the physical block size, or simply garbage. */ static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, unsigned int dev_max) { struct scsi_device *sdp = sdkp->device; unsigned int opt_xfer_bytes = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); unsigned int min_xfer_bytes = logical_to_bytes(sdp, sdkp->min_xfer_blocks); if (sdkp->opt_xfer_blocks == 0) return false; if (sdkp->opt_xfer_blocks > dev_max) { sd_first_printk(KERN_WARNING, sdkp, "Optimal transfer size %u logical blocks " \ "> dev_max (%u logical blocks)\n", sdkp->opt_xfer_blocks, dev_max); return false; } if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { sd_first_printk(KERN_WARNING, sdkp, "Optimal transfer size %u logical blocks " \ "> sd driver limit (%u logical blocks)\n", sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); return false; } if (opt_xfer_bytes < PAGE_SIZE) { sd_first_printk(KERN_WARNING, sdkp, "Optimal transfer size %u bytes < " \ "PAGE_SIZE (%u bytes)\n", opt_xfer_bytes, (unsigned int)PAGE_SIZE); return false; } if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { sd_first_printk(KERN_WARNING, sdkp, "Optimal transfer size %u bytes not a " \ "multiple of preferred minimum block " \ "size (%u bytes)\n", opt_xfer_bytes, min_xfer_bytes); return false; } if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { sd_first_printk(KERN_WARNING, sdkp, "Optimal transfer size %u bytes not a " \ "multiple of physical block size (%u bytes)\n", opt_xfer_bytes, sdkp->physical_block_size); return false; } sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", opt_xfer_bytes); return true; } static void sd_read_block_zero(struct scsi_disk *sdkp) { struct scsi_device *sdev = sdkp->device; unsigned int buf_len = sdev->sector_size; u8 *buffer, cmd[16] = { }; buffer = kmalloc(buf_len, GFP_KERNEL); if (!buffer) return; if (sdev->use_16_for_rw) { cmd[0] = READ_16; put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */ put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */ } else { cmd[0] = READ_10; put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */ put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */ } scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len, SD_TIMEOUT, sdkp->max_retries, NULL); kfree(buffer); } /** * sd_revalidate_disk - called the first time a new disk is seen, * performs disk spin up, read_capacity, etc. * @disk: struct gendisk we care about **/ static int sd_revalidate_disk(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; struct request_queue *q = sdkp->disk->queue; sector_t old_capacity = sdkp->capacity; unsigned char *buffer; unsigned int dev_max, rw_max; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_revalidate_disk\n")); /* * If the device is offline, don't try and read capacity or any * of the other niceties. */ if (!scsi_device_online(sdp)) goto out; buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); if (!buffer) { sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " "allocation failure.\n"); goto out; } sd_spinup_disk(sdkp); /* * Without media there is no reason to ask; moreover, some devices * react badly if we do. */ if (sdkp->media_present) { sd_read_capacity(sdkp, buffer); /* * Some USB/UAS devices return generic values for mode pages * until the media has been accessed. Trigger a READ operation * to force the device to populate mode pages. */ if (sdp->read_before_ms) sd_read_block_zero(sdkp); /* * set the default to rotational. All non-rotational devices * support the block characteristics VPD page, which will * cause this to be updated correctly and any device which * doesn't support it should be treated as rotational. */ blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); if (scsi_device_supports_vpd(sdp)) { sd_read_block_provisioning(sdkp); sd_read_block_limits(sdkp); sd_read_block_characteristics(sdkp); sd_zbc_read_zones(sdkp, buffer); sd_read_cpr(sdkp); } sd_print_capacity(sdkp, old_capacity); sd_read_write_protect_flag(sdkp, buffer); sd_read_cache_type(sdkp, buffer); sd_read_app_tag_own(sdkp, buffer); sd_read_write_same(sdkp, buffer); sd_read_security(sdkp, buffer); sd_config_protection(sdkp); } /* * We now have all cache related info, determine how we deal * with flush requests. */ sd_set_flush_flag(sdkp); /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; /* Some devices report a maximum block count for READ/WRITE requests. */ dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); if (sd_validate_min_xfer_size(sdkp)) blk_queue_io_min(sdkp->disk->queue, logical_to_bytes(sdp, sdkp->min_xfer_blocks)); else blk_queue_io_min(sdkp->disk->queue, 0); if (sd_validate_opt_xfer_size(sdkp, dev_max)) { q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); } else { q->limits.io_opt = 0; rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), (sector_t)BLK_DEF_MAX_SECTORS); } /* * Limit default to SCSI host optimal sector limit if set. There may be * an impact on performance for when the size of a request exceeds this * host limit. */ rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); /* Do not exceed controller limit */ rw_max = min(rw_max, queue_max_hw_sectors(q)); /* * Only update max_sectors if previously unset or if the current value * exceeds the capabilities of the hardware. */ if (sdkp->first_scan || q->limits.max_sectors > q->limits.max_dev_sectors || q->limits.max_sectors > q->limits.max_hw_sectors) q->limits.max_sectors = rw_max; sdkp->first_scan = 0; set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); sd_config_write_same(sdkp); kfree(buffer); /* * For a zoned drive, revalidating the zones can be done only once * the gendisk capacity is set. So if this fails, set back the gendisk * capacity to 0. */ if (sd_zbc_revalidate_zones(sdkp)) set_capacity_and_notify(disk, 0); out: return 0; } /** * sd_unlock_native_capacity - unlock native capacity * @disk: struct gendisk to set capacity for * * Block layer calls this function if it detects that partitions * on @disk reach beyond the end of the device. If the SCSI host * implements ->unlock_native_capacity() method, it's invoked to * give it a chance to adjust the device capacity. * * CONTEXT: * Defined by block layer. Might sleep. */ static void sd_unlock_native_capacity(struct gendisk *disk) { struct scsi_device *sdev = scsi_disk(disk)->device; if (sdev->host->hostt->unlock_native_capacity) sdev->host->hostt->unlock_native_capacity(sdev); } /** * sd_format_disk_name - format disk name * @prefix: name prefix - ie. "sd" for SCSI disks * @index: index of the disk to format name for * @buf: output buffer * @buflen: length of the output buffer * * SCSI disk names starts at sda. The 26th device is sdz and the * 27th is sdaa. The last one for two lettered suffix is sdzz * which is followed by sdaaa. * * This is basically 26 base counting with one extra 'nil' entry * at the beginning from the second digit on and can be * determined using similar method as 26 base conversion with the * index shifted -1 after each digit is computed. * * CONTEXT: * Don't care. * * RETURNS: * 0 on success, -errno on failure. */ static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) { const int base = 'z' - 'a' + 1; char *begin = buf + strlen(prefix); char *end = buf + buflen; char *p; int unit; p = end - 1; *p = '\0'; unit = base; do { if (p == begin) return -EINVAL; *--p = 'a' + (index % unit); index = (index / unit) - 1; } while (index >= 0); memmove(begin, p, end - p); memcpy(buf, prefix, strlen(prefix)); return 0; } /** * sd_probe - called during driver initialization and whenever a * new scsi device is attached to the system. It is called once * for each scsi device (not just disks) present. * @dev: pointer to device object * * Returns 0 if successful (or not interested in this scsi device * (e.g. scanner)); 1 when there is an error. * * Note: this function is invoked from the scsi mid-level. * This function sets up the mapping between a given * (found in sdp) and new device name * (e.g. /dev/sda). More precisely it is the block device major * and minor number that is chosen here. * * Assume sd_probe is not re-entrant (for time being) * Also think about sd_probe() and sd_remove() running coincidentally. **/ static int sd_probe(struct device *dev) { struct scsi_device *sdp = to_scsi_device(dev); struct scsi_disk *sdkp; struct gendisk *gd; int index; int error; scsi_autopm_get_device(sdp); error = -ENODEV; if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) goto out; if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { sdev_printk(KERN_WARNING, sdp, "Unsupported ZBC host-managed device.\n"); goto out; } SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, "sd_probe\n")); error = -ENOMEM; sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); if (!sdkp) goto out; gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, &sd_bio_compl_lkclass); if (!gd) goto out_free; index = ida_alloc(&sd_index_ida, GFP_KERNEL); if (index < 0) { sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); goto out_put; } error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); if (error) { sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); goto out_free_index; } sdkp->device = sdp; sdkp->disk = gd; sdkp->index = index; sdkp->max_retries = SD_MAX_RETRIES; atomic_set(&sdkp->openers, 0); atomic_set(&sdkp->device->ioerr_cnt, 0); if (!sdp->request_queue->rq_timeout) { if (sdp->type != TYPE_MOD) blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); else blk_queue_rq_timeout(sdp->request_queue, SD_MOD_TIMEOUT); } device_initialize(&sdkp->disk_dev); sdkp->disk_dev.parent = get_device(dev); sdkp->disk_dev.class = &sd_disk_class; dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); error = device_add(&sdkp->disk_dev); if (error) { put_device(&sdkp->disk_dev); goto out; } dev_set_drvdata(dev, sdkp); gd->major = sd_major((index & 0xf0) >> 4); gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); gd->minors = SD_MINORS; gd->fops = &sd_fops; gd->private_data = sdkp; /* defaults, until the device tells us otherwise */ sdp->sector_size = 512; sdkp->capacity = 0; sdkp->media_present = 1; sdkp->write_prot = 0; sdkp->cache_override = 0; sdkp->WCE = 0; sdkp->RCD = 0; sdkp->ATO = 0; sdkp->first_scan = 1; sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; sd_revalidate_disk(gd); if (sdp->removable) { gd->flags |= GENHD_FL_REMOVABLE; gd->events |= DISK_EVENT_MEDIA_CHANGE; gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; } blk_pm_runtime_init(sdp->request_queue, dev); if (sdp->rpm_autosuspend) { pm_runtime_set_autosuspend_delay(dev, sdp->host->hostt->rpm_autosuspend_delay); } error = device_add_disk(dev, gd, NULL); if (error) { device_unregister(&sdkp->disk_dev); put_disk(gd); goto out; } if (sdkp->security) { sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); if (sdkp->opal_dev) sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); } sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", sdp->removable ? "removable " : ""); scsi_autopm_put_device(sdp); return 0; out_free_index: ida_free(&sd_index_ida, index); out_put: put_disk(gd); out_free: kfree(sdkp); out: scsi_autopm_put_device(sdp); return error; } /** * sd_remove - called whenever a scsi disk (previously recognized by * sd_probe) is detached from the system. It is called (potentially * multiple times) during sd module unload. * @dev: pointer to device object * * Note: this function is invoked from the scsi mid-level. * This function potentially frees up a device name (e.g. /dev/sdc) * that could be re-used by a subsequent sd_probe(). * This function is not called when the built-in sd driver is "exit-ed". **/ static int sd_remove(struct device *dev) { struct scsi_disk *sdkp = dev_get_drvdata(dev); scsi_autopm_get_device(sdkp->device); device_del(&sdkp->disk_dev); del_gendisk(sdkp->disk); if (!sdkp->suspended) sd_shutdown(dev); put_disk(sdkp->disk); return 0; } static void scsi_disk_release(struct device *dev) { struct scsi_disk *sdkp = to_scsi_disk(dev); ida_free(&sd_index_ida, sdkp->index); sd_zbc_free_zone_info(sdkp); put_device(&sdkp->device->sdev_gendev); free_opal_dev(sdkp->opal_dev); kfree(sdkp); } static int sd_start_stop_device(struct scsi_disk *sdkp, int start) { unsigned char cmd[6] = { START_STOP }; /* START_VALID */ struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, .req_flags = BLK_MQ_REQ_PM, }; struct scsi_device *sdp = sdkp->device; int res; if (start) cmd[4] |= 1; /* START */ if (sdp->start_stop_pwr_cond) cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ if (!scsi_device_online(sdp)) return -ENODEV; res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, sdkp->max_retries, &exec_args); if (res) { sd_print_result(sdkp, "Start/Stop Unit failed", res); if (res > 0 && scsi_sense_valid(&sshdr)) { sd_print_sense_hdr(sdkp, &sshdr); /* 0x3a is medium not present */ if (sshdr.asc == 0x3a) res = 0; } } /* SCSI error codes must not go to the generic layer */ if (res) return -EIO; return 0; } /* * Send a SYNCHRONIZE CACHE instruction down to the device through * the normal SCSI command structure. Wait for the command to * complete. */ static void sd_shutdown(struct device *dev) { struct scsi_disk *sdkp = dev_get_drvdata(dev); if (!sdkp) return; /* this can happen */ if (pm_runtime_suspended(dev)) return; if (sdkp->WCE && sdkp->media_present) { sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); sd_sync_cache(sdkp); } if ((system_state != SYSTEM_RESTART && sdkp->device->manage_system_start_stop) || (system_state == SYSTEM_POWER_OFF && sdkp->device->manage_shutdown)) { sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); sd_start_stop_device(sdkp, 0); } } static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) { return (sdev->manage_system_start_stop && !runtime) || (sdev->manage_runtime_start_stop && runtime); } static int sd_suspend_common(struct device *dev, bool runtime) { struct scsi_disk *sdkp = dev_get_drvdata(dev); int ret = 0; if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ return 0; if (sdkp->WCE && sdkp->media_present) { if (!sdkp->device->silence_suspend) sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); ret = sd_sync_cache(sdkp); /* ignore OFFLINE device */ if (ret == -ENODEV) return 0; if (ret) return ret; } if (sd_do_start_stop(sdkp->device, runtime)) { if (!sdkp->device->silence_suspend) sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); /* an error is not worth aborting a system sleep */ ret = sd_start_stop_device(sdkp, 0); if (!runtime) ret = 0; } if (!ret) sdkp->suspended = true; return ret; } static int sd_suspend_system(struct device *dev) { if (pm_runtime_suspended(dev)) return 0; return sd_suspend_common(dev, false); } static int sd_suspend_runtime(struct device *dev) { return sd_suspend_common(dev, true); } static int sd_resume(struct device *dev) { struct scsi_disk *sdkp = dev_get_drvdata(dev); sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); if (opal_unlock_from_suspend(sdkp->opal_dev)) { sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n"); return -EIO; } return 0; } static int sd_resume_common(struct device *dev, bool runtime) { struct scsi_disk *sdkp = dev_get_drvdata(dev); int ret; if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ return 0; if (!sd_do_start_stop(sdkp->device, runtime)) { sdkp->suspended = false; return 0; } sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); ret = sd_start_stop_device(sdkp, 1); if (!ret) { sd_resume(dev); sdkp->suspended = false; } return ret; } static int sd_resume_system(struct device *dev) { if (pm_runtime_suspended(dev)) { struct scsi_disk *sdkp = dev_get_drvdata(dev); struct scsi_device *sdp = sdkp ? sdkp->device : NULL; if (sdp && sdp->force_runtime_start_on_system_start) pm_request_resume(dev); return 0; } return sd_resume_common(dev, false); } static int sd_resume_runtime(struct device *dev) { struct scsi_disk *sdkp = dev_get_drvdata(dev); struct scsi_device *sdp; if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ return 0; sdp = sdkp->device; if (sdp->ignore_media_change) { /* clear the device's sense data */ static const u8 cmd[10] = { REQUEST_SENSE }; const struct scsi_exec_args exec_args = { .req_flags = BLK_MQ_REQ_PM, }; if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, sdp->request_queue->rq_timeout, 1, &exec_args)) sd_printk(KERN_NOTICE, sdkp, "Failed to clear sense data\n"); } return sd_resume_common(dev, true); } static const struct dev_pm_ops sd_pm_ops = { .suspend = sd_suspend_system, .resume = sd_resume_system, .poweroff = sd_suspend_system, .restore = sd_resume_system, .runtime_suspend = sd_suspend_runtime, .runtime_resume = sd_resume_runtime, }; static struct scsi_driver sd_template = { .gendrv = { .name = "sd", .owner = THIS_MODULE, .probe = sd_probe, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .remove = sd_remove, .shutdown = sd_shutdown, .pm = &sd_pm_ops, }, .rescan = sd_rescan, .resume = sd_resume, .init_command = sd_init_command, .uninit_command = sd_uninit_command, .done = sd_done, .eh_action = sd_eh_action, .eh_reset = sd_eh_reset, }; /** * init_sd - entry point for this driver (both when built in or when * a module). * * Note: this function registers this driver with the scsi mid-level. **/ static int __init init_sd(void) { int majors = 0, i, err; SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); for (i = 0; i < SD_MAJORS; i++) { if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) continue; majors++; } if (!majors) return -ENODEV; err = class_register(&sd_disk_class); if (err) goto err_out; sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); if (!sd_page_pool) { printk(KERN_ERR "sd: can't init discard page pool\n"); err = -ENOMEM; goto err_out_class; } err = scsi_register_driver(&sd_template.gendrv); if (err) goto err_out_driver; return 0; err_out_driver: mempool_destroy(sd_page_pool); err_out_class: class_unregister(&sd_disk_class); err_out: for (i = 0; i < SD_MAJORS; i++) unregister_blkdev(sd_major(i), "sd"); return err; } /** * exit_sd - exit point for this driver (when it is a module). * * Note: this function unregisters this driver from the scsi mid-level. **/ static void __exit exit_sd(void) { int i; SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); scsi_unregister_driver(&sd_template.gendrv); mempool_destroy(sd_page_pool); class_unregister(&sd_disk_class); for (i = 0; i < SD_MAJORS; i++) unregister_blkdev(sd_major(i), "sd"); } module_init(init_sd); module_exit(exit_sd); void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) { scsi_print_sense_hdr(sdkp->device, sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); } void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) { const char *hb_string = scsi_hostbyte_string(result); if (hb_string) sd_printk(KERN_INFO, sdkp, "%s: Result: hostbyte=%s driverbyte=%s\n", msg, hb_string ? hb_string : "invalid", "DRIVER_OK"); else sd_printk(KERN_INFO, sdkp, "%s: Result: hostbyte=0x%02x driverbyte=%s\n", msg, host_byte(result), "DRIVER_OK"); }