1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3 *
4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5 *
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/bpf.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
14 #include "bpf_jit.h"
15
16 #define RV_FENTRY_NINSNS 2
17
18 #define RV_REG_TCC RV_REG_A6
19 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
20
21 static const int regmap[] = {
22 [BPF_REG_0] = RV_REG_A5,
23 [BPF_REG_1] = RV_REG_A0,
24 [BPF_REG_2] = RV_REG_A1,
25 [BPF_REG_3] = RV_REG_A2,
26 [BPF_REG_4] = RV_REG_A3,
27 [BPF_REG_5] = RV_REG_A4,
28 [BPF_REG_6] = RV_REG_S1,
29 [BPF_REG_7] = RV_REG_S2,
30 [BPF_REG_8] = RV_REG_S3,
31 [BPF_REG_9] = RV_REG_S4,
32 [BPF_REG_FP] = RV_REG_S5,
33 [BPF_REG_AX] = RV_REG_T0,
34 };
35
36 static const int pt_regmap[] = {
37 [RV_REG_A0] = offsetof(struct pt_regs, a0),
38 [RV_REG_A1] = offsetof(struct pt_regs, a1),
39 [RV_REG_A2] = offsetof(struct pt_regs, a2),
40 [RV_REG_A3] = offsetof(struct pt_regs, a3),
41 [RV_REG_A4] = offsetof(struct pt_regs, a4),
42 [RV_REG_A5] = offsetof(struct pt_regs, a5),
43 [RV_REG_S1] = offsetof(struct pt_regs, s1),
44 [RV_REG_S2] = offsetof(struct pt_regs, s2),
45 [RV_REG_S3] = offsetof(struct pt_regs, s3),
46 [RV_REG_S4] = offsetof(struct pt_regs, s4),
47 [RV_REG_S5] = offsetof(struct pt_regs, s5),
48 [RV_REG_T0] = offsetof(struct pt_regs, t0),
49 };
50
51 enum {
52 RV_CTX_F_SEEN_TAIL_CALL = 0,
53 RV_CTX_F_SEEN_CALL = RV_REG_RA,
54 RV_CTX_F_SEEN_S1 = RV_REG_S1,
55 RV_CTX_F_SEEN_S2 = RV_REG_S2,
56 RV_CTX_F_SEEN_S3 = RV_REG_S3,
57 RV_CTX_F_SEEN_S4 = RV_REG_S4,
58 RV_CTX_F_SEEN_S5 = RV_REG_S5,
59 RV_CTX_F_SEEN_S6 = RV_REG_S6,
60 };
61
bpf_to_rv_reg(int bpf_reg,struct rv_jit_context * ctx)62 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
63 {
64 u8 reg = regmap[bpf_reg];
65
66 switch (reg) {
67 case RV_CTX_F_SEEN_S1:
68 case RV_CTX_F_SEEN_S2:
69 case RV_CTX_F_SEEN_S3:
70 case RV_CTX_F_SEEN_S4:
71 case RV_CTX_F_SEEN_S5:
72 case RV_CTX_F_SEEN_S6:
73 __set_bit(reg, &ctx->flags);
74 }
75 return reg;
76 };
77
seen_reg(int reg,struct rv_jit_context * ctx)78 static bool seen_reg(int reg, struct rv_jit_context *ctx)
79 {
80 switch (reg) {
81 case RV_CTX_F_SEEN_CALL:
82 case RV_CTX_F_SEEN_S1:
83 case RV_CTX_F_SEEN_S2:
84 case RV_CTX_F_SEEN_S3:
85 case RV_CTX_F_SEEN_S4:
86 case RV_CTX_F_SEEN_S5:
87 case RV_CTX_F_SEEN_S6:
88 return test_bit(reg, &ctx->flags);
89 }
90 return false;
91 }
92
mark_fp(struct rv_jit_context * ctx)93 static void mark_fp(struct rv_jit_context *ctx)
94 {
95 __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
96 }
97
mark_call(struct rv_jit_context * ctx)98 static void mark_call(struct rv_jit_context *ctx)
99 {
100 __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
101 }
102
seen_call(struct rv_jit_context * ctx)103 static bool seen_call(struct rv_jit_context *ctx)
104 {
105 return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
106 }
107
mark_tail_call(struct rv_jit_context * ctx)108 static void mark_tail_call(struct rv_jit_context *ctx)
109 {
110 __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
111 }
112
seen_tail_call(struct rv_jit_context * ctx)113 static bool seen_tail_call(struct rv_jit_context *ctx)
114 {
115 return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
116 }
117
rv_tail_call_reg(struct rv_jit_context * ctx)118 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
119 {
120 mark_tail_call(ctx);
121
122 if (seen_call(ctx)) {
123 __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
124 return RV_REG_S6;
125 }
126 return RV_REG_A6;
127 }
128
is_32b_int(s64 val)129 static bool is_32b_int(s64 val)
130 {
131 return -(1L << 31) <= val && val < (1L << 31);
132 }
133
in_auipc_jalr_range(s64 val)134 static bool in_auipc_jalr_range(s64 val)
135 {
136 /*
137 * auipc+jalr can reach any signed PC-relative offset in the range
138 * [-2^31 - 2^11, 2^31 - 2^11).
139 */
140 return (-(1L << 31) - (1L << 11)) <= val &&
141 val < ((1L << 31) - (1L << 11));
142 }
143
144 /* Emit fixed-length instructions for address */
emit_addr(u8 rd,u64 addr,bool extra_pass,struct rv_jit_context * ctx)145 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
146 {
147 /*
148 * Use the ro_insns(RX) to calculate the offset as the BPF program will
149 * finally run from this memory region.
150 */
151 u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
152 s64 off = addr - ip;
153 s64 upper = (off + (1 << 11)) >> 12;
154 s64 lower = off & 0xfff;
155
156 if (extra_pass && !in_auipc_jalr_range(off)) {
157 pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
158 return -ERANGE;
159 }
160
161 emit(rv_auipc(rd, upper), ctx);
162 emit(rv_addi(rd, rd, lower), ctx);
163 return 0;
164 }
165
166 /* Emit variable-length instructions for 32-bit and 64-bit imm */
emit_imm(u8 rd,s64 val,struct rv_jit_context * ctx)167 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
168 {
169 /* Note that the immediate from the add is sign-extended,
170 * which means that we need to compensate this by adding 2^12,
171 * when the 12th bit is set. A simpler way of doing this, and
172 * getting rid of the check, is to just add 2**11 before the
173 * shift. The "Loading a 32-Bit constant" example from the
174 * "Computer Organization and Design, RISC-V edition" book by
175 * Patterson/Hennessy highlights this fact.
176 *
177 * This also means that we need to process LSB to MSB.
178 */
179 s64 upper = (val + (1 << 11)) >> 12;
180 /* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
181 * and addi are signed and RVC checks will perform signed comparisons.
182 */
183 s64 lower = ((val & 0xfff) << 52) >> 52;
184 int shift;
185
186 if (is_32b_int(val)) {
187 if (upper)
188 emit_lui(rd, upper, ctx);
189
190 if (!upper) {
191 emit_li(rd, lower, ctx);
192 return;
193 }
194
195 emit_addiw(rd, rd, lower, ctx);
196 return;
197 }
198
199 shift = __ffs(upper);
200 upper >>= shift;
201 shift += 12;
202
203 emit_imm(rd, upper, ctx);
204
205 emit_slli(rd, rd, shift, ctx);
206 if (lower)
207 emit_addi(rd, rd, lower, ctx);
208 }
209
__build_epilogue(bool is_tail_call,struct rv_jit_context * ctx)210 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
211 {
212 int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
213
214 if (seen_reg(RV_REG_RA, ctx)) {
215 emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
216 store_offset -= 8;
217 }
218 emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
219 store_offset -= 8;
220 if (seen_reg(RV_REG_S1, ctx)) {
221 emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
222 store_offset -= 8;
223 }
224 if (seen_reg(RV_REG_S2, ctx)) {
225 emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
226 store_offset -= 8;
227 }
228 if (seen_reg(RV_REG_S3, ctx)) {
229 emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
230 store_offset -= 8;
231 }
232 if (seen_reg(RV_REG_S4, ctx)) {
233 emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
234 store_offset -= 8;
235 }
236 if (seen_reg(RV_REG_S5, ctx)) {
237 emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
238 store_offset -= 8;
239 }
240 if (seen_reg(RV_REG_S6, ctx)) {
241 emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
242 store_offset -= 8;
243 }
244
245 emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
246 /* Set return value. */
247 if (!is_tail_call)
248 emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
249 emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
250 is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
251 ctx);
252 }
253
emit_bcc(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)254 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
255 struct rv_jit_context *ctx)
256 {
257 switch (cond) {
258 case BPF_JEQ:
259 emit(rv_beq(rd, rs, rvoff >> 1), ctx);
260 return;
261 case BPF_JGT:
262 emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
263 return;
264 case BPF_JLT:
265 emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
266 return;
267 case BPF_JGE:
268 emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
269 return;
270 case BPF_JLE:
271 emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
272 return;
273 case BPF_JNE:
274 emit(rv_bne(rd, rs, rvoff >> 1), ctx);
275 return;
276 case BPF_JSGT:
277 emit(rv_blt(rs, rd, rvoff >> 1), ctx);
278 return;
279 case BPF_JSLT:
280 emit(rv_blt(rd, rs, rvoff >> 1), ctx);
281 return;
282 case BPF_JSGE:
283 emit(rv_bge(rd, rs, rvoff >> 1), ctx);
284 return;
285 case BPF_JSLE:
286 emit(rv_bge(rs, rd, rvoff >> 1), ctx);
287 }
288 }
289
emit_branch(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)290 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
291 struct rv_jit_context *ctx)
292 {
293 s64 upper, lower;
294
295 if (is_13b_int(rvoff)) {
296 emit_bcc(cond, rd, rs, rvoff, ctx);
297 return;
298 }
299
300 /* Adjust for jal */
301 rvoff -= 4;
302
303 /* Transform, e.g.:
304 * bne rd,rs,foo
305 * to
306 * beq rd,rs,<.L1>
307 * (auipc foo)
308 * jal(r) foo
309 * .L1
310 */
311 cond = invert_bpf_cond(cond);
312 if (is_21b_int(rvoff)) {
313 emit_bcc(cond, rd, rs, 8, ctx);
314 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
315 return;
316 }
317
318 /* 32b No need for an additional rvoff adjustment, since we
319 * get that from the auipc at PC', where PC = PC' + 4.
320 */
321 upper = (rvoff + (1 << 11)) >> 12;
322 lower = rvoff & 0xfff;
323
324 emit_bcc(cond, rd, rs, 12, ctx);
325 emit(rv_auipc(RV_REG_T1, upper), ctx);
326 emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
327 }
328
emit_zext_32(u8 reg,struct rv_jit_context * ctx)329 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
330 {
331 emit_slli(reg, reg, 32, ctx);
332 emit_srli(reg, reg, 32, ctx);
333 }
334
emit_bpf_tail_call(int insn,struct rv_jit_context * ctx)335 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
336 {
337 int tc_ninsn, off, start_insn = ctx->ninsns;
338 u8 tcc = rv_tail_call_reg(ctx);
339
340 /* a0: &ctx
341 * a1: &array
342 * a2: index
343 *
344 * if (index >= array->map.max_entries)
345 * goto out;
346 */
347 tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
348 ctx->offset[0];
349 emit_zext_32(RV_REG_A2, ctx);
350
351 off = offsetof(struct bpf_array, map.max_entries);
352 if (is_12b_check(off, insn))
353 return -1;
354 emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
355 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
356 emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
357
358 /* if (--TCC < 0)
359 * goto out;
360 */
361 emit_addi(RV_REG_TCC, tcc, -1, ctx);
362 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
363 emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
364
365 /* prog = array->ptrs[index];
366 * if (!prog)
367 * goto out;
368 */
369 emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
370 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
371 off = offsetof(struct bpf_array, ptrs);
372 if (is_12b_check(off, insn))
373 return -1;
374 emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
375 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
377
378 /* goto *(prog->bpf_func + 4); */
379 off = offsetof(struct bpf_prog, bpf_func);
380 if (is_12b_check(off, insn))
381 return -1;
382 emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
383 __build_epilogue(true, ctx);
384 return 0;
385 }
386
init_regs(u8 * rd,u8 * rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)387 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
388 struct rv_jit_context *ctx)
389 {
390 u8 code = insn->code;
391
392 switch (code) {
393 case BPF_JMP | BPF_JA:
394 case BPF_JMP | BPF_CALL:
395 case BPF_JMP | BPF_EXIT:
396 case BPF_JMP | BPF_TAIL_CALL:
397 break;
398 default:
399 *rd = bpf_to_rv_reg(insn->dst_reg, ctx);
400 }
401
402 if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
403 code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
404 code & BPF_LDX || code & BPF_STX)
405 *rs = bpf_to_rv_reg(insn->src_reg, ctx);
406 }
407
emit_zext_32_rd_rs(u8 * rd,u8 * rs,struct rv_jit_context * ctx)408 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
409 {
410 emit_mv(RV_REG_T2, *rd, ctx);
411 emit_zext_32(RV_REG_T2, ctx);
412 emit_mv(RV_REG_T1, *rs, ctx);
413 emit_zext_32(RV_REG_T1, ctx);
414 *rd = RV_REG_T2;
415 *rs = RV_REG_T1;
416 }
417
emit_sext_32_rd_rs(u8 * rd,u8 * rs,struct rv_jit_context * ctx)418 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
419 {
420 emit_addiw(RV_REG_T2, *rd, 0, ctx);
421 emit_addiw(RV_REG_T1, *rs, 0, ctx);
422 *rd = RV_REG_T2;
423 *rs = RV_REG_T1;
424 }
425
emit_zext_32_rd_t1(u8 * rd,struct rv_jit_context * ctx)426 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
427 {
428 emit_mv(RV_REG_T2, *rd, ctx);
429 emit_zext_32(RV_REG_T2, ctx);
430 emit_zext_32(RV_REG_T1, ctx);
431 *rd = RV_REG_T2;
432 }
433
emit_sext_32_rd(u8 * rd,struct rv_jit_context * ctx)434 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
435 {
436 emit_addiw(RV_REG_T2, *rd, 0, ctx);
437 *rd = RV_REG_T2;
438 }
439
emit_jump_and_link(u8 rd,s64 rvoff,bool fixed_addr,struct rv_jit_context * ctx)440 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
441 struct rv_jit_context *ctx)
442 {
443 s64 upper, lower;
444
445 if (rvoff && fixed_addr && is_21b_int(rvoff)) {
446 emit(rv_jal(rd, rvoff >> 1), ctx);
447 return 0;
448 } else if (in_auipc_jalr_range(rvoff)) {
449 upper = (rvoff + (1 << 11)) >> 12;
450 lower = rvoff & 0xfff;
451 emit(rv_auipc(RV_REG_T1, upper), ctx);
452 emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
453 return 0;
454 }
455
456 pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
457 return -ERANGE;
458 }
459
is_signed_bpf_cond(u8 cond)460 static bool is_signed_bpf_cond(u8 cond)
461 {
462 return cond == BPF_JSGT || cond == BPF_JSLT ||
463 cond == BPF_JSGE || cond == BPF_JSLE;
464 }
465
emit_call(u64 addr,bool fixed_addr,struct rv_jit_context * ctx)466 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
467 {
468 s64 off = 0;
469 u64 ip;
470
471 if (addr && ctx->insns && ctx->ro_insns) {
472 /*
473 * Use the ro_insns(RX) to calculate the offset as the BPF
474 * program will finally run from this memory region.
475 */
476 ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
477 off = addr - ip;
478 }
479
480 return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
481 }
482
emit_atomic(u8 rd,u8 rs,s16 off,s32 imm,bool is64,struct rv_jit_context * ctx)483 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
484 struct rv_jit_context *ctx)
485 {
486 u8 r0;
487 int jmp_offset;
488
489 if (off) {
490 if (is_12b_int(off)) {
491 emit_addi(RV_REG_T1, rd, off, ctx);
492 } else {
493 emit_imm(RV_REG_T1, off, ctx);
494 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
495 }
496 rd = RV_REG_T1;
497 }
498
499 switch (imm) {
500 /* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
501 case BPF_ADD:
502 emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
503 rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
504 break;
505 case BPF_AND:
506 emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
507 rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
508 break;
509 case BPF_OR:
510 emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
511 rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
512 break;
513 case BPF_XOR:
514 emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
515 rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
516 break;
517 /* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
518 case BPF_ADD | BPF_FETCH:
519 emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
520 rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
521 if (!is64)
522 emit_zext_32(rs, ctx);
523 break;
524 case BPF_AND | BPF_FETCH:
525 emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
526 rv_amoand_w(rs, rs, rd, 1, 1), ctx);
527 if (!is64)
528 emit_zext_32(rs, ctx);
529 break;
530 case BPF_OR | BPF_FETCH:
531 emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
532 rv_amoor_w(rs, rs, rd, 1, 1), ctx);
533 if (!is64)
534 emit_zext_32(rs, ctx);
535 break;
536 case BPF_XOR | BPF_FETCH:
537 emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
538 rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
539 if (!is64)
540 emit_zext_32(rs, ctx);
541 break;
542 /* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
543 case BPF_XCHG:
544 emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
545 rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
546 if (!is64)
547 emit_zext_32(rs, ctx);
548 break;
549 /* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
550 case BPF_CMPXCHG:
551 r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
552 emit(is64 ? rv_addi(RV_REG_T2, r0, 0) :
553 rv_addiw(RV_REG_T2, r0, 0), ctx);
554 emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
555 rv_lr_w(r0, 0, rd, 0, 0), ctx);
556 jmp_offset = ninsns_rvoff(8);
557 emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
558 emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 1) :
559 rv_sc_w(RV_REG_T3, rs, rd, 0, 1), ctx);
560 jmp_offset = ninsns_rvoff(-6);
561 emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
562 emit(rv_fence(0x3, 0x3), ctx);
563 break;
564 }
565 }
566
567 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
568 #define BPF_FIXUP_REG_MASK GENMASK(31, 27)
569
ex_handler_bpf(const struct exception_table_entry * ex,struct pt_regs * regs)570 bool ex_handler_bpf(const struct exception_table_entry *ex,
571 struct pt_regs *regs)
572 {
573 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
574 int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
575
576 *(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
577 regs->epc = (unsigned long)&ex->fixup - offset;
578
579 return true;
580 }
581
582 /* For accesses to BTF pointers, add an entry to the exception table */
add_exception_handler(const struct bpf_insn * insn,struct rv_jit_context * ctx,int dst_reg,int insn_len)583 static int add_exception_handler(const struct bpf_insn *insn,
584 struct rv_jit_context *ctx,
585 int dst_reg, int insn_len)
586 {
587 struct exception_table_entry *ex;
588 unsigned long pc;
589 off_t ins_offset;
590 off_t fixup_offset;
591
592 if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
593 (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX))
594 return 0;
595
596 if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
597 return -EINVAL;
598
599 if (WARN_ON_ONCE(insn_len > ctx->ninsns))
600 return -EINVAL;
601
602 if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
603 return -EINVAL;
604
605 ex = &ctx->prog->aux->extable[ctx->nexentries];
606 pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
607
608 /*
609 * This is the relative offset of the instruction that may fault from
610 * the exception table itself. This will be written to the exception
611 * table and if this instruction faults, the destination register will
612 * be set to '0' and the execution will jump to the next instruction.
613 */
614 ins_offset = pc - (long)&ex->insn;
615 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
616 return -ERANGE;
617
618 /*
619 * Since the extable follows the program, the fixup offset is always
620 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
621 * to keep things simple, and put the destination register in the upper
622 * bits. We don't need to worry about buildtime or runtime sort
623 * modifying the upper bits because the table is already sorted, and
624 * isn't part of the main exception table.
625 *
626 * The fixup_offset is set to the next instruction from the instruction
627 * that may fault. The execution will jump to this after handling the
628 * fault.
629 */
630 fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
631 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
632 return -ERANGE;
633
634 /*
635 * The offsets above have been calculated using the RO buffer but we
636 * need to use the R/W buffer for writes.
637 * switch ex to rw buffer for writing.
638 */
639 ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
640
641 ex->insn = ins_offset;
642
643 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
644 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
645 ex->type = EX_TYPE_BPF;
646
647 ctx->nexentries++;
648 return 0;
649 }
650
gen_jump_or_nops(void * target,void * ip,u32 * insns,bool is_call)651 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
652 {
653 s64 rvoff;
654 struct rv_jit_context ctx;
655
656 ctx.ninsns = 0;
657 ctx.insns = (u16 *)insns;
658
659 if (!target) {
660 emit(rv_nop(), &ctx);
661 emit(rv_nop(), &ctx);
662 return 0;
663 }
664
665 rvoff = (s64)(target - ip);
666 return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
667 }
668
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type poke_type,void * old_addr,void * new_addr)669 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
670 void *old_addr, void *new_addr)
671 {
672 u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
673 bool is_call = poke_type == BPF_MOD_CALL;
674 int ret;
675
676 if (!is_kernel_text((unsigned long)ip) &&
677 !is_bpf_text_address((unsigned long)ip))
678 return -ENOTSUPP;
679
680 ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
681 if (ret)
682 return ret;
683
684 if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
685 return -EFAULT;
686
687 ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
688 if (ret)
689 return ret;
690
691 cpus_read_lock();
692 mutex_lock(&text_mutex);
693 if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
694 ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
695 mutex_unlock(&text_mutex);
696 cpus_read_unlock();
697
698 return ret;
699 }
700
store_args(int nregs,int args_off,struct rv_jit_context * ctx)701 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
702 {
703 int i;
704
705 for (i = 0; i < nregs; i++) {
706 emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
707 args_off -= 8;
708 }
709 }
710
restore_args(int nregs,int args_off,struct rv_jit_context * ctx)711 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
712 {
713 int i;
714
715 for (i = 0; i < nregs; i++) {
716 emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
717 args_off -= 8;
718 }
719 }
720
invoke_bpf_prog(struct bpf_tramp_link * l,int args_off,int retval_off,int run_ctx_off,bool save_ret,struct rv_jit_context * ctx)721 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
722 int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
723 {
724 int ret, branch_off;
725 struct bpf_prog *p = l->link.prog;
726 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
727
728 if (l->cookie) {
729 emit_imm(RV_REG_T1, l->cookie, ctx);
730 emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
731 } else {
732 emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
733 }
734
735 /* arg1: prog */
736 emit_imm(RV_REG_A0, (const s64)p, ctx);
737 /* arg2: &run_ctx */
738 emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
739 ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
740 if (ret)
741 return ret;
742
743 /* store prog start time */
744 emit_mv(RV_REG_S1, RV_REG_A0, ctx);
745
746 /* if (__bpf_prog_enter(prog) == 0)
747 * goto skip_exec_of_prog;
748 */
749 branch_off = ctx->ninsns;
750 /* nop reserved for conditional jump */
751 emit(rv_nop(), ctx);
752
753 /* arg1: &args_off */
754 emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
755 if (!p->jited)
756 /* arg2: progs[i]->insnsi for interpreter */
757 emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
758 ret = emit_call((const u64)p->bpf_func, true, ctx);
759 if (ret)
760 return ret;
761
762 if (save_ret) {
763 emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
764 emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
765 }
766
767 /* update branch with beqz */
768 if (ctx->insns) {
769 int offset = ninsns_rvoff(ctx->ninsns - branch_off);
770 u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
771 *(u32 *)(ctx->insns + branch_off) = insn;
772 }
773
774 /* arg1: prog */
775 emit_imm(RV_REG_A0, (const s64)p, ctx);
776 /* arg2: prog start time */
777 emit_mv(RV_REG_A1, RV_REG_S1, ctx);
778 /* arg3: &run_ctx */
779 emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
780 ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
781
782 return ret;
783 }
784
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,const struct btf_func_model * m,struct bpf_tramp_links * tlinks,void * func_addr,u32 flags,struct rv_jit_context * ctx)785 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
786 const struct btf_func_model *m,
787 struct bpf_tramp_links *tlinks,
788 void *func_addr, u32 flags,
789 struct rv_jit_context *ctx)
790 {
791 int i, ret, offset;
792 int *branches_off = NULL;
793 int stack_size = 0, nregs = m->nr_args;
794 int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
795 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
796 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
797 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
798 void *orig_call = func_addr;
799 bool save_ret;
800 u32 insn;
801
802 /* Two types of generated trampoline stack layout:
803 *
804 * 1. trampoline called from function entry
805 * --------------------------------------
806 * FP + 8 [ RA to parent func ] return address to parent
807 * function
808 * FP + 0 [ FP of parent func ] frame pointer of parent
809 * function
810 * FP - 8 [ T0 to traced func ] return address of traced
811 * function
812 * FP - 16 [ FP of traced func ] frame pointer of traced
813 * function
814 * --------------------------------------
815 *
816 * 2. trampoline called directly
817 * --------------------------------------
818 * FP - 8 [ RA to caller func ] return address to caller
819 * function
820 * FP - 16 [ FP of caller func ] frame pointer of caller
821 * function
822 * --------------------------------------
823 *
824 * FP - retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
825 * BPF_TRAMP_F_RET_FENTRY_RET
826 * [ argN ]
827 * [ ... ]
828 * FP - args_off [ arg1 ]
829 *
830 * FP - nregs_off [ regs count ]
831 *
832 * FP - ip_off [ traced func ] BPF_TRAMP_F_IP_ARG
833 *
834 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
835 *
836 * FP - sreg_off [ callee saved reg ]
837 *
838 * [ pads ] pads for 16 bytes alignment
839 */
840
841 if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
842 return -ENOTSUPP;
843
844 /* extra regiters for struct arguments */
845 for (i = 0; i < m->nr_args; i++)
846 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
847 nregs += round_up(m->arg_size[i], 8) / 8 - 1;
848
849 /* 8 arguments passed by registers */
850 if (nregs > 8)
851 return -ENOTSUPP;
852
853 /* room of trampoline frame to store return address and frame pointer */
854 stack_size += 16;
855
856 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
857 if (save_ret) {
858 stack_size += 16; /* Save both A5 (BPF R0) and A0 */
859 retval_off = stack_size;
860 }
861
862 stack_size += nregs * 8;
863 args_off = stack_size;
864
865 stack_size += 8;
866 nregs_off = stack_size;
867
868 if (flags & BPF_TRAMP_F_IP_ARG) {
869 stack_size += 8;
870 ip_off = stack_size;
871 }
872
873 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
874 run_ctx_off = stack_size;
875
876 stack_size += 8;
877 sreg_off = stack_size;
878
879 stack_size = round_up(stack_size, 16);
880
881 if (func_addr) {
882 /* For the trampoline called from function entry,
883 * the frame of traced function and the frame of
884 * trampoline need to be considered.
885 */
886 emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
887 emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
888 emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
889 emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
890
891 emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
892 emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
893 emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
894 emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
895 } else {
896 /* For the trampoline called directly, just handle
897 * the frame of trampoline.
898 */
899 emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
900 emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
901 emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
902 emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
903 }
904
905 /* callee saved register S1 to pass start time */
906 emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
907
908 /* store ip address of the traced function */
909 if (flags & BPF_TRAMP_F_IP_ARG) {
910 emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
911 emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
912 }
913
914 emit_li(RV_REG_T1, nregs, ctx);
915 emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
916
917 store_args(nregs, args_off, ctx);
918
919 /* skip to actual body of traced function */
920 if (flags & BPF_TRAMP_F_SKIP_FRAME)
921 orig_call += RV_FENTRY_NINSNS * 4;
922
923 if (flags & BPF_TRAMP_F_CALL_ORIG) {
924 emit_imm(RV_REG_A0, (const s64)im, ctx);
925 ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
926 if (ret)
927 return ret;
928 }
929
930 for (i = 0; i < fentry->nr_links; i++) {
931 ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
932 flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
933 if (ret)
934 return ret;
935 }
936
937 if (fmod_ret->nr_links) {
938 branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
939 if (!branches_off)
940 return -ENOMEM;
941
942 /* cleanup to avoid garbage return value confusion */
943 emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
944 for (i = 0; i < fmod_ret->nr_links; i++) {
945 ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
946 run_ctx_off, true, ctx);
947 if (ret)
948 goto out;
949 emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
950 branches_off[i] = ctx->ninsns;
951 /* nop reserved for conditional jump */
952 emit(rv_nop(), ctx);
953 }
954 }
955
956 if (flags & BPF_TRAMP_F_CALL_ORIG) {
957 restore_args(nregs, args_off, ctx);
958 ret = emit_call((const u64)orig_call, true, ctx);
959 if (ret)
960 goto out;
961 emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
962 emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
963 im->ip_after_call = ctx->insns + ctx->ninsns;
964 /* 2 nops reserved for auipc+jalr pair */
965 emit(rv_nop(), ctx);
966 emit(rv_nop(), ctx);
967 }
968
969 /* update branches saved in invoke_bpf_mod_ret with bnez */
970 for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
971 offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
972 insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
973 *(u32 *)(ctx->insns + branches_off[i]) = insn;
974 }
975
976 for (i = 0; i < fexit->nr_links; i++) {
977 ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
978 run_ctx_off, false, ctx);
979 if (ret)
980 goto out;
981 }
982
983 if (flags & BPF_TRAMP_F_CALL_ORIG) {
984 im->ip_epilogue = ctx->insns + ctx->ninsns;
985 emit_imm(RV_REG_A0, (const s64)im, ctx);
986 ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
987 if (ret)
988 goto out;
989 }
990
991 if (flags & BPF_TRAMP_F_RESTORE_REGS)
992 restore_args(nregs, args_off, ctx);
993
994 if (save_ret) {
995 emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
996 emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
997 }
998
999 emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1000
1001 if (func_addr) {
1002 /* trampoline called from function entry */
1003 emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1004 emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1005 emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1006
1007 emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1008 emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1009 emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1010
1011 if (flags & BPF_TRAMP_F_SKIP_FRAME)
1012 /* return to parent function */
1013 emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1014 else
1015 /* return to traced function */
1016 emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1017 } else {
1018 /* trampoline called directly */
1019 emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1020 emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1021 emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1022
1023 emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1024 }
1025
1026 ret = ctx->ninsns;
1027 out:
1028 kfree(branches_off);
1029 return ret;
1030 }
1031
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)1032 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1033 void *image_end, const struct btf_func_model *m,
1034 u32 flags, struct bpf_tramp_links *tlinks,
1035 void *func_addr)
1036 {
1037 int ret;
1038 struct rv_jit_context ctx;
1039
1040 ctx.ninsns = 0;
1041 ctx.insns = NULL;
1042 ctx.ro_insns = NULL;
1043 ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1044 if (ret < 0)
1045 return ret;
1046
1047 if (ninsns_rvoff(ret) > (long)image_end - (long)image)
1048 return -EFBIG;
1049
1050 ctx.ninsns = 0;
1051 /*
1052 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1053 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1054 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1055 * trampoline image uses the same memory area for writing and execution,
1056 * both ctx.insns and ctx.ro_insns can be set to image.
1057 */
1058 ctx.insns = image;
1059 ctx.ro_insns = image;
1060 ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1061 if (ret < 0)
1062 return ret;
1063
1064 bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1065
1066 return ninsns_rvoff(ret);
1067 }
1068
bpf_jit_emit_insn(const struct bpf_insn * insn,struct rv_jit_context * ctx,bool extra_pass)1069 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1070 bool extra_pass)
1071 {
1072 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1073 BPF_CLASS(insn->code) == BPF_JMP;
1074 int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1075 struct bpf_prog_aux *aux = ctx->prog->aux;
1076 u8 rd = -1, rs = -1, code = insn->code;
1077 s16 off = insn->off;
1078 s32 imm = insn->imm;
1079
1080 init_regs(&rd, &rs, insn, ctx);
1081
1082 switch (code) {
1083 /* dst = src */
1084 case BPF_ALU | BPF_MOV | BPF_X:
1085 case BPF_ALU64 | BPF_MOV | BPF_X:
1086 if (imm == 1) {
1087 /* Special mov32 for zext */
1088 emit_zext_32(rd, ctx);
1089 break;
1090 }
1091 switch (insn->off) {
1092 case 0:
1093 emit_mv(rd, rs, ctx);
1094 break;
1095 case 8:
1096 case 16:
1097 emit_slli(RV_REG_T1, rs, 64 - insn->off, ctx);
1098 emit_srai(rd, RV_REG_T1, 64 - insn->off, ctx);
1099 break;
1100 case 32:
1101 emit_addiw(rd, rs, 0, ctx);
1102 break;
1103 }
1104 if (!is64 && !aux->verifier_zext)
1105 emit_zext_32(rd, ctx);
1106 break;
1107
1108 /* dst = dst OP src */
1109 case BPF_ALU | BPF_ADD | BPF_X:
1110 case BPF_ALU64 | BPF_ADD | BPF_X:
1111 emit_add(rd, rd, rs, ctx);
1112 if (!is64 && !aux->verifier_zext)
1113 emit_zext_32(rd, ctx);
1114 break;
1115 case BPF_ALU | BPF_SUB | BPF_X:
1116 case BPF_ALU64 | BPF_SUB | BPF_X:
1117 if (is64)
1118 emit_sub(rd, rd, rs, ctx);
1119 else
1120 emit_subw(rd, rd, rs, ctx);
1121
1122 if (!is64 && !aux->verifier_zext)
1123 emit_zext_32(rd, ctx);
1124 break;
1125 case BPF_ALU | BPF_AND | BPF_X:
1126 case BPF_ALU64 | BPF_AND | BPF_X:
1127 emit_and(rd, rd, rs, ctx);
1128 if (!is64 && !aux->verifier_zext)
1129 emit_zext_32(rd, ctx);
1130 break;
1131 case BPF_ALU | BPF_OR | BPF_X:
1132 case BPF_ALU64 | BPF_OR | BPF_X:
1133 emit_or(rd, rd, rs, ctx);
1134 if (!is64 && !aux->verifier_zext)
1135 emit_zext_32(rd, ctx);
1136 break;
1137 case BPF_ALU | BPF_XOR | BPF_X:
1138 case BPF_ALU64 | BPF_XOR | BPF_X:
1139 emit_xor(rd, rd, rs, ctx);
1140 if (!is64 && !aux->verifier_zext)
1141 emit_zext_32(rd, ctx);
1142 break;
1143 case BPF_ALU | BPF_MUL | BPF_X:
1144 case BPF_ALU64 | BPF_MUL | BPF_X:
1145 emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1146 if (!is64 && !aux->verifier_zext)
1147 emit_zext_32(rd, ctx);
1148 break;
1149 case BPF_ALU | BPF_DIV | BPF_X:
1150 case BPF_ALU64 | BPF_DIV | BPF_X:
1151 if (off)
1152 emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1153 else
1154 emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1155 if (!is64 && !aux->verifier_zext)
1156 emit_zext_32(rd, ctx);
1157 break;
1158 case BPF_ALU | BPF_MOD | BPF_X:
1159 case BPF_ALU64 | BPF_MOD | BPF_X:
1160 if (off)
1161 emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1162 else
1163 emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1164 if (!is64 && !aux->verifier_zext)
1165 emit_zext_32(rd, ctx);
1166 break;
1167 case BPF_ALU | BPF_LSH | BPF_X:
1168 case BPF_ALU64 | BPF_LSH | BPF_X:
1169 emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1170 if (!is64 && !aux->verifier_zext)
1171 emit_zext_32(rd, ctx);
1172 break;
1173 case BPF_ALU | BPF_RSH | BPF_X:
1174 case BPF_ALU64 | BPF_RSH | BPF_X:
1175 emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1176 if (!is64 && !aux->verifier_zext)
1177 emit_zext_32(rd, ctx);
1178 break;
1179 case BPF_ALU | BPF_ARSH | BPF_X:
1180 case BPF_ALU64 | BPF_ARSH | BPF_X:
1181 emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1182 if (!is64 && !aux->verifier_zext)
1183 emit_zext_32(rd, ctx);
1184 break;
1185
1186 /* dst = -dst */
1187 case BPF_ALU | BPF_NEG:
1188 case BPF_ALU64 | BPF_NEG:
1189 emit_sub(rd, RV_REG_ZERO, rd, ctx);
1190 if (!is64 && !aux->verifier_zext)
1191 emit_zext_32(rd, ctx);
1192 break;
1193
1194 /* dst = BSWAP##imm(dst) */
1195 case BPF_ALU | BPF_END | BPF_FROM_LE:
1196 switch (imm) {
1197 case 16:
1198 emit_slli(rd, rd, 48, ctx);
1199 emit_srli(rd, rd, 48, ctx);
1200 break;
1201 case 32:
1202 if (!aux->verifier_zext)
1203 emit_zext_32(rd, ctx);
1204 break;
1205 case 64:
1206 /* Do nothing */
1207 break;
1208 }
1209 break;
1210
1211 case BPF_ALU | BPF_END | BPF_FROM_BE:
1212 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1213 emit_li(RV_REG_T2, 0, ctx);
1214
1215 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1216 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1217 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1218 emit_srli(rd, rd, 8, ctx);
1219 if (imm == 16)
1220 goto out_be;
1221
1222 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1223 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1224 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1225 emit_srli(rd, rd, 8, ctx);
1226
1227 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1228 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1229 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1230 emit_srli(rd, rd, 8, ctx);
1231 if (imm == 32)
1232 goto out_be;
1233
1234 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1235 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1236 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1237 emit_srli(rd, rd, 8, ctx);
1238
1239 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1240 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1241 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1242 emit_srli(rd, rd, 8, ctx);
1243
1244 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1245 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1246 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1247 emit_srli(rd, rd, 8, ctx);
1248
1249 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1250 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1251 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1252 emit_srli(rd, rd, 8, ctx);
1253 out_be:
1254 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1255 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1256
1257 emit_mv(rd, RV_REG_T2, ctx);
1258 break;
1259
1260 /* dst = imm */
1261 case BPF_ALU | BPF_MOV | BPF_K:
1262 case BPF_ALU64 | BPF_MOV | BPF_K:
1263 emit_imm(rd, imm, ctx);
1264 if (!is64 && !aux->verifier_zext)
1265 emit_zext_32(rd, ctx);
1266 break;
1267
1268 /* dst = dst OP imm */
1269 case BPF_ALU | BPF_ADD | BPF_K:
1270 case BPF_ALU64 | BPF_ADD | BPF_K:
1271 if (is_12b_int(imm)) {
1272 emit_addi(rd, rd, imm, ctx);
1273 } else {
1274 emit_imm(RV_REG_T1, imm, ctx);
1275 emit_add(rd, rd, RV_REG_T1, ctx);
1276 }
1277 if (!is64 && !aux->verifier_zext)
1278 emit_zext_32(rd, ctx);
1279 break;
1280 case BPF_ALU | BPF_SUB | BPF_K:
1281 case BPF_ALU64 | BPF_SUB | BPF_K:
1282 if (is_12b_int(-imm)) {
1283 emit_addi(rd, rd, -imm, ctx);
1284 } else {
1285 emit_imm(RV_REG_T1, imm, ctx);
1286 emit_sub(rd, rd, RV_REG_T1, ctx);
1287 }
1288 if (!is64 && !aux->verifier_zext)
1289 emit_zext_32(rd, ctx);
1290 break;
1291 case BPF_ALU | BPF_AND | BPF_K:
1292 case BPF_ALU64 | BPF_AND | BPF_K:
1293 if (is_12b_int(imm)) {
1294 emit_andi(rd, rd, imm, ctx);
1295 } else {
1296 emit_imm(RV_REG_T1, imm, ctx);
1297 emit_and(rd, rd, RV_REG_T1, ctx);
1298 }
1299 if (!is64 && !aux->verifier_zext)
1300 emit_zext_32(rd, ctx);
1301 break;
1302 case BPF_ALU | BPF_OR | BPF_K:
1303 case BPF_ALU64 | BPF_OR | BPF_K:
1304 if (is_12b_int(imm)) {
1305 emit(rv_ori(rd, rd, imm), ctx);
1306 } else {
1307 emit_imm(RV_REG_T1, imm, ctx);
1308 emit_or(rd, rd, RV_REG_T1, ctx);
1309 }
1310 if (!is64 && !aux->verifier_zext)
1311 emit_zext_32(rd, ctx);
1312 break;
1313 case BPF_ALU | BPF_XOR | BPF_K:
1314 case BPF_ALU64 | BPF_XOR | BPF_K:
1315 if (is_12b_int(imm)) {
1316 emit(rv_xori(rd, rd, imm), ctx);
1317 } else {
1318 emit_imm(RV_REG_T1, imm, ctx);
1319 emit_xor(rd, rd, RV_REG_T1, ctx);
1320 }
1321 if (!is64 && !aux->verifier_zext)
1322 emit_zext_32(rd, ctx);
1323 break;
1324 case BPF_ALU | BPF_MUL | BPF_K:
1325 case BPF_ALU64 | BPF_MUL | BPF_K:
1326 emit_imm(RV_REG_T1, imm, ctx);
1327 emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1328 rv_mulw(rd, rd, RV_REG_T1), ctx);
1329 if (!is64 && !aux->verifier_zext)
1330 emit_zext_32(rd, ctx);
1331 break;
1332 case BPF_ALU | BPF_DIV | BPF_K:
1333 case BPF_ALU64 | BPF_DIV | BPF_K:
1334 emit_imm(RV_REG_T1, imm, ctx);
1335 if (off)
1336 emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1337 rv_divw(rd, rd, RV_REG_T1), ctx);
1338 else
1339 emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1340 rv_divuw(rd, rd, RV_REG_T1), ctx);
1341 if (!is64 && !aux->verifier_zext)
1342 emit_zext_32(rd, ctx);
1343 break;
1344 case BPF_ALU | BPF_MOD | BPF_K:
1345 case BPF_ALU64 | BPF_MOD | BPF_K:
1346 emit_imm(RV_REG_T1, imm, ctx);
1347 if (off)
1348 emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1349 rv_remw(rd, rd, RV_REG_T1), ctx);
1350 else
1351 emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1352 rv_remuw(rd, rd, RV_REG_T1), ctx);
1353 if (!is64 && !aux->verifier_zext)
1354 emit_zext_32(rd, ctx);
1355 break;
1356 case BPF_ALU | BPF_LSH | BPF_K:
1357 case BPF_ALU64 | BPF_LSH | BPF_K:
1358 emit_slli(rd, rd, imm, ctx);
1359
1360 if (!is64 && !aux->verifier_zext)
1361 emit_zext_32(rd, ctx);
1362 break;
1363 case BPF_ALU | BPF_RSH | BPF_K:
1364 case BPF_ALU64 | BPF_RSH | BPF_K:
1365 if (is64)
1366 emit_srli(rd, rd, imm, ctx);
1367 else
1368 emit(rv_srliw(rd, rd, imm), ctx);
1369
1370 if (!is64 && !aux->verifier_zext)
1371 emit_zext_32(rd, ctx);
1372 break;
1373 case BPF_ALU | BPF_ARSH | BPF_K:
1374 case BPF_ALU64 | BPF_ARSH | BPF_K:
1375 if (is64)
1376 emit_srai(rd, rd, imm, ctx);
1377 else
1378 emit(rv_sraiw(rd, rd, imm), ctx);
1379
1380 if (!is64 && !aux->verifier_zext)
1381 emit_zext_32(rd, ctx);
1382 break;
1383
1384 /* JUMP off */
1385 case BPF_JMP | BPF_JA:
1386 case BPF_JMP32 | BPF_JA:
1387 if (BPF_CLASS(code) == BPF_JMP)
1388 rvoff = rv_offset(i, off, ctx);
1389 else
1390 rvoff = rv_offset(i, imm, ctx);
1391 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1392 if (ret)
1393 return ret;
1394 break;
1395
1396 /* IF (dst COND src) JUMP off */
1397 case BPF_JMP | BPF_JEQ | BPF_X:
1398 case BPF_JMP32 | BPF_JEQ | BPF_X:
1399 case BPF_JMP | BPF_JGT | BPF_X:
1400 case BPF_JMP32 | BPF_JGT | BPF_X:
1401 case BPF_JMP | BPF_JLT | BPF_X:
1402 case BPF_JMP32 | BPF_JLT | BPF_X:
1403 case BPF_JMP | BPF_JGE | BPF_X:
1404 case BPF_JMP32 | BPF_JGE | BPF_X:
1405 case BPF_JMP | BPF_JLE | BPF_X:
1406 case BPF_JMP32 | BPF_JLE | BPF_X:
1407 case BPF_JMP | BPF_JNE | BPF_X:
1408 case BPF_JMP32 | BPF_JNE | BPF_X:
1409 case BPF_JMP | BPF_JSGT | BPF_X:
1410 case BPF_JMP32 | BPF_JSGT | BPF_X:
1411 case BPF_JMP | BPF_JSLT | BPF_X:
1412 case BPF_JMP32 | BPF_JSLT | BPF_X:
1413 case BPF_JMP | BPF_JSGE | BPF_X:
1414 case BPF_JMP32 | BPF_JSGE | BPF_X:
1415 case BPF_JMP | BPF_JSLE | BPF_X:
1416 case BPF_JMP32 | BPF_JSLE | BPF_X:
1417 case BPF_JMP | BPF_JSET | BPF_X:
1418 case BPF_JMP32 | BPF_JSET | BPF_X:
1419 rvoff = rv_offset(i, off, ctx);
1420 if (!is64) {
1421 s = ctx->ninsns;
1422 if (is_signed_bpf_cond(BPF_OP(code)))
1423 emit_sext_32_rd_rs(&rd, &rs, ctx);
1424 else
1425 emit_zext_32_rd_rs(&rd, &rs, ctx);
1426 e = ctx->ninsns;
1427
1428 /* Adjust for extra insns */
1429 rvoff -= ninsns_rvoff(e - s);
1430 }
1431
1432 if (BPF_OP(code) == BPF_JSET) {
1433 /* Adjust for and */
1434 rvoff -= 4;
1435 emit_and(RV_REG_T1, rd, rs, ctx);
1436 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1437 ctx);
1438 } else {
1439 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1440 }
1441 break;
1442
1443 /* IF (dst COND imm) JUMP off */
1444 case BPF_JMP | BPF_JEQ | BPF_K:
1445 case BPF_JMP32 | BPF_JEQ | BPF_K:
1446 case BPF_JMP | BPF_JGT | BPF_K:
1447 case BPF_JMP32 | BPF_JGT | BPF_K:
1448 case BPF_JMP | BPF_JLT | BPF_K:
1449 case BPF_JMP32 | BPF_JLT | BPF_K:
1450 case BPF_JMP | BPF_JGE | BPF_K:
1451 case BPF_JMP32 | BPF_JGE | BPF_K:
1452 case BPF_JMP | BPF_JLE | BPF_K:
1453 case BPF_JMP32 | BPF_JLE | BPF_K:
1454 case BPF_JMP | BPF_JNE | BPF_K:
1455 case BPF_JMP32 | BPF_JNE | BPF_K:
1456 case BPF_JMP | BPF_JSGT | BPF_K:
1457 case BPF_JMP32 | BPF_JSGT | BPF_K:
1458 case BPF_JMP | BPF_JSLT | BPF_K:
1459 case BPF_JMP32 | BPF_JSLT | BPF_K:
1460 case BPF_JMP | BPF_JSGE | BPF_K:
1461 case BPF_JMP32 | BPF_JSGE | BPF_K:
1462 case BPF_JMP | BPF_JSLE | BPF_K:
1463 case BPF_JMP32 | BPF_JSLE | BPF_K:
1464 rvoff = rv_offset(i, off, ctx);
1465 s = ctx->ninsns;
1466 if (imm) {
1467 emit_imm(RV_REG_T1, imm, ctx);
1468 rs = RV_REG_T1;
1469 } else {
1470 /* If imm is 0, simply use zero register. */
1471 rs = RV_REG_ZERO;
1472 }
1473 if (!is64) {
1474 if (is_signed_bpf_cond(BPF_OP(code)))
1475 emit_sext_32_rd(&rd, ctx);
1476 else
1477 emit_zext_32_rd_t1(&rd, ctx);
1478 }
1479 e = ctx->ninsns;
1480
1481 /* Adjust for extra insns */
1482 rvoff -= ninsns_rvoff(e - s);
1483 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1484 break;
1485
1486 case BPF_JMP | BPF_JSET | BPF_K:
1487 case BPF_JMP32 | BPF_JSET | BPF_K:
1488 rvoff = rv_offset(i, off, ctx);
1489 s = ctx->ninsns;
1490 if (is_12b_int(imm)) {
1491 emit_andi(RV_REG_T1, rd, imm, ctx);
1492 } else {
1493 emit_imm(RV_REG_T1, imm, ctx);
1494 emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1495 }
1496 /* For jset32, we should clear the upper 32 bits of t1, but
1497 * sign-extension is sufficient here and saves one instruction,
1498 * as t1 is used only in comparison against zero.
1499 */
1500 if (!is64 && imm < 0)
1501 emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
1502 e = ctx->ninsns;
1503 rvoff -= ninsns_rvoff(e - s);
1504 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1505 break;
1506
1507 /* function call */
1508 case BPF_JMP | BPF_CALL:
1509 {
1510 bool fixed_addr;
1511 u64 addr;
1512
1513 mark_call(ctx);
1514 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1515 &addr, &fixed_addr);
1516 if (ret < 0)
1517 return ret;
1518
1519 ret = emit_call(addr, fixed_addr, ctx);
1520 if (ret)
1521 return ret;
1522
1523 if (insn->src_reg != BPF_PSEUDO_CALL)
1524 emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1525 break;
1526 }
1527 /* tail call */
1528 case BPF_JMP | BPF_TAIL_CALL:
1529 if (emit_bpf_tail_call(i, ctx))
1530 return -1;
1531 break;
1532
1533 /* function return */
1534 case BPF_JMP | BPF_EXIT:
1535 if (i == ctx->prog->len - 1)
1536 break;
1537
1538 rvoff = epilogue_offset(ctx);
1539 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1540 if (ret)
1541 return ret;
1542 break;
1543
1544 /* dst = imm64 */
1545 case BPF_LD | BPF_IMM | BPF_DW:
1546 {
1547 struct bpf_insn insn1 = insn[1];
1548 u64 imm64;
1549
1550 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1551 if (bpf_pseudo_func(insn)) {
1552 /* fixed-length insns for extra jit pass */
1553 ret = emit_addr(rd, imm64, extra_pass, ctx);
1554 if (ret)
1555 return ret;
1556 } else {
1557 emit_imm(rd, imm64, ctx);
1558 }
1559
1560 return 1;
1561 }
1562
1563 /* LDX: dst = *(unsigned size *)(src + off) */
1564 case BPF_LDX | BPF_MEM | BPF_B:
1565 case BPF_LDX | BPF_MEM | BPF_H:
1566 case BPF_LDX | BPF_MEM | BPF_W:
1567 case BPF_LDX | BPF_MEM | BPF_DW:
1568 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1569 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1570 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1571 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1572 /* LDSX: dst = *(signed size *)(src + off) */
1573 case BPF_LDX | BPF_MEMSX | BPF_B:
1574 case BPF_LDX | BPF_MEMSX | BPF_H:
1575 case BPF_LDX | BPF_MEMSX | BPF_W:
1576 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1577 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1578 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1579 {
1580 int insn_len, insns_start;
1581 bool sign_ext;
1582
1583 sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1584 BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1585
1586 switch (BPF_SIZE(code)) {
1587 case BPF_B:
1588 if (is_12b_int(off)) {
1589 insns_start = ctx->ninsns;
1590 if (sign_ext)
1591 emit(rv_lb(rd, off, rs), ctx);
1592 else
1593 emit(rv_lbu(rd, off, rs), ctx);
1594 insn_len = ctx->ninsns - insns_start;
1595 break;
1596 }
1597
1598 emit_imm(RV_REG_T1, off, ctx);
1599 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1600 insns_start = ctx->ninsns;
1601 if (sign_ext)
1602 emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1603 else
1604 emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1605 insn_len = ctx->ninsns - insns_start;
1606 break;
1607 case BPF_H:
1608 if (is_12b_int(off)) {
1609 insns_start = ctx->ninsns;
1610 if (sign_ext)
1611 emit(rv_lh(rd, off, rs), ctx);
1612 else
1613 emit(rv_lhu(rd, off, rs), ctx);
1614 insn_len = ctx->ninsns - insns_start;
1615 break;
1616 }
1617
1618 emit_imm(RV_REG_T1, off, ctx);
1619 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1620 insns_start = ctx->ninsns;
1621 if (sign_ext)
1622 emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1623 else
1624 emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1625 insn_len = ctx->ninsns - insns_start;
1626 break;
1627 case BPF_W:
1628 if (is_12b_int(off)) {
1629 insns_start = ctx->ninsns;
1630 if (sign_ext)
1631 emit(rv_lw(rd, off, rs), ctx);
1632 else
1633 emit(rv_lwu(rd, off, rs), ctx);
1634 insn_len = ctx->ninsns - insns_start;
1635 break;
1636 }
1637
1638 emit_imm(RV_REG_T1, off, ctx);
1639 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1640 insns_start = ctx->ninsns;
1641 if (sign_ext)
1642 emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1643 else
1644 emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1645 insn_len = ctx->ninsns - insns_start;
1646 break;
1647 case BPF_DW:
1648 if (is_12b_int(off)) {
1649 insns_start = ctx->ninsns;
1650 emit_ld(rd, off, rs, ctx);
1651 insn_len = ctx->ninsns - insns_start;
1652 break;
1653 }
1654
1655 emit_imm(RV_REG_T1, off, ctx);
1656 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1657 insns_start = ctx->ninsns;
1658 emit_ld(rd, 0, RV_REG_T1, ctx);
1659 insn_len = ctx->ninsns - insns_start;
1660 break;
1661 }
1662
1663 ret = add_exception_handler(insn, ctx, rd, insn_len);
1664 if (ret)
1665 return ret;
1666
1667 if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1668 return 1;
1669 break;
1670 }
1671 /* speculation barrier */
1672 case BPF_ST | BPF_NOSPEC:
1673 break;
1674
1675 /* ST: *(size *)(dst + off) = imm */
1676 case BPF_ST | BPF_MEM | BPF_B:
1677 emit_imm(RV_REG_T1, imm, ctx);
1678 if (is_12b_int(off)) {
1679 emit(rv_sb(rd, off, RV_REG_T1), ctx);
1680 break;
1681 }
1682
1683 emit_imm(RV_REG_T2, off, ctx);
1684 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1685 emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1686 break;
1687
1688 case BPF_ST | BPF_MEM | BPF_H:
1689 emit_imm(RV_REG_T1, imm, ctx);
1690 if (is_12b_int(off)) {
1691 emit(rv_sh(rd, off, RV_REG_T1), ctx);
1692 break;
1693 }
1694
1695 emit_imm(RV_REG_T2, off, ctx);
1696 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1697 emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1698 break;
1699 case BPF_ST | BPF_MEM | BPF_W:
1700 emit_imm(RV_REG_T1, imm, ctx);
1701 if (is_12b_int(off)) {
1702 emit_sw(rd, off, RV_REG_T1, ctx);
1703 break;
1704 }
1705
1706 emit_imm(RV_REG_T2, off, ctx);
1707 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1708 emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1709 break;
1710 case BPF_ST | BPF_MEM | BPF_DW:
1711 emit_imm(RV_REG_T1, imm, ctx);
1712 if (is_12b_int(off)) {
1713 emit_sd(rd, off, RV_REG_T1, ctx);
1714 break;
1715 }
1716
1717 emit_imm(RV_REG_T2, off, ctx);
1718 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1719 emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1720 break;
1721
1722 /* STX: *(size *)(dst + off) = src */
1723 case BPF_STX | BPF_MEM | BPF_B:
1724 if (is_12b_int(off)) {
1725 emit(rv_sb(rd, off, rs), ctx);
1726 break;
1727 }
1728
1729 emit_imm(RV_REG_T1, off, ctx);
1730 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1731 emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1732 break;
1733 case BPF_STX | BPF_MEM | BPF_H:
1734 if (is_12b_int(off)) {
1735 emit(rv_sh(rd, off, rs), ctx);
1736 break;
1737 }
1738
1739 emit_imm(RV_REG_T1, off, ctx);
1740 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1741 emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1742 break;
1743 case BPF_STX | BPF_MEM | BPF_W:
1744 if (is_12b_int(off)) {
1745 emit_sw(rd, off, rs, ctx);
1746 break;
1747 }
1748
1749 emit_imm(RV_REG_T1, off, ctx);
1750 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1751 emit_sw(RV_REG_T1, 0, rs, ctx);
1752 break;
1753 case BPF_STX | BPF_MEM | BPF_DW:
1754 if (is_12b_int(off)) {
1755 emit_sd(rd, off, rs, ctx);
1756 break;
1757 }
1758
1759 emit_imm(RV_REG_T1, off, ctx);
1760 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1761 emit_sd(RV_REG_T1, 0, rs, ctx);
1762 break;
1763 case BPF_STX | BPF_ATOMIC | BPF_W:
1764 case BPF_STX | BPF_ATOMIC | BPF_DW:
1765 emit_atomic(rd, rs, off, imm,
1766 BPF_SIZE(code) == BPF_DW, ctx);
1767 break;
1768 default:
1769 pr_err("bpf-jit: unknown opcode %02x\n", code);
1770 return -EINVAL;
1771 }
1772
1773 return 0;
1774 }
1775
bpf_jit_build_prologue(struct rv_jit_context * ctx)1776 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1777 {
1778 int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1779
1780 bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1781 if (bpf_stack_adjust)
1782 mark_fp(ctx);
1783
1784 if (seen_reg(RV_REG_RA, ctx))
1785 stack_adjust += 8;
1786 stack_adjust += 8; /* RV_REG_FP */
1787 if (seen_reg(RV_REG_S1, ctx))
1788 stack_adjust += 8;
1789 if (seen_reg(RV_REG_S2, ctx))
1790 stack_adjust += 8;
1791 if (seen_reg(RV_REG_S3, ctx))
1792 stack_adjust += 8;
1793 if (seen_reg(RV_REG_S4, ctx))
1794 stack_adjust += 8;
1795 if (seen_reg(RV_REG_S5, ctx))
1796 stack_adjust += 8;
1797 if (seen_reg(RV_REG_S6, ctx))
1798 stack_adjust += 8;
1799
1800 stack_adjust = round_up(stack_adjust, 16);
1801 stack_adjust += bpf_stack_adjust;
1802
1803 store_offset = stack_adjust - 8;
1804
1805 /* nops reserved for auipc+jalr pair */
1806 for (i = 0; i < RV_FENTRY_NINSNS; i++)
1807 emit(rv_nop(), ctx);
1808
1809 /* First instruction is always setting the tail-call-counter
1810 * (TCC) register. This instruction is skipped for tail calls.
1811 * Force using a 4-byte (non-compressed) instruction.
1812 */
1813 emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1814
1815 emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1816
1817 if (seen_reg(RV_REG_RA, ctx)) {
1818 emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1819 store_offset -= 8;
1820 }
1821 emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1822 store_offset -= 8;
1823 if (seen_reg(RV_REG_S1, ctx)) {
1824 emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1825 store_offset -= 8;
1826 }
1827 if (seen_reg(RV_REG_S2, ctx)) {
1828 emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1829 store_offset -= 8;
1830 }
1831 if (seen_reg(RV_REG_S3, ctx)) {
1832 emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1833 store_offset -= 8;
1834 }
1835 if (seen_reg(RV_REG_S4, ctx)) {
1836 emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1837 store_offset -= 8;
1838 }
1839 if (seen_reg(RV_REG_S5, ctx)) {
1840 emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1841 store_offset -= 8;
1842 }
1843 if (seen_reg(RV_REG_S6, ctx)) {
1844 emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1845 store_offset -= 8;
1846 }
1847
1848 emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1849
1850 if (bpf_stack_adjust)
1851 emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1852
1853 /* Program contains calls and tail calls, so RV_REG_TCC need
1854 * to be saved across calls.
1855 */
1856 if (seen_tail_call(ctx) && seen_call(ctx))
1857 emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1858
1859 ctx->stack_size = stack_adjust;
1860 }
1861
bpf_jit_build_epilogue(struct rv_jit_context * ctx)1862 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1863 {
1864 __build_epilogue(false, ctx);
1865 }
1866
bpf_jit_supports_kfunc_call(void)1867 bool bpf_jit_supports_kfunc_call(void)
1868 {
1869 return true;
1870 }
1871