1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
16 #define BPF_MAX_VAR_OFF (1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
20 #define BPF_MAX_VAR_SIZ (1 << 29)
21 /* size of tmp_str_buf in bpf_verifier.
22 * we need at least 306 bytes to fit full stack mask representation
23 * (in the "-8,-16,...,-512" form)
24 */
25 #define TMP_STR_BUF_LEN 320
26
27 /* Liveness marks, used for registers and spilled-regs (in stack slots).
28 * Read marks propagate upwards until they find a write mark; they record that
29 * "one of this state's descendants read this reg" (and therefore the reg is
30 * relevant for states_equal() checks).
31 * Write marks collect downwards and do not propagate; they record that "the
32 * straight-line code that reached this state (from its parent) wrote this reg"
33 * (and therefore that reads propagated from this state or its descendants
34 * should not propagate to its parent).
35 * A state with a write mark can receive read marks; it just won't propagate
36 * them to its parent, since the write mark is a property, not of the state,
37 * but of the link between it and its parent. See mark_reg_read() and
38 * mark_stack_slot_read() in kernel/bpf/verifier.c.
39 */
40 enum bpf_reg_liveness {
41 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
42 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
43 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
44 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
45 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
46 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
47 };
48
49 /* For every reg representing a map value or allocated object pointer,
50 * we consider the tuple of (ptr, id) for them to be unique in verifier
51 * context and conside them to not alias each other for the purposes of
52 * tracking lock state.
53 */
54 struct bpf_active_lock {
55 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL,
56 * there's no active lock held, and other fields have no
57 * meaning. If non-NULL, it indicates that a lock is held and
58 * id member has the reg->id of the register which can be >= 0.
59 */
60 void *ptr;
61 /* This will be reg->id */
62 u32 id;
63 };
64
65 #define ITER_PREFIX "bpf_iter_"
66
67 enum bpf_iter_state {
68 BPF_ITER_STATE_INVALID, /* for non-first slot */
69 BPF_ITER_STATE_ACTIVE,
70 BPF_ITER_STATE_DRAINED,
71 };
72
73 struct bpf_reg_state {
74 /* Ordering of fields matters. See states_equal() */
75 enum bpf_reg_type type;
76 /* Fixed part of pointer offset, pointer types only */
77 s32 off;
78 union {
79 /* valid when type == PTR_TO_PACKET */
80 int range;
81
82 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
83 * PTR_TO_MAP_VALUE_OR_NULL
84 */
85 struct {
86 struct bpf_map *map_ptr;
87 /* To distinguish map lookups from outer map
88 * the map_uid is non-zero for registers
89 * pointing to inner maps.
90 */
91 u32 map_uid;
92 };
93
94 /* for PTR_TO_BTF_ID */
95 struct {
96 struct btf *btf;
97 u32 btf_id;
98 };
99
100 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
101 u32 mem_size;
102 u32 dynptr_id; /* for dynptr slices */
103 };
104
105 /* For dynptr stack slots */
106 struct {
107 enum bpf_dynptr_type type;
108 /* A dynptr is 16 bytes so it takes up 2 stack slots.
109 * We need to track which slot is the first slot
110 * to protect against cases where the user may try to
111 * pass in an address starting at the second slot of the
112 * dynptr.
113 */
114 bool first_slot;
115 } dynptr;
116
117 /* For bpf_iter stack slots */
118 struct {
119 /* BTF container and BTF type ID describing
120 * struct bpf_iter_<type> of an iterator state
121 */
122 struct btf *btf;
123 u32 btf_id;
124 /* packing following two fields to fit iter state into 16 bytes */
125 enum bpf_iter_state state:2;
126 int depth:30;
127 } iter;
128
129 /* Max size from any of the above. */
130 struct {
131 unsigned long raw1;
132 unsigned long raw2;
133 } raw;
134
135 u32 subprogno; /* for PTR_TO_FUNC */
136 };
137 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
138 * the actual value.
139 * For pointer types, this represents the variable part of the offset
140 * from the pointed-to object, and is shared with all bpf_reg_states
141 * with the same id as us.
142 */
143 struct tnum var_off;
144 /* Used to determine if any memory access using this register will
145 * result in a bad access.
146 * These refer to the same value as var_off, not necessarily the actual
147 * contents of the register.
148 */
149 s64 smin_value; /* minimum possible (s64)value */
150 s64 smax_value; /* maximum possible (s64)value */
151 u64 umin_value; /* minimum possible (u64)value */
152 u64 umax_value; /* maximum possible (u64)value */
153 s32 s32_min_value; /* minimum possible (s32)value */
154 s32 s32_max_value; /* maximum possible (s32)value */
155 u32 u32_min_value; /* minimum possible (u32)value */
156 u32 u32_max_value; /* maximum possible (u32)value */
157 /* For PTR_TO_PACKET, used to find other pointers with the same variable
158 * offset, so they can share range knowledge.
159 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
160 * came from, when one is tested for != NULL.
161 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
162 * for the purpose of tracking that it's freed.
163 * For PTR_TO_SOCKET this is used to share which pointers retain the
164 * same reference to the socket, to determine proper reference freeing.
165 * For stack slots that are dynptrs, this is used to track references to
166 * the dynptr to determine proper reference freeing.
167 * Similarly to dynptrs, we use ID to track "belonging" of a reference
168 * to a specific instance of bpf_iter.
169 */
170 u32 id;
171 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
172 * from a pointer-cast helper, bpf_sk_fullsock() and
173 * bpf_tcp_sock().
174 *
175 * Consider the following where "sk" is a reference counted
176 * pointer returned from "sk = bpf_sk_lookup_tcp();":
177 *
178 * 1: sk = bpf_sk_lookup_tcp();
179 * 2: if (!sk) { return 0; }
180 * 3: fullsock = bpf_sk_fullsock(sk);
181 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
182 * 5: tp = bpf_tcp_sock(fullsock);
183 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
184 * 7: bpf_sk_release(sk);
185 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
186 *
187 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
188 * "tp" ptr should be invalidated also. In order to do that,
189 * the reg holding "fullsock" and "sk" need to remember
190 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
191 * such that the verifier can reset all regs which have
192 * ref_obj_id matching the sk_reg->id.
193 *
194 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
195 * sk_reg->id will stay as NULL-marking purpose only.
196 * After NULL-marking is done, sk_reg->id can be reset to 0.
197 *
198 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
199 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
200 *
201 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
202 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
203 * which is the same as sk_reg->ref_obj_id.
204 *
205 * From the verifier perspective, if sk, fullsock and tp
206 * are not NULL, they are the same ptr with different
207 * reg->type. In particular, bpf_sk_release(tp) is also
208 * allowed and has the same effect as bpf_sk_release(sk).
209 */
210 u32 ref_obj_id;
211 /* parentage chain for liveness checking */
212 struct bpf_reg_state *parent;
213 /* Inside the callee two registers can be both PTR_TO_STACK like
214 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
215 * while another to the caller's stack. To differentiate them 'frameno'
216 * is used which is an index in bpf_verifier_state->frame[] array
217 * pointing to bpf_func_state.
218 */
219 u32 frameno;
220 /* Tracks subreg definition. The stored value is the insn_idx of the
221 * writing insn. This is safe because subreg_def is used before any insn
222 * patching which only happens after main verification finished.
223 */
224 s32 subreg_def;
225 enum bpf_reg_liveness live;
226 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
227 bool precise;
228 };
229
230 enum bpf_stack_slot_type {
231 STACK_INVALID, /* nothing was stored in this stack slot */
232 STACK_SPILL, /* register spilled into stack */
233 STACK_MISC, /* BPF program wrote some data into this slot */
234 STACK_ZERO, /* BPF program wrote constant zero */
235 /* A dynptr is stored in this stack slot. The type of dynptr
236 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
237 */
238 STACK_DYNPTR,
239 STACK_ITER,
240 };
241
242 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
243
244 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \
245 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \
246 (1 << BPF_REG_5))
247
248 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern)
249 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE)
250
251 struct bpf_stack_state {
252 struct bpf_reg_state spilled_ptr;
253 u8 slot_type[BPF_REG_SIZE];
254 };
255
256 struct bpf_reference_state {
257 /* Track each reference created with a unique id, even if the same
258 * instruction creates the reference multiple times (eg, via CALL).
259 */
260 int id;
261 /* Instruction where the allocation of this reference occurred. This
262 * is used purely to inform the user of a reference leak.
263 */
264 int insn_idx;
265 /* There can be a case like:
266 * main (frame 0)
267 * cb (frame 1)
268 * func (frame 3)
269 * cb (frame 4)
270 * Hence for frame 4, if callback_ref just stored boolean, it would be
271 * impossible to distinguish nested callback refs. Hence store the
272 * frameno and compare that to callback_ref in check_reference_leak when
273 * exiting a callback function.
274 */
275 int callback_ref;
276 };
277
278 /* state of the program:
279 * type of all registers and stack info
280 */
281 struct bpf_func_state {
282 struct bpf_reg_state regs[MAX_BPF_REG];
283 /* index of call instruction that called into this func */
284 int callsite;
285 /* stack frame number of this function state from pov of
286 * enclosing bpf_verifier_state.
287 * 0 = main function, 1 = first callee.
288 */
289 u32 frameno;
290 /* subprog number == index within subprog_info
291 * zero == main subprog
292 */
293 u32 subprogno;
294 /* Every bpf_timer_start will increment async_entry_cnt.
295 * It's used to distinguish:
296 * void foo(void) { for(;;); }
297 * void foo(void) { bpf_timer_set_callback(,foo); }
298 */
299 u32 async_entry_cnt;
300 bool in_callback_fn;
301 struct tnum callback_ret_range;
302 bool in_async_callback_fn;
303 /* For callback calling functions that limit number of possible
304 * callback executions (e.g. bpf_loop) keeps track of current
305 * simulated iteration number.
306 * Value in frame N refers to number of times callback with frame
307 * N+1 was simulated, e.g. for the following call:
308 *
309 * bpf_loop(..., fn, ...); | suppose current frame is N
310 * | fn would be simulated in frame N+1
311 * | number of simulations is tracked in frame N
312 */
313 u32 callback_depth;
314
315 /* The following fields should be last. See copy_func_state() */
316 int acquired_refs;
317 struct bpf_reference_state *refs;
318 int allocated_stack;
319 struct bpf_stack_state *stack;
320 };
321
322 #define MAX_CALL_FRAMES 8
323
324 /* instruction history flags, used in bpf_jmp_history_entry.flags field */
325 enum {
326 /* instruction references stack slot through PTR_TO_STACK register;
327 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8)
328 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512,
329 * 8 bytes per slot, so slot index (spi) is [0, 63])
330 */
331 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */
332
333 INSN_F_SPI_MASK = 0x3f, /* 6 bits */
334 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */
335
336 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */
337 };
338
339 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES);
340 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8);
341
342 struct bpf_jmp_history_entry {
343 u32 idx;
344 /* insn idx can't be bigger than 1 million */
345 u32 prev_idx : 22;
346 /* special flags, e.g., whether insn is doing register stack spill/load */
347 u32 flags : 10;
348 };
349
350 /* Maximum number of register states that can exist at once */
351 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
352 struct bpf_verifier_state {
353 /* call stack tracking */
354 struct bpf_func_state *frame[MAX_CALL_FRAMES];
355 struct bpf_verifier_state *parent;
356 /*
357 * 'branches' field is the number of branches left to explore:
358 * 0 - all possible paths from this state reached bpf_exit or
359 * were safely pruned
360 * 1 - at least one path is being explored.
361 * This state hasn't reached bpf_exit
362 * 2 - at least two paths are being explored.
363 * This state is an immediate parent of two children.
364 * One is fallthrough branch with branches==1 and another
365 * state is pushed into stack (to be explored later) also with
366 * branches==1. The parent of this state has branches==1.
367 * The verifier state tree connected via 'parent' pointer looks like:
368 * 1
369 * 1
370 * 2 -> 1 (first 'if' pushed into stack)
371 * 1
372 * 2 -> 1 (second 'if' pushed into stack)
373 * 1
374 * 1
375 * 1 bpf_exit.
376 *
377 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
378 * and the verifier state tree will look:
379 * 1
380 * 1
381 * 2 -> 1 (first 'if' pushed into stack)
382 * 1
383 * 1 -> 1 (second 'if' pushed into stack)
384 * 0
385 * 0
386 * 0 bpf_exit.
387 * After pop_stack() the do_check() will resume at second 'if'.
388 *
389 * If is_state_visited() sees a state with branches > 0 it means
390 * there is a loop. If such state is exactly equal to the current state
391 * it's an infinite loop. Note states_equal() checks for states
392 * equivalency, so two states being 'states_equal' does not mean
393 * infinite loop. The exact comparison is provided by
394 * states_maybe_looping() function. It's a stronger pre-check and
395 * much faster than states_equal().
396 *
397 * This algorithm may not find all possible infinite loops or
398 * loop iteration count may be too high.
399 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
400 */
401 u32 branches;
402 u32 insn_idx;
403 u32 curframe;
404
405 struct bpf_active_lock active_lock;
406 bool speculative;
407 bool active_rcu_lock;
408 /* If this state was ever pointed-to by other state's loop_entry field
409 * this flag would be set to true. Used to avoid freeing such states
410 * while they are still in use.
411 */
412 bool used_as_loop_entry;
413
414 /* first and last insn idx of this verifier state */
415 u32 first_insn_idx;
416 u32 last_insn_idx;
417 /* If this state is a part of states loop this field points to some
418 * parent of this state such that:
419 * - it is also a member of the same states loop;
420 * - DFS states traversal starting from initial state visits loop_entry
421 * state before this state.
422 * Used to compute topmost loop entry for state loops.
423 * State loops might appear because of open coded iterators logic.
424 * See get_loop_entry() for more information.
425 */
426 struct bpf_verifier_state *loop_entry;
427 /* jmp history recorded from first to last.
428 * backtracking is using it to go from last to first.
429 * For most states jmp_history_cnt is [0-3].
430 * For loops can go up to ~40.
431 */
432 struct bpf_jmp_history_entry *jmp_history;
433 u32 jmp_history_cnt;
434 u32 dfs_depth;
435 u32 callback_unroll_depth;
436 };
437
438 #define bpf_get_spilled_reg(slot, frame) \
439 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
440 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
441 ? &frame->stack[slot].spilled_ptr : NULL)
442
443 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
444 #define bpf_for_each_spilled_reg(iter, frame, reg) \
445 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
446 iter < frame->allocated_stack / BPF_REG_SIZE; \
447 iter++, reg = bpf_get_spilled_reg(iter, frame))
448
449 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
450 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
451 ({ \
452 struct bpf_verifier_state *___vstate = __vst; \
453 int ___i, ___j; \
454 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \
455 struct bpf_reg_state *___regs; \
456 __state = ___vstate->frame[___i]; \
457 ___regs = __state->regs; \
458 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \
459 __reg = &___regs[___j]; \
460 (void)(__expr); \
461 } \
462 bpf_for_each_spilled_reg(___j, __state, __reg) { \
463 if (!__reg) \
464 continue; \
465 (void)(__expr); \
466 } \
467 } \
468 })
469
470 /* linked list of verifier states used to prune search */
471 struct bpf_verifier_state_list {
472 struct bpf_verifier_state state;
473 struct bpf_verifier_state_list *next;
474 int miss_cnt, hit_cnt;
475 };
476
477 struct bpf_loop_inline_state {
478 unsigned int initialized:1; /* set to true upon first entry */
479 unsigned int fit_for_inline:1; /* true if callback function is the same
480 * at each call and flags are always zero
481 */
482 u32 callback_subprogno; /* valid when fit_for_inline is true */
483 };
484
485 /* Possible states for alu_state member. */
486 #define BPF_ALU_SANITIZE_SRC (1U << 0)
487 #define BPF_ALU_SANITIZE_DST (1U << 1)
488 #define BPF_ALU_NEG_VALUE (1U << 2)
489 #define BPF_ALU_NON_POINTER (1U << 3)
490 #define BPF_ALU_IMMEDIATE (1U << 4)
491 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
492 BPF_ALU_SANITIZE_DST)
493
494 struct bpf_insn_aux_data {
495 union {
496 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
497 unsigned long map_ptr_state; /* pointer/poison value for maps */
498 s32 call_imm; /* saved imm field of call insn */
499 u32 alu_limit; /* limit for add/sub register with pointer */
500 struct {
501 u32 map_index; /* index into used_maps[] */
502 u32 map_off; /* offset from value base address */
503 };
504 struct {
505 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
506 union {
507 struct {
508 struct btf *btf;
509 u32 btf_id; /* btf_id for struct typed var */
510 };
511 u32 mem_size; /* mem_size for non-struct typed var */
512 };
513 } btf_var;
514 /* if instruction is a call to bpf_loop this field tracks
515 * the state of the relevant registers to make decision about inlining
516 */
517 struct bpf_loop_inline_state loop_inline_state;
518 };
519 union {
520 /* remember the size of type passed to bpf_obj_new to rewrite R1 */
521 u64 obj_new_size;
522 /* remember the offset of node field within type to rewrite */
523 u64 insert_off;
524 };
525 struct btf_struct_meta *kptr_struct_meta;
526 u64 map_key_state; /* constant (32 bit) key tracking for maps */
527 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
528 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
529 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
530 bool zext_dst; /* this insn zero extends dst reg */
531 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
532 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
533 u8 alu_state; /* used in combination with alu_limit */
534
535 /* below fields are initialized once */
536 unsigned int orig_idx; /* original instruction index */
537 bool jmp_point;
538 bool prune_point;
539 /* ensure we check state equivalence and save state checkpoint and
540 * this instruction, regardless of any heuristics
541 */
542 bool force_checkpoint;
543 /* true if instruction is a call to a helper function that
544 * accepts callback function as a parameter.
545 */
546 bool calls_callback;
547 };
548
549 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
550 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
551
552 #define BPF_VERIFIER_TMP_LOG_SIZE 1024
553
554 struct bpf_verifier_log {
555 /* Logical start and end positions of a "log window" of the verifier log.
556 * start_pos == 0 means we haven't truncated anything.
557 * Once truncation starts to happen, start_pos + len_total == end_pos,
558 * except during log reset situations, in which (end_pos - start_pos)
559 * might get smaller than len_total (see bpf_vlog_reset()).
560 * Generally, (end_pos - start_pos) gives number of useful data in
561 * user log buffer.
562 */
563 u64 start_pos;
564 u64 end_pos;
565 char __user *ubuf;
566 u32 level;
567 u32 len_total;
568 u32 len_max;
569 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
570 };
571
572 #define BPF_LOG_LEVEL1 1
573 #define BPF_LOG_LEVEL2 2
574 #define BPF_LOG_STATS 4
575 #define BPF_LOG_FIXED 8
576 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
577 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
578 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
579 #define BPF_LOG_MIN_ALIGNMENT 8U
580 #define BPF_LOG_ALIGNMENT 40U
581
bpf_verifier_log_needed(const struct bpf_verifier_log * log)582 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
583 {
584 return log && log->level;
585 }
586
587 #define BPF_MAX_SUBPROGS 256
588
589 struct bpf_subprog_info {
590 /* 'start' has to be the first field otherwise find_subprog() won't work */
591 u32 start; /* insn idx of function entry point */
592 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
593 u16 stack_depth; /* max. stack depth used by this function */
594 bool has_tail_call;
595 bool tail_call_reachable;
596 bool has_ld_abs;
597 bool is_async_cb;
598 };
599
600 struct bpf_verifier_env;
601
602 struct backtrack_state {
603 struct bpf_verifier_env *env;
604 u32 frame;
605 u32 reg_masks[MAX_CALL_FRAMES];
606 u64 stack_masks[MAX_CALL_FRAMES];
607 };
608
609 struct bpf_id_pair {
610 u32 old;
611 u32 cur;
612 };
613
614 struct bpf_idmap {
615 u32 tmp_id_gen;
616 struct bpf_id_pair map[BPF_ID_MAP_SIZE];
617 };
618
619 struct bpf_idset {
620 u32 count;
621 u32 ids[BPF_ID_MAP_SIZE];
622 };
623
624 /* single container for all structs
625 * one verifier_env per bpf_check() call
626 */
627 struct bpf_verifier_env {
628 u32 insn_idx;
629 u32 prev_insn_idx;
630 struct bpf_prog *prog; /* eBPF program being verified */
631 const struct bpf_verifier_ops *ops;
632 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
633 int stack_size; /* number of states to be processed */
634 bool strict_alignment; /* perform strict pointer alignment checks */
635 bool test_state_freq; /* test verifier with different pruning frequency */
636 struct bpf_verifier_state *cur_state; /* current verifier state */
637 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
638 struct bpf_verifier_state_list *free_list;
639 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
640 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
641 u32 used_map_cnt; /* number of used maps */
642 u32 used_btf_cnt; /* number of used BTF objects */
643 u32 id_gen; /* used to generate unique reg IDs */
644 bool explore_alu_limits;
645 bool allow_ptr_leaks;
646 bool allow_uninit_stack;
647 bool bpf_capable;
648 bool bypass_spec_v1;
649 bool bypass_spec_v4;
650 bool seen_direct_write;
651 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
652 const struct bpf_line_info *prev_linfo;
653 struct bpf_verifier_log log;
654 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
655 union {
656 struct bpf_idmap idmap_scratch;
657 struct bpf_idset idset_scratch;
658 };
659 struct {
660 int *insn_state;
661 int *insn_stack;
662 int cur_stack;
663 } cfg;
664 struct backtrack_state bt;
665 struct bpf_jmp_history_entry *cur_hist_ent;
666 u32 pass_cnt; /* number of times do_check() was called */
667 u32 subprog_cnt;
668 /* number of instructions analyzed by the verifier */
669 u32 prev_insn_processed, insn_processed;
670 /* number of jmps, calls, exits analyzed so far */
671 u32 prev_jmps_processed, jmps_processed;
672 /* total verification time */
673 u64 verification_time;
674 /* maximum number of verifier states kept in 'branching' instructions */
675 u32 max_states_per_insn;
676 /* total number of allocated verifier states */
677 u32 total_states;
678 /* some states are freed during program analysis.
679 * this is peak number of states. this number dominates kernel
680 * memory consumption during verification
681 */
682 u32 peak_states;
683 /* longest register parentage chain walked for liveness marking */
684 u32 longest_mark_read_walk;
685 bpfptr_t fd_array;
686
687 /* bit mask to keep track of whether a register has been accessed
688 * since the last time the function state was printed
689 */
690 u32 scratched_regs;
691 /* Same as scratched_regs but for stack slots */
692 u64 scratched_stack_slots;
693 u64 prev_log_pos, prev_insn_print_pos;
694 /* buffer used to generate temporary string representations,
695 * e.g., in reg_type_str() to generate reg_type string
696 */
697 char tmp_str_buf[TMP_STR_BUF_LEN];
698 };
699
700 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
701 const char *fmt, va_list args);
702 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
703 const char *fmt, ...);
704 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
705 const char *fmt, ...);
706 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
707 char __user *log_buf, u32 log_size);
708 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
709 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
710
cur_func(struct bpf_verifier_env * env)711 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
712 {
713 struct bpf_verifier_state *cur = env->cur_state;
714
715 return cur->frame[cur->curframe];
716 }
717
cur_regs(struct bpf_verifier_env * env)718 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
719 {
720 return cur_func(env)->regs;
721 }
722
723 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
724 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
725 int insn_idx, int prev_insn_idx);
726 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
727 void
728 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
729 struct bpf_insn *insn);
730 void
731 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
732
733 int check_ptr_off_reg(struct bpf_verifier_env *env,
734 const struct bpf_reg_state *reg, int regno);
735 int check_func_arg_reg_off(struct bpf_verifier_env *env,
736 const struct bpf_reg_state *reg, int regno,
737 enum bpf_arg_type arg_type);
738 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
739 u32 regno, u32 mem_size);
740
741 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)742 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
743 struct btf *btf, u32 btf_id)
744 {
745 if (tgt_prog)
746 return ((u64)tgt_prog->aux->id << 32) | btf_id;
747 else
748 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
749 }
750
751 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)752 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
753 {
754 if (obj_id)
755 *obj_id = key >> 32;
756 if (btf_id)
757 *btf_id = key & 0x7FFFFFFF;
758 }
759
760 int bpf_check_attach_target(struct bpf_verifier_log *log,
761 const struct bpf_prog *prog,
762 const struct bpf_prog *tgt_prog,
763 u32 btf_id,
764 struct bpf_attach_target_info *tgt_info);
765 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
766
767 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
768
769 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
770
771 /* extract base type from bpf_{arg, return, reg}_type. */
base_type(u32 type)772 static inline u32 base_type(u32 type)
773 {
774 return type & BPF_BASE_TYPE_MASK;
775 }
776
777 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
type_flag(u32 type)778 static inline u32 type_flag(u32 type)
779 {
780 return type & ~BPF_BASE_TYPE_MASK;
781 }
782
783 /* only use after check_attach_btf_id() */
resolve_prog_type(const struct bpf_prog * prog)784 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
785 {
786 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ?
787 prog->aux->saved_dst_prog_type : prog->type;
788 }
789
bpf_prog_check_recur(const struct bpf_prog * prog)790 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
791 {
792 switch (resolve_prog_type(prog)) {
793 case BPF_PROG_TYPE_TRACING:
794 return prog->expected_attach_type != BPF_TRACE_ITER;
795 case BPF_PROG_TYPE_STRUCT_OPS:
796 case BPF_PROG_TYPE_LSM:
797 return false;
798 default:
799 return true;
800 }
801 }
802
803 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF)
804
bpf_type_has_unsafe_modifiers(u32 type)805 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
806 {
807 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
808 }
809
810 #endif /* _LINUX_BPF_VERIFIER_H */
811