1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99 } __attribute__ ((__packed__));
100
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104 struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115 };
116
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122
123 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126 {
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134
135 /*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168 }
169
170 /*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194 }
195
196 /*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
check_fsflags(unsigned int old_flags,unsigned int flags)200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223 }
224
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227 {
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232 }
233
234 /*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244 }
245
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 struct dentry *dentry, struct fileattr *fa)
248 {
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
301 if (IS_ERR(trans))
302 return PTR_ERR(trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, 3);
364 if (IS_ERR(trans))
365 return PTR_ERR(trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 strlen(comp), 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 0, 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383 update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode_set_ctime_current(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393 }
394
395 /*
396 * Start exclusive operation @type, return true on success
397 */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400 {
401 bool ret = false;
402
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(&fs_info->super_lock);
409
410 return ret;
411 }
412
413 /*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426 {
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(&fs_info->super_lock);
434 return false;
435 }
436
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 spin_unlock(&fs_info->super_lock);
440 }
441
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449
btrfs_exclop_balance(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation op)450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452 {
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 spin_unlock(&fs_info->super_lock);
462 break;
463 case BTRFS_EXCLOP_BALANCE:
464 spin_lock(&fs_info->super_lock);
465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 spin_unlock(&fs_info->super_lock);
468 break;
469 default:
470 btrfs_warn(fs_info,
471 "invalid exclop balance operation %d requested", op);
472 }
473 }
474
btrfs_ioctl_getversion(struct inode * inode,int __user * arg)475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 return put_user(inode->i_generation, arg);
478 }
479
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 void __user *arg)
482 {
483 struct btrfs_device *device;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
486 u64 num_devices = 0;
487 int ret;
488
489 if (!capable(CAP_SYS_ADMIN))
490 return -EPERM;
491
492 /*
493 * btrfs_trim_block_group() depends on space cache, which is not
494 * available in zoned filesystem. So, disallow fitrim on a zoned
495 * filesystem for now.
496 */
497 if (btrfs_is_zoned(fs_info))
498 return -EOPNOTSUPP;
499
500 /*
501 * If the fs is mounted with nologreplay, which requires it to be
502 * mounted in RO mode as well, we can not allow discard on free space
503 * inside block groups, because log trees refer to extents that are not
504 * pinned in a block group's free space cache (pinning the extents is
505 * precisely the first phase of replaying a log tree).
506 */
507 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 return -EROFS;
509
510 rcu_read_lock();
511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 dev_list) {
513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 continue;
515 num_devices++;
516 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 minlen);
518 }
519 rcu_read_unlock();
520
521 if (!num_devices)
522 return -EOPNOTSUPP;
523 if (copy_from_user(&range, arg, sizeof(range)))
524 return -EFAULT;
525
526 /*
527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
528 * block group is in the logical address space, which can be any
529 * sectorsize aligned bytenr in the range [0, U64_MAX].
530 */
531 if (range.len < fs_info->sectorsize)
532 return -EINVAL;
533
534 range.minlen = max(range.minlen, minlen);
535 ret = btrfs_trim_fs(fs_info, &range);
536
537 if (copy_to_user(arg, &range, sizeof(range)))
538 return -EFAULT;
539
540 return ret;
541 }
542
btrfs_is_empty_uuid(u8 * uuid)543 int __pure btrfs_is_empty_uuid(u8 *uuid)
544 {
545 int i;
546
547 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 if (uuid[i])
549 return 0;
550 }
551 return 1;
552 }
553
554 /*
555 * Calculate the number of transaction items to reserve for creating a subvolume
556 * or snapshot, not including the inode, directory entries, or parent directory.
557 */
create_subvol_num_items(struct btrfs_qgroup_inherit * inherit)558 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
559 {
560 /*
561 * 1 to add root block
562 * 1 to add root item
563 * 1 to add root ref
564 * 1 to add root backref
565 * 1 to add UUID item
566 * 1 to add qgroup info
567 * 1 to add qgroup limit
568 *
569 * Ideally the last two would only be accounted if qgroups are enabled,
570 * but that can change between now and the time we would insert them.
571 */
572 unsigned int num_items = 7;
573
574 if (inherit) {
575 /* 2 to add qgroup relations for each inherited qgroup */
576 num_items += 2 * inherit->num_qgroups;
577 }
578 return num_items;
579 }
580
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)581 static noinline int create_subvol(struct mnt_idmap *idmap,
582 struct inode *dir, struct dentry *dentry,
583 struct btrfs_qgroup_inherit *inherit)
584 {
585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
586 struct btrfs_trans_handle *trans;
587 struct btrfs_key key;
588 struct btrfs_root_item *root_item;
589 struct btrfs_inode_item *inode_item;
590 struct extent_buffer *leaf;
591 struct btrfs_root *root = BTRFS_I(dir)->root;
592 struct btrfs_root *new_root;
593 struct btrfs_block_rsv block_rsv;
594 struct timespec64 cur_time = current_time(dir);
595 struct btrfs_new_inode_args new_inode_args = {
596 .dir = dir,
597 .dentry = dentry,
598 .subvol = true,
599 };
600 unsigned int trans_num_items;
601 int ret;
602 dev_t anon_dev;
603 u64 objectid;
604 u64 qgroup_reserved = 0;
605
606 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
607 if (!root_item)
608 return -ENOMEM;
609
610 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
611 if (ret)
612 goto out_root_item;
613
614 /*
615 * Don't create subvolume whose level is not zero. Or qgroup will be
616 * screwed up since it assumes subvolume qgroup's level to be 0.
617 */
618 if (btrfs_qgroup_level(objectid)) {
619 ret = -ENOSPC;
620 goto out_root_item;
621 }
622
623 ret = get_anon_bdev(&anon_dev);
624 if (ret < 0)
625 goto out_root_item;
626
627 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
628 if (!new_inode_args.inode) {
629 ret = -ENOMEM;
630 goto out_anon_dev;
631 }
632 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
633 if (ret)
634 goto out_inode;
635 trans_num_items += create_subvol_num_items(inherit);
636
637 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
638 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
639 trans_num_items, false);
640 if (ret)
641 goto out_new_inode_args;
642 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
643
644 trans = btrfs_start_transaction(root, 0);
645 if (IS_ERR(trans)) {
646 ret = PTR_ERR(trans);
647 goto out_release_rsv;
648 }
649 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
650 if (ret)
651 goto out;
652 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
653 qgroup_reserved = 0;
654 trans->block_rsv = &block_rsv;
655 trans->bytes_reserved = block_rsv.size;
656 /* Tree log can't currently deal with an inode which is a new root. */
657 btrfs_set_log_full_commit(trans);
658
659 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
660 if (ret)
661 goto out;
662
663 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
664 BTRFS_NESTING_NORMAL);
665 if (IS_ERR(leaf)) {
666 ret = PTR_ERR(leaf);
667 goto out;
668 }
669
670 btrfs_mark_buffer_dirty(trans, leaf);
671
672 inode_item = &root_item->inode;
673 btrfs_set_stack_inode_generation(inode_item, 1);
674 btrfs_set_stack_inode_size(inode_item, 3);
675 btrfs_set_stack_inode_nlink(inode_item, 1);
676 btrfs_set_stack_inode_nbytes(inode_item,
677 fs_info->nodesize);
678 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
679
680 btrfs_set_root_flags(root_item, 0);
681 btrfs_set_root_limit(root_item, 0);
682 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
683
684 btrfs_set_root_bytenr(root_item, leaf->start);
685 btrfs_set_root_generation(root_item, trans->transid);
686 btrfs_set_root_level(root_item, 0);
687 btrfs_set_root_refs(root_item, 1);
688 btrfs_set_root_used(root_item, leaf->len);
689 btrfs_set_root_last_snapshot(root_item, 0);
690
691 btrfs_set_root_generation_v2(root_item,
692 btrfs_root_generation(root_item));
693 generate_random_guid(root_item->uuid);
694 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
695 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
696 root_item->ctime = root_item->otime;
697 btrfs_set_root_ctransid(root_item, trans->transid);
698 btrfs_set_root_otransid(root_item, trans->transid);
699
700 btrfs_tree_unlock(leaf);
701
702 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
703
704 key.objectid = objectid;
705 key.offset = 0;
706 key.type = BTRFS_ROOT_ITEM_KEY;
707 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
708 root_item);
709 if (ret) {
710 /*
711 * Since we don't abort the transaction in this case, free the
712 * tree block so that we don't leak space and leave the
713 * filesystem in an inconsistent state (an extent item in the
714 * extent tree with a backreference for a root that does not
715 * exists).
716 */
717 btrfs_tree_lock(leaf);
718 btrfs_clear_buffer_dirty(trans, leaf);
719 btrfs_tree_unlock(leaf);
720 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
721 free_extent_buffer(leaf);
722 goto out;
723 }
724
725 free_extent_buffer(leaf);
726 leaf = NULL;
727
728 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
729 if (IS_ERR(new_root)) {
730 ret = PTR_ERR(new_root);
731 btrfs_abort_transaction(trans, ret);
732 goto out;
733 }
734 /* anon_dev is owned by new_root now. */
735 anon_dev = 0;
736 BTRFS_I(new_inode_args.inode)->root = new_root;
737 /* ... and new_root is owned by new_inode_args.inode now. */
738
739 ret = btrfs_record_root_in_trans(trans, new_root);
740 if (ret) {
741 btrfs_abort_transaction(trans, ret);
742 goto out;
743 }
744
745 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
746 BTRFS_UUID_KEY_SUBVOL, objectid);
747 if (ret) {
748 btrfs_abort_transaction(trans, ret);
749 goto out;
750 }
751
752 ret = btrfs_create_new_inode(trans, &new_inode_args);
753 if (ret) {
754 btrfs_abort_transaction(trans, ret);
755 goto out;
756 }
757
758 d_instantiate_new(dentry, new_inode_args.inode);
759 new_inode_args.inode = NULL;
760
761 out:
762 trans->block_rsv = NULL;
763 trans->bytes_reserved = 0;
764 btrfs_end_transaction(trans);
765 out_release_rsv:
766 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
767 if (qgroup_reserved)
768 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
769 out_new_inode_args:
770 btrfs_new_inode_args_destroy(&new_inode_args);
771 out_inode:
772 iput(new_inode_args.inode);
773 out_anon_dev:
774 if (anon_dev)
775 free_anon_bdev(anon_dev);
776 out_root_item:
777 kfree(root_item);
778 return ret;
779 }
780
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)781 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
782 struct dentry *dentry, bool readonly,
783 struct btrfs_qgroup_inherit *inherit)
784 {
785 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
786 struct inode *inode;
787 struct btrfs_pending_snapshot *pending_snapshot;
788 unsigned int trans_num_items;
789 struct btrfs_trans_handle *trans;
790 struct btrfs_block_rsv *block_rsv;
791 u64 qgroup_reserved = 0;
792 int ret;
793
794 /* We do not support snapshotting right now. */
795 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
796 btrfs_warn(fs_info,
797 "extent tree v2 doesn't support snapshotting yet");
798 return -EOPNOTSUPP;
799 }
800
801 if (btrfs_root_refs(&root->root_item) == 0)
802 return -ENOENT;
803
804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
805 return -EINVAL;
806
807 if (atomic_read(&root->nr_swapfiles)) {
808 btrfs_warn(fs_info,
809 "cannot snapshot subvolume with active swapfile");
810 return -ETXTBSY;
811 }
812
813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
814 if (!pending_snapshot)
815 return -ENOMEM;
816
817 ret = get_anon_bdev(&pending_snapshot->anon_dev);
818 if (ret < 0)
819 goto free_pending;
820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
821 GFP_KERNEL);
822 pending_snapshot->path = btrfs_alloc_path();
823 if (!pending_snapshot->root_item || !pending_snapshot->path) {
824 ret = -ENOMEM;
825 goto free_pending;
826 }
827
828 block_rsv = &pending_snapshot->block_rsv;
829 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
830 /*
831 * 1 to add dir item
832 * 1 to add dir index
833 * 1 to update parent inode item
834 */
835 trans_num_items = create_subvol_num_items(inherit) + 3;
836 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
837 trans_num_items, false);
838 if (ret)
839 goto free_pending;
840 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
841
842 pending_snapshot->dentry = dentry;
843 pending_snapshot->root = root;
844 pending_snapshot->readonly = readonly;
845 pending_snapshot->dir = dir;
846 pending_snapshot->inherit = inherit;
847
848 trans = btrfs_start_transaction(root, 0);
849 if (IS_ERR(trans)) {
850 ret = PTR_ERR(trans);
851 goto fail;
852 }
853 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
854 if (ret) {
855 btrfs_end_transaction(trans);
856 goto fail;
857 }
858 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
859 qgroup_reserved = 0;
860
861 trans->pending_snapshot = pending_snapshot;
862
863 ret = btrfs_commit_transaction(trans);
864 if (ret)
865 goto fail;
866
867 ret = pending_snapshot->error;
868 if (ret)
869 goto fail;
870
871 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
872 if (ret)
873 goto fail;
874
875 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
876 if (IS_ERR(inode)) {
877 ret = PTR_ERR(inode);
878 goto fail;
879 }
880
881 d_instantiate(dentry, inode);
882 ret = 0;
883 pending_snapshot->anon_dev = 0;
884 fail:
885 /* Prevent double freeing of anon_dev */
886 if (ret && pending_snapshot->snap)
887 pending_snapshot->snap->anon_dev = 0;
888 btrfs_put_root(pending_snapshot->snap);
889 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
890 if (qgroup_reserved)
891 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
892 free_pending:
893 if (pending_snapshot->anon_dev)
894 free_anon_bdev(pending_snapshot->anon_dev);
895 kfree(pending_snapshot->root_item);
896 btrfs_free_path(pending_snapshot->path);
897 kfree(pending_snapshot);
898
899 return ret;
900 }
901
902 /* copy of may_delete in fs/namei.c()
903 * Check whether we can remove a link victim from directory dir, check
904 * whether the type of victim is right.
905 * 1. We can't do it if dir is read-only (done in permission())
906 * 2. We should have write and exec permissions on dir
907 * 3. We can't remove anything from append-only dir
908 * 4. We can't do anything with immutable dir (done in permission())
909 * 5. If the sticky bit on dir is set we should either
910 * a. be owner of dir, or
911 * b. be owner of victim, or
912 * c. have CAP_FOWNER capability
913 * 6. If the victim is append-only or immutable we can't do anything with
914 * links pointing to it.
915 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
916 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
917 * 9. We can't remove a root or mountpoint.
918 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
919 * nfs_async_unlink().
920 */
921
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)922 static int btrfs_may_delete(struct mnt_idmap *idmap,
923 struct inode *dir, struct dentry *victim, int isdir)
924 {
925 int error;
926
927 if (d_really_is_negative(victim))
928 return -ENOENT;
929
930 BUG_ON(d_inode(victim->d_parent) != dir);
931 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
932
933 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
934 if (error)
935 return error;
936 if (IS_APPEND(dir))
937 return -EPERM;
938 if (check_sticky(idmap, dir, d_inode(victim)) ||
939 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
940 IS_SWAPFILE(d_inode(victim)))
941 return -EPERM;
942 if (isdir) {
943 if (!d_is_dir(victim))
944 return -ENOTDIR;
945 if (IS_ROOT(victim))
946 return -EBUSY;
947 } else if (d_is_dir(victim))
948 return -EISDIR;
949 if (IS_DEADDIR(dir))
950 return -ENOENT;
951 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
952 return -EBUSY;
953 return 0;
954 }
955
956 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)957 static inline int btrfs_may_create(struct mnt_idmap *idmap,
958 struct inode *dir, struct dentry *child)
959 {
960 if (d_really_is_positive(child))
961 return -EEXIST;
962 if (IS_DEADDIR(dir))
963 return -ENOENT;
964 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
965 return -EOVERFLOW;
966 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
967 }
968
969 /*
970 * Create a new subvolume below @parent. This is largely modeled after
971 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
972 * inside this filesystem so it's quite a bit simpler.
973 */
btrfs_mksubvol(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)974 static noinline int btrfs_mksubvol(const struct path *parent,
975 struct mnt_idmap *idmap,
976 const char *name, int namelen,
977 struct btrfs_root *snap_src,
978 bool readonly,
979 struct btrfs_qgroup_inherit *inherit)
980 {
981 struct inode *dir = d_inode(parent->dentry);
982 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
983 struct dentry *dentry;
984 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
985 int error;
986
987 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
988 if (error == -EINTR)
989 return error;
990
991 dentry = lookup_one(idmap, name, parent->dentry, namelen);
992 error = PTR_ERR(dentry);
993 if (IS_ERR(dentry))
994 goto out_unlock;
995
996 error = btrfs_may_create(idmap, dir, dentry);
997 if (error)
998 goto out_dput;
999
1000 /*
1001 * even if this name doesn't exist, we may get hash collisions.
1002 * check for them now when we can safely fail
1003 */
1004 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1005 dir->i_ino, &name_str);
1006 if (error)
1007 goto out_dput;
1008
1009 down_read(&fs_info->subvol_sem);
1010
1011 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1012 goto out_up_read;
1013
1014 if (snap_src)
1015 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1016 else
1017 error = create_subvol(idmap, dir, dentry, inherit);
1018
1019 if (!error)
1020 fsnotify_mkdir(dir, dentry);
1021 out_up_read:
1022 up_read(&fs_info->subvol_sem);
1023 out_dput:
1024 dput(dentry);
1025 out_unlock:
1026 btrfs_inode_unlock(BTRFS_I(dir), 0);
1027 return error;
1028 }
1029
btrfs_mksnapshot(const struct path * parent,struct mnt_idmap * idmap,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1030 static noinline int btrfs_mksnapshot(const struct path *parent,
1031 struct mnt_idmap *idmap,
1032 const char *name, int namelen,
1033 struct btrfs_root *root,
1034 bool readonly,
1035 struct btrfs_qgroup_inherit *inherit)
1036 {
1037 int ret;
1038 bool snapshot_force_cow = false;
1039
1040 /*
1041 * Force new buffered writes to reserve space even when NOCOW is
1042 * possible. This is to avoid later writeback (running dealloc) to
1043 * fallback to COW mode and unexpectedly fail with ENOSPC.
1044 */
1045 btrfs_drew_read_lock(&root->snapshot_lock);
1046
1047 ret = btrfs_start_delalloc_snapshot(root, false);
1048 if (ret)
1049 goto out;
1050
1051 /*
1052 * All previous writes have started writeback in NOCOW mode, so now
1053 * we force future writes to fallback to COW mode during snapshot
1054 * creation.
1055 */
1056 atomic_inc(&root->snapshot_force_cow);
1057 snapshot_force_cow = true;
1058
1059 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1060
1061 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1062 root, readonly, inherit);
1063 out:
1064 if (snapshot_force_cow)
1065 atomic_dec(&root->snapshot_force_cow);
1066 btrfs_drew_read_unlock(&root->snapshot_lock);
1067 return ret;
1068 }
1069
1070 /*
1071 * Try to start exclusive operation @type or cancel it if it's running.
1072 *
1073 * Return:
1074 * 0 - normal mode, newly claimed op started
1075 * >0 - normal mode, something else is running,
1076 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1077 * ECANCELED - cancel mode, successful cancel
1078 * ENOTCONN - cancel mode, operation not running anymore
1079 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1080 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1081 enum btrfs_exclusive_operation type, bool cancel)
1082 {
1083 if (!cancel) {
1084 /* Start normal op */
1085 if (!btrfs_exclop_start(fs_info, type))
1086 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1087 /* Exclusive operation is now claimed */
1088 return 0;
1089 }
1090
1091 /* Cancel running op */
1092 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1093 /*
1094 * This blocks any exclop finish from setting it to NONE, so we
1095 * request cancellation. Either it runs and we will wait for it,
1096 * or it has finished and no waiting will happen.
1097 */
1098 atomic_inc(&fs_info->reloc_cancel_req);
1099 btrfs_exclop_start_unlock(fs_info);
1100
1101 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1102 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1103 TASK_INTERRUPTIBLE);
1104
1105 return -ECANCELED;
1106 }
1107
1108 /* Something else is running or none */
1109 return -ENOTCONN;
1110 }
1111
btrfs_ioctl_resize(struct file * file,void __user * arg)1112 static noinline int btrfs_ioctl_resize(struct file *file,
1113 void __user *arg)
1114 {
1115 BTRFS_DEV_LOOKUP_ARGS(args);
1116 struct inode *inode = file_inode(file);
1117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1118 u64 new_size;
1119 u64 old_size;
1120 u64 devid = 1;
1121 struct btrfs_root *root = BTRFS_I(inode)->root;
1122 struct btrfs_ioctl_vol_args *vol_args;
1123 struct btrfs_trans_handle *trans;
1124 struct btrfs_device *device = NULL;
1125 char *sizestr;
1126 char *retptr;
1127 char *devstr = NULL;
1128 int ret = 0;
1129 int mod = 0;
1130 bool cancel;
1131
1132 if (!capable(CAP_SYS_ADMIN))
1133 return -EPERM;
1134
1135 ret = mnt_want_write_file(file);
1136 if (ret)
1137 return ret;
1138
1139 /*
1140 * Read the arguments before checking exclusivity to be able to
1141 * distinguish regular resize and cancel
1142 */
1143 vol_args = memdup_user(arg, sizeof(*vol_args));
1144 if (IS_ERR(vol_args)) {
1145 ret = PTR_ERR(vol_args);
1146 goto out_drop;
1147 }
1148 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1149 sizestr = vol_args->name;
1150 cancel = (strcmp("cancel", sizestr) == 0);
1151 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1152 if (ret)
1153 goto out_free;
1154 /* Exclusive operation is now claimed */
1155
1156 devstr = strchr(sizestr, ':');
1157 if (devstr) {
1158 sizestr = devstr + 1;
1159 *devstr = '\0';
1160 devstr = vol_args->name;
1161 ret = kstrtoull(devstr, 10, &devid);
1162 if (ret)
1163 goto out_finish;
1164 if (!devid) {
1165 ret = -EINVAL;
1166 goto out_finish;
1167 }
1168 btrfs_info(fs_info, "resizing devid %llu", devid);
1169 }
1170
1171 args.devid = devid;
1172 device = btrfs_find_device(fs_info->fs_devices, &args);
1173 if (!device) {
1174 btrfs_info(fs_info, "resizer unable to find device %llu",
1175 devid);
1176 ret = -ENODEV;
1177 goto out_finish;
1178 }
1179
1180 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1181 btrfs_info(fs_info,
1182 "resizer unable to apply on readonly device %llu",
1183 devid);
1184 ret = -EPERM;
1185 goto out_finish;
1186 }
1187
1188 if (!strcmp(sizestr, "max"))
1189 new_size = bdev_nr_bytes(device->bdev);
1190 else {
1191 if (sizestr[0] == '-') {
1192 mod = -1;
1193 sizestr++;
1194 } else if (sizestr[0] == '+') {
1195 mod = 1;
1196 sizestr++;
1197 }
1198 new_size = memparse(sizestr, &retptr);
1199 if (*retptr != '\0' || new_size == 0) {
1200 ret = -EINVAL;
1201 goto out_finish;
1202 }
1203 }
1204
1205 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1206 ret = -EPERM;
1207 goto out_finish;
1208 }
1209
1210 old_size = btrfs_device_get_total_bytes(device);
1211
1212 if (mod < 0) {
1213 if (new_size > old_size) {
1214 ret = -EINVAL;
1215 goto out_finish;
1216 }
1217 new_size = old_size - new_size;
1218 } else if (mod > 0) {
1219 if (new_size > ULLONG_MAX - old_size) {
1220 ret = -ERANGE;
1221 goto out_finish;
1222 }
1223 new_size = old_size + new_size;
1224 }
1225
1226 if (new_size < SZ_256M) {
1227 ret = -EINVAL;
1228 goto out_finish;
1229 }
1230 if (new_size > bdev_nr_bytes(device->bdev)) {
1231 ret = -EFBIG;
1232 goto out_finish;
1233 }
1234
1235 new_size = round_down(new_size, fs_info->sectorsize);
1236
1237 if (new_size > old_size) {
1238 trans = btrfs_start_transaction(root, 0);
1239 if (IS_ERR(trans)) {
1240 ret = PTR_ERR(trans);
1241 goto out_finish;
1242 }
1243 ret = btrfs_grow_device(trans, device, new_size);
1244 btrfs_commit_transaction(trans);
1245 } else if (new_size < old_size) {
1246 ret = btrfs_shrink_device(device, new_size);
1247 } /* equal, nothing need to do */
1248
1249 if (ret == 0 && new_size != old_size)
1250 btrfs_info_in_rcu(fs_info,
1251 "resize device %s (devid %llu) from %llu to %llu",
1252 btrfs_dev_name(device), device->devid,
1253 old_size, new_size);
1254 out_finish:
1255 btrfs_exclop_finish(fs_info);
1256 out_free:
1257 kfree(vol_args);
1258 out_drop:
1259 mnt_drop_write_file(file);
1260 return ret;
1261 }
1262
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1263 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1264 struct mnt_idmap *idmap,
1265 const char *name, unsigned long fd, int subvol,
1266 bool readonly,
1267 struct btrfs_qgroup_inherit *inherit)
1268 {
1269 int namelen;
1270 int ret = 0;
1271
1272 if (!S_ISDIR(file_inode(file)->i_mode))
1273 return -ENOTDIR;
1274
1275 ret = mnt_want_write_file(file);
1276 if (ret)
1277 goto out;
1278
1279 namelen = strlen(name);
1280 if (strchr(name, '/')) {
1281 ret = -EINVAL;
1282 goto out_drop_write;
1283 }
1284
1285 if (name[0] == '.' &&
1286 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1287 ret = -EEXIST;
1288 goto out_drop_write;
1289 }
1290
1291 if (subvol) {
1292 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1293 namelen, NULL, readonly, inherit);
1294 } else {
1295 struct fd src = fdget(fd);
1296 struct inode *src_inode;
1297 if (!src.file) {
1298 ret = -EINVAL;
1299 goto out_drop_write;
1300 }
1301
1302 src_inode = file_inode(src.file);
1303 if (src_inode->i_sb != file_inode(file)->i_sb) {
1304 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1305 "Snapshot src from another FS");
1306 ret = -EXDEV;
1307 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1308 /*
1309 * Subvolume creation is not restricted, but snapshots
1310 * are limited to own subvolumes only
1311 */
1312 ret = -EPERM;
1313 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1314 /*
1315 * Snapshots must be made with the src_inode referring
1316 * to the subvolume inode, otherwise the permission
1317 * checking above is useless because we may have
1318 * permission on a lower directory but not the subvol
1319 * itself.
1320 */
1321 ret = -EINVAL;
1322 } else {
1323 ret = btrfs_mksnapshot(&file->f_path, idmap,
1324 name, namelen,
1325 BTRFS_I(src_inode)->root,
1326 readonly, inherit);
1327 }
1328 fdput(src);
1329 }
1330 out_drop_write:
1331 mnt_drop_write_file(file);
1332 out:
1333 return ret;
1334 }
1335
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1336 static noinline int btrfs_ioctl_snap_create(struct file *file,
1337 void __user *arg, int subvol)
1338 {
1339 struct btrfs_ioctl_vol_args *vol_args;
1340 int ret;
1341
1342 if (!S_ISDIR(file_inode(file)->i_mode))
1343 return -ENOTDIR;
1344
1345 vol_args = memdup_user(arg, sizeof(*vol_args));
1346 if (IS_ERR(vol_args))
1347 return PTR_ERR(vol_args);
1348 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1349
1350 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1351 vol_args->name, vol_args->fd, subvol,
1352 false, NULL);
1353
1354 kfree(vol_args);
1355 return ret;
1356 }
1357
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1358 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1359 void __user *arg, int subvol)
1360 {
1361 struct btrfs_ioctl_vol_args_v2 *vol_args;
1362 int ret;
1363 bool readonly = false;
1364 struct btrfs_qgroup_inherit *inherit = NULL;
1365
1366 if (!S_ISDIR(file_inode(file)->i_mode))
1367 return -ENOTDIR;
1368
1369 vol_args = memdup_user(arg, sizeof(*vol_args));
1370 if (IS_ERR(vol_args))
1371 return PTR_ERR(vol_args);
1372 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1373
1374 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1375 ret = -EOPNOTSUPP;
1376 goto free_args;
1377 }
1378
1379 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1380 readonly = true;
1381 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1382 u64 nums;
1383
1384 if (vol_args->size < sizeof(*inherit) ||
1385 vol_args->size > PAGE_SIZE) {
1386 ret = -EINVAL;
1387 goto free_args;
1388 }
1389 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1390 if (IS_ERR(inherit)) {
1391 ret = PTR_ERR(inherit);
1392 goto free_args;
1393 }
1394
1395 if (inherit->num_qgroups > PAGE_SIZE ||
1396 inherit->num_ref_copies > PAGE_SIZE ||
1397 inherit->num_excl_copies > PAGE_SIZE) {
1398 ret = -EINVAL;
1399 goto free_inherit;
1400 }
1401
1402 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1403 2 * inherit->num_excl_copies;
1404 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1405 ret = -EINVAL;
1406 goto free_inherit;
1407 }
1408 }
1409
1410 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1411 vol_args->name, vol_args->fd, subvol,
1412 readonly, inherit);
1413 if (ret)
1414 goto free_inherit;
1415 free_inherit:
1416 kfree(inherit);
1417 free_args:
1418 kfree(vol_args);
1419 return ret;
1420 }
1421
btrfs_ioctl_subvol_getflags(struct inode * inode,void __user * arg)1422 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1423 void __user *arg)
1424 {
1425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1426 struct btrfs_root *root = BTRFS_I(inode)->root;
1427 int ret = 0;
1428 u64 flags = 0;
1429
1430 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1431 return -EINVAL;
1432
1433 down_read(&fs_info->subvol_sem);
1434 if (btrfs_root_readonly(root))
1435 flags |= BTRFS_SUBVOL_RDONLY;
1436 up_read(&fs_info->subvol_sem);
1437
1438 if (copy_to_user(arg, &flags, sizeof(flags)))
1439 ret = -EFAULT;
1440
1441 return ret;
1442 }
1443
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1444 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1445 void __user *arg)
1446 {
1447 struct inode *inode = file_inode(file);
1448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 struct btrfs_trans_handle *trans;
1451 u64 root_flags;
1452 u64 flags;
1453 int ret = 0;
1454
1455 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1456 return -EPERM;
1457
1458 ret = mnt_want_write_file(file);
1459 if (ret)
1460 goto out;
1461
1462 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1463 ret = -EINVAL;
1464 goto out_drop_write;
1465 }
1466
1467 if (copy_from_user(&flags, arg, sizeof(flags))) {
1468 ret = -EFAULT;
1469 goto out_drop_write;
1470 }
1471
1472 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1473 ret = -EOPNOTSUPP;
1474 goto out_drop_write;
1475 }
1476
1477 down_write(&fs_info->subvol_sem);
1478
1479 /* nothing to do */
1480 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1481 goto out_drop_sem;
1482
1483 root_flags = btrfs_root_flags(&root->root_item);
1484 if (flags & BTRFS_SUBVOL_RDONLY) {
1485 btrfs_set_root_flags(&root->root_item,
1486 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1487 } else {
1488 /*
1489 * Block RO -> RW transition if this subvolume is involved in
1490 * send
1491 */
1492 spin_lock(&root->root_item_lock);
1493 if (root->send_in_progress == 0) {
1494 btrfs_set_root_flags(&root->root_item,
1495 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1496 spin_unlock(&root->root_item_lock);
1497 } else {
1498 spin_unlock(&root->root_item_lock);
1499 btrfs_warn(fs_info,
1500 "Attempt to set subvolume %llu read-write during send",
1501 root->root_key.objectid);
1502 ret = -EPERM;
1503 goto out_drop_sem;
1504 }
1505 }
1506
1507 trans = btrfs_start_transaction(root, 1);
1508 if (IS_ERR(trans)) {
1509 ret = PTR_ERR(trans);
1510 goto out_reset;
1511 }
1512
1513 ret = btrfs_update_root(trans, fs_info->tree_root,
1514 &root->root_key, &root->root_item);
1515 if (ret < 0) {
1516 btrfs_end_transaction(trans);
1517 goto out_reset;
1518 }
1519
1520 ret = btrfs_commit_transaction(trans);
1521
1522 out_reset:
1523 if (ret)
1524 btrfs_set_root_flags(&root->root_item, root_flags);
1525 out_drop_sem:
1526 up_write(&fs_info->subvol_sem);
1527 out_drop_write:
1528 mnt_drop_write_file(file);
1529 out:
1530 return ret;
1531 }
1532
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1533 static noinline int key_in_sk(struct btrfs_key *key,
1534 struct btrfs_ioctl_search_key *sk)
1535 {
1536 struct btrfs_key test;
1537 int ret;
1538
1539 test.objectid = sk->min_objectid;
1540 test.type = sk->min_type;
1541 test.offset = sk->min_offset;
1542
1543 ret = btrfs_comp_cpu_keys(key, &test);
1544 if (ret < 0)
1545 return 0;
1546
1547 test.objectid = sk->max_objectid;
1548 test.type = sk->max_type;
1549 test.offset = sk->max_offset;
1550
1551 ret = btrfs_comp_cpu_keys(key, &test);
1552 if (ret > 0)
1553 return 0;
1554 return 1;
1555 }
1556
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1557 static noinline int copy_to_sk(struct btrfs_path *path,
1558 struct btrfs_key *key,
1559 struct btrfs_ioctl_search_key *sk,
1560 u64 *buf_size,
1561 char __user *ubuf,
1562 unsigned long *sk_offset,
1563 int *num_found)
1564 {
1565 u64 found_transid;
1566 struct extent_buffer *leaf;
1567 struct btrfs_ioctl_search_header sh;
1568 struct btrfs_key test;
1569 unsigned long item_off;
1570 unsigned long item_len;
1571 int nritems;
1572 int i;
1573 int slot;
1574 int ret = 0;
1575
1576 leaf = path->nodes[0];
1577 slot = path->slots[0];
1578 nritems = btrfs_header_nritems(leaf);
1579
1580 if (btrfs_header_generation(leaf) > sk->max_transid) {
1581 i = nritems;
1582 goto advance_key;
1583 }
1584 found_transid = btrfs_header_generation(leaf);
1585
1586 for (i = slot; i < nritems; i++) {
1587 item_off = btrfs_item_ptr_offset(leaf, i);
1588 item_len = btrfs_item_size(leaf, i);
1589
1590 btrfs_item_key_to_cpu(leaf, key, i);
1591 if (!key_in_sk(key, sk))
1592 continue;
1593
1594 if (sizeof(sh) + item_len > *buf_size) {
1595 if (*num_found) {
1596 ret = 1;
1597 goto out;
1598 }
1599
1600 /*
1601 * return one empty item back for v1, which does not
1602 * handle -EOVERFLOW
1603 */
1604
1605 *buf_size = sizeof(sh) + item_len;
1606 item_len = 0;
1607 ret = -EOVERFLOW;
1608 }
1609
1610 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1611 ret = 1;
1612 goto out;
1613 }
1614
1615 sh.objectid = key->objectid;
1616 sh.offset = key->offset;
1617 sh.type = key->type;
1618 sh.len = item_len;
1619 sh.transid = found_transid;
1620
1621 /*
1622 * Copy search result header. If we fault then loop again so we
1623 * can fault in the pages and -EFAULT there if there's a
1624 * problem. Otherwise we'll fault and then copy the buffer in
1625 * properly this next time through
1626 */
1627 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1628 ret = 0;
1629 goto out;
1630 }
1631
1632 *sk_offset += sizeof(sh);
1633
1634 if (item_len) {
1635 char __user *up = ubuf + *sk_offset;
1636 /*
1637 * Copy the item, same behavior as above, but reset the
1638 * * sk_offset so we copy the full thing again.
1639 */
1640 if (read_extent_buffer_to_user_nofault(leaf, up,
1641 item_off, item_len)) {
1642 ret = 0;
1643 *sk_offset -= sizeof(sh);
1644 goto out;
1645 }
1646
1647 *sk_offset += item_len;
1648 }
1649 (*num_found)++;
1650
1651 if (ret) /* -EOVERFLOW from above */
1652 goto out;
1653
1654 if (*num_found >= sk->nr_items) {
1655 ret = 1;
1656 goto out;
1657 }
1658 }
1659 advance_key:
1660 ret = 0;
1661 test.objectid = sk->max_objectid;
1662 test.type = sk->max_type;
1663 test.offset = sk->max_offset;
1664 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1665 ret = 1;
1666 else if (key->offset < (u64)-1)
1667 key->offset++;
1668 else if (key->type < (u8)-1) {
1669 key->offset = 0;
1670 key->type++;
1671 } else if (key->objectid < (u64)-1) {
1672 key->offset = 0;
1673 key->type = 0;
1674 key->objectid++;
1675 } else
1676 ret = 1;
1677 out:
1678 /*
1679 * 0: all items from this leaf copied, continue with next
1680 * 1: * more items can be copied, but unused buffer is too small
1681 * * all items were found
1682 * Either way, it will stops the loop which iterates to the next
1683 * leaf
1684 * -EOVERFLOW: item was to large for buffer
1685 * -EFAULT: could not copy extent buffer back to userspace
1686 */
1687 return ret;
1688 }
1689
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1690 static noinline int search_ioctl(struct inode *inode,
1691 struct btrfs_ioctl_search_key *sk,
1692 u64 *buf_size,
1693 char __user *ubuf)
1694 {
1695 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1696 struct btrfs_root *root;
1697 struct btrfs_key key;
1698 struct btrfs_path *path;
1699 int ret;
1700 int num_found = 0;
1701 unsigned long sk_offset = 0;
1702
1703 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1704 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1705 return -EOVERFLOW;
1706 }
1707
1708 path = btrfs_alloc_path();
1709 if (!path)
1710 return -ENOMEM;
1711
1712 if (sk->tree_id == 0) {
1713 /* search the root of the inode that was passed */
1714 root = btrfs_grab_root(BTRFS_I(inode)->root);
1715 } else {
1716 root = btrfs_get_fs_root(info, sk->tree_id, true);
1717 if (IS_ERR(root)) {
1718 btrfs_free_path(path);
1719 return PTR_ERR(root);
1720 }
1721 }
1722
1723 key.objectid = sk->min_objectid;
1724 key.type = sk->min_type;
1725 key.offset = sk->min_offset;
1726
1727 while (1) {
1728 ret = -EFAULT;
1729 /*
1730 * Ensure that the whole user buffer is faulted in at sub-page
1731 * granularity, otherwise the loop may live-lock.
1732 */
1733 if (fault_in_subpage_writeable(ubuf + sk_offset,
1734 *buf_size - sk_offset))
1735 break;
1736
1737 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1738 if (ret != 0) {
1739 if (ret > 0)
1740 ret = 0;
1741 goto err;
1742 }
1743 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1744 &sk_offset, &num_found);
1745 btrfs_release_path(path);
1746 if (ret)
1747 break;
1748
1749 }
1750 if (ret > 0)
1751 ret = 0;
1752 err:
1753 sk->nr_items = num_found;
1754 btrfs_put_root(root);
1755 btrfs_free_path(path);
1756 return ret;
1757 }
1758
btrfs_ioctl_tree_search(struct inode * inode,void __user * argp)1759 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1760 void __user *argp)
1761 {
1762 struct btrfs_ioctl_search_args __user *uargs = argp;
1763 struct btrfs_ioctl_search_key sk;
1764 int ret;
1765 u64 buf_size;
1766
1767 if (!capable(CAP_SYS_ADMIN))
1768 return -EPERM;
1769
1770 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1771 return -EFAULT;
1772
1773 buf_size = sizeof(uargs->buf);
1774
1775 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1776
1777 /*
1778 * In the origin implementation an overflow is handled by returning a
1779 * search header with a len of zero, so reset ret.
1780 */
1781 if (ret == -EOVERFLOW)
1782 ret = 0;
1783
1784 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1785 ret = -EFAULT;
1786 return ret;
1787 }
1788
btrfs_ioctl_tree_search_v2(struct inode * inode,void __user * argp)1789 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1790 void __user *argp)
1791 {
1792 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1793 struct btrfs_ioctl_search_args_v2 args;
1794 int ret;
1795 u64 buf_size;
1796 const u64 buf_limit = SZ_16M;
1797
1798 if (!capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1800
1801 /* copy search header and buffer size */
1802 if (copy_from_user(&args, uarg, sizeof(args)))
1803 return -EFAULT;
1804
1805 buf_size = args.buf_size;
1806
1807 /* limit result size to 16MB */
1808 if (buf_size > buf_limit)
1809 buf_size = buf_limit;
1810
1811 ret = search_ioctl(inode, &args.key, &buf_size,
1812 (char __user *)(&uarg->buf[0]));
1813 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1814 ret = -EFAULT;
1815 else if (ret == -EOVERFLOW &&
1816 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1817 ret = -EFAULT;
1818
1819 return ret;
1820 }
1821
1822 /*
1823 * Search INODE_REFs to identify path name of 'dirid' directory
1824 * in a 'tree_id' tree. and sets path name to 'name'.
1825 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1826 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1827 u64 tree_id, u64 dirid, char *name)
1828 {
1829 struct btrfs_root *root;
1830 struct btrfs_key key;
1831 char *ptr;
1832 int ret = -1;
1833 int slot;
1834 int len;
1835 int total_len = 0;
1836 struct btrfs_inode_ref *iref;
1837 struct extent_buffer *l;
1838 struct btrfs_path *path;
1839
1840 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1841 name[0]='\0';
1842 return 0;
1843 }
1844
1845 path = btrfs_alloc_path();
1846 if (!path)
1847 return -ENOMEM;
1848
1849 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1850
1851 root = btrfs_get_fs_root(info, tree_id, true);
1852 if (IS_ERR(root)) {
1853 ret = PTR_ERR(root);
1854 root = NULL;
1855 goto out;
1856 }
1857
1858 key.objectid = dirid;
1859 key.type = BTRFS_INODE_REF_KEY;
1860 key.offset = (u64)-1;
1861
1862 while (1) {
1863 ret = btrfs_search_backwards(root, &key, path);
1864 if (ret < 0)
1865 goto out;
1866 else if (ret > 0) {
1867 ret = -ENOENT;
1868 goto out;
1869 }
1870
1871 l = path->nodes[0];
1872 slot = path->slots[0];
1873
1874 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1875 len = btrfs_inode_ref_name_len(l, iref);
1876 ptr -= len + 1;
1877 total_len += len + 1;
1878 if (ptr < name) {
1879 ret = -ENAMETOOLONG;
1880 goto out;
1881 }
1882
1883 *(ptr + len) = '/';
1884 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1885
1886 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1887 break;
1888
1889 btrfs_release_path(path);
1890 key.objectid = key.offset;
1891 key.offset = (u64)-1;
1892 dirid = key.objectid;
1893 }
1894 memmove(name, ptr, total_len);
1895 name[total_len] = '\0';
1896 ret = 0;
1897 out:
1898 btrfs_put_root(root);
1899 btrfs_free_path(path);
1900 return ret;
1901 }
1902
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1903 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1904 struct inode *inode,
1905 struct btrfs_ioctl_ino_lookup_user_args *args)
1906 {
1907 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1908 struct super_block *sb = inode->i_sb;
1909 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1910 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1911 u64 dirid = args->dirid;
1912 unsigned long item_off;
1913 unsigned long item_len;
1914 struct btrfs_inode_ref *iref;
1915 struct btrfs_root_ref *rref;
1916 struct btrfs_root *root = NULL;
1917 struct btrfs_path *path;
1918 struct btrfs_key key, key2;
1919 struct extent_buffer *leaf;
1920 struct inode *temp_inode;
1921 char *ptr;
1922 int slot;
1923 int len;
1924 int total_len = 0;
1925 int ret;
1926
1927 path = btrfs_alloc_path();
1928 if (!path)
1929 return -ENOMEM;
1930
1931 /*
1932 * If the bottom subvolume does not exist directly under upper_limit,
1933 * construct the path in from the bottom up.
1934 */
1935 if (dirid != upper_limit.objectid) {
1936 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1937
1938 root = btrfs_get_fs_root(fs_info, treeid, true);
1939 if (IS_ERR(root)) {
1940 ret = PTR_ERR(root);
1941 goto out;
1942 }
1943
1944 key.objectid = dirid;
1945 key.type = BTRFS_INODE_REF_KEY;
1946 key.offset = (u64)-1;
1947 while (1) {
1948 ret = btrfs_search_backwards(root, &key, path);
1949 if (ret < 0)
1950 goto out_put;
1951 else if (ret > 0) {
1952 ret = -ENOENT;
1953 goto out_put;
1954 }
1955
1956 leaf = path->nodes[0];
1957 slot = path->slots[0];
1958
1959 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1960 len = btrfs_inode_ref_name_len(leaf, iref);
1961 ptr -= len + 1;
1962 total_len += len + 1;
1963 if (ptr < args->path) {
1964 ret = -ENAMETOOLONG;
1965 goto out_put;
1966 }
1967
1968 *(ptr + len) = '/';
1969 read_extent_buffer(leaf, ptr,
1970 (unsigned long)(iref + 1), len);
1971
1972 /* Check the read+exec permission of this directory */
1973 ret = btrfs_previous_item(root, path, dirid,
1974 BTRFS_INODE_ITEM_KEY);
1975 if (ret < 0) {
1976 goto out_put;
1977 } else if (ret > 0) {
1978 ret = -ENOENT;
1979 goto out_put;
1980 }
1981
1982 leaf = path->nodes[0];
1983 slot = path->slots[0];
1984 btrfs_item_key_to_cpu(leaf, &key2, slot);
1985 if (key2.objectid != dirid) {
1986 ret = -ENOENT;
1987 goto out_put;
1988 }
1989
1990 /*
1991 * We don't need the path anymore, so release it and
1992 * avoid deadlocks and lockdep warnings in case
1993 * btrfs_iget() needs to lookup the inode from its root
1994 * btree and lock the same leaf.
1995 */
1996 btrfs_release_path(path);
1997 temp_inode = btrfs_iget(sb, key2.objectid, root);
1998 if (IS_ERR(temp_inode)) {
1999 ret = PTR_ERR(temp_inode);
2000 goto out_put;
2001 }
2002 ret = inode_permission(idmap, temp_inode,
2003 MAY_READ | MAY_EXEC);
2004 iput(temp_inode);
2005 if (ret) {
2006 ret = -EACCES;
2007 goto out_put;
2008 }
2009
2010 if (key.offset == upper_limit.objectid)
2011 break;
2012 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2013 ret = -EACCES;
2014 goto out_put;
2015 }
2016
2017 key.objectid = key.offset;
2018 key.offset = (u64)-1;
2019 dirid = key.objectid;
2020 }
2021
2022 memmove(args->path, ptr, total_len);
2023 args->path[total_len] = '\0';
2024 btrfs_put_root(root);
2025 root = NULL;
2026 btrfs_release_path(path);
2027 }
2028
2029 /* Get the bottom subvolume's name from ROOT_REF */
2030 key.objectid = treeid;
2031 key.type = BTRFS_ROOT_REF_KEY;
2032 key.offset = args->treeid;
2033 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2034 if (ret < 0) {
2035 goto out;
2036 } else if (ret > 0) {
2037 ret = -ENOENT;
2038 goto out;
2039 }
2040
2041 leaf = path->nodes[0];
2042 slot = path->slots[0];
2043 btrfs_item_key_to_cpu(leaf, &key, slot);
2044
2045 item_off = btrfs_item_ptr_offset(leaf, slot);
2046 item_len = btrfs_item_size(leaf, slot);
2047 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2048 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2049 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2050 ret = -EINVAL;
2051 goto out;
2052 }
2053
2054 /* Copy subvolume's name */
2055 item_off += sizeof(struct btrfs_root_ref);
2056 item_len -= sizeof(struct btrfs_root_ref);
2057 read_extent_buffer(leaf, args->name, item_off, item_len);
2058 args->name[item_len] = 0;
2059
2060 out_put:
2061 btrfs_put_root(root);
2062 out:
2063 btrfs_free_path(path);
2064 return ret;
2065 }
2066
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)2067 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2068 void __user *argp)
2069 {
2070 struct btrfs_ioctl_ino_lookup_args *args;
2071 int ret = 0;
2072
2073 args = memdup_user(argp, sizeof(*args));
2074 if (IS_ERR(args))
2075 return PTR_ERR(args);
2076
2077 /*
2078 * Unprivileged query to obtain the containing subvolume root id. The
2079 * path is reset so it's consistent with btrfs_search_path_in_tree.
2080 */
2081 if (args->treeid == 0)
2082 args->treeid = root->root_key.objectid;
2083
2084 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2085 args->name[0] = 0;
2086 goto out;
2087 }
2088
2089 if (!capable(CAP_SYS_ADMIN)) {
2090 ret = -EPERM;
2091 goto out;
2092 }
2093
2094 ret = btrfs_search_path_in_tree(root->fs_info,
2095 args->treeid, args->objectid,
2096 args->name);
2097
2098 out:
2099 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2100 ret = -EFAULT;
2101
2102 kfree(args);
2103 return ret;
2104 }
2105
2106 /*
2107 * Version of ino_lookup ioctl (unprivileged)
2108 *
2109 * The main differences from ino_lookup ioctl are:
2110 *
2111 * 1. Read + Exec permission will be checked using inode_permission() during
2112 * path construction. -EACCES will be returned in case of failure.
2113 * 2. Path construction will be stopped at the inode number which corresponds
2114 * to the fd with which this ioctl is called. If constructed path does not
2115 * exist under fd's inode, -EACCES will be returned.
2116 * 3. The name of bottom subvolume is also searched and filled.
2117 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2118 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2119 {
2120 struct btrfs_ioctl_ino_lookup_user_args *args;
2121 struct inode *inode;
2122 int ret;
2123
2124 args = memdup_user(argp, sizeof(*args));
2125 if (IS_ERR(args))
2126 return PTR_ERR(args);
2127
2128 inode = file_inode(file);
2129
2130 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2131 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2132 /*
2133 * The subvolume does not exist under fd with which this is
2134 * called
2135 */
2136 kfree(args);
2137 return -EACCES;
2138 }
2139
2140 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2141
2142 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2143 ret = -EFAULT;
2144
2145 kfree(args);
2146 return ret;
2147 }
2148
2149 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2150 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2151 {
2152 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2153 struct btrfs_fs_info *fs_info;
2154 struct btrfs_root *root;
2155 struct btrfs_path *path;
2156 struct btrfs_key key;
2157 struct btrfs_root_item *root_item;
2158 struct btrfs_root_ref *rref;
2159 struct extent_buffer *leaf;
2160 unsigned long item_off;
2161 unsigned long item_len;
2162 int slot;
2163 int ret = 0;
2164
2165 path = btrfs_alloc_path();
2166 if (!path)
2167 return -ENOMEM;
2168
2169 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2170 if (!subvol_info) {
2171 btrfs_free_path(path);
2172 return -ENOMEM;
2173 }
2174
2175 fs_info = BTRFS_I(inode)->root->fs_info;
2176
2177 /* Get root_item of inode's subvolume */
2178 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2179 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2180 if (IS_ERR(root)) {
2181 ret = PTR_ERR(root);
2182 goto out_free;
2183 }
2184 root_item = &root->root_item;
2185
2186 subvol_info->treeid = key.objectid;
2187
2188 subvol_info->generation = btrfs_root_generation(root_item);
2189 subvol_info->flags = btrfs_root_flags(root_item);
2190
2191 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2192 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2193 BTRFS_UUID_SIZE);
2194 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2195 BTRFS_UUID_SIZE);
2196
2197 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2198 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2199 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2200
2201 subvol_info->otransid = btrfs_root_otransid(root_item);
2202 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2203 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2204
2205 subvol_info->stransid = btrfs_root_stransid(root_item);
2206 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2207 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2208
2209 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2210 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2211 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2212
2213 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2214 /* Search root tree for ROOT_BACKREF of this subvolume */
2215 key.type = BTRFS_ROOT_BACKREF_KEY;
2216 key.offset = 0;
2217 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2218 if (ret < 0) {
2219 goto out;
2220 } else if (path->slots[0] >=
2221 btrfs_header_nritems(path->nodes[0])) {
2222 ret = btrfs_next_leaf(fs_info->tree_root, path);
2223 if (ret < 0) {
2224 goto out;
2225 } else if (ret > 0) {
2226 ret = -EUCLEAN;
2227 goto out;
2228 }
2229 }
2230
2231 leaf = path->nodes[0];
2232 slot = path->slots[0];
2233 btrfs_item_key_to_cpu(leaf, &key, slot);
2234 if (key.objectid == subvol_info->treeid &&
2235 key.type == BTRFS_ROOT_BACKREF_KEY) {
2236 subvol_info->parent_id = key.offset;
2237
2238 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2239 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2240
2241 item_off = btrfs_item_ptr_offset(leaf, slot)
2242 + sizeof(struct btrfs_root_ref);
2243 item_len = btrfs_item_size(leaf, slot)
2244 - sizeof(struct btrfs_root_ref);
2245 read_extent_buffer(leaf, subvol_info->name,
2246 item_off, item_len);
2247 } else {
2248 ret = -ENOENT;
2249 goto out;
2250 }
2251 }
2252
2253 btrfs_free_path(path);
2254 path = NULL;
2255 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2256 ret = -EFAULT;
2257
2258 out:
2259 btrfs_put_root(root);
2260 out_free:
2261 btrfs_free_path(path);
2262 kfree(subvol_info);
2263 return ret;
2264 }
2265
2266 /*
2267 * Return ROOT_REF information of the subvolume containing this inode
2268 * except the subvolume name.
2269 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2270 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2271 void __user *argp)
2272 {
2273 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2274 struct btrfs_root_ref *rref;
2275 struct btrfs_path *path;
2276 struct btrfs_key key;
2277 struct extent_buffer *leaf;
2278 u64 objectid;
2279 int slot;
2280 int ret;
2281 u8 found;
2282
2283 path = btrfs_alloc_path();
2284 if (!path)
2285 return -ENOMEM;
2286
2287 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2288 if (IS_ERR(rootrefs)) {
2289 btrfs_free_path(path);
2290 return PTR_ERR(rootrefs);
2291 }
2292
2293 objectid = root->root_key.objectid;
2294 key.objectid = objectid;
2295 key.type = BTRFS_ROOT_REF_KEY;
2296 key.offset = rootrefs->min_treeid;
2297 found = 0;
2298
2299 root = root->fs_info->tree_root;
2300 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2301 if (ret < 0) {
2302 goto out;
2303 } else if (path->slots[0] >=
2304 btrfs_header_nritems(path->nodes[0])) {
2305 ret = btrfs_next_leaf(root, path);
2306 if (ret < 0) {
2307 goto out;
2308 } else if (ret > 0) {
2309 ret = -EUCLEAN;
2310 goto out;
2311 }
2312 }
2313 while (1) {
2314 leaf = path->nodes[0];
2315 slot = path->slots[0];
2316
2317 btrfs_item_key_to_cpu(leaf, &key, slot);
2318 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2319 ret = 0;
2320 goto out;
2321 }
2322
2323 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2324 ret = -EOVERFLOW;
2325 goto out;
2326 }
2327
2328 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2329 rootrefs->rootref[found].treeid = key.offset;
2330 rootrefs->rootref[found].dirid =
2331 btrfs_root_ref_dirid(leaf, rref);
2332 found++;
2333
2334 ret = btrfs_next_item(root, path);
2335 if (ret < 0) {
2336 goto out;
2337 } else if (ret > 0) {
2338 ret = -EUCLEAN;
2339 goto out;
2340 }
2341 }
2342
2343 out:
2344 btrfs_free_path(path);
2345
2346 if (!ret || ret == -EOVERFLOW) {
2347 rootrefs->num_items = found;
2348 /* update min_treeid for next search */
2349 if (found)
2350 rootrefs->min_treeid =
2351 rootrefs->rootref[found - 1].treeid + 1;
2352 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2353 ret = -EFAULT;
2354 }
2355
2356 kfree(rootrefs);
2357
2358 return ret;
2359 }
2360
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2361 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2362 void __user *arg,
2363 bool destroy_v2)
2364 {
2365 struct dentry *parent = file->f_path.dentry;
2366 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2367 struct dentry *dentry;
2368 struct inode *dir = d_inode(parent);
2369 struct inode *inode;
2370 struct btrfs_root *root = BTRFS_I(dir)->root;
2371 struct btrfs_root *dest = NULL;
2372 struct btrfs_ioctl_vol_args *vol_args = NULL;
2373 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2374 struct mnt_idmap *idmap = file_mnt_idmap(file);
2375 char *subvol_name, *subvol_name_ptr = NULL;
2376 int subvol_namelen;
2377 int err = 0;
2378 bool destroy_parent = false;
2379
2380 /* We don't support snapshots with extent tree v2 yet. */
2381 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2382 btrfs_err(fs_info,
2383 "extent tree v2 doesn't support snapshot deletion yet");
2384 return -EOPNOTSUPP;
2385 }
2386
2387 if (destroy_v2) {
2388 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2389 if (IS_ERR(vol_args2))
2390 return PTR_ERR(vol_args2);
2391
2392 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2393 err = -EOPNOTSUPP;
2394 goto out;
2395 }
2396
2397 /*
2398 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2399 * name, same as v1 currently does.
2400 */
2401 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2402 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2403 subvol_name = vol_args2->name;
2404
2405 err = mnt_want_write_file(file);
2406 if (err)
2407 goto out;
2408 } else {
2409 struct inode *old_dir;
2410
2411 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2412 err = -EINVAL;
2413 goto out;
2414 }
2415
2416 err = mnt_want_write_file(file);
2417 if (err)
2418 goto out;
2419
2420 dentry = btrfs_get_dentry(fs_info->sb,
2421 BTRFS_FIRST_FREE_OBJECTID,
2422 vol_args2->subvolid, 0);
2423 if (IS_ERR(dentry)) {
2424 err = PTR_ERR(dentry);
2425 goto out_drop_write;
2426 }
2427
2428 /*
2429 * Change the default parent since the subvolume being
2430 * deleted can be outside of the current mount point.
2431 */
2432 parent = btrfs_get_parent(dentry);
2433
2434 /*
2435 * At this point dentry->d_name can point to '/' if the
2436 * subvolume we want to destroy is outsite of the
2437 * current mount point, so we need to release the
2438 * current dentry and execute the lookup to return a new
2439 * one with ->d_name pointing to the
2440 * <mount point>/subvol_name.
2441 */
2442 dput(dentry);
2443 if (IS_ERR(parent)) {
2444 err = PTR_ERR(parent);
2445 goto out_drop_write;
2446 }
2447 old_dir = dir;
2448 dir = d_inode(parent);
2449
2450 /*
2451 * If v2 was used with SPEC_BY_ID, a new parent was
2452 * allocated since the subvolume can be outside of the
2453 * current mount point. Later on we need to release this
2454 * new parent dentry.
2455 */
2456 destroy_parent = true;
2457
2458 /*
2459 * On idmapped mounts, deletion via subvolid is
2460 * restricted to subvolumes that are immediate
2461 * ancestors of the inode referenced by the file
2462 * descriptor in the ioctl. Otherwise the idmapping
2463 * could potentially be abused to delete subvolumes
2464 * anywhere in the filesystem the user wouldn't be able
2465 * to delete without an idmapped mount.
2466 */
2467 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2468 err = -EOPNOTSUPP;
2469 goto free_parent;
2470 }
2471
2472 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2473 fs_info, vol_args2->subvolid);
2474 if (IS_ERR(subvol_name_ptr)) {
2475 err = PTR_ERR(subvol_name_ptr);
2476 goto free_parent;
2477 }
2478 /* subvol_name_ptr is already nul terminated */
2479 subvol_name = (char *)kbasename(subvol_name_ptr);
2480 }
2481 } else {
2482 vol_args = memdup_user(arg, sizeof(*vol_args));
2483 if (IS_ERR(vol_args))
2484 return PTR_ERR(vol_args);
2485
2486 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2487 subvol_name = vol_args->name;
2488
2489 err = mnt_want_write_file(file);
2490 if (err)
2491 goto out;
2492 }
2493
2494 subvol_namelen = strlen(subvol_name);
2495
2496 if (strchr(subvol_name, '/') ||
2497 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2498 err = -EINVAL;
2499 goto free_subvol_name;
2500 }
2501
2502 if (!S_ISDIR(dir->i_mode)) {
2503 err = -ENOTDIR;
2504 goto free_subvol_name;
2505 }
2506
2507 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2508 if (err == -EINTR)
2509 goto free_subvol_name;
2510 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2511 if (IS_ERR(dentry)) {
2512 err = PTR_ERR(dentry);
2513 goto out_unlock_dir;
2514 }
2515
2516 if (d_really_is_negative(dentry)) {
2517 err = -ENOENT;
2518 goto out_dput;
2519 }
2520
2521 inode = d_inode(dentry);
2522 dest = BTRFS_I(inode)->root;
2523 if (!capable(CAP_SYS_ADMIN)) {
2524 /*
2525 * Regular user. Only allow this with a special mount
2526 * option, when the user has write+exec access to the
2527 * subvol root, and when rmdir(2) would have been
2528 * allowed.
2529 *
2530 * Note that this is _not_ check that the subvol is
2531 * empty or doesn't contain data that we wouldn't
2532 * otherwise be able to delete.
2533 *
2534 * Users who want to delete empty subvols should try
2535 * rmdir(2).
2536 */
2537 err = -EPERM;
2538 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2539 goto out_dput;
2540
2541 /*
2542 * Do not allow deletion if the parent dir is the same
2543 * as the dir to be deleted. That means the ioctl
2544 * must be called on the dentry referencing the root
2545 * of the subvol, not a random directory contained
2546 * within it.
2547 */
2548 err = -EINVAL;
2549 if (root == dest)
2550 goto out_dput;
2551
2552 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2553 if (err)
2554 goto out_dput;
2555 }
2556
2557 /* check if subvolume may be deleted by a user */
2558 err = btrfs_may_delete(idmap, dir, dentry, 1);
2559 if (err)
2560 goto out_dput;
2561
2562 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2563 err = -EINVAL;
2564 goto out_dput;
2565 }
2566
2567 btrfs_inode_lock(BTRFS_I(inode), 0);
2568 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2569 btrfs_inode_unlock(BTRFS_I(inode), 0);
2570 if (!err)
2571 d_delete_notify(dir, dentry);
2572
2573 out_dput:
2574 dput(dentry);
2575 out_unlock_dir:
2576 btrfs_inode_unlock(BTRFS_I(dir), 0);
2577 free_subvol_name:
2578 kfree(subvol_name_ptr);
2579 free_parent:
2580 if (destroy_parent)
2581 dput(parent);
2582 out_drop_write:
2583 mnt_drop_write_file(file);
2584 out:
2585 kfree(vol_args2);
2586 kfree(vol_args);
2587 return err;
2588 }
2589
btrfs_ioctl_defrag(struct file * file,void __user * argp)2590 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2591 {
2592 struct inode *inode = file_inode(file);
2593 struct btrfs_root *root = BTRFS_I(inode)->root;
2594 struct btrfs_ioctl_defrag_range_args range = {0};
2595 int ret;
2596
2597 ret = mnt_want_write_file(file);
2598 if (ret)
2599 return ret;
2600
2601 if (btrfs_root_readonly(root)) {
2602 ret = -EROFS;
2603 goto out;
2604 }
2605
2606 switch (inode->i_mode & S_IFMT) {
2607 case S_IFDIR:
2608 if (!capable(CAP_SYS_ADMIN)) {
2609 ret = -EPERM;
2610 goto out;
2611 }
2612 ret = btrfs_defrag_root(root);
2613 break;
2614 case S_IFREG:
2615 /*
2616 * Note that this does not check the file descriptor for write
2617 * access. This prevents defragmenting executables that are
2618 * running and allows defrag on files open in read-only mode.
2619 */
2620 if (!capable(CAP_SYS_ADMIN) &&
2621 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2622 ret = -EPERM;
2623 goto out;
2624 }
2625
2626 if (argp) {
2627 if (copy_from_user(&range, argp, sizeof(range))) {
2628 ret = -EFAULT;
2629 goto out;
2630 }
2631 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2632 ret = -EOPNOTSUPP;
2633 goto out;
2634 }
2635 /* compression requires us to start the IO */
2636 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2637 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2638 range.extent_thresh = (u32)-1;
2639 }
2640 } else {
2641 /* the rest are all set to zero by kzalloc */
2642 range.len = (u64)-1;
2643 }
2644 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2645 &range, BTRFS_OLDEST_GENERATION, 0);
2646 if (ret > 0)
2647 ret = 0;
2648 break;
2649 default:
2650 ret = -EINVAL;
2651 }
2652 out:
2653 mnt_drop_write_file(file);
2654 return ret;
2655 }
2656
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2657 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2658 {
2659 struct btrfs_ioctl_vol_args *vol_args;
2660 bool restore_op = false;
2661 int ret;
2662
2663 if (!capable(CAP_SYS_ADMIN))
2664 return -EPERM;
2665
2666 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2667 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2668 return -EINVAL;
2669 }
2670
2671 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2672 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2673 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2674
2675 /*
2676 * We can do the device add because we have a paused balanced,
2677 * change the exclusive op type and remember we should bring
2678 * back the paused balance
2679 */
2680 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2681 btrfs_exclop_start_unlock(fs_info);
2682 restore_op = true;
2683 }
2684
2685 vol_args = memdup_user(arg, sizeof(*vol_args));
2686 if (IS_ERR(vol_args)) {
2687 ret = PTR_ERR(vol_args);
2688 goto out;
2689 }
2690
2691 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2692 ret = btrfs_init_new_device(fs_info, vol_args->name);
2693
2694 if (!ret)
2695 btrfs_info(fs_info, "disk added %s", vol_args->name);
2696
2697 kfree(vol_args);
2698 out:
2699 if (restore_op)
2700 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2701 else
2702 btrfs_exclop_finish(fs_info);
2703 return ret;
2704 }
2705
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2706 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2707 {
2708 BTRFS_DEV_LOOKUP_ARGS(args);
2709 struct inode *inode = file_inode(file);
2710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711 struct btrfs_ioctl_vol_args_v2 *vol_args;
2712 struct block_device *bdev = NULL;
2713 void *holder;
2714 int ret;
2715 bool cancel = false;
2716
2717 if (!capable(CAP_SYS_ADMIN))
2718 return -EPERM;
2719
2720 vol_args = memdup_user(arg, sizeof(*vol_args));
2721 if (IS_ERR(vol_args))
2722 return PTR_ERR(vol_args);
2723
2724 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2725 ret = -EOPNOTSUPP;
2726 goto out;
2727 }
2728
2729 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2730 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2731 args.devid = vol_args->devid;
2732 } else if (!strcmp("cancel", vol_args->name)) {
2733 cancel = true;
2734 } else {
2735 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2736 if (ret)
2737 goto out;
2738 }
2739
2740 ret = mnt_want_write_file(file);
2741 if (ret)
2742 goto out;
2743
2744 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2745 cancel);
2746 if (ret)
2747 goto err_drop;
2748
2749 /* Exclusive operation is now claimed */
2750 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2751
2752 btrfs_exclop_finish(fs_info);
2753
2754 if (!ret) {
2755 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2756 btrfs_info(fs_info, "device deleted: id %llu",
2757 vol_args->devid);
2758 else
2759 btrfs_info(fs_info, "device deleted: %s",
2760 vol_args->name);
2761 }
2762 err_drop:
2763 mnt_drop_write_file(file);
2764 if (bdev)
2765 blkdev_put(bdev, holder);
2766 out:
2767 btrfs_put_dev_args_from_path(&args);
2768 kfree(vol_args);
2769 return ret;
2770 }
2771
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2772 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2773 {
2774 BTRFS_DEV_LOOKUP_ARGS(args);
2775 struct inode *inode = file_inode(file);
2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777 struct btrfs_ioctl_vol_args *vol_args;
2778 struct block_device *bdev = NULL;
2779 void *holder;
2780 int ret;
2781 bool cancel = false;
2782
2783 if (!capable(CAP_SYS_ADMIN))
2784 return -EPERM;
2785
2786 vol_args = memdup_user(arg, sizeof(*vol_args));
2787 if (IS_ERR(vol_args))
2788 return PTR_ERR(vol_args);
2789
2790 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2791 if (!strcmp("cancel", vol_args->name)) {
2792 cancel = true;
2793 } else {
2794 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2795 if (ret)
2796 goto out;
2797 }
2798
2799 ret = mnt_want_write_file(file);
2800 if (ret)
2801 goto out;
2802
2803 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2804 cancel);
2805 if (ret == 0) {
2806 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2807 if (!ret)
2808 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2809 btrfs_exclop_finish(fs_info);
2810 }
2811
2812 mnt_drop_write_file(file);
2813 if (bdev)
2814 blkdev_put(bdev, holder);
2815 out:
2816 btrfs_put_dev_args_from_path(&args);
2817 kfree(vol_args);
2818 return ret;
2819 }
2820
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)2821 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2822 void __user *arg)
2823 {
2824 struct btrfs_ioctl_fs_info_args *fi_args;
2825 struct btrfs_device *device;
2826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2827 u64 flags_in;
2828 int ret = 0;
2829
2830 fi_args = memdup_user(arg, sizeof(*fi_args));
2831 if (IS_ERR(fi_args))
2832 return PTR_ERR(fi_args);
2833
2834 flags_in = fi_args->flags;
2835 memset(fi_args, 0, sizeof(*fi_args));
2836
2837 rcu_read_lock();
2838 fi_args->num_devices = fs_devices->num_devices;
2839
2840 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2841 if (device->devid > fi_args->max_id)
2842 fi_args->max_id = device->devid;
2843 }
2844 rcu_read_unlock();
2845
2846 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2847 fi_args->nodesize = fs_info->nodesize;
2848 fi_args->sectorsize = fs_info->sectorsize;
2849 fi_args->clone_alignment = fs_info->sectorsize;
2850
2851 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2852 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2853 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2854 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2855 }
2856
2857 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2858 fi_args->generation = fs_info->generation;
2859 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2860 }
2861
2862 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2863 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2864 sizeof(fi_args->metadata_uuid));
2865 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2866 }
2867
2868 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2869 ret = -EFAULT;
2870
2871 kfree(fi_args);
2872 return ret;
2873 }
2874
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)2875 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2876 void __user *arg)
2877 {
2878 BTRFS_DEV_LOOKUP_ARGS(args);
2879 struct btrfs_ioctl_dev_info_args *di_args;
2880 struct btrfs_device *dev;
2881 int ret = 0;
2882
2883 di_args = memdup_user(arg, sizeof(*di_args));
2884 if (IS_ERR(di_args))
2885 return PTR_ERR(di_args);
2886
2887 args.devid = di_args->devid;
2888 if (!btrfs_is_empty_uuid(di_args->uuid))
2889 args.uuid = di_args->uuid;
2890
2891 rcu_read_lock();
2892 dev = btrfs_find_device(fs_info->fs_devices, &args);
2893 if (!dev) {
2894 ret = -ENODEV;
2895 goto out;
2896 }
2897
2898 di_args->devid = dev->devid;
2899 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2900 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2901 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2902 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2903 if (dev->name)
2904 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2905 else
2906 di_args->path[0] = '\0';
2907
2908 out:
2909 rcu_read_unlock();
2910 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2911 ret = -EFAULT;
2912
2913 kfree(di_args);
2914 return ret;
2915 }
2916
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2917 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2918 {
2919 struct inode *inode = file_inode(file);
2920 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2921 struct btrfs_root *root = BTRFS_I(inode)->root;
2922 struct btrfs_root *new_root;
2923 struct btrfs_dir_item *di;
2924 struct btrfs_trans_handle *trans;
2925 struct btrfs_path *path = NULL;
2926 struct btrfs_disk_key disk_key;
2927 struct fscrypt_str name = FSTR_INIT("default", 7);
2928 u64 objectid = 0;
2929 u64 dir_id;
2930 int ret;
2931
2932 if (!capable(CAP_SYS_ADMIN))
2933 return -EPERM;
2934
2935 ret = mnt_want_write_file(file);
2936 if (ret)
2937 return ret;
2938
2939 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2940 ret = -EFAULT;
2941 goto out;
2942 }
2943
2944 if (!objectid)
2945 objectid = BTRFS_FS_TREE_OBJECTID;
2946
2947 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2948 if (IS_ERR(new_root)) {
2949 ret = PTR_ERR(new_root);
2950 goto out;
2951 }
2952 if (!is_fstree(new_root->root_key.objectid)) {
2953 ret = -ENOENT;
2954 goto out_free;
2955 }
2956
2957 path = btrfs_alloc_path();
2958 if (!path) {
2959 ret = -ENOMEM;
2960 goto out_free;
2961 }
2962
2963 trans = btrfs_start_transaction(root, 1);
2964 if (IS_ERR(trans)) {
2965 ret = PTR_ERR(trans);
2966 goto out_free;
2967 }
2968
2969 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2970 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2971 dir_id, &name, 1);
2972 if (IS_ERR_OR_NULL(di)) {
2973 btrfs_release_path(path);
2974 btrfs_end_transaction(trans);
2975 btrfs_err(fs_info,
2976 "Umm, you don't have the default diritem, this isn't going to work");
2977 ret = -ENOENT;
2978 goto out_free;
2979 }
2980
2981 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2982 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2983 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2984 btrfs_release_path(path);
2985
2986 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2987 btrfs_end_transaction(trans);
2988 out_free:
2989 btrfs_put_root(new_root);
2990 btrfs_free_path(path);
2991 out:
2992 mnt_drop_write_file(file);
2993 return ret;
2994 }
2995
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2996 static void get_block_group_info(struct list_head *groups_list,
2997 struct btrfs_ioctl_space_info *space)
2998 {
2999 struct btrfs_block_group *block_group;
3000
3001 space->total_bytes = 0;
3002 space->used_bytes = 0;
3003 space->flags = 0;
3004 list_for_each_entry(block_group, groups_list, list) {
3005 space->flags = block_group->flags;
3006 space->total_bytes += block_group->length;
3007 space->used_bytes += block_group->used;
3008 }
3009 }
3010
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3011 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3012 void __user *arg)
3013 {
3014 struct btrfs_ioctl_space_args space_args = { 0 };
3015 struct btrfs_ioctl_space_info space;
3016 struct btrfs_ioctl_space_info *dest;
3017 struct btrfs_ioctl_space_info *dest_orig;
3018 struct btrfs_ioctl_space_info __user *user_dest;
3019 struct btrfs_space_info *info;
3020 static const u64 types[] = {
3021 BTRFS_BLOCK_GROUP_DATA,
3022 BTRFS_BLOCK_GROUP_SYSTEM,
3023 BTRFS_BLOCK_GROUP_METADATA,
3024 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3025 };
3026 int num_types = 4;
3027 int alloc_size;
3028 int ret = 0;
3029 u64 slot_count = 0;
3030 int i, c;
3031
3032 if (copy_from_user(&space_args,
3033 (struct btrfs_ioctl_space_args __user *)arg,
3034 sizeof(space_args)))
3035 return -EFAULT;
3036
3037 for (i = 0; i < num_types; i++) {
3038 struct btrfs_space_info *tmp;
3039
3040 info = NULL;
3041 list_for_each_entry(tmp, &fs_info->space_info, list) {
3042 if (tmp->flags == types[i]) {
3043 info = tmp;
3044 break;
3045 }
3046 }
3047
3048 if (!info)
3049 continue;
3050
3051 down_read(&info->groups_sem);
3052 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3053 if (!list_empty(&info->block_groups[c]))
3054 slot_count++;
3055 }
3056 up_read(&info->groups_sem);
3057 }
3058
3059 /*
3060 * Global block reserve, exported as a space_info
3061 */
3062 slot_count++;
3063
3064 /* space_slots == 0 means they are asking for a count */
3065 if (space_args.space_slots == 0) {
3066 space_args.total_spaces = slot_count;
3067 goto out;
3068 }
3069
3070 slot_count = min_t(u64, space_args.space_slots, slot_count);
3071
3072 alloc_size = sizeof(*dest) * slot_count;
3073
3074 /* we generally have at most 6 or so space infos, one for each raid
3075 * level. So, a whole page should be more than enough for everyone
3076 */
3077 if (alloc_size > PAGE_SIZE)
3078 return -ENOMEM;
3079
3080 space_args.total_spaces = 0;
3081 dest = kmalloc(alloc_size, GFP_KERNEL);
3082 if (!dest)
3083 return -ENOMEM;
3084 dest_orig = dest;
3085
3086 /* now we have a buffer to copy into */
3087 for (i = 0; i < num_types; i++) {
3088 struct btrfs_space_info *tmp;
3089
3090 if (!slot_count)
3091 break;
3092
3093 info = NULL;
3094 list_for_each_entry(tmp, &fs_info->space_info, list) {
3095 if (tmp->flags == types[i]) {
3096 info = tmp;
3097 break;
3098 }
3099 }
3100
3101 if (!info)
3102 continue;
3103 down_read(&info->groups_sem);
3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105 if (!list_empty(&info->block_groups[c])) {
3106 get_block_group_info(&info->block_groups[c],
3107 &space);
3108 memcpy(dest, &space, sizeof(space));
3109 dest++;
3110 space_args.total_spaces++;
3111 slot_count--;
3112 }
3113 if (!slot_count)
3114 break;
3115 }
3116 up_read(&info->groups_sem);
3117 }
3118
3119 /*
3120 * Add global block reserve
3121 */
3122 if (slot_count) {
3123 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3124
3125 spin_lock(&block_rsv->lock);
3126 space.total_bytes = block_rsv->size;
3127 space.used_bytes = block_rsv->size - block_rsv->reserved;
3128 spin_unlock(&block_rsv->lock);
3129 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3130 memcpy(dest, &space, sizeof(space));
3131 space_args.total_spaces++;
3132 }
3133
3134 user_dest = (struct btrfs_ioctl_space_info __user *)
3135 (arg + sizeof(struct btrfs_ioctl_space_args));
3136
3137 if (copy_to_user(user_dest, dest_orig, alloc_size))
3138 ret = -EFAULT;
3139
3140 kfree(dest_orig);
3141 out:
3142 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3143 ret = -EFAULT;
3144
3145 return ret;
3146 }
3147
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3148 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3149 void __user *argp)
3150 {
3151 struct btrfs_trans_handle *trans;
3152 u64 transid;
3153
3154 /*
3155 * Start orphan cleanup here for the given root in case it hasn't been
3156 * started already by other means. Errors are handled in the other
3157 * functions during transaction commit.
3158 */
3159 btrfs_orphan_cleanup(root);
3160
3161 trans = btrfs_attach_transaction_barrier(root);
3162 if (IS_ERR(trans)) {
3163 if (PTR_ERR(trans) != -ENOENT)
3164 return PTR_ERR(trans);
3165
3166 /* No running transaction, don't bother */
3167 transid = root->fs_info->last_trans_committed;
3168 goto out;
3169 }
3170 transid = trans->transid;
3171 btrfs_commit_transaction_async(trans);
3172 out:
3173 if (argp)
3174 if (copy_to_user(argp, &transid, sizeof(transid)))
3175 return -EFAULT;
3176 return 0;
3177 }
3178
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3179 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3180 void __user *argp)
3181 {
3182 /* By default wait for the current transaction. */
3183 u64 transid = 0;
3184
3185 if (argp)
3186 if (copy_from_user(&transid, argp, sizeof(transid)))
3187 return -EFAULT;
3188
3189 return btrfs_wait_for_commit(fs_info, transid);
3190 }
3191
btrfs_ioctl_scrub(struct file * file,void __user * arg)3192 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3193 {
3194 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3195 struct btrfs_ioctl_scrub_args *sa;
3196 int ret;
3197
3198 if (!capable(CAP_SYS_ADMIN))
3199 return -EPERM;
3200
3201 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3202 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3203 return -EINVAL;
3204 }
3205
3206 sa = memdup_user(arg, sizeof(*sa));
3207 if (IS_ERR(sa))
3208 return PTR_ERR(sa);
3209
3210 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3211 ret = -EOPNOTSUPP;
3212 goto out;
3213 }
3214
3215 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3216 ret = mnt_want_write_file(file);
3217 if (ret)
3218 goto out;
3219 }
3220
3221 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3222 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3223 0);
3224
3225 /*
3226 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3227 * error. This is important as it allows user space to know how much
3228 * progress scrub has done. For example, if scrub is canceled we get
3229 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3230 * space. Later user space can inspect the progress from the structure
3231 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3232 * previously (btrfs-progs does this).
3233 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3234 * then return -EFAULT to signal the structure was not copied or it may
3235 * be corrupt and unreliable due to a partial copy.
3236 */
3237 if (copy_to_user(arg, sa, sizeof(*sa)))
3238 ret = -EFAULT;
3239
3240 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3241 mnt_drop_write_file(file);
3242 out:
3243 kfree(sa);
3244 return ret;
3245 }
3246
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3247 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3248 {
3249 if (!capable(CAP_SYS_ADMIN))
3250 return -EPERM;
3251
3252 return btrfs_scrub_cancel(fs_info);
3253 }
3254
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3255 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3256 void __user *arg)
3257 {
3258 struct btrfs_ioctl_scrub_args *sa;
3259 int ret;
3260
3261 if (!capable(CAP_SYS_ADMIN))
3262 return -EPERM;
3263
3264 sa = memdup_user(arg, sizeof(*sa));
3265 if (IS_ERR(sa))
3266 return PTR_ERR(sa);
3267
3268 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3269
3270 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3271 ret = -EFAULT;
3272
3273 kfree(sa);
3274 return ret;
3275 }
3276
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3277 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3278 void __user *arg)
3279 {
3280 struct btrfs_ioctl_get_dev_stats *sa;
3281 int ret;
3282
3283 sa = memdup_user(arg, sizeof(*sa));
3284 if (IS_ERR(sa))
3285 return PTR_ERR(sa);
3286
3287 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3288 kfree(sa);
3289 return -EPERM;
3290 }
3291
3292 ret = btrfs_get_dev_stats(fs_info, sa);
3293
3294 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3295 ret = -EFAULT;
3296
3297 kfree(sa);
3298 return ret;
3299 }
3300
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3301 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3302 void __user *arg)
3303 {
3304 struct btrfs_ioctl_dev_replace_args *p;
3305 int ret;
3306
3307 if (!capable(CAP_SYS_ADMIN))
3308 return -EPERM;
3309
3310 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3311 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3312 return -EINVAL;
3313 }
3314
3315 p = memdup_user(arg, sizeof(*p));
3316 if (IS_ERR(p))
3317 return PTR_ERR(p);
3318
3319 switch (p->cmd) {
3320 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3321 if (sb_rdonly(fs_info->sb)) {
3322 ret = -EROFS;
3323 goto out;
3324 }
3325 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3326 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3327 } else {
3328 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3329 btrfs_exclop_finish(fs_info);
3330 }
3331 break;
3332 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3333 btrfs_dev_replace_status(fs_info, p);
3334 ret = 0;
3335 break;
3336 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3337 p->result = btrfs_dev_replace_cancel(fs_info);
3338 ret = 0;
3339 break;
3340 default:
3341 ret = -EINVAL;
3342 break;
3343 }
3344
3345 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3346 ret = -EFAULT;
3347 out:
3348 kfree(p);
3349 return ret;
3350 }
3351
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3352 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3353 {
3354 int ret = 0;
3355 int i;
3356 u64 rel_ptr;
3357 int size;
3358 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3359 struct inode_fs_paths *ipath = NULL;
3360 struct btrfs_path *path;
3361
3362 if (!capable(CAP_DAC_READ_SEARCH))
3363 return -EPERM;
3364
3365 path = btrfs_alloc_path();
3366 if (!path) {
3367 ret = -ENOMEM;
3368 goto out;
3369 }
3370
3371 ipa = memdup_user(arg, sizeof(*ipa));
3372 if (IS_ERR(ipa)) {
3373 ret = PTR_ERR(ipa);
3374 ipa = NULL;
3375 goto out;
3376 }
3377
3378 size = min_t(u32, ipa->size, 4096);
3379 ipath = init_ipath(size, root, path);
3380 if (IS_ERR(ipath)) {
3381 ret = PTR_ERR(ipath);
3382 ipath = NULL;
3383 goto out;
3384 }
3385
3386 ret = paths_from_inode(ipa->inum, ipath);
3387 if (ret < 0)
3388 goto out;
3389
3390 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3391 rel_ptr = ipath->fspath->val[i] -
3392 (u64)(unsigned long)ipath->fspath->val;
3393 ipath->fspath->val[i] = rel_ptr;
3394 }
3395
3396 btrfs_free_path(path);
3397 path = NULL;
3398 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3399 ipath->fspath, size);
3400 if (ret) {
3401 ret = -EFAULT;
3402 goto out;
3403 }
3404
3405 out:
3406 btrfs_free_path(path);
3407 free_ipath(ipath);
3408 kfree(ipa);
3409
3410 return ret;
3411 }
3412
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3413 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3414 void __user *arg, int version)
3415 {
3416 int ret = 0;
3417 int size;
3418 struct btrfs_ioctl_logical_ino_args *loi;
3419 struct btrfs_data_container *inodes = NULL;
3420 struct btrfs_path *path = NULL;
3421 bool ignore_offset;
3422
3423 if (!capable(CAP_SYS_ADMIN))
3424 return -EPERM;
3425
3426 loi = memdup_user(arg, sizeof(*loi));
3427 if (IS_ERR(loi))
3428 return PTR_ERR(loi);
3429
3430 if (version == 1) {
3431 ignore_offset = false;
3432 size = min_t(u32, loi->size, SZ_64K);
3433 } else {
3434 /* All reserved bits must be 0 for now */
3435 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3436 ret = -EINVAL;
3437 goto out_loi;
3438 }
3439 /* Only accept flags we have defined so far */
3440 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3441 ret = -EINVAL;
3442 goto out_loi;
3443 }
3444 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3445 size = min_t(u32, loi->size, SZ_16M);
3446 }
3447
3448 inodes = init_data_container(size);
3449 if (IS_ERR(inodes)) {
3450 ret = PTR_ERR(inodes);
3451 goto out_loi;
3452 }
3453
3454 path = btrfs_alloc_path();
3455 if (!path) {
3456 ret = -ENOMEM;
3457 goto out;
3458 }
3459 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3460 inodes, ignore_offset);
3461 btrfs_free_path(path);
3462 if (ret == -EINVAL)
3463 ret = -ENOENT;
3464 if (ret < 0)
3465 goto out;
3466
3467 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3468 size);
3469 if (ret)
3470 ret = -EFAULT;
3471
3472 out:
3473 kvfree(inodes);
3474 out_loi:
3475 kfree(loi);
3476
3477 return ret;
3478 }
3479
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3480 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3481 struct btrfs_ioctl_balance_args *bargs)
3482 {
3483 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3484
3485 bargs->flags = bctl->flags;
3486
3487 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3488 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3489 if (atomic_read(&fs_info->balance_pause_req))
3490 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3491 if (atomic_read(&fs_info->balance_cancel_req))
3492 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3493
3494 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3495 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3496 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3497
3498 spin_lock(&fs_info->balance_lock);
3499 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3500 spin_unlock(&fs_info->balance_lock);
3501 }
3502
3503 /*
3504 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3505 * required.
3506 *
3507 * @fs_info: the filesystem
3508 * @excl_acquired: ptr to boolean value which is set to false in case balance
3509 * is being resumed
3510 *
3511 * Return 0 on success in which case both fs_info::balance is acquired as well
3512 * as exclusive ops are blocked. In case of failure return an error code.
3513 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3514 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3515 {
3516 int ret;
3517
3518 /*
3519 * Exclusive operation is locked. Three possibilities:
3520 * (1) some other op is running
3521 * (2) balance is running
3522 * (3) balance is paused -- special case (think resume)
3523 */
3524 while (1) {
3525 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3526 *excl_acquired = true;
3527 mutex_lock(&fs_info->balance_mutex);
3528 return 0;
3529 }
3530
3531 mutex_lock(&fs_info->balance_mutex);
3532 if (fs_info->balance_ctl) {
3533 /* This is either (2) or (3) */
3534 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3535 /* This is (2) */
3536 ret = -EINPROGRESS;
3537 goto out_failure;
3538
3539 } else {
3540 mutex_unlock(&fs_info->balance_mutex);
3541 /*
3542 * Lock released to allow other waiters to
3543 * continue, we'll reexamine the status again.
3544 */
3545 mutex_lock(&fs_info->balance_mutex);
3546
3547 if (fs_info->balance_ctl &&
3548 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3549 /* This is (3) */
3550 *excl_acquired = false;
3551 return 0;
3552 }
3553 }
3554 } else {
3555 /* This is (1) */
3556 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3557 goto out_failure;
3558 }
3559
3560 mutex_unlock(&fs_info->balance_mutex);
3561 }
3562
3563 out_failure:
3564 mutex_unlock(&fs_info->balance_mutex);
3565 *excl_acquired = false;
3566 return ret;
3567 }
3568
btrfs_ioctl_balance(struct file * file,void __user * arg)3569 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3570 {
3571 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3572 struct btrfs_fs_info *fs_info = root->fs_info;
3573 struct btrfs_ioctl_balance_args *bargs;
3574 struct btrfs_balance_control *bctl;
3575 bool need_unlock = true;
3576 int ret;
3577
3578 if (!capable(CAP_SYS_ADMIN))
3579 return -EPERM;
3580
3581 ret = mnt_want_write_file(file);
3582 if (ret)
3583 return ret;
3584
3585 bargs = memdup_user(arg, sizeof(*bargs));
3586 if (IS_ERR(bargs)) {
3587 ret = PTR_ERR(bargs);
3588 bargs = NULL;
3589 goto out;
3590 }
3591
3592 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3593 if (ret)
3594 goto out;
3595
3596 lockdep_assert_held(&fs_info->balance_mutex);
3597
3598 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3599 if (!fs_info->balance_ctl) {
3600 ret = -ENOTCONN;
3601 goto out_unlock;
3602 }
3603
3604 bctl = fs_info->balance_ctl;
3605 spin_lock(&fs_info->balance_lock);
3606 bctl->flags |= BTRFS_BALANCE_RESUME;
3607 spin_unlock(&fs_info->balance_lock);
3608 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3609
3610 goto do_balance;
3611 }
3612
3613 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3614 ret = -EINVAL;
3615 goto out_unlock;
3616 }
3617
3618 if (fs_info->balance_ctl) {
3619 ret = -EINPROGRESS;
3620 goto out_unlock;
3621 }
3622
3623 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3624 if (!bctl) {
3625 ret = -ENOMEM;
3626 goto out_unlock;
3627 }
3628
3629 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3630 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3631 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3632
3633 bctl->flags = bargs->flags;
3634 do_balance:
3635 /*
3636 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3637 * bctl is freed in reset_balance_state, or, if restriper was paused
3638 * all the way until unmount, in free_fs_info. The flag should be
3639 * cleared after reset_balance_state.
3640 */
3641 need_unlock = false;
3642
3643 ret = btrfs_balance(fs_info, bctl, bargs);
3644 bctl = NULL;
3645
3646 if (ret == 0 || ret == -ECANCELED) {
3647 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3648 ret = -EFAULT;
3649 }
3650
3651 kfree(bctl);
3652 out_unlock:
3653 mutex_unlock(&fs_info->balance_mutex);
3654 if (need_unlock)
3655 btrfs_exclop_finish(fs_info);
3656 out:
3657 mnt_drop_write_file(file);
3658 kfree(bargs);
3659 return ret;
3660 }
3661
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3662 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3663 {
3664 if (!capable(CAP_SYS_ADMIN))
3665 return -EPERM;
3666
3667 switch (cmd) {
3668 case BTRFS_BALANCE_CTL_PAUSE:
3669 return btrfs_pause_balance(fs_info);
3670 case BTRFS_BALANCE_CTL_CANCEL:
3671 return btrfs_cancel_balance(fs_info);
3672 }
3673
3674 return -EINVAL;
3675 }
3676
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3677 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3678 void __user *arg)
3679 {
3680 struct btrfs_ioctl_balance_args *bargs;
3681 int ret = 0;
3682
3683 if (!capable(CAP_SYS_ADMIN))
3684 return -EPERM;
3685
3686 mutex_lock(&fs_info->balance_mutex);
3687 if (!fs_info->balance_ctl) {
3688 ret = -ENOTCONN;
3689 goto out;
3690 }
3691
3692 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3693 if (!bargs) {
3694 ret = -ENOMEM;
3695 goto out;
3696 }
3697
3698 btrfs_update_ioctl_balance_args(fs_info, bargs);
3699
3700 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3701 ret = -EFAULT;
3702
3703 kfree(bargs);
3704 out:
3705 mutex_unlock(&fs_info->balance_mutex);
3706 return ret;
3707 }
3708
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3709 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3710 {
3711 struct inode *inode = file_inode(file);
3712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3713 struct btrfs_ioctl_quota_ctl_args *sa;
3714 int ret;
3715
3716 if (!capable(CAP_SYS_ADMIN))
3717 return -EPERM;
3718
3719 ret = mnt_want_write_file(file);
3720 if (ret)
3721 return ret;
3722
3723 sa = memdup_user(arg, sizeof(*sa));
3724 if (IS_ERR(sa)) {
3725 ret = PTR_ERR(sa);
3726 goto drop_write;
3727 }
3728
3729 down_write(&fs_info->subvol_sem);
3730
3731 switch (sa->cmd) {
3732 case BTRFS_QUOTA_CTL_ENABLE:
3733 ret = btrfs_quota_enable(fs_info);
3734 break;
3735 case BTRFS_QUOTA_CTL_DISABLE:
3736 ret = btrfs_quota_disable(fs_info);
3737 break;
3738 default:
3739 ret = -EINVAL;
3740 break;
3741 }
3742
3743 kfree(sa);
3744 up_write(&fs_info->subvol_sem);
3745 drop_write:
3746 mnt_drop_write_file(file);
3747 return ret;
3748 }
3749
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3750 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3751 {
3752 struct inode *inode = file_inode(file);
3753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3754 struct btrfs_root *root = BTRFS_I(inode)->root;
3755 struct btrfs_ioctl_qgroup_assign_args *sa;
3756 struct btrfs_trans_handle *trans;
3757 int ret;
3758 int err;
3759
3760 if (!capable(CAP_SYS_ADMIN))
3761 return -EPERM;
3762
3763 ret = mnt_want_write_file(file);
3764 if (ret)
3765 return ret;
3766
3767 sa = memdup_user(arg, sizeof(*sa));
3768 if (IS_ERR(sa)) {
3769 ret = PTR_ERR(sa);
3770 goto drop_write;
3771 }
3772
3773 trans = btrfs_join_transaction(root);
3774 if (IS_ERR(trans)) {
3775 ret = PTR_ERR(trans);
3776 goto out;
3777 }
3778
3779 if (sa->assign) {
3780 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3781 } else {
3782 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3783 }
3784
3785 /* update qgroup status and info */
3786 mutex_lock(&fs_info->qgroup_ioctl_lock);
3787 err = btrfs_run_qgroups(trans);
3788 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3789 if (err < 0)
3790 btrfs_handle_fs_error(fs_info, err,
3791 "failed to update qgroup status and info");
3792 err = btrfs_end_transaction(trans);
3793 if (err && !ret)
3794 ret = err;
3795
3796 out:
3797 kfree(sa);
3798 drop_write:
3799 mnt_drop_write_file(file);
3800 return ret;
3801 }
3802
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3803 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3804 {
3805 struct inode *inode = file_inode(file);
3806 struct btrfs_root *root = BTRFS_I(inode)->root;
3807 struct btrfs_ioctl_qgroup_create_args *sa;
3808 struct btrfs_trans_handle *trans;
3809 int ret;
3810 int err;
3811
3812 if (!capable(CAP_SYS_ADMIN))
3813 return -EPERM;
3814
3815 ret = mnt_want_write_file(file);
3816 if (ret)
3817 return ret;
3818
3819 sa = memdup_user(arg, sizeof(*sa));
3820 if (IS_ERR(sa)) {
3821 ret = PTR_ERR(sa);
3822 goto drop_write;
3823 }
3824
3825 if (!sa->qgroupid) {
3826 ret = -EINVAL;
3827 goto out;
3828 }
3829
3830 if (sa->create && is_fstree(sa->qgroupid)) {
3831 ret = -EINVAL;
3832 goto out;
3833 }
3834
3835 trans = btrfs_join_transaction(root);
3836 if (IS_ERR(trans)) {
3837 ret = PTR_ERR(trans);
3838 goto out;
3839 }
3840
3841 if (sa->create) {
3842 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3843 } else {
3844 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3845 }
3846
3847 err = btrfs_end_transaction(trans);
3848 if (err && !ret)
3849 ret = err;
3850
3851 out:
3852 kfree(sa);
3853 drop_write:
3854 mnt_drop_write_file(file);
3855 return ret;
3856 }
3857
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3858 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3859 {
3860 struct inode *inode = file_inode(file);
3861 struct btrfs_root *root = BTRFS_I(inode)->root;
3862 struct btrfs_ioctl_qgroup_limit_args *sa;
3863 struct btrfs_trans_handle *trans;
3864 int ret;
3865 int err;
3866 u64 qgroupid;
3867
3868 if (!capable(CAP_SYS_ADMIN))
3869 return -EPERM;
3870
3871 ret = mnt_want_write_file(file);
3872 if (ret)
3873 return ret;
3874
3875 sa = memdup_user(arg, sizeof(*sa));
3876 if (IS_ERR(sa)) {
3877 ret = PTR_ERR(sa);
3878 goto drop_write;
3879 }
3880
3881 trans = btrfs_join_transaction(root);
3882 if (IS_ERR(trans)) {
3883 ret = PTR_ERR(trans);
3884 goto out;
3885 }
3886
3887 qgroupid = sa->qgroupid;
3888 if (!qgroupid) {
3889 /* take the current subvol as qgroup */
3890 qgroupid = root->root_key.objectid;
3891 }
3892
3893 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3894
3895 err = btrfs_end_transaction(trans);
3896 if (err && !ret)
3897 ret = err;
3898
3899 out:
3900 kfree(sa);
3901 drop_write:
3902 mnt_drop_write_file(file);
3903 return ret;
3904 }
3905
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3906 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3907 {
3908 struct inode *inode = file_inode(file);
3909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3910 struct btrfs_ioctl_quota_rescan_args *qsa;
3911 int ret;
3912
3913 if (!capable(CAP_SYS_ADMIN))
3914 return -EPERM;
3915
3916 ret = mnt_want_write_file(file);
3917 if (ret)
3918 return ret;
3919
3920 qsa = memdup_user(arg, sizeof(*qsa));
3921 if (IS_ERR(qsa)) {
3922 ret = PTR_ERR(qsa);
3923 goto drop_write;
3924 }
3925
3926 if (qsa->flags) {
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930
3931 ret = btrfs_qgroup_rescan(fs_info);
3932
3933 out:
3934 kfree(qsa);
3935 drop_write:
3936 mnt_drop_write_file(file);
3937 return ret;
3938 }
3939
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3940 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3941 void __user *arg)
3942 {
3943 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3944
3945 if (!capable(CAP_SYS_ADMIN))
3946 return -EPERM;
3947
3948 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3949 qsa.flags = 1;
3950 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3951 }
3952
3953 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3954 return -EFAULT;
3955
3956 return 0;
3957 }
3958
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)3959 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3960 void __user *arg)
3961 {
3962 if (!capable(CAP_SYS_ADMIN))
3963 return -EPERM;
3964
3965 return btrfs_qgroup_wait_for_completion(fs_info, true);
3966 }
3967
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3968 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3969 struct mnt_idmap *idmap,
3970 struct btrfs_ioctl_received_subvol_args *sa)
3971 {
3972 struct inode *inode = file_inode(file);
3973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3974 struct btrfs_root *root = BTRFS_I(inode)->root;
3975 struct btrfs_root_item *root_item = &root->root_item;
3976 struct btrfs_trans_handle *trans;
3977 struct timespec64 ct = current_time(inode);
3978 int ret = 0;
3979 int received_uuid_changed;
3980
3981 if (!inode_owner_or_capable(idmap, inode))
3982 return -EPERM;
3983
3984 ret = mnt_want_write_file(file);
3985 if (ret < 0)
3986 return ret;
3987
3988 down_write(&fs_info->subvol_sem);
3989
3990 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3991 ret = -EINVAL;
3992 goto out;
3993 }
3994
3995 if (btrfs_root_readonly(root)) {
3996 ret = -EROFS;
3997 goto out;
3998 }
3999
4000 /*
4001 * 1 - root item
4002 * 2 - uuid items (received uuid + subvol uuid)
4003 */
4004 trans = btrfs_start_transaction(root, 3);
4005 if (IS_ERR(trans)) {
4006 ret = PTR_ERR(trans);
4007 trans = NULL;
4008 goto out;
4009 }
4010
4011 sa->rtransid = trans->transid;
4012 sa->rtime.sec = ct.tv_sec;
4013 sa->rtime.nsec = ct.tv_nsec;
4014
4015 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4016 BTRFS_UUID_SIZE);
4017 if (received_uuid_changed &&
4018 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4019 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4020 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4021 root->root_key.objectid);
4022 if (ret && ret != -ENOENT) {
4023 btrfs_abort_transaction(trans, ret);
4024 btrfs_end_transaction(trans);
4025 goto out;
4026 }
4027 }
4028 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4029 btrfs_set_root_stransid(root_item, sa->stransid);
4030 btrfs_set_root_rtransid(root_item, sa->rtransid);
4031 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4032 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4033 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4034 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4035
4036 ret = btrfs_update_root(trans, fs_info->tree_root,
4037 &root->root_key, &root->root_item);
4038 if (ret < 0) {
4039 btrfs_end_transaction(trans);
4040 goto out;
4041 }
4042 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4043 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4044 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4045 root->root_key.objectid);
4046 if (ret < 0 && ret != -EEXIST) {
4047 btrfs_abort_transaction(trans, ret);
4048 btrfs_end_transaction(trans);
4049 goto out;
4050 }
4051 }
4052 ret = btrfs_commit_transaction(trans);
4053 out:
4054 up_write(&fs_info->subvol_sem);
4055 mnt_drop_write_file(file);
4056 return ret;
4057 }
4058
4059 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4060 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4061 void __user *arg)
4062 {
4063 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4064 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4065 int ret = 0;
4066
4067 args32 = memdup_user(arg, sizeof(*args32));
4068 if (IS_ERR(args32))
4069 return PTR_ERR(args32);
4070
4071 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4072 if (!args64) {
4073 ret = -ENOMEM;
4074 goto out;
4075 }
4076
4077 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4078 args64->stransid = args32->stransid;
4079 args64->rtransid = args32->rtransid;
4080 args64->stime.sec = args32->stime.sec;
4081 args64->stime.nsec = args32->stime.nsec;
4082 args64->rtime.sec = args32->rtime.sec;
4083 args64->rtime.nsec = args32->rtime.nsec;
4084 args64->flags = args32->flags;
4085
4086 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4087 if (ret)
4088 goto out;
4089
4090 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4091 args32->stransid = args64->stransid;
4092 args32->rtransid = args64->rtransid;
4093 args32->stime.sec = args64->stime.sec;
4094 args32->stime.nsec = args64->stime.nsec;
4095 args32->rtime.sec = args64->rtime.sec;
4096 args32->rtime.nsec = args64->rtime.nsec;
4097 args32->flags = args64->flags;
4098
4099 ret = copy_to_user(arg, args32, sizeof(*args32));
4100 if (ret)
4101 ret = -EFAULT;
4102
4103 out:
4104 kfree(args32);
4105 kfree(args64);
4106 return ret;
4107 }
4108 #endif
4109
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4110 static long btrfs_ioctl_set_received_subvol(struct file *file,
4111 void __user *arg)
4112 {
4113 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4114 int ret = 0;
4115
4116 sa = memdup_user(arg, sizeof(*sa));
4117 if (IS_ERR(sa))
4118 return PTR_ERR(sa);
4119
4120 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4121
4122 if (ret)
4123 goto out;
4124
4125 ret = copy_to_user(arg, sa, sizeof(*sa));
4126 if (ret)
4127 ret = -EFAULT;
4128
4129 out:
4130 kfree(sa);
4131 return ret;
4132 }
4133
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4134 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4135 void __user *arg)
4136 {
4137 size_t len;
4138 int ret;
4139 char label[BTRFS_LABEL_SIZE];
4140
4141 spin_lock(&fs_info->super_lock);
4142 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4143 spin_unlock(&fs_info->super_lock);
4144
4145 len = strnlen(label, BTRFS_LABEL_SIZE);
4146
4147 if (len == BTRFS_LABEL_SIZE) {
4148 btrfs_warn(fs_info,
4149 "label is too long, return the first %zu bytes",
4150 --len);
4151 }
4152
4153 ret = copy_to_user(arg, label, len);
4154
4155 return ret ? -EFAULT : 0;
4156 }
4157
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4158 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4159 {
4160 struct inode *inode = file_inode(file);
4161 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4162 struct btrfs_root *root = BTRFS_I(inode)->root;
4163 struct btrfs_super_block *super_block = fs_info->super_copy;
4164 struct btrfs_trans_handle *trans;
4165 char label[BTRFS_LABEL_SIZE];
4166 int ret;
4167
4168 if (!capable(CAP_SYS_ADMIN))
4169 return -EPERM;
4170
4171 if (copy_from_user(label, arg, sizeof(label)))
4172 return -EFAULT;
4173
4174 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4175 btrfs_err(fs_info,
4176 "unable to set label with more than %d bytes",
4177 BTRFS_LABEL_SIZE - 1);
4178 return -EINVAL;
4179 }
4180
4181 ret = mnt_want_write_file(file);
4182 if (ret)
4183 return ret;
4184
4185 trans = btrfs_start_transaction(root, 0);
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4188 goto out_unlock;
4189 }
4190
4191 spin_lock(&fs_info->super_lock);
4192 strcpy(super_block->label, label);
4193 spin_unlock(&fs_info->super_lock);
4194 ret = btrfs_commit_transaction(trans);
4195
4196 out_unlock:
4197 mnt_drop_write_file(file);
4198 return ret;
4199 }
4200
4201 #define INIT_FEATURE_FLAGS(suffix) \
4202 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4203 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4204 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4205
btrfs_ioctl_get_supported_features(void __user * arg)4206 int btrfs_ioctl_get_supported_features(void __user *arg)
4207 {
4208 static const struct btrfs_ioctl_feature_flags features[3] = {
4209 INIT_FEATURE_FLAGS(SUPP),
4210 INIT_FEATURE_FLAGS(SAFE_SET),
4211 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4212 };
4213
4214 if (copy_to_user(arg, &features, sizeof(features)))
4215 return -EFAULT;
4216
4217 return 0;
4218 }
4219
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4220 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4221 void __user *arg)
4222 {
4223 struct btrfs_super_block *super_block = fs_info->super_copy;
4224 struct btrfs_ioctl_feature_flags features;
4225
4226 features.compat_flags = btrfs_super_compat_flags(super_block);
4227 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4228 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4229
4230 if (copy_to_user(arg, &features, sizeof(features)))
4231 return -EFAULT;
4232
4233 return 0;
4234 }
4235
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4236 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4237 enum btrfs_feature_set set,
4238 u64 change_mask, u64 flags, u64 supported_flags,
4239 u64 safe_set, u64 safe_clear)
4240 {
4241 const char *type = btrfs_feature_set_name(set);
4242 char *names;
4243 u64 disallowed, unsupported;
4244 u64 set_mask = flags & change_mask;
4245 u64 clear_mask = ~flags & change_mask;
4246
4247 unsupported = set_mask & ~supported_flags;
4248 if (unsupported) {
4249 names = btrfs_printable_features(set, unsupported);
4250 if (names) {
4251 btrfs_warn(fs_info,
4252 "this kernel does not support the %s feature bit%s",
4253 names, strchr(names, ',') ? "s" : "");
4254 kfree(names);
4255 } else
4256 btrfs_warn(fs_info,
4257 "this kernel does not support %s bits 0x%llx",
4258 type, unsupported);
4259 return -EOPNOTSUPP;
4260 }
4261
4262 disallowed = set_mask & ~safe_set;
4263 if (disallowed) {
4264 names = btrfs_printable_features(set, disallowed);
4265 if (names) {
4266 btrfs_warn(fs_info,
4267 "can't set the %s feature bit%s while mounted",
4268 names, strchr(names, ',') ? "s" : "");
4269 kfree(names);
4270 } else
4271 btrfs_warn(fs_info,
4272 "can't set %s bits 0x%llx while mounted",
4273 type, disallowed);
4274 return -EPERM;
4275 }
4276
4277 disallowed = clear_mask & ~safe_clear;
4278 if (disallowed) {
4279 names = btrfs_printable_features(set, disallowed);
4280 if (names) {
4281 btrfs_warn(fs_info,
4282 "can't clear the %s feature bit%s while mounted",
4283 names, strchr(names, ',') ? "s" : "");
4284 kfree(names);
4285 } else
4286 btrfs_warn(fs_info,
4287 "can't clear %s bits 0x%llx while mounted",
4288 type, disallowed);
4289 return -EPERM;
4290 }
4291
4292 return 0;
4293 }
4294
4295 #define check_feature(fs_info, change_mask, flags, mask_base) \
4296 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4297 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4298 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4299 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4300
btrfs_ioctl_set_features(struct file * file,void __user * arg)4301 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4302 {
4303 struct inode *inode = file_inode(file);
4304 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4305 struct btrfs_root *root = BTRFS_I(inode)->root;
4306 struct btrfs_super_block *super_block = fs_info->super_copy;
4307 struct btrfs_ioctl_feature_flags flags[2];
4308 struct btrfs_trans_handle *trans;
4309 u64 newflags;
4310 int ret;
4311
4312 if (!capable(CAP_SYS_ADMIN))
4313 return -EPERM;
4314
4315 if (copy_from_user(flags, arg, sizeof(flags)))
4316 return -EFAULT;
4317
4318 /* Nothing to do */
4319 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4320 !flags[0].incompat_flags)
4321 return 0;
4322
4323 ret = check_feature(fs_info, flags[0].compat_flags,
4324 flags[1].compat_flags, COMPAT);
4325 if (ret)
4326 return ret;
4327
4328 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4329 flags[1].compat_ro_flags, COMPAT_RO);
4330 if (ret)
4331 return ret;
4332
4333 ret = check_feature(fs_info, flags[0].incompat_flags,
4334 flags[1].incompat_flags, INCOMPAT);
4335 if (ret)
4336 return ret;
4337
4338 ret = mnt_want_write_file(file);
4339 if (ret)
4340 return ret;
4341
4342 trans = btrfs_start_transaction(root, 0);
4343 if (IS_ERR(trans)) {
4344 ret = PTR_ERR(trans);
4345 goto out_drop_write;
4346 }
4347
4348 spin_lock(&fs_info->super_lock);
4349 newflags = btrfs_super_compat_flags(super_block);
4350 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4351 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4352 btrfs_set_super_compat_flags(super_block, newflags);
4353
4354 newflags = btrfs_super_compat_ro_flags(super_block);
4355 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4356 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4357 btrfs_set_super_compat_ro_flags(super_block, newflags);
4358
4359 newflags = btrfs_super_incompat_flags(super_block);
4360 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4361 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4362 btrfs_set_super_incompat_flags(super_block, newflags);
4363 spin_unlock(&fs_info->super_lock);
4364
4365 ret = btrfs_commit_transaction(trans);
4366 out_drop_write:
4367 mnt_drop_write_file(file);
4368
4369 return ret;
4370 }
4371
_btrfs_ioctl_send(struct inode * inode,void __user * argp,bool compat)4372 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4373 {
4374 struct btrfs_ioctl_send_args *arg;
4375 int ret;
4376
4377 if (compat) {
4378 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4379 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4380
4381 ret = copy_from_user(&args32, argp, sizeof(args32));
4382 if (ret)
4383 return -EFAULT;
4384 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4385 if (!arg)
4386 return -ENOMEM;
4387 arg->send_fd = args32.send_fd;
4388 arg->clone_sources_count = args32.clone_sources_count;
4389 arg->clone_sources = compat_ptr(args32.clone_sources);
4390 arg->parent_root = args32.parent_root;
4391 arg->flags = args32.flags;
4392 arg->version = args32.version;
4393 memcpy(arg->reserved, args32.reserved,
4394 sizeof(args32.reserved));
4395 #else
4396 return -ENOTTY;
4397 #endif
4398 } else {
4399 arg = memdup_user(argp, sizeof(*arg));
4400 if (IS_ERR(arg))
4401 return PTR_ERR(arg);
4402 }
4403 ret = btrfs_ioctl_send(inode, arg);
4404 kfree(arg);
4405 return ret;
4406 }
4407
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4408 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4409 bool compat)
4410 {
4411 struct btrfs_ioctl_encoded_io_args args = { 0 };
4412 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4413 flags);
4414 size_t copy_end;
4415 struct iovec iovstack[UIO_FASTIOV];
4416 struct iovec *iov = iovstack;
4417 struct iov_iter iter;
4418 loff_t pos;
4419 struct kiocb kiocb;
4420 ssize_t ret;
4421
4422 if (!capable(CAP_SYS_ADMIN)) {
4423 ret = -EPERM;
4424 goto out_acct;
4425 }
4426
4427 if (compat) {
4428 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4429 struct btrfs_ioctl_encoded_io_args_32 args32;
4430
4431 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4432 flags);
4433 if (copy_from_user(&args32, argp, copy_end)) {
4434 ret = -EFAULT;
4435 goto out_acct;
4436 }
4437 args.iov = compat_ptr(args32.iov);
4438 args.iovcnt = args32.iovcnt;
4439 args.offset = args32.offset;
4440 args.flags = args32.flags;
4441 #else
4442 return -ENOTTY;
4443 #endif
4444 } else {
4445 copy_end = copy_end_kernel;
4446 if (copy_from_user(&args, argp, copy_end)) {
4447 ret = -EFAULT;
4448 goto out_acct;
4449 }
4450 }
4451 if (args.flags != 0) {
4452 ret = -EINVAL;
4453 goto out_acct;
4454 }
4455
4456 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4457 &iov, &iter);
4458 if (ret < 0)
4459 goto out_acct;
4460
4461 if (iov_iter_count(&iter) == 0) {
4462 ret = 0;
4463 goto out_iov;
4464 }
4465 pos = args.offset;
4466 ret = rw_verify_area(READ, file, &pos, args.len);
4467 if (ret < 0)
4468 goto out_iov;
4469
4470 init_sync_kiocb(&kiocb, file);
4471 kiocb.ki_pos = pos;
4472
4473 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4474 if (ret >= 0) {
4475 fsnotify_access(file);
4476 if (copy_to_user(argp + copy_end,
4477 (char *)&args + copy_end_kernel,
4478 sizeof(args) - copy_end_kernel))
4479 ret = -EFAULT;
4480 }
4481
4482 out_iov:
4483 kfree(iov);
4484 out_acct:
4485 if (ret > 0)
4486 add_rchar(current, ret);
4487 inc_syscr(current);
4488 return ret;
4489 }
4490
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4491 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4492 {
4493 struct btrfs_ioctl_encoded_io_args args;
4494 struct iovec iovstack[UIO_FASTIOV];
4495 struct iovec *iov = iovstack;
4496 struct iov_iter iter;
4497 loff_t pos;
4498 struct kiocb kiocb;
4499 ssize_t ret;
4500
4501 if (!capable(CAP_SYS_ADMIN)) {
4502 ret = -EPERM;
4503 goto out_acct;
4504 }
4505
4506 if (!(file->f_mode & FMODE_WRITE)) {
4507 ret = -EBADF;
4508 goto out_acct;
4509 }
4510
4511 if (compat) {
4512 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4513 struct btrfs_ioctl_encoded_io_args_32 args32;
4514
4515 if (copy_from_user(&args32, argp, sizeof(args32))) {
4516 ret = -EFAULT;
4517 goto out_acct;
4518 }
4519 args.iov = compat_ptr(args32.iov);
4520 args.iovcnt = args32.iovcnt;
4521 args.offset = args32.offset;
4522 args.flags = args32.flags;
4523 args.len = args32.len;
4524 args.unencoded_len = args32.unencoded_len;
4525 args.unencoded_offset = args32.unencoded_offset;
4526 args.compression = args32.compression;
4527 args.encryption = args32.encryption;
4528 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4529 #else
4530 return -ENOTTY;
4531 #endif
4532 } else {
4533 if (copy_from_user(&args, argp, sizeof(args))) {
4534 ret = -EFAULT;
4535 goto out_acct;
4536 }
4537 }
4538
4539 ret = -EINVAL;
4540 if (args.flags != 0)
4541 goto out_acct;
4542 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4543 goto out_acct;
4544 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4545 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4546 goto out_acct;
4547 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4548 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4549 goto out_acct;
4550 if (args.unencoded_offset > args.unencoded_len)
4551 goto out_acct;
4552 if (args.len > args.unencoded_len - args.unencoded_offset)
4553 goto out_acct;
4554
4555 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4556 &iov, &iter);
4557 if (ret < 0)
4558 goto out_acct;
4559
4560 file_start_write(file);
4561
4562 if (iov_iter_count(&iter) == 0) {
4563 ret = 0;
4564 goto out_end_write;
4565 }
4566 pos = args.offset;
4567 ret = rw_verify_area(WRITE, file, &pos, args.len);
4568 if (ret < 0)
4569 goto out_end_write;
4570
4571 init_sync_kiocb(&kiocb, file);
4572 ret = kiocb_set_rw_flags(&kiocb, 0);
4573 if (ret)
4574 goto out_end_write;
4575 kiocb.ki_pos = pos;
4576
4577 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4578 if (ret > 0)
4579 fsnotify_modify(file);
4580
4581 out_end_write:
4582 file_end_write(file);
4583 kfree(iov);
4584 out_acct:
4585 if (ret > 0)
4586 add_wchar(current, ret);
4587 inc_syscw(current);
4588 return ret;
4589 }
4590
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4591 long btrfs_ioctl(struct file *file, unsigned int
4592 cmd, unsigned long arg)
4593 {
4594 struct inode *inode = file_inode(file);
4595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4596 struct btrfs_root *root = BTRFS_I(inode)->root;
4597 void __user *argp = (void __user *)arg;
4598
4599 switch (cmd) {
4600 case FS_IOC_GETVERSION:
4601 return btrfs_ioctl_getversion(inode, argp);
4602 case FS_IOC_GETFSLABEL:
4603 return btrfs_ioctl_get_fslabel(fs_info, argp);
4604 case FS_IOC_SETFSLABEL:
4605 return btrfs_ioctl_set_fslabel(file, argp);
4606 case FITRIM:
4607 return btrfs_ioctl_fitrim(fs_info, argp);
4608 case BTRFS_IOC_SNAP_CREATE:
4609 return btrfs_ioctl_snap_create(file, argp, 0);
4610 case BTRFS_IOC_SNAP_CREATE_V2:
4611 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4612 case BTRFS_IOC_SUBVOL_CREATE:
4613 return btrfs_ioctl_snap_create(file, argp, 1);
4614 case BTRFS_IOC_SUBVOL_CREATE_V2:
4615 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4616 case BTRFS_IOC_SNAP_DESTROY:
4617 return btrfs_ioctl_snap_destroy(file, argp, false);
4618 case BTRFS_IOC_SNAP_DESTROY_V2:
4619 return btrfs_ioctl_snap_destroy(file, argp, true);
4620 case BTRFS_IOC_SUBVOL_GETFLAGS:
4621 return btrfs_ioctl_subvol_getflags(inode, argp);
4622 case BTRFS_IOC_SUBVOL_SETFLAGS:
4623 return btrfs_ioctl_subvol_setflags(file, argp);
4624 case BTRFS_IOC_DEFAULT_SUBVOL:
4625 return btrfs_ioctl_default_subvol(file, argp);
4626 case BTRFS_IOC_DEFRAG:
4627 return btrfs_ioctl_defrag(file, NULL);
4628 case BTRFS_IOC_DEFRAG_RANGE:
4629 return btrfs_ioctl_defrag(file, argp);
4630 case BTRFS_IOC_RESIZE:
4631 return btrfs_ioctl_resize(file, argp);
4632 case BTRFS_IOC_ADD_DEV:
4633 return btrfs_ioctl_add_dev(fs_info, argp);
4634 case BTRFS_IOC_RM_DEV:
4635 return btrfs_ioctl_rm_dev(file, argp);
4636 case BTRFS_IOC_RM_DEV_V2:
4637 return btrfs_ioctl_rm_dev_v2(file, argp);
4638 case BTRFS_IOC_FS_INFO:
4639 return btrfs_ioctl_fs_info(fs_info, argp);
4640 case BTRFS_IOC_DEV_INFO:
4641 return btrfs_ioctl_dev_info(fs_info, argp);
4642 case BTRFS_IOC_TREE_SEARCH:
4643 return btrfs_ioctl_tree_search(inode, argp);
4644 case BTRFS_IOC_TREE_SEARCH_V2:
4645 return btrfs_ioctl_tree_search_v2(inode, argp);
4646 case BTRFS_IOC_INO_LOOKUP:
4647 return btrfs_ioctl_ino_lookup(root, argp);
4648 case BTRFS_IOC_INO_PATHS:
4649 return btrfs_ioctl_ino_to_path(root, argp);
4650 case BTRFS_IOC_LOGICAL_INO:
4651 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4652 case BTRFS_IOC_LOGICAL_INO_V2:
4653 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4654 case BTRFS_IOC_SPACE_INFO:
4655 return btrfs_ioctl_space_info(fs_info, argp);
4656 case BTRFS_IOC_SYNC: {
4657 int ret;
4658
4659 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4660 if (ret)
4661 return ret;
4662 ret = btrfs_sync_fs(inode->i_sb, 1);
4663 /*
4664 * The transaction thread may want to do more work,
4665 * namely it pokes the cleaner kthread that will start
4666 * processing uncleaned subvols.
4667 */
4668 wake_up_process(fs_info->transaction_kthread);
4669 return ret;
4670 }
4671 case BTRFS_IOC_START_SYNC:
4672 return btrfs_ioctl_start_sync(root, argp);
4673 case BTRFS_IOC_WAIT_SYNC:
4674 return btrfs_ioctl_wait_sync(fs_info, argp);
4675 case BTRFS_IOC_SCRUB:
4676 return btrfs_ioctl_scrub(file, argp);
4677 case BTRFS_IOC_SCRUB_CANCEL:
4678 return btrfs_ioctl_scrub_cancel(fs_info);
4679 case BTRFS_IOC_SCRUB_PROGRESS:
4680 return btrfs_ioctl_scrub_progress(fs_info, argp);
4681 case BTRFS_IOC_BALANCE_V2:
4682 return btrfs_ioctl_balance(file, argp);
4683 case BTRFS_IOC_BALANCE_CTL:
4684 return btrfs_ioctl_balance_ctl(fs_info, arg);
4685 case BTRFS_IOC_BALANCE_PROGRESS:
4686 return btrfs_ioctl_balance_progress(fs_info, argp);
4687 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4688 return btrfs_ioctl_set_received_subvol(file, argp);
4689 #ifdef CONFIG_64BIT
4690 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4691 return btrfs_ioctl_set_received_subvol_32(file, argp);
4692 #endif
4693 case BTRFS_IOC_SEND:
4694 return _btrfs_ioctl_send(inode, argp, false);
4695 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4696 case BTRFS_IOC_SEND_32:
4697 return _btrfs_ioctl_send(inode, argp, true);
4698 #endif
4699 case BTRFS_IOC_GET_DEV_STATS:
4700 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4701 case BTRFS_IOC_QUOTA_CTL:
4702 return btrfs_ioctl_quota_ctl(file, argp);
4703 case BTRFS_IOC_QGROUP_ASSIGN:
4704 return btrfs_ioctl_qgroup_assign(file, argp);
4705 case BTRFS_IOC_QGROUP_CREATE:
4706 return btrfs_ioctl_qgroup_create(file, argp);
4707 case BTRFS_IOC_QGROUP_LIMIT:
4708 return btrfs_ioctl_qgroup_limit(file, argp);
4709 case BTRFS_IOC_QUOTA_RESCAN:
4710 return btrfs_ioctl_quota_rescan(file, argp);
4711 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4712 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4713 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4714 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4715 case BTRFS_IOC_DEV_REPLACE:
4716 return btrfs_ioctl_dev_replace(fs_info, argp);
4717 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4718 return btrfs_ioctl_get_supported_features(argp);
4719 case BTRFS_IOC_GET_FEATURES:
4720 return btrfs_ioctl_get_features(fs_info, argp);
4721 case BTRFS_IOC_SET_FEATURES:
4722 return btrfs_ioctl_set_features(file, argp);
4723 case BTRFS_IOC_GET_SUBVOL_INFO:
4724 return btrfs_ioctl_get_subvol_info(inode, argp);
4725 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4726 return btrfs_ioctl_get_subvol_rootref(root, argp);
4727 case BTRFS_IOC_INO_LOOKUP_USER:
4728 return btrfs_ioctl_ino_lookup_user(file, argp);
4729 case FS_IOC_ENABLE_VERITY:
4730 return fsverity_ioctl_enable(file, (const void __user *)argp);
4731 case FS_IOC_MEASURE_VERITY:
4732 return fsverity_ioctl_measure(file, argp);
4733 case BTRFS_IOC_ENCODED_READ:
4734 return btrfs_ioctl_encoded_read(file, argp, false);
4735 case BTRFS_IOC_ENCODED_WRITE:
4736 return btrfs_ioctl_encoded_write(file, argp, false);
4737 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4738 case BTRFS_IOC_ENCODED_READ_32:
4739 return btrfs_ioctl_encoded_read(file, argp, true);
4740 case BTRFS_IOC_ENCODED_WRITE_32:
4741 return btrfs_ioctl_encoded_write(file, argp, true);
4742 #endif
4743 }
4744
4745 return -ENOTTY;
4746 }
4747
4748 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4749 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4750 {
4751 /*
4752 * These all access 32-bit values anyway so no further
4753 * handling is necessary.
4754 */
4755 switch (cmd) {
4756 case FS_IOC32_GETVERSION:
4757 cmd = FS_IOC_GETVERSION;
4758 break;
4759 }
4760
4761 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4762 }
4763 #endif
4764