xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dce110/dce110_hw_sequencer.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36 
37 #include "dce110_compressor.h"
38 
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "link.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "dpcd_defs.h"
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62 
63 #include "atomfirmware.h"
64 
65 #include "dcn10/dcn10_hw_sequencer.h"
66 
67 #include "dce110_hw_sequencer.h"
68 
69 #define GAMMA_HW_POINTS_NUM 256
70 
71 /*
72  * All values are in milliseconds;
73  * For eDP, after power-up/power/down,
74  * 300/500 msec max. delay from LCDVCC to black video generation
75  */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81 
82 #define CTX \
83 	hws->ctx
84 
85 #define DC_LOGGER_INIT()
86 
87 #define REG(reg)\
88 	hws->regs->reg
89 
90 #undef FN
91 #define FN(reg_name, field_name) \
92 	hws->shifts->field_name, hws->masks->field_name
93 
94 struct dce110_hw_seq_reg_offsets {
95 	uint32_t crtc;
96 };
97 
98 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
99 {
100 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 },
102 {
103 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 }
111 };
112 
113 #define HW_REG_BLND(reg, id)\
114 	(reg + reg_offsets[id].blnd)
115 
116 #define HW_REG_CRTC(reg, id)\
117 	(reg + reg_offsets[id].crtc)
118 
119 #define MAX_WATERMARK 0xFFFF
120 #define SAFE_NBP_MARK 0x7FFF
121 
122 /*******************************************************************************
123  * Private definitions
124  ******************************************************************************/
125 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)126 static void dce110_init_pte(struct dc_context *ctx)
127 {
128 	uint32_t addr;
129 	uint32_t value = 0;
130 	uint32_t chunk_int = 0;
131 	uint32_t chunk_mul = 0;
132 
133 	addr = mmUNP_DVMM_PTE_CONTROL;
134 	value = dm_read_reg(ctx, addr);
135 
136 	set_reg_field_value(
137 		value,
138 		0,
139 		DVMM_PTE_CONTROL,
140 		DVMM_USE_SINGLE_PTE);
141 
142 	set_reg_field_value(
143 		value,
144 		1,
145 		DVMM_PTE_CONTROL,
146 		DVMM_PTE_BUFFER_MODE0);
147 
148 	set_reg_field_value(
149 		value,
150 		1,
151 		DVMM_PTE_CONTROL,
152 		DVMM_PTE_BUFFER_MODE1);
153 
154 	dm_write_reg(ctx, addr, value);
155 
156 	addr = mmDVMM_PTE_REQ;
157 	value = dm_read_reg(ctx, addr);
158 
159 	chunk_int = get_reg_field_value(
160 		value,
161 		DVMM_PTE_REQ,
162 		HFLIP_PTEREQ_PER_CHUNK_INT);
163 
164 	chunk_mul = get_reg_field_value(
165 		value,
166 		DVMM_PTE_REQ,
167 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
168 
169 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
170 
171 		set_reg_field_value(
172 			value,
173 			255,
174 			DVMM_PTE_REQ,
175 			MAX_PTEREQ_TO_ISSUE);
176 
177 		set_reg_field_value(
178 			value,
179 			4,
180 			DVMM_PTE_REQ,
181 			HFLIP_PTEREQ_PER_CHUNK_INT);
182 
183 		set_reg_field_value(
184 			value,
185 			4,
186 			DVMM_PTE_REQ,
187 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
188 
189 		dm_write_reg(ctx, addr, value);
190 	}
191 }
192 /**************************************************************************/
193 
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)194 static void enable_display_pipe_clock_gating(
195 	struct dc_context *ctx,
196 	bool clock_gating)
197 {
198 	/*TODO*/
199 }
200 
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)201 static bool dce110_enable_display_power_gating(
202 	struct dc *dc,
203 	uint8_t controller_id,
204 	struct dc_bios *dcb,
205 	enum pipe_gating_control power_gating)
206 {
207 	enum bp_result bp_result = BP_RESULT_OK;
208 	enum bp_pipe_control_action cntl;
209 	struct dc_context *ctx = dc->ctx;
210 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
211 
212 	if (power_gating == PIPE_GATING_CONTROL_INIT)
213 		cntl = ASIC_PIPE_INIT;
214 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
215 		cntl = ASIC_PIPE_ENABLE;
216 	else
217 		cntl = ASIC_PIPE_DISABLE;
218 
219 	if (controller_id == underlay_idx)
220 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
221 
222 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
223 
224 		bp_result = dcb->funcs->enable_disp_power_gating(
225 						dcb, controller_id + 1, cntl);
226 
227 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
228 		 * by default when command table is called
229 		 *
230 		 * Bios parser accepts controller_id = 6 as indicative of
231 		 * underlay pipe in dce110. But we do not support more
232 		 * than 3.
233 		 */
234 		if (controller_id < CONTROLLER_ID_MAX - 1)
235 			dm_write_reg(ctx,
236 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
237 				0);
238 	}
239 
240 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
241 		dce110_init_pte(ctx);
242 
243 	if (bp_result == BP_RESULT_OK)
244 		return true;
245 	else
246 		return false;
247 }
248 
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)249 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
250 		const struct dc_plane_state *plane_state)
251 {
252 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
253 
254 	switch (plane_state->format) {
255 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
256 		prescale_params->scale = 0x2082;
257 		break;
258 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
259 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
260 		prescale_params->scale = 0x2020;
261 		break;
262 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
263 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
264 		prescale_params->scale = 0x2008;
265 		break;
266 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
267 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
269 		prescale_params->scale = 0x2000;
270 		break;
271 	default:
272 		ASSERT(false);
273 		break;
274 	}
275 }
276 
277 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)278 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
279 			       const struct dc_plane_state *plane_state)
280 {
281 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
282 	const struct dc_transfer_func *tf = NULL;
283 	struct ipp_prescale_params prescale_params = { 0 };
284 	bool result = true;
285 
286 	if (ipp == NULL)
287 		return false;
288 
289 	if (plane_state->in_transfer_func)
290 		tf = plane_state->in_transfer_func;
291 
292 	build_prescale_params(&prescale_params, plane_state);
293 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
294 
295 	if (plane_state->gamma_correction &&
296 			!plane_state->gamma_correction->is_identity &&
297 			dce_use_lut(plane_state->format))
298 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
299 
300 	if (tf == NULL) {
301 		/* Default case if no input transfer function specified */
302 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
303 	} else if (tf->type == TF_TYPE_PREDEFINED) {
304 		switch (tf->tf) {
305 		case TRANSFER_FUNCTION_SRGB:
306 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 			break;
308 		case TRANSFER_FUNCTION_BT709:
309 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 			break;
311 		case TRANSFER_FUNCTION_LINEAR:
312 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 			break;
314 		case TRANSFER_FUNCTION_PQ:
315 		default:
316 			result = false;
317 			break;
318 		}
319 	} else if (tf->type == TF_TYPE_BYPASS) {
320 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 	} else {
322 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 		result = false;
324 	}
325 
326 	return result;
327 }
328 
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 				    struct curve_points *arr_points,
331 				    uint32_t hw_points_num)
332 {
333 	struct custom_float_format fmt;
334 
335 	struct pwl_result_data *rgb = rgb_resulted;
336 
337 	uint32_t i = 0;
338 
339 	fmt.exponenta_bits = 6;
340 	fmt.mantissa_bits = 12;
341 	fmt.sign = true;
342 
343 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 					    &arr_points[0].custom_float_x)) {
345 		BREAK_TO_DEBUGGER();
346 		return false;
347 	}
348 
349 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 					    &arr_points[0].custom_float_offset)) {
351 		BREAK_TO_DEBUGGER();
352 		return false;
353 	}
354 
355 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 					    &arr_points[0].custom_float_slope)) {
357 		BREAK_TO_DEBUGGER();
358 		return false;
359 	}
360 
361 	fmt.mantissa_bits = 10;
362 	fmt.sign = false;
363 
364 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 					    &arr_points[1].custom_float_x)) {
366 		BREAK_TO_DEBUGGER();
367 		return false;
368 	}
369 
370 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 					    &arr_points[1].custom_float_y)) {
372 		BREAK_TO_DEBUGGER();
373 		return false;
374 	}
375 
376 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 					    &arr_points[1].custom_float_slope)) {
378 		BREAK_TO_DEBUGGER();
379 		return false;
380 	}
381 
382 	fmt.mantissa_bits = 12;
383 	fmt.sign = true;
384 
385 	while (i != hw_points_num) {
386 		if (!convert_to_custom_float_format(rgb->red, &fmt,
387 						    &rgb->red_reg)) {
388 			BREAK_TO_DEBUGGER();
389 			return false;
390 		}
391 
392 		if (!convert_to_custom_float_format(rgb->green, &fmt,
393 						    &rgb->green_reg)) {
394 			BREAK_TO_DEBUGGER();
395 			return false;
396 		}
397 
398 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 						    &rgb->blue_reg)) {
400 			BREAK_TO_DEBUGGER();
401 			return false;
402 		}
403 
404 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 						    &rgb->delta_red_reg)) {
406 			BREAK_TO_DEBUGGER();
407 			return false;
408 		}
409 
410 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 						    &rgb->delta_green_reg)) {
412 			BREAK_TO_DEBUGGER();
413 			return false;
414 		}
415 
416 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 						    &rgb->delta_blue_reg)) {
418 			BREAK_TO_DEBUGGER();
419 			return false;
420 		}
421 
422 		++rgb;
423 		++i;
424 	}
425 
426 	return true;
427 }
428 
429 #define MAX_LOW_POINT      25
430 #define NUMBER_REGIONS     16
431 #define NUMBER_SW_SEGMENTS 16
432 
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 				      struct pwl_params *regamma_params)
436 {
437 	struct curve_points *arr_points;
438 	struct pwl_result_data *rgb_resulted;
439 	struct pwl_result_data *rgb;
440 	struct pwl_result_data *rgb_plus_1;
441 	struct fixed31_32 y_r;
442 	struct fixed31_32 y_g;
443 	struct fixed31_32 y_b;
444 	struct fixed31_32 y1_min;
445 	struct fixed31_32 y3_max;
446 
447 	int32_t region_start, region_end;
448 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449 
450 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 		return false;
452 
453 	arr_points = regamma_params->arr_points;
454 	rgb_resulted = regamma_params->rgb_resulted;
455 	hw_points = 0;
456 
457 	memset(regamma_params, 0, sizeof(struct pwl_params));
458 
459 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 		/* 16 segments
461 		 * segments are from 2^-11 to 2^5
462 		 */
463 		region_start = -11;
464 		region_end = region_start + NUMBER_REGIONS;
465 
466 		for (i = 0; i < NUMBER_REGIONS; i++)
467 			seg_distr[i] = 4;
468 
469 	} else {
470 		/* 10 segments
471 		 * segment is from 2^-10 to 2^1
472 		 * We include an extra segment for range [2^0, 2^1). This is to
473 		 * ensure that colors with normalized values of 1 don't miss the
474 		 * LUT.
475 		 */
476 		region_start = -10;
477 		region_end = 1;
478 
479 		seg_distr[0] = 4;
480 		seg_distr[1] = 4;
481 		seg_distr[2] = 4;
482 		seg_distr[3] = 4;
483 		seg_distr[4] = 4;
484 		seg_distr[5] = 4;
485 		seg_distr[6] = 4;
486 		seg_distr[7] = 4;
487 		seg_distr[8] = 4;
488 		seg_distr[9] = 4;
489 		seg_distr[10] = 0;
490 		seg_distr[11] = -1;
491 		seg_distr[12] = -1;
492 		seg_distr[13] = -1;
493 		seg_distr[14] = -1;
494 		seg_distr[15] = -1;
495 	}
496 
497 	for (k = 0; k < 16; k++) {
498 		if (seg_distr[k] != -1)
499 			hw_points += (1 << seg_distr[k]);
500 	}
501 
502 	j = 0;
503 	for (k = 0; k < (region_end - region_start); k++) {
504 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 		start_index = (region_start + k + MAX_LOW_POINT) *
506 				NUMBER_SW_SEGMENTS;
507 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 				i += increment) {
509 			if (j == hw_points - 1)
510 				break;
511 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 			j++;
515 		}
516 	}
517 
518 	/* last point */
519 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523 
524 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_start));
526 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 					     dc_fixpt_from_int(region_end));
528 
529 	y_r = rgb_resulted[0].red;
530 	y_g = rgb_resulted[0].green;
531 	y_b = rgb_resulted[0].blue;
532 
533 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534 
535 	arr_points[0].y = y1_min;
536 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 						 arr_points[0].x);
538 
539 	y_r = rgb_resulted[hw_points - 1].red;
540 	y_g = rgb_resulted[hw_points - 1].green;
541 	y_b = rgb_resulted[hw_points - 1].blue;
542 
543 	/* see comment above, m_arrPoints[1].y should be the Y value for the
544 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 	 */
546 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547 
548 	arr_points[1].y = y3_max;
549 
550 	arr_points[1].slope = dc_fixpt_zero;
551 
552 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 		/* for PQ, we want to have a straight line from last HW X point,
554 		 * and the slope to be such that we hit 1.0 at 10000 nits.
555 		 */
556 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557 
558 		arr_points[1].slope = dc_fixpt_div(
559 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 				dc_fixpt_sub(end_value, arr_points[1].x));
561 	}
562 
563 	regamma_params->hw_points_num = hw_points;
564 
565 	k = 0;
566 	for (i = 1; i < 16; i++) {
567 		if (seg_distr[k] != -1) {
568 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 			regamma_params->arr_curve_points[i].offset =
570 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 		}
572 		k++;
573 	}
574 
575 	if (seg_distr[k] != -1)
576 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577 
578 	rgb = rgb_resulted;
579 	rgb_plus_1 = rgb_resulted + 1;
580 
581 	i = 1;
582 
583 	while (i != hw_points + 1) {
584 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 			rgb_plus_1->red = rgb->red;
586 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 			rgb_plus_1->green = rgb->green;
588 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 			rgb_plus_1->blue = rgb->blue;
590 
591 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594 
595 		++rgb_plus_1;
596 		++rgb;
597 		++i;
598 	}
599 
600 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601 
602 	return true;
603 }
604 
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 				const struct dc_stream_state *stream)
608 {
609 	struct transform *xfm = pipe_ctx->plane_res.xfm;
610 
611 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613 
614 	if (stream->out_transfer_func &&
615 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
616 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
617 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
618 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
619 							 &xfm->regamma_params)) {
620 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
622 	} else {
623 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
624 	}
625 
626 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
627 
628 	return true;
629 }
630 
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)631 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
632 {
633 	bool is_hdmi_tmds;
634 	bool is_dp;
635 
636 	ASSERT(pipe_ctx->stream);
637 
638 	if (pipe_ctx->stream_res.stream_enc == NULL)
639 		return;  /* this is not root pipe */
640 
641 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
642 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
643 
644 	if (!is_hdmi_tmds && !is_dp)
645 		return;
646 
647 	if (is_hdmi_tmds)
648 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
649 			pipe_ctx->stream_res.stream_enc,
650 			&pipe_ctx->stream_res.encoder_info_frame);
651 	else {
652 		if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
653 			pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
654 				pipe_ctx->stream_res.stream_enc,
655 				&pipe_ctx->stream_res.encoder_info_frame);
656 
657 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 			pipe_ctx->stream_res.stream_enc,
659 			&pipe_ctx->stream_res.encoder_info_frame);
660 	}
661 }
662 
dce110_enable_stream(struct pipe_ctx * pipe_ctx)663 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
664 {
665 	enum dc_lane_count lane_count =
666 		pipe_ctx->stream->link->cur_link_settings.lane_count;
667 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
668 	struct dc_link *link = pipe_ctx->stream->link;
669 	const struct dc *dc = link->dc;
670 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
671 	uint32_t active_total_with_borders;
672 	uint32_t early_control = 0;
673 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
674 
675 	link_hwss->setup_stream_encoder(pipe_ctx);
676 
677 	dc->hwss.update_info_frame(pipe_ctx);
678 
679 	/* enable early control to avoid corruption on DP monitor*/
680 	active_total_with_borders =
681 			timing->h_addressable
682 				+ timing->h_border_left
683 				+ timing->h_border_right;
684 
685 	if (lane_count != 0)
686 		early_control = active_total_with_borders % lane_count;
687 
688 	if (early_control == 0)
689 		early_control = lane_count;
690 
691 	tg->funcs->set_early_control(tg, early_control);
692 }
693 
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)694 static enum bp_result link_transmitter_control(
695 		struct dc_bios *bios,
696 	struct bp_transmitter_control *cntl)
697 {
698 	enum bp_result result;
699 
700 	result = bios->funcs->transmitter_control(bios, cntl);
701 
702 	return result;
703 }
704 
705 /*
706  * @brief
707  * eDP only.
708  */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)709 void dce110_edp_wait_for_hpd_ready(
710 		struct dc_link *link,
711 		bool power_up)
712 {
713 	struct dc_context *ctx = link->ctx;
714 	struct graphics_object_id connector = link->link_enc->connector;
715 	struct gpio *hpd;
716 	bool edp_hpd_high = false;
717 	uint32_t time_elapsed = 0;
718 	uint32_t timeout = power_up ?
719 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
720 
721 	if (dal_graphics_object_id_get_connector_id(connector)
722 			!= CONNECTOR_ID_EDP) {
723 		BREAK_TO_DEBUGGER();
724 		return;
725 	}
726 
727 	if (!power_up)
728 		/*
729 		 * From KV, we will not HPD low after turning off VCC -
730 		 * instead, we will check the SW timer in power_up().
731 		 */
732 		return;
733 
734 	/*
735 	 * When we power on/off the eDP panel,
736 	 * we need to wait until SENSE bit is high/low.
737 	 */
738 
739 	/* obtain HPD */
740 	/* TODO what to do with this? */
741 	hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
742 
743 	if (!hpd) {
744 		BREAK_TO_DEBUGGER();
745 		return;
746 	}
747 
748 	if (link != NULL) {
749 		if (link->panel_config.pps.extra_t3_ms > 0) {
750 			int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
751 
752 			msleep(extra_t3_in_ms);
753 		}
754 	}
755 
756 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
757 
758 	/* wait until timeout or panel detected */
759 
760 	do {
761 		uint32_t detected = 0;
762 
763 		dal_gpio_get_value(hpd, &detected);
764 
765 		if (!(detected ^ power_up)) {
766 			edp_hpd_high = true;
767 			break;
768 		}
769 
770 		msleep(HPD_CHECK_INTERVAL);
771 
772 		time_elapsed += HPD_CHECK_INTERVAL;
773 	} while (time_elapsed < timeout);
774 
775 	dal_gpio_close(hpd);
776 
777 	dal_gpio_destroy_irq(&hpd);
778 
779 	/* ensure that the panel is detected */
780 	if (!edp_hpd_high)
781 		DC_LOG_DC("%s: wait timed out!\n", __func__);
782 }
783 
dce110_edp_power_control(struct dc_link * link,bool power_up)784 void dce110_edp_power_control(
785 		struct dc_link *link,
786 		bool power_up)
787 {
788 	struct dc_context *ctx = link->ctx;
789 	struct bp_transmitter_control cntl = { 0 };
790 	enum bp_result bp_result;
791 	uint8_t pwrseq_instance;
792 
793 
794 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
795 			!= CONNECTOR_ID_EDP) {
796 		BREAK_TO_DEBUGGER();
797 		return;
798 	}
799 
800 	if (!link->panel_cntl)
801 		return;
802 	if (power_up !=
803 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
804 
805 		unsigned long long current_ts = dm_get_timestamp(ctx);
806 		unsigned long long time_since_edp_poweroff_ms =
807 				div64_u64(dm_get_elapse_time_in_ns(
808 						ctx,
809 						current_ts,
810 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
811 		unsigned long long time_since_edp_poweron_ms =
812 				div64_u64(dm_get_elapse_time_in_ns(
813 						ctx,
814 						current_ts,
815 						ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
816 		DC_LOG_HW_RESUME_S3(
817 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
818 				__func__,
819 				power_up,
820 				current_ts,
821 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
822 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
823 				time_since_edp_poweroff_ms,
824 				time_since_edp_poweron_ms);
825 
826 		/* Send VBIOS command to prompt eDP panel power */
827 		if (power_up) {
828 			/* edp requires a min of 500ms from LCDVDD off to on */
829 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
830 
831 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
832 			if (link->local_sink != NULL)
833 				remaining_min_edp_poweroff_time_ms +=
834 					link->panel_config.pps.extra_t12_ms;
835 
836 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
837 			if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
838 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
839 					remaining_min_edp_poweroff_time_ms =
840 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
841 				else
842 					remaining_min_edp_poweroff_time_ms = 0;
843 			}
844 
845 			if (remaining_min_edp_poweroff_time_ms) {
846 				DC_LOG_HW_RESUME_S3(
847 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
848 						__func__, remaining_min_edp_poweroff_time_ms);
849 				msleep(remaining_min_edp_poweroff_time_ms);
850 				DC_LOG_HW_RESUME_S3(
851 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
852 						__func__, remaining_min_edp_poweroff_time_ms);
853 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
854 						__func__, remaining_min_edp_poweroff_time_ms);
855 			} else {
856 				DC_LOG_HW_RESUME_S3(
857 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
858 						__func__, remaining_min_edp_poweroff_time_ms);
859 			}
860 		}
861 
862 		DC_LOG_HW_RESUME_S3(
863 				"%s: BEGIN: Panel Power action: %s\n",
864 				__func__, (power_up ? "On":"Off"));
865 
866 		cntl.action = power_up ?
867 			TRANSMITTER_CONTROL_POWER_ON :
868 			TRANSMITTER_CONTROL_POWER_OFF;
869 		cntl.transmitter = link->link_enc->transmitter;
870 		cntl.connector_obj_id = link->link_enc->connector;
871 		cntl.coherent = false;
872 		cntl.lanes_number = LANE_COUNT_FOUR;
873 		cntl.hpd_sel = link->link_enc->hpd_source;
874 		pwrseq_instance = link->panel_cntl->pwrseq_inst;
875 
876 		if (ctx->dc->ctx->dmub_srv &&
877 				ctx->dc->debug.dmub_command_table) {
878 
879 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
880 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
881 						LVTMA_CONTROL_POWER_ON,
882 						pwrseq_instance, link->link_powered_externally);
883 			} else {
884 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
885 						LVTMA_CONTROL_POWER_OFF,
886 						pwrseq_instance, link->link_powered_externally);
887 			}
888 		}
889 
890 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
891 
892 		DC_LOG_HW_RESUME_S3(
893 				"%s: END: Panel Power action: %s bp_result=%u\n",
894 				__func__, (power_up ? "On":"Off"),
895 				bp_result);
896 
897 		ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
898 
899 		DC_LOG_HW_RESUME_S3(
900 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
901 				__func__,
902 				ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
903 				ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
904 
905 		if (bp_result != BP_RESULT_OK)
906 			DC_LOG_ERROR(
907 					"%s: Panel Power bp_result: %d\n",
908 					__func__, bp_result);
909 	} else {
910 		DC_LOG_HW_RESUME_S3(
911 				"%s: Skipping Panel Power action: %s\n",
912 				__func__, (power_up ? "On":"Off"));
913 	}
914 }
915 
dce110_edp_wait_for_T12(struct dc_link * link)916 void dce110_edp_wait_for_T12(
917 		struct dc_link *link)
918 {
919 	struct dc_context *ctx = link->ctx;
920 
921 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
922 			!= CONNECTOR_ID_EDP) {
923 		BREAK_TO_DEBUGGER();
924 		return;
925 	}
926 
927 	if (!link->panel_cntl)
928 		return;
929 
930 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
931 			ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
932 		unsigned int t12_duration = 500; // Default T12 as per spec
933 		unsigned long long current_ts = dm_get_timestamp(ctx);
934 		unsigned long long time_since_edp_poweroff_ms =
935 				div64_u64(dm_get_elapse_time_in_ns(
936 						ctx,
937 						current_ts,
938 						ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
939 
940 		t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
941 
942 		if (time_since_edp_poweroff_ms < t12_duration)
943 			msleep(t12_duration - time_since_edp_poweroff_ms);
944 	}
945 }
946 /*todo: cloned in stream enc, fix*/
947 /*
948  * @brief
949  * eDP only. Control the backlight of the eDP panel
950  */
dce110_edp_backlight_control(struct dc_link * link,bool enable)951 void dce110_edp_backlight_control(
952 		struct dc_link *link,
953 		bool enable)
954 {
955 	struct dc_context *ctx = link->ctx;
956 	struct bp_transmitter_control cntl = { 0 };
957 	uint8_t pwrseq_instance;
958 	unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
959 	unsigned int post_T7_delay = OLED_POST_T7_DELAY;
960 
961 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
962 		!= CONNECTOR_ID_EDP) {
963 		BREAK_TO_DEBUGGER();
964 		return;
965 	}
966 
967 	if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
968 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
969 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
970 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
971 
972 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
973 			DC_LOG_HW_RESUME_S3(
974 				"%s: panel already powered up/off. Do nothing.\n",
975 				__func__);
976 			return;
977 		}
978 	}
979 
980 	/* Send VBIOS command to control eDP panel backlight */
981 
982 	DC_LOG_HW_RESUME_S3(
983 			"%s: backlight action: %s\n",
984 			__func__, (enable ? "On":"Off"));
985 
986 	cntl.action = enable ?
987 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
988 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
989 
990 	/*cntl.engine_id = ctx->engine;*/
991 	cntl.transmitter = link->link_enc->transmitter;
992 	cntl.connector_obj_id = link->link_enc->connector;
993 	/*todo: unhardcode*/
994 	cntl.lanes_number = LANE_COUNT_FOUR;
995 	cntl.hpd_sel = link->link_enc->hpd_source;
996 	cntl.signal = SIGNAL_TYPE_EDP;
997 
998 	/* For eDP, the following delays might need to be considered
999 	 * after link training completed:
1000 	 * idle period - min. accounts for required BS-Idle pattern,
1001 	 * max. allows for source frame synchronization);
1002 	 * 50 msec max. delay from valid video data from source
1003 	 * to video on dislpay or backlight enable.
1004 	 *
1005 	 * Disable the delay for now.
1006 	 * Enable it in the future if necessary.
1007 	 */
1008 	/* dc_service_sleep_in_milliseconds(50); */
1009 		/*edp 1.2*/
1010 	pwrseq_instance = link->panel_cntl->pwrseq_inst;
1011 
1012 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1013 		if (!link->dc->config.edp_no_power_sequencing)
1014 		/*
1015 		 * Sometimes, DP receiver chip power-controlled externally by an
1016 		 * Embedded Controller could be treated and used as eDP,
1017 		 * if it drives mobile display. In this case,
1018 		 * we shouldn't be doing power-sequencing, hence we can skip
1019 		 * waiting for T7-ready.
1020 		 */
1021 			ctx->dc->link_srv->edp_receiver_ready_T7(link);
1022 		else
1023 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1024 	}
1025 
1026 	/* Setting link_powered_externally will bypass delays in the backlight
1027 	 * as they are not required if the link is being powered by a different
1028 	 * source.
1029 	 */
1030 	if (ctx->dc->ctx->dmub_srv &&
1031 			ctx->dc->debug.dmub_command_table) {
1032 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1033 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1034 					LVTMA_CONTROL_LCD_BLON,
1035 					pwrseq_instance, link->link_powered_externally);
1036 		else
1037 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038 					LVTMA_CONTROL_LCD_BLOFF,
1039 					pwrseq_instance, link->link_powered_externally);
1040 	}
1041 
1042 	link_transmitter_control(ctx->dc_bios, &cntl);
1043 
1044 	if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1045 		post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046 		msleep(post_T7_delay);
1047 	}
1048 
1049 	if (link->dpcd_sink_ext_caps.bits.oled ||
1050 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 		ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053 
1054 	/*edp 1.2*/
1055 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 		if (!link->dc->config.edp_no_power_sequencing)
1057 		/*
1058 		 * Sometimes, DP receiver chip power-controlled externally by an
1059 		 * Embedded Controller could be treated and used as eDP,
1060 		 * if it drives mobile display. In this case,
1061 		 * we shouldn't be doing power-sequencing, hence we can skip
1062 		 * waiting for T9-ready.
1063 		 */
1064 			ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065 		else
1066 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 	}
1068 
1069 	if (!enable) {
1070 		/*follow oem panel config's requirement*/
1071 		pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1072 		msleep(pre_T11_delay);
1073 	}
1074 }
1075 
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1076 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1077 {
1078 	/* notify audio driver for audio modes of monitor */
1079 	struct dc *dc;
1080 	struct clk_mgr *clk_mgr;
1081 	unsigned int i, num_audio = 1;
1082 	const struct link_hwss *link_hwss;
1083 
1084 	if (!pipe_ctx->stream)
1085 		return;
1086 
1087 	dc = pipe_ctx->stream->ctx->dc;
1088 	clk_mgr = dc->clk_mgr;
1089 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1090 
1091 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1092 		return;
1093 
1094 	if (pipe_ctx->stream_res.audio) {
1095 		for (i = 0; i < MAX_PIPES; i++) {
1096 			/*current_state not updated yet*/
1097 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1098 				num_audio++;
1099 		}
1100 
1101 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1102 
1103 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1104 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1105 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1106 
1107 		link_hwss->enable_audio_packet(pipe_ctx);
1108 
1109 		if (pipe_ctx->stream_res.audio)
1110 			pipe_ctx->stream_res.audio->enabled = true;
1111 	}
1112 }
1113 
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1114 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1115 {
1116 	struct dc *dc;
1117 	struct clk_mgr *clk_mgr;
1118 	const struct link_hwss *link_hwss;
1119 
1120 	if (!pipe_ctx || !pipe_ctx->stream)
1121 		return;
1122 
1123 	dc = pipe_ctx->stream->ctx->dc;
1124 	clk_mgr = dc->clk_mgr;
1125 	link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1126 
1127 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1128 		return;
1129 
1130 	link_hwss->disable_audio_packet(pipe_ctx);
1131 
1132 	if (pipe_ctx->stream_res.audio) {
1133 		pipe_ctx->stream_res.audio->enabled = false;
1134 
1135 		if (clk_mgr->funcs->enable_pme_wa)
1136 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1137 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1138 
1139 		/* TODO: notify audio driver for if audio modes list changed
1140 		 * add audio mode list change flag */
1141 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1142 		 * stream->stream_engine_id);
1143 		 */
1144 	}
1145 }
1146 
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1147 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1148 {
1149 	struct dc_stream_state *stream = pipe_ctx->stream;
1150 	struct dc_link *link = stream->link;
1151 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1152 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1153 	struct dccg *dccg = dc->res_pool->dccg;
1154 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
1155 	struct dtbclk_dto_params dto_params = {0};
1156 	int dp_hpo_inst;
1157 	struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1158 	struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1159 
1160 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1161 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1162 			pipe_ctx->stream_res.stream_enc);
1163 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1164 			pipe_ctx->stream_res.stream_enc);
1165 	}
1166 
1167 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1168 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1169 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1170 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1171 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1172 			pipe_ctx->stream_res.stream_enc);
1173 
1174 	dc->hwss.disable_audio_stream(pipe_ctx);
1175 
1176 	link_hwss->reset_stream_encoder(pipe_ctx);
1177 
1178 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1179 		dto_params.otg_inst = tg->inst;
1180 		dto_params.timing = &pipe_ctx->stream->timing;
1181 		dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1182 		if (dccg) {
1183 			dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1184 			dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1185 			if (dccg && dccg->funcs->set_dtbclk_dto)
1186 				dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1187 		}
1188 	} else if (dccg && dccg->funcs->disable_symclk_se) {
1189 		dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1190 				link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1191 	}
1192 
1193 	if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1194 		/* TODO: This looks like a bug to me as we are disabling HPO IO when
1195 		 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1196 		 * HW control only when HPOs for all streams are disabled?
1197 		 */
1198 		if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1199 			pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1200 					pipe_ctx->stream->ctx->dc->hwseq, false);
1201 	}
1202 }
1203 
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1204 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1205 		struct dc_link_settings *link_settings)
1206 {
1207 	struct encoder_unblank_param params = { { 0 } };
1208 	struct dc_stream_state *stream = pipe_ctx->stream;
1209 	struct dc_link *link = stream->link;
1210 	struct dce_hwseq *hws = link->dc->hwseq;
1211 
1212 	/* only 3 items below are used by unblank */
1213 	params.timing = pipe_ctx->stream->timing;
1214 	params.link_settings.link_rate = link_settings->link_rate;
1215 
1216 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1217 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1218 
1219 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1220 		hws->funcs.edp_backlight_control(link, true);
1221 	}
1222 }
1223 
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1224 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1225 {
1226 	struct dc_stream_state *stream = pipe_ctx->stream;
1227 	struct dc_link *link = stream->link;
1228 	struct dce_hwseq *hws = link->dc->hwseq;
1229 
1230 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1231 		if (!link->skip_implict_edp_power_control)
1232 			hws->funcs.edp_backlight_control(link, false);
1233 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1234 	}
1235 
1236 	if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1237 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1238 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1239 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1240 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1241 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1242 
1243 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1244 			/*
1245 			 * After output is idle pattern some sinks need time to recognize the stream
1246 			 * has changed or they enter protection state and hang.
1247 			 */
1248 			msleep(60);
1249 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1250 			if (!link->dc->config.edp_no_power_sequencing) {
1251 				/*
1252 				 * Sometimes, DP receiver chip power-controlled externally by an
1253 				 * Embedded Controller could be treated and used as eDP,
1254 				 * if it drives mobile display. In this case,
1255 				 * we shouldn't be doing power-sequencing, hence we can skip
1256 				 * waiting for T9-ready.
1257 				 */
1258 				link->dc->link_srv->edp_receiver_ready_T9(link);
1259 			}
1260 		}
1261 	}
1262 
1263 }
1264 
1265 
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1266 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1267 {
1268 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1269 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1270 }
1271 
translate_to_dto_source(enum controller_id crtc_id)1272 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1273 {
1274 	switch (crtc_id) {
1275 	case CONTROLLER_ID_D0:
1276 		return DTO_SOURCE_ID0;
1277 	case CONTROLLER_ID_D1:
1278 		return DTO_SOURCE_ID1;
1279 	case CONTROLLER_ID_D2:
1280 		return DTO_SOURCE_ID2;
1281 	case CONTROLLER_ID_D3:
1282 		return DTO_SOURCE_ID3;
1283 	case CONTROLLER_ID_D4:
1284 		return DTO_SOURCE_ID4;
1285 	case CONTROLLER_ID_D5:
1286 		return DTO_SOURCE_ID5;
1287 	default:
1288 		return DTO_SOURCE_UNKNOWN;
1289 	}
1290 }
1291 
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1292 static void build_audio_output(
1293 	struct dc_state *state,
1294 	const struct pipe_ctx *pipe_ctx,
1295 	struct audio_output *audio_output)
1296 {
1297 	const struct dc_stream_state *stream = pipe_ctx->stream;
1298 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1299 
1300 	audio_output->signal = pipe_ctx->stream->signal;
1301 
1302 	/* audio_crtc_info  */
1303 
1304 	audio_output->crtc_info.h_total =
1305 		stream->timing.h_total;
1306 
1307 	/*
1308 	 * Audio packets are sent during actual CRTC blank physical signal, we
1309 	 * need to specify actual active signal portion
1310 	 */
1311 	audio_output->crtc_info.h_active =
1312 			stream->timing.h_addressable
1313 			+ stream->timing.h_border_left
1314 			+ stream->timing.h_border_right;
1315 
1316 	audio_output->crtc_info.v_active =
1317 			stream->timing.v_addressable
1318 			+ stream->timing.v_border_top
1319 			+ stream->timing.v_border_bottom;
1320 
1321 	audio_output->crtc_info.pixel_repetition = 1;
1322 
1323 	audio_output->crtc_info.interlaced =
1324 			stream->timing.flags.INTERLACE;
1325 
1326 	audio_output->crtc_info.refresh_rate =
1327 		(stream->timing.pix_clk_100hz*100)/
1328 		(stream->timing.h_total*stream->timing.v_total);
1329 
1330 	audio_output->crtc_info.color_depth =
1331 		stream->timing.display_color_depth;
1332 
1333 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1334 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1335 
1336 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1337 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1338 
1339 /*for HDMI, audio ACR is with deep color ratio factor*/
1340 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1341 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1342 				(stream->timing.pix_clk_100hz)) {
1343 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1344 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1345 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1346 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1347 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1348 
1349 		}
1350 	}
1351 
1352 	if (state->clk_mgr &&
1353 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1354 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1355 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1356 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1357 						state->clk_mgr);
1358 	}
1359 
1360 	audio_output->pll_info.feed_back_divider =
1361 			pipe_ctx->pll_settings.feedback_divider;
1362 
1363 	audio_output->pll_info.dto_source =
1364 		translate_to_dto_source(
1365 			pipe_ctx->stream_res.tg->inst + 1);
1366 
1367 	/* TODO hard code to enable for now. Need get from stream */
1368 	audio_output->pll_info.ss_enabled = true;
1369 
1370 	audio_output->pll_info.ss_percentage =
1371 			pipe_ctx->pll_settings.ss_percentage;
1372 }
1373 
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1374 static void program_scaler(const struct dc *dc,
1375 		const struct pipe_ctx *pipe_ctx)
1376 {
1377 	struct tg_color color = {0};
1378 
1379 	/* TOFPGA */
1380 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1381 		return;
1382 
1383 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1384 		get_surface_visual_confirm_color(pipe_ctx, &color);
1385 	else
1386 		color_space_to_black_color(dc,
1387 				pipe_ctx->stream->output_color_space,
1388 				&color);
1389 
1390 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1391 		pipe_ctx->plane_res.xfm,
1392 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1393 		&pipe_ctx->stream->bit_depth_params);
1394 
1395 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1396 		/*
1397 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1398 		 * alternate between Cb and Cr, so both channels need the pixel
1399 		 * value for Y
1400 		 */
1401 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1402 			color.color_r_cr = color.color_g_y;
1403 
1404 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1405 				pipe_ctx->stream_res.tg,
1406 				&color);
1407 	}
1408 
1409 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1410 		&pipe_ctx->plane_res.scl_data);
1411 }
1412 
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1413 static enum dc_status dce110_enable_stream_timing(
1414 		struct pipe_ctx *pipe_ctx,
1415 		struct dc_state *context,
1416 		struct dc *dc)
1417 {
1418 	struct dc_stream_state *stream = pipe_ctx->stream;
1419 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1420 			pipe_ctx[pipe_ctx->pipe_idx];
1421 	struct tg_color black_color = {0};
1422 
1423 	if (!pipe_ctx_old->stream) {
1424 
1425 		/* program blank color */
1426 		color_space_to_black_color(dc,
1427 				stream->output_color_space, &black_color);
1428 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1429 				pipe_ctx->stream_res.tg,
1430 				&black_color);
1431 
1432 		/*
1433 		 * Must blank CRTC after disabling power gating and before any
1434 		 * programming, otherwise CRTC will be hung in bad state
1435 		 */
1436 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1437 
1438 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1439 				pipe_ctx->clock_source,
1440 				&pipe_ctx->stream_res.pix_clk_params,
1441 				dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1442 				&pipe_ctx->pll_settings)) {
1443 			BREAK_TO_DEBUGGER();
1444 			return DC_ERROR_UNEXPECTED;
1445 		}
1446 
1447 		if (dc_is_hdmi_tmds_signal(stream->signal)) {
1448 			stream->link->phy_state.symclk_ref_cnts.otg = 1;
1449 			if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1450 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1451 			else
1452 				stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1453 		}
1454 
1455 		pipe_ctx->stream_res.tg->funcs->program_timing(
1456 				pipe_ctx->stream_res.tg,
1457 				&stream->timing,
1458 				0,
1459 				0,
1460 				0,
1461 				0,
1462 				pipe_ctx->stream->signal,
1463 				true);
1464 	}
1465 
1466 	if (!pipe_ctx_old->stream) {
1467 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1468 				pipe_ctx->stream_res.tg)) {
1469 			BREAK_TO_DEBUGGER();
1470 			return DC_ERROR_UNEXPECTED;
1471 		}
1472 	}
1473 
1474 	return DC_OK;
1475 }
1476 
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1477 static enum dc_status apply_single_controller_ctx_to_hw(
1478 		struct pipe_ctx *pipe_ctx,
1479 		struct dc_state *context,
1480 		struct dc *dc)
1481 {
1482 	struct dc_stream_state *stream = pipe_ctx->stream;
1483 	struct dc_link *link = stream->link;
1484 	struct drr_params params = {0};
1485 	unsigned int event_triggers = 0;
1486 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1487 	struct dce_hwseq *hws = dc->hwseq;
1488 	const struct link_hwss *link_hwss = get_link_hwss(
1489 			link, &pipe_ctx->link_res);
1490 
1491 
1492 	if (hws->funcs.disable_stream_gating) {
1493 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1494 	}
1495 
1496 	if (pipe_ctx->stream_res.audio != NULL) {
1497 		struct audio_output audio_output;
1498 
1499 		build_audio_output(context, pipe_ctx, &audio_output);
1500 
1501 		link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1502 				pipe_ctx->stream_res.audio->inst);
1503 
1504 		pipe_ctx->stream_res.audio->funcs->az_configure(
1505 				pipe_ctx->stream_res.audio,
1506 				pipe_ctx->stream->signal,
1507 				&audio_output.crtc_info,
1508 				&pipe_ctx->stream->audio_info);
1509 	}
1510 
1511 	/* make sure no pipes syncd to the pipe being enabled */
1512 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1513 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1514 
1515 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1516 		pipe_ctx->stream_res.opp,
1517 		&stream->bit_depth_params,
1518 		&stream->clamping);
1519 
1520 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1521 			pipe_ctx->stream_res.opp,
1522 			COLOR_SPACE_YCBCR601,
1523 			stream->timing.display_color_depth,
1524 			stream->signal);
1525 
1526 	while (odm_pipe) {
1527 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1528 				odm_pipe->stream_res.opp,
1529 				COLOR_SPACE_YCBCR601,
1530 				stream->timing.display_color_depth,
1531 				stream->signal);
1532 
1533 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1534 				odm_pipe->stream_res.opp,
1535 				&stream->bit_depth_params,
1536 				&stream->clamping);
1537 		odm_pipe = odm_pipe->next_odm_pipe;
1538 	}
1539 
1540 	/* DCN3.1 FPGA Workaround
1541 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1542 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1543 	 * function core_link_enable_stream
1544 	 */
1545 	if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1546 		/*  */
1547 		/* Do not touch stream timing on seamless boot optimization. */
1548 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1549 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1550 
1551 	if (hws->funcs.setup_vupdate_interrupt)
1552 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1553 
1554 	params.vertical_total_min = stream->adjust.v_total_min;
1555 	params.vertical_total_max = stream->adjust.v_total_max;
1556 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1557 		pipe_ctx->stream_res.tg->funcs->set_drr(
1558 			pipe_ctx->stream_res.tg, &params);
1559 
1560 	// DRR should set trigger event to monitor surface update event
1561 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1562 		event_triggers = 0x80;
1563 	/* Event triggers and num frames initialized for DRR, but can be
1564 	 * later updated for PSR use. Note DRR trigger events are generated
1565 	 * regardless of whether num frames met.
1566 	 */
1567 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1568 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1569 				pipe_ctx->stream_res.tg, event_triggers, 2);
1570 
1571 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1572 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1573 			pipe_ctx->stream_res.stream_enc,
1574 			pipe_ctx->stream_res.tg->inst);
1575 
1576 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1577 		dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1578 
1579 	if (!stream->dpms_off)
1580 		dc->link_srv->set_dpms_on(context, pipe_ctx);
1581 
1582 	/* DCN3.1 FPGA Workaround
1583 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1584 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1585 	 * function core_link_enable_stream
1586 	 */
1587 	if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1588 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1589 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1590 	}
1591 
1592 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1593 
1594 	/* Phantom and main stream share the same link (because the stream
1595 	 * is constructed with the same sink). Make sure not to override
1596 	 * and link programming on the main.
1597 	 */
1598 	if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1599 		pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1600 		pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1601 	}
1602 	return DC_OK;
1603 }
1604 
1605 /******************************************************************************/
1606 
power_down_encoders(struct dc * dc)1607 static void power_down_encoders(struct dc *dc)
1608 {
1609 	int i;
1610 
1611 	for (i = 0; i < dc->link_count; i++) {
1612 		enum signal_type signal = dc->links[i]->connector_signal;
1613 
1614 		dc->link_srv->blank_dp_stream(dc->links[i], false);
1615 
1616 		if (signal != SIGNAL_TYPE_EDP)
1617 			signal = SIGNAL_TYPE_NONE;
1618 
1619 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1620 			dc->links[i]->link_enc->funcs->disable_output(
1621 					dc->links[i]->link_enc, signal);
1622 
1623 		dc->links[i]->link_status.link_active = false;
1624 		memset(&dc->links[i]->cur_link_settings, 0,
1625 				sizeof(dc->links[i]->cur_link_settings));
1626 	}
1627 }
1628 
power_down_controllers(struct dc * dc)1629 static void power_down_controllers(struct dc *dc)
1630 {
1631 	int i;
1632 
1633 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1634 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1635 				dc->res_pool->timing_generators[i]);
1636 	}
1637 }
1638 
power_down_clock_sources(struct dc * dc)1639 static void power_down_clock_sources(struct dc *dc)
1640 {
1641 	int i;
1642 
1643 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1644 		dc->res_pool->dp_clock_source) == false)
1645 		dm_error("Failed to power down pll! (dp clk src)\n");
1646 
1647 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1648 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1649 				dc->res_pool->clock_sources[i]) == false)
1650 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1651 	}
1652 }
1653 
power_down_all_hw_blocks(struct dc * dc)1654 static void power_down_all_hw_blocks(struct dc *dc)
1655 {
1656 	power_down_encoders(dc);
1657 
1658 	power_down_controllers(dc);
1659 
1660 	power_down_clock_sources(dc);
1661 
1662 	if (dc->fbc_compressor)
1663 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1664 }
1665 
disable_vga_and_power_gate_all_controllers(struct dc * dc)1666 static void disable_vga_and_power_gate_all_controllers(
1667 		struct dc *dc)
1668 {
1669 	int i;
1670 	struct timing_generator *tg;
1671 	struct dc_context *ctx = dc->ctx;
1672 
1673 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1674 		tg = dc->res_pool->timing_generators[i];
1675 
1676 		if (tg->funcs->disable_vga)
1677 			tg->funcs->disable_vga(tg);
1678 	}
1679 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1680 		/* Enable CLOCK gating for each pipe BEFORE controller
1681 		 * powergating. */
1682 		enable_display_pipe_clock_gating(ctx,
1683 				true);
1684 
1685 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1686 		dc->hwss.disable_plane(dc,
1687 			&dc->current_state->res_ctx.pipe_ctx[i]);
1688 	}
1689 }
1690 
1691 
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1692 static void get_edp_streams(struct dc_state *context,
1693 		struct dc_stream_state **edp_streams,
1694 		int *edp_stream_num)
1695 {
1696 	int i;
1697 
1698 	*edp_stream_num = 0;
1699 	for (i = 0; i < context->stream_count; i++) {
1700 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1701 			edp_streams[*edp_stream_num] = context->streams[i];
1702 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1703 				return;
1704 		}
1705 	}
1706 }
1707 
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1708 static void get_edp_links_with_sink(
1709 		struct dc *dc,
1710 		struct dc_link **edp_links_with_sink,
1711 		int *edp_with_sink_num)
1712 {
1713 	int i;
1714 
1715 	/* check if there is an eDP panel not in use */
1716 	*edp_with_sink_num = 0;
1717 	for (i = 0; i < dc->link_count; i++) {
1718 		if (dc->links[i]->local_sink &&
1719 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1720 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1721 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1722 				return;
1723 		}
1724 	}
1725 }
1726 
1727 /*
1728  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1729  *  1. Power down all DC HW blocks
1730  *  2. Disable VGA engine on all controllers
1731  *  3. Enable power gating for controller
1732  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1733  */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1734 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1735 {
1736 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1737 	struct dc_link *edp_links[MAX_NUM_EDP];
1738 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1739 	struct dc_link *edp_link_with_sink = NULL;
1740 	struct dc_link *edp_link = NULL;
1741 	struct dce_hwseq *hws = dc->hwseq;
1742 	int edp_with_sink_num;
1743 	int edp_num;
1744 	int edp_stream_num;
1745 	int i;
1746 	bool can_apply_edp_fast_boot = false;
1747 	bool can_apply_seamless_boot = false;
1748 	bool keep_edp_vdd_on = false;
1749 	DC_LOGGER_INIT();
1750 
1751 
1752 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1753 	dc_get_edp_links(dc, edp_links, &edp_num);
1754 
1755 	if (hws->funcs.init_pipes)
1756 		hws->funcs.init_pipes(dc, context);
1757 
1758 	get_edp_streams(context, edp_streams, &edp_stream_num);
1759 
1760 	// Check fastboot support, disable on DCE8 because of blank screens
1761 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1762 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1763 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1764 		for (i = 0; i < edp_num; i++) {
1765 			edp_link = edp_links[i];
1766 			if (edp_link != edp_streams[0]->link)
1767 				continue;
1768 			// enable fastboot if backend is enabled on eDP
1769 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1770 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1771 			    edp_link->link_status.link_active) {
1772 				struct dc_stream_state *edp_stream = edp_streams[0];
1773 
1774 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1775 					edp_stream->sink, &edp_stream->timing);
1776 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1777 				if (can_apply_edp_fast_boot)
1778 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1779 
1780 				break;
1781 			}
1782 		}
1783 		// We are trying to enable eDP, don't power down VDD
1784 		if (can_apply_edp_fast_boot)
1785 			keep_edp_vdd_on = true;
1786 	}
1787 
1788 	// Check seamless boot support
1789 	for (i = 0; i < context->stream_count; i++) {
1790 		if (context->streams[i]->apply_seamless_boot_optimization) {
1791 			can_apply_seamless_boot = true;
1792 			break;
1793 		}
1794 	}
1795 
1796 	/* eDP should not have stream in resume from S4 and so even with VBios post
1797 	 * it should get turned off
1798 	 */
1799 	if (edp_with_sink_num)
1800 		edp_link_with_sink = edp_links_with_sink[0];
1801 
1802 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1803 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1804 			/*turn off backlight before DP_blank and encoder powered down*/
1805 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1806 		}
1807 		/*resume from S3, no vbios posting, no need to power down again*/
1808 		clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1809 
1810 		power_down_all_hw_blocks(dc);
1811 		disable_vga_and_power_gate_all_controllers(dc);
1812 		if (edp_link_with_sink && !keep_edp_vdd_on)
1813 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1814 		clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1815 	}
1816 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1817 }
1818 
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1819 static uint32_t compute_pstate_blackout_duration(
1820 	struct bw_fixed blackout_duration,
1821 	const struct dc_stream_state *stream)
1822 {
1823 	uint32_t total_dest_line_time_ns;
1824 	uint32_t pstate_blackout_duration_ns;
1825 
1826 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1827 
1828 	total_dest_line_time_ns = 1000000UL *
1829 		(stream->timing.h_total * 10) /
1830 		stream->timing.pix_clk_100hz +
1831 		pstate_blackout_duration_ns;
1832 
1833 	return total_dest_line_time_ns;
1834 }
1835 
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1836 static void dce110_set_displaymarks(
1837 	const struct dc *dc,
1838 	struct dc_state *context)
1839 {
1840 	uint8_t i, num_pipes;
1841 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1842 
1843 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1844 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1845 		uint32_t total_dest_line_time_ns;
1846 
1847 		if (pipe_ctx->stream == NULL)
1848 			continue;
1849 
1850 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1851 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1852 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1853 			pipe_ctx->plane_res.mi,
1854 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1855 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1856 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1857 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1858 			total_dest_line_time_ns);
1859 		if (i == underlay_idx) {
1860 			num_pipes++;
1861 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1862 				pipe_ctx->plane_res.mi,
1863 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1864 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1865 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1866 				total_dest_line_time_ns);
1867 		}
1868 		num_pipes++;
1869 	}
1870 }
1871 
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1872 void dce110_set_safe_displaymarks(
1873 		struct resource_context *res_ctx,
1874 		const struct resource_pool *pool)
1875 {
1876 	int i;
1877 	int underlay_idx = pool->underlay_pipe_index;
1878 	struct dce_watermarks max_marks = {
1879 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1880 	struct dce_watermarks nbp_marks = {
1881 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1882 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1883 
1884 	for (i = 0; i < MAX_PIPES; i++) {
1885 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1886 			continue;
1887 
1888 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1889 				res_ctx->pipe_ctx[i].plane_res.mi,
1890 				nbp_marks,
1891 				max_marks,
1892 				min_marks,
1893 				max_marks,
1894 				MAX_WATERMARK);
1895 
1896 		if (i == underlay_idx)
1897 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1898 				res_ctx->pipe_ctx[i].plane_res.mi,
1899 				nbp_marks,
1900 				max_marks,
1901 				max_marks,
1902 				MAX_WATERMARK);
1903 
1904 	}
1905 }
1906 
1907 /*******************************************************************************
1908  * Public functions
1909  ******************************************************************************/
1910 
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1911 static void set_drr(struct pipe_ctx **pipe_ctx,
1912 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1913 {
1914 	int i = 0;
1915 	struct drr_params params = {0};
1916 	// DRR should set trigger event to monitor surface update event
1917 	unsigned int event_triggers = 0x80;
1918 	// Note DRR trigger events are generated regardless of whether num frames met.
1919 	unsigned int num_frames = 2;
1920 
1921 	params.vertical_total_max = adjust.v_total_max;
1922 	params.vertical_total_min = adjust.v_total_min;
1923 
1924 	/* TODO: If multiple pipes are to be supported, you need
1925 	 * some GSL stuff. Static screen triggers may be programmed differently
1926 	 * as well.
1927 	 */
1928 	for (i = 0; i < num_pipes; i++) {
1929 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1930 			pipe_ctx[i]->stream_res.tg, &params);
1931 
1932 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1933 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1934 					pipe_ctx[i]->stream_res.tg,
1935 					event_triggers, num_frames);
1936 	}
1937 }
1938 
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1939 static void get_position(struct pipe_ctx **pipe_ctx,
1940 		int num_pipes,
1941 		struct crtc_position *position)
1942 {
1943 	int i = 0;
1944 
1945 	/* TODO: handle pipes > 1
1946 	 */
1947 	for (i = 0; i < num_pipes; i++)
1948 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1949 }
1950 
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1951 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1952 		int num_pipes, const struct dc_static_screen_params *params)
1953 {
1954 	unsigned int i;
1955 	unsigned int triggers = 0;
1956 
1957 	if (params->triggers.overlay_update)
1958 		triggers |= 0x100;
1959 	if (params->triggers.surface_update)
1960 		triggers |= 0x80;
1961 	if (params->triggers.cursor_update)
1962 		triggers |= 0x2;
1963 	if (params->triggers.force_trigger)
1964 		triggers |= 0x1;
1965 
1966 	if (num_pipes) {
1967 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1968 
1969 		if (dc->fbc_compressor)
1970 			triggers |= 0x84;
1971 	}
1972 
1973 	for (i = 0; i < num_pipes; i++)
1974 		pipe_ctx[i]->stream_res.tg->funcs->
1975 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1976 					triggers, params->num_frames);
1977 }
1978 
1979 /*
1980  *  Check if FBC can be enabled
1981  */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1982 static bool should_enable_fbc(struct dc *dc,
1983 		struct dc_state *context,
1984 		uint32_t *pipe_idx)
1985 {
1986 	uint32_t i;
1987 	struct pipe_ctx *pipe_ctx = NULL;
1988 	struct resource_context *res_ctx = &context->res_ctx;
1989 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1990 
1991 
1992 	ASSERT(dc->fbc_compressor);
1993 
1994 	/* FBC memory should be allocated */
1995 	if (!dc->ctx->fbc_gpu_addr)
1996 		return false;
1997 
1998 	/* Only supports single display */
1999 	if (context->stream_count != 1)
2000 		return false;
2001 
2002 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2003 		if (res_ctx->pipe_ctx[i].stream) {
2004 
2005 			pipe_ctx = &res_ctx->pipe_ctx[i];
2006 
2007 			if (!pipe_ctx)
2008 				continue;
2009 
2010 			/* fbc not applicable on underlay pipe */
2011 			if (pipe_ctx->pipe_idx != underlay_idx) {
2012 				*pipe_idx = i;
2013 				break;
2014 			}
2015 		}
2016 	}
2017 
2018 	if (i == dc->res_pool->pipe_count)
2019 		return false;
2020 
2021 	if (!pipe_ctx->stream->link)
2022 		return false;
2023 
2024 	/* Only supports eDP */
2025 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2026 		return false;
2027 
2028 	/* PSR should not be enabled */
2029 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2030 		return false;
2031 
2032 	/* Replay should not be enabled */
2033 	if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2034 		return false;
2035 
2036 	/* Nothing to compress */
2037 	if (!pipe_ctx->plane_state)
2038 		return false;
2039 
2040 	/* Only for non-linear tiling */
2041 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2042 		return false;
2043 
2044 	return true;
2045 }
2046 
2047 /*
2048  *  Enable FBC
2049  */
enable_fbc(struct dc * dc,struct dc_state * context)2050 static void enable_fbc(
2051 		struct dc *dc,
2052 		struct dc_state *context)
2053 {
2054 	uint32_t pipe_idx = 0;
2055 
2056 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2057 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2058 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2059 		struct compressor *compr = dc->fbc_compressor;
2060 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2061 
2062 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2063 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2064 		params.inst = pipe_ctx->stream_res.tg->inst;
2065 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2066 
2067 		compr->funcs->surface_address_and_pitch(compr, &params);
2068 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2069 
2070 		compr->funcs->enable_fbc(compr, &params);
2071 	}
2072 }
2073 
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2074 static void dce110_reset_hw_ctx_wrap(
2075 		struct dc *dc,
2076 		struct dc_state *context)
2077 {
2078 	int i;
2079 
2080 	/* Reset old context */
2081 	/* look up the targets that have been removed since last commit */
2082 	for (i = 0; i < MAX_PIPES; i++) {
2083 		struct pipe_ctx *pipe_ctx_old =
2084 			&dc->current_state->res_ctx.pipe_ctx[i];
2085 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2086 
2087 		/* Note: We need to disable output if clock sources change,
2088 		 * since bios does optimization and doesn't apply if changing
2089 		 * PHY when not already disabled.
2090 		 */
2091 
2092 		/* Skip underlay pipe since it will be handled in commit surface*/
2093 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2094 			continue;
2095 
2096 		if (!pipe_ctx->stream ||
2097 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2098 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2099 
2100 			/* Disable if new stream is null. O/w, if stream is
2101 			 * disabled already, no need to disable again.
2102 			 */
2103 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2104 				dc->link_srv->set_dpms_off(pipe_ctx_old);
2105 
2106 				/* free acquired resources*/
2107 				if (pipe_ctx_old->stream_res.audio) {
2108 					/*disable az_endpoint*/
2109 					pipe_ctx_old->stream_res.audio->funcs->
2110 							az_disable(pipe_ctx_old->stream_res.audio);
2111 
2112 					/*free audio*/
2113 					if (dc->caps.dynamic_audio == true) {
2114 						/*we have to dynamic arbitrate the audio endpoints*/
2115 						/*we free the resource, need reset is_audio_acquired*/
2116 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2117 								pipe_ctx_old->stream_res.audio, false);
2118 						pipe_ctx_old->stream_res.audio = NULL;
2119 					}
2120 				}
2121 			}
2122 
2123 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2124 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2125 				dm_error("DC: failed to blank crtc!\n");
2126 				BREAK_TO_DEBUGGER();
2127 			}
2128 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2129 			if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2130 				pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2131 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2132 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2133 
2134 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2135 										dc->res_pool,
2136 										old_clk))
2137 				old_clk->funcs->cs_power_down(old_clk);
2138 
2139 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2140 
2141 			pipe_ctx_old->stream = NULL;
2142 		}
2143 	}
2144 }
2145 
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2146 static void dce110_setup_audio_dto(
2147 		struct dc *dc,
2148 		struct dc_state *context)
2149 {
2150 	int i;
2151 
2152 	/* program audio wall clock. use HDMI as clock source if HDMI
2153 	 * audio active. Otherwise, use DP as clock source
2154 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2155 	 */
2156 	/* Setup audio rate clock source */
2157 	/* Issue:
2158 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2159 	*
2160 	* Cause:
2161 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2162 	* is set to either dto0 or dto1, audio should work fine.
2163 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2164 	* set to dto0 will cause audio lag.
2165 	*
2166 	* Solution:
2167 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2168 	* find first available pipe with audio, setup audio wall DTO per topology
2169 	* instead of per pipe.
2170 	*/
2171 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2172 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2173 
2174 		if (pipe_ctx->stream == NULL)
2175 			continue;
2176 
2177 		if (pipe_ctx->top_pipe)
2178 			continue;
2179 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2180 			continue;
2181 		if (pipe_ctx->stream_res.audio != NULL) {
2182 			struct audio_output audio_output;
2183 
2184 			build_audio_output(context, pipe_ctx, &audio_output);
2185 
2186 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2187 				struct dtbclk_dto_params dto_params = {0};
2188 
2189 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2190 					dc->res_pool->dccg, &dto_params);
2191 
2192 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2193 						pipe_ctx->stream_res.audio,
2194 						pipe_ctx->stream->signal,
2195 						&audio_output.crtc_info,
2196 						&audio_output.pll_info);
2197 			} else
2198 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2199 					pipe_ctx->stream_res.audio,
2200 					pipe_ctx->stream->signal,
2201 					&audio_output.crtc_info,
2202 					&audio_output.pll_info);
2203 			break;
2204 		}
2205 	}
2206 
2207 	/* no HDMI audio is found, try DP audio */
2208 	if (i == dc->res_pool->pipe_count) {
2209 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2210 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2211 
2212 			if (pipe_ctx->stream == NULL)
2213 				continue;
2214 
2215 			if (pipe_ctx->top_pipe)
2216 				continue;
2217 
2218 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2219 				continue;
2220 
2221 			if (pipe_ctx->stream_res.audio != NULL) {
2222 				struct audio_output audio_output;
2223 
2224 				build_audio_output(context, pipe_ctx, &audio_output);
2225 
2226 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2227 					pipe_ctx->stream_res.audio,
2228 					pipe_ctx->stream->signal,
2229 					&audio_output.crtc_info,
2230 					&audio_output.pll_info);
2231 				break;
2232 			}
2233 		}
2234 	}
2235 }
2236 
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2237 enum dc_status dce110_apply_ctx_to_hw(
2238 		struct dc *dc,
2239 		struct dc_state *context)
2240 {
2241 	struct dce_hwseq *hws = dc->hwseq;
2242 	struct dc_bios *dcb = dc->ctx->dc_bios;
2243 	enum dc_status status;
2244 	int i;
2245 
2246 	/* reset syncd pipes from disabled pipes */
2247 	if (dc->config.use_pipe_ctx_sync_logic)
2248 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2249 
2250 	/* Reset old context */
2251 	/* look up the targets that have been removed since last commit */
2252 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2253 
2254 	/* Skip applying if no targets */
2255 	if (context->stream_count <= 0)
2256 		return DC_OK;
2257 
2258 	/* Apply new context */
2259 	dcb->funcs->set_scratch_critical_state(dcb, true);
2260 
2261 	/* below is for real asic only */
2262 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2263 		struct pipe_ctx *pipe_ctx_old =
2264 					&dc->current_state->res_ctx.pipe_ctx[i];
2265 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2266 
2267 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2268 			continue;
2269 
2270 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2271 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2272 				dce_crtc_switch_to_clk_src(dc->hwseq,
2273 						pipe_ctx->clock_source, i);
2274 			continue;
2275 		}
2276 
2277 		hws->funcs.enable_display_power_gating(
2278 				dc, i, dc->ctx->dc_bios,
2279 				PIPE_GATING_CONTROL_DISABLE);
2280 	}
2281 
2282 	if (dc->fbc_compressor)
2283 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2284 
2285 	dce110_setup_audio_dto(dc, context);
2286 
2287 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2288 		struct pipe_ctx *pipe_ctx_old =
2289 					&dc->current_state->res_ctx.pipe_ctx[i];
2290 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2291 
2292 		if (pipe_ctx->stream == NULL)
2293 			continue;
2294 
2295 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2296 			pipe_ctx->stream->link->link_state_valid) {
2297 			continue;
2298 		}
2299 
2300 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2301 			continue;
2302 
2303 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2304 			continue;
2305 
2306 		status = apply_single_controller_ctx_to_hw(
2307 				pipe_ctx,
2308 				context,
2309 				dc);
2310 
2311 		if (DC_OK != status)
2312 			return status;
2313 
2314 #ifdef CONFIG_DRM_AMD_DC_FP
2315 		if (hws->funcs.resync_fifo_dccg_dio)
2316 			hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2317 #endif
2318 	}
2319 
2320 	if (dc->fbc_compressor)
2321 		enable_fbc(dc, dc->current_state);
2322 
2323 	dcb->funcs->set_scratch_critical_state(dcb, false);
2324 
2325 	return DC_OK;
2326 }
2327 
2328 /*******************************************************************************
2329  * Front End programming
2330  ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2331 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2332 {
2333 	struct default_adjustment default_adjust = { 0 };
2334 
2335 	default_adjust.force_hw_default = false;
2336 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2337 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2338 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2339 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2340 
2341 	/* display color depth */
2342 	default_adjust.color_depth =
2343 		pipe_ctx->stream->timing.display_color_depth;
2344 
2345 	/* Lb color depth */
2346 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2347 
2348 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2349 					pipe_ctx->plane_res.xfm, &default_adjust);
2350 }
2351 
2352 
2353 /*******************************************************************************
2354  * In order to turn on/off specific surface we will program
2355  * Blender + CRTC
2356  *
2357  * In case that we have two surfaces and they have a different visibility
2358  * we can't turn off the CRTC since it will turn off the entire display
2359  *
2360  * |----------------------------------------------- |
2361  * |bottom pipe|curr pipe  |              |         |
2362  * |Surface    |Surface    | Blender      |  CRCT   |
2363  * |visibility |visibility | Configuration|         |
2364  * |------------------------------------------------|
2365  * |   off     |    off    | CURRENT_PIPE | blank   |
2366  * |   off     |    on     | CURRENT_PIPE | unblank |
2367  * |   on      |    off    | OTHER_PIPE   | unblank |
2368  * |   on      |    on     | BLENDING     | unblank |
2369  * -------------------------------------------------|
2370  *
2371  ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2372 static void program_surface_visibility(const struct dc *dc,
2373 		struct pipe_ctx *pipe_ctx)
2374 {
2375 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2376 	bool blank_target = false;
2377 
2378 	if (pipe_ctx->bottom_pipe) {
2379 
2380 		/* For now we are supporting only two pipes */
2381 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2382 
2383 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2384 			if (pipe_ctx->plane_state->visible)
2385 				blender_mode = BLND_MODE_BLENDING;
2386 			else
2387 				blender_mode = BLND_MODE_OTHER_PIPE;
2388 
2389 		} else if (!pipe_ctx->plane_state->visible)
2390 			blank_target = true;
2391 
2392 	} else if (!pipe_ctx->plane_state->visible)
2393 		blank_target = true;
2394 
2395 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2396 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2397 
2398 }
2399 
program_gamut_remap(struct pipe_ctx * pipe_ctx)2400 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2401 {
2402 	int i = 0;
2403 	struct xfm_grph_csc_adjustment adjust;
2404 	memset(&adjust, 0, sizeof(adjust));
2405 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2406 
2407 
2408 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2409 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2410 
2411 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2412 			adjust.temperature_matrix[i] =
2413 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2414 	}
2415 
2416 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2417 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2418 static void update_plane_addr(const struct dc *dc,
2419 		struct pipe_ctx *pipe_ctx)
2420 {
2421 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2422 
2423 	if (plane_state == NULL)
2424 		return;
2425 
2426 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2427 			pipe_ctx->plane_res.mi,
2428 			&plane_state->address,
2429 			plane_state->flip_immediate);
2430 
2431 	plane_state->status.requested_address = plane_state->address;
2432 }
2433 
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2434 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2435 {
2436 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2437 
2438 	if (plane_state == NULL)
2439 		return;
2440 
2441 	plane_state->status.is_flip_pending =
2442 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2443 					pipe_ctx->plane_res.mi);
2444 
2445 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2446 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2447 
2448 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2449 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2450 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2451 		plane_state->status.is_right_eye =\
2452 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2453 	}
2454 }
2455 
dce110_power_down(struct dc * dc)2456 void dce110_power_down(struct dc *dc)
2457 {
2458 	power_down_all_hw_blocks(dc);
2459 	disable_vga_and_power_gate_all_controllers(dc);
2460 }
2461 
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2462 static bool wait_for_reset_trigger_to_occur(
2463 	struct dc_context *dc_ctx,
2464 	struct timing_generator *tg)
2465 {
2466 	bool rc = false;
2467 
2468 	/* To avoid endless loop we wait at most
2469 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2470 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2471 	uint32_t i;
2472 
2473 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2474 
2475 		if (!tg->funcs->is_counter_moving(tg)) {
2476 			DC_ERROR("TG counter is not moving!\n");
2477 			break;
2478 		}
2479 
2480 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2481 			rc = true;
2482 			/* usually occurs at i=1 */
2483 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2484 					i);
2485 			break;
2486 		}
2487 
2488 		/* Wait for one frame. */
2489 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2490 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2491 	}
2492 
2493 	if (false == rc)
2494 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2495 
2496 	return rc;
2497 }
2498 
2499 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2500 static void dce110_enable_timing_synchronization(
2501 		struct dc *dc,
2502 		int group_index,
2503 		int group_size,
2504 		struct pipe_ctx *grouped_pipes[])
2505 {
2506 	struct dc_context *dc_ctx = dc->ctx;
2507 	struct dcp_gsl_params gsl_params = { 0 };
2508 	int i;
2509 
2510 	DC_SYNC_INFO("GSL: Setting-up...\n");
2511 
2512 	/* Designate a single TG in the group as a master.
2513 	 * Since HW doesn't care which one, we always assign
2514 	 * the 1st one in the group. */
2515 	gsl_params.gsl_group = 0;
2516 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2517 
2518 	for (i = 0; i < group_size; i++)
2519 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2520 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2521 
2522 	/* Reset slave controllers on master VSync */
2523 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2524 
2525 	for (i = 1 /* skip the master */; i < group_size; i++)
2526 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2527 				grouped_pipes[i]->stream_res.tg,
2528 				gsl_params.gsl_group);
2529 
2530 	for (i = 1 /* skip the master */; i < group_size; i++) {
2531 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2532 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2533 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2534 				grouped_pipes[i]->stream_res.tg);
2535 	}
2536 
2537 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2538 	 * is that the sync'ed displays will not drift out of sync over time*/
2539 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2540 	for (i = 0; i < group_size; i++)
2541 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2542 
2543 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2544 }
2545 
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2546 static void dce110_enable_per_frame_crtc_position_reset(
2547 		struct dc *dc,
2548 		int group_size,
2549 		struct pipe_ctx *grouped_pipes[])
2550 {
2551 	struct dc_context *dc_ctx = dc->ctx;
2552 	struct dcp_gsl_params gsl_params = { 0 };
2553 	int i;
2554 
2555 	gsl_params.gsl_group = 0;
2556 	gsl_params.gsl_master = 0;
2557 
2558 	for (i = 0; i < group_size; i++)
2559 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2560 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2561 
2562 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2563 
2564 	for (i = 1; i < group_size; i++)
2565 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2566 				grouped_pipes[i]->stream_res.tg,
2567 				gsl_params.gsl_master,
2568 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2569 
2570 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2571 	for (i = 1; i < group_size; i++)
2572 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2573 
2574 	for (i = 0; i < group_size; i++)
2575 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2576 
2577 }
2578 
init_pipes(struct dc * dc,struct dc_state * context)2579 static void init_pipes(struct dc *dc, struct dc_state *context)
2580 {
2581 	// Do nothing
2582 }
2583 
init_hw(struct dc * dc)2584 static void init_hw(struct dc *dc)
2585 {
2586 	int i;
2587 	struct dc_bios *bp;
2588 	struct transform *xfm;
2589 	struct abm *abm;
2590 	struct dmcu *dmcu;
2591 	struct dce_hwseq *hws = dc->hwseq;
2592 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2593 
2594 	bp = dc->ctx->dc_bios;
2595 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2596 		xfm = dc->res_pool->transforms[i];
2597 		xfm->funcs->transform_reset(xfm);
2598 
2599 		hws->funcs.enable_display_power_gating(
2600 				dc, i, bp,
2601 				PIPE_GATING_CONTROL_INIT);
2602 		hws->funcs.enable_display_power_gating(
2603 				dc, i, bp,
2604 				PIPE_GATING_CONTROL_DISABLE);
2605 		hws->funcs.enable_display_pipe_clock_gating(
2606 			dc->ctx,
2607 			true);
2608 	}
2609 
2610 	dce_clock_gating_power_up(dc->hwseq, false);
2611 	/***************************************/
2612 
2613 	for (i = 0; i < dc->link_count; i++) {
2614 		/****************************************/
2615 		/* Power up AND update implementation according to the
2616 		 * required signal (which may be different from the
2617 		 * default signal on connector). */
2618 		struct dc_link *link = dc->links[i];
2619 
2620 		link->link_enc->funcs->hw_init(link->link_enc);
2621 	}
2622 
2623 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2624 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2625 
2626 		tg->funcs->disable_vga(tg);
2627 
2628 		/* Blank controller using driver code instead of
2629 		 * command table. */
2630 		tg->funcs->set_blank(tg, true);
2631 		hwss_wait_for_blank_complete(tg);
2632 	}
2633 
2634 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2635 		struct audio *audio = dc->res_pool->audios[i];
2636 		audio->funcs->hw_init(audio);
2637 	}
2638 
2639 	for (i = 0; i < dc->link_count; i++) {
2640 		struct dc_link *link = dc->links[i];
2641 
2642 		if (link->panel_cntl)
2643 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2644 	}
2645 
2646 	abm = dc->res_pool->abm;
2647 	if (abm != NULL)
2648 		abm->funcs->abm_init(abm, backlight);
2649 
2650 	dmcu = dc->res_pool->dmcu;
2651 	if (dmcu != NULL && abm != NULL)
2652 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2653 
2654 	if (dc->fbc_compressor)
2655 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2656 
2657 }
2658 
2659 
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2660 void dce110_prepare_bandwidth(
2661 		struct dc *dc,
2662 		struct dc_state *context)
2663 {
2664 	struct clk_mgr *dccg = dc->clk_mgr;
2665 
2666 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2667 	if (dccg)
2668 		dccg->funcs->update_clocks(
2669 				dccg,
2670 				context,
2671 				false);
2672 }
2673 
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2674 void dce110_optimize_bandwidth(
2675 		struct dc *dc,
2676 		struct dc_state *context)
2677 {
2678 	struct clk_mgr *dccg = dc->clk_mgr;
2679 
2680 	dce110_set_displaymarks(dc, context);
2681 
2682 	if (dccg)
2683 		dccg->funcs->update_clocks(
2684 				dccg,
2685 				context,
2686 				true);
2687 }
2688 
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2689 static void dce110_program_front_end_for_pipe(
2690 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2691 {
2692 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2693 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2694 	struct xfm_grph_csc_adjustment adjust;
2695 	struct out_csc_color_matrix tbl_entry;
2696 	unsigned int i;
2697 	struct dce_hwseq *hws = dc->hwseq;
2698 
2699 	DC_LOGGER_INIT();
2700 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2701 
2702 	memset(&adjust, 0, sizeof(adjust));
2703 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2704 
2705 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2706 
2707 	set_default_colors(pipe_ctx);
2708 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2709 			== true) {
2710 		tbl_entry.color_space =
2711 			pipe_ctx->stream->output_color_space;
2712 
2713 		for (i = 0; i < 12; i++)
2714 			tbl_entry.regval[i] =
2715 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2716 
2717 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2718 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2719 	}
2720 
2721 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2722 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2723 
2724 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2725 			adjust.temperature_matrix[i] =
2726 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2727 	}
2728 
2729 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2730 
2731 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2732 
2733 	program_scaler(dc, pipe_ctx);
2734 
2735 	mi->funcs->mem_input_program_surface_config(
2736 			mi,
2737 			plane_state->format,
2738 			&plane_state->tiling_info,
2739 			&plane_state->plane_size,
2740 			plane_state->rotation,
2741 			NULL,
2742 			false);
2743 	if (mi->funcs->set_blank)
2744 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2745 
2746 	if (dc->config.gpu_vm_support)
2747 		mi->funcs->mem_input_program_pte_vm(
2748 				pipe_ctx->plane_res.mi,
2749 				plane_state->format,
2750 				&plane_state->tiling_info,
2751 				plane_state->rotation);
2752 
2753 	/* Moved programming gamma from dc to hwss */
2754 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2755 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2756 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2757 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2758 
2759 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2760 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2761 
2762 	DC_LOG_SURFACE(
2763 			"Pipe:%d %p: addr hi:0x%x, "
2764 			"addr low:0x%x, "
2765 			"src: %d, %d, %d,"
2766 			" %d; dst: %d, %d, %d, %d;"
2767 			"clip: %d, %d, %d, %d\n",
2768 			pipe_ctx->pipe_idx,
2769 			(void *) pipe_ctx->plane_state,
2770 			pipe_ctx->plane_state->address.grph.addr.high_part,
2771 			pipe_ctx->plane_state->address.grph.addr.low_part,
2772 			pipe_ctx->plane_state->src_rect.x,
2773 			pipe_ctx->plane_state->src_rect.y,
2774 			pipe_ctx->plane_state->src_rect.width,
2775 			pipe_ctx->plane_state->src_rect.height,
2776 			pipe_ctx->plane_state->dst_rect.x,
2777 			pipe_ctx->plane_state->dst_rect.y,
2778 			pipe_ctx->plane_state->dst_rect.width,
2779 			pipe_ctx->plane_state->dst_rect.height,
2780 			pipe_ctx->plane_state->clip_rect.x,
2781 			pipe_ctx->plane_state->clip_rect.y,
2782 			pipe_ctx->plane_state->clip_rect.width,
2783 			pipe_ctx->plane_state->clip_rect.height);
2784 
2785 	DC_LOG_SURFACE(
2786 			"Pipe %d: width, height, x, y\n"
2787 			"viewport:%d, %d, %d, %d\n"
2788 			"recout:  %d, %d, %d, %d\n",
2789 			pipe_ctx->pipe_idx,
2790 			pipe_ctx->plane_res.scl_data.viewport.width,
2791 			pipe_ctx->plane_res.scl_data.viewport.height,
2792 			pipe_ctx->plane_res.scl_data.viewport.x,
2793 			pipe_ctx->plane_res.scl_data.viewport.y,
2794 			pipe_ctx->plane_res.scl_data.recout.width,
2795 			pipe_ctx->plane_res.scl_data.recout.height,
2796 			pipe_ctx->plane_res.scl_data.recout.x,
2797 			pipe_ctx->plane_res.scl_data.recout.y);
2798 }
2799 
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2800 static void dce110_apply_ctx_for_surface(
2801 		struct dc *dc,
2802 		const struct dc_stream_state *stream,
2803 		int num_planes,
2804 		struct dc_state *context)
2805 {
2806 	int i;
2807 
2808 	if (num_planes == 0)
2809 		return;
2810 
2811 	if (dc->fbc_compressor)
2812 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2813 
2814 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2815 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2816 
2817 		if (pipe_ctx->stream != stream)
2818 			continue;
2819 
2820 		/* Need to allocate mem before program front end for Fiji */
2821 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2822 				pipe_ctx->plane_res.mi,
2823 				pipe_ctx->stream->timing.h_total,
2824 				pipe_ctx->stream->timing.v_total,
2825 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2826 				context->stream_count);
2827 
2828 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2829 
2830 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2831 
2832 		program_surface_visibility(dc, pipe_ctx);
2833 
2834 	}
2835 
2836 	if (dc->fbc_compressor)
2837 		enable_fbc(dc, context);
2838 }
2839 
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2840 static void dce110_post_unlock_program_front_end(
2841 		struct dc *dc,
2842 		struct dc_state *context)
2843 {
2844 }
2845 
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2846 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2847 {
2848 	struct dce_hwseq *hws = dc->hwseq;
2849 	int fe_idx = pipe_ctx->plane_res.mi ?
2850 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2851 
2852 	/* Do not power down fe when stream is active on dce*/
2853 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2854 		return;
2855 
2856 	hws->funcs.enable_display_power_gating(
2857 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2858 
2859 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2860 				dc->res_pool->transforms[fe_idx]);
2861 }
2862 
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2863 static void dce110_wait_for_mpcc_disconnect(
2864 		struct dc *dc,
2865 		struct resource_pool *res_pool,
2866 		struct pipe_ctx *pipe_ctx)
2867 {
2868 	/* do nothing*/
2869 }
2870 
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2871 static void program_output_csc(struct dc *dc,
2872 		struct pipe_ctx *pipe_ctx,
2873 		enum dc_color_space colorspace,
2874 		uint16_t *matrix,
2875 		int opp_id)
2876 {
2877 	int i;
2878 	struct out_csc_color_matrix tbl_entry;
2879 
2880 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2881 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2882 
2883 		for (i = 0; i < 12; i++)
2884 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2885 
2886 		tbl_entry.color_space = color_space;
2887 
2888 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2889 				pipe_ctx->plane_res.xfm, &tbl_entry);
2890 	}
2891 }
2892 
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2893 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2894 {
2895 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2896 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2897 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2898 	struct dc_cursor_mi_param param = {
2899 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2900 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2901 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2902 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2903 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2904 		.rotation = pipe_ctx->plane_state->rotation,
2905 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2906 	};
2907 
2908 	/**
2909 	 * If the cursor's source viewport is clipped then we need to
2910 	 * translate the cursor to appear in the correct position on
2911 	 * the screen.
2912 	 *
2913 	 * This translation isn't affected by scaling so it needs to be
2914 	 * done *after* we adjust the position for the scale factor.
2915 	 *
2916 	 * This is only done by opt-in for now since there are still
2917 	 * some usecases like tiled display that might enable the
2918 	 * cursor on both streams while expecting dc to clip it.
2919 	 */
2920 	if (pos_cpy.translate_by_source) {
2921 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2922 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2923 	}
2924 
2925 	if (pipe_ctx->plane_state->address.type
2926 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2927 		pos_cpy.enable = false;
2928 
2929 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2930 		pos_cpy.enable = false;
2931 
2932 	if (ipp->funcs->ipp_cursor_set_position)
2933 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2934 	if (mi->funcs->set_cursor_position)
2935 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2936 }
2937 
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2938 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2939 {
2940 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2941 
2942 	if (pipe_ctx->plane_res.ipp &&
2943 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2944 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2945 				pipe_ctx->plane_res.ipp, attributes);
2946 
2947 	if (pipe_ctx->plane_res.mi &&
2948 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2949 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2950 				pipe_ctx->plane_res.mi, attributes);
2951 
2952 	if (pipe_ctx->plane_res.xfm &&
2953 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2954 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2955 				pipe_ctx->plane_res.xfm, attributes);
2956 }
2957 
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2958 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2959 		uint32_t backlight_pwm_u16_16,
2960 		uint32_t frame_ramp)
2961 {
2962 	struct dc_link *link = pipe_ctx->stream->link;
2963 	struct dc  *dc = link->ctx->dc;
2964 	struct abm *abm = pipe_ctx->stream_res.abm;
2965 	struct panel_cntl *panel_cntl = link->panel_cntl;
2966 	struct dmcu *dmcu = dc->res_pool->dmcu;
2967 	bool fw_set_brightness = true;
2968 	/* DMCU -1 for all controller id values,
2969 	 * therefore +1 here
2970 	 */
2971 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2972 
2973 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2974 		return false;
2975 
2976 	if (dmcu)
2977 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2978 
2979 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2980 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2981 	else
2982 		abm->funcs->set_backlight_level_pwm(
2983 				abm,
2984 				backlight_pwm_u16_16,
2985 				frame_ramp,
2986 				controller_id,
2987 				link->panel_cntl->inst);
2988 
2989 	return true;
2990 }
2991 
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2992 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2993 {
2994 	struct abm *abm = pipe_ctx->stream_res.abm;
2995 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2996 
2997 	if (abm)
2998 		abm->funcs->set_abm_immediate_disable(abm,
2999 				pipe_ctx->stream->link->panel_cntl->inst);
3000 
3001 	if (panel_cntl)
3002 		panel_cntl->funcs->store_backlight_level(panel_cntl);
3003 }
3004 
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3005 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3006 {
3007 	struct abm *abm = pipe_ctx->stream_res.abm;
3008 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3009 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3010 
3011 	if (abm && panel_cntl)
3012 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3013 }
3014 
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3015 void dce110_enable_lvds_link_output(struct dc_link *link,
3016 		const struct link_resource *link_res,
3017 		enum clock_source_id clock_source,
3018 		uint32_t pixel_clock)
3019 {
3020 	link->link_enc->funcs->enable_lvds_output(
3021 			link->link_enc,
3022 			clock_source,
3023 			pixel_clock);
3024 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3025 }
3026 
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3027 void dce110_enable_tmds_link_output(struct dc_link *link,
3028 		const struct link_resource *link_res,
3029 		enum signal_type signal,
3030 		enum clock_source_id clock_source,
3031 		enum dc_color_depth color_depth,
3032 		uint32_t pixel_clock)
3033 {
3034 	link->link_enc->funcs->enable_tmds_output(
3035 			link->link_enc,
3036 			clock_source,
3037 			color_depth,
3038 			signal,
3039 			pixel_clock);
3040 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3041 }
3042 
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3043 void dce110_enable_dp_link_output(
3044 		struct dc_link *link,
3045 		const struct link_resource *link_res,
3046 		enum signal_type signal,
3047 		enum clock_source_id clock_source,
3048 		const struct dc_link_settings *link_settings)
3049 {
3050 	struct dc  *dc = link->ctx->dc;
3051 	struct dmcu *dmcu = dc->res_pool->dmcu;
3052 	struct pipe_ctx *pipes =
3053 			link->dc->current_state->res_ctx.pipe_ctx;
3054 	struct clock_source *dp_cs =
3055 			link->dc->res_pool->dp_clock_source;
3056 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3057 	unsigned int i;
3058 
3059 	/*
3060 	 * Add the logic to extract BOTH power up and power down sequences
3061 	 * from enable/disable link output and only call edp panel control
3062 	 * in enable_link_dp and disable_link_dp once.
3063 	 */
3064 	if (link->connector_signal == SIGNAL_TYPE_EDP) {
3065 		link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3066 	}
3067 
3068 	/* If the current pixel clock source is not DTO(happens after
3069 	 * switching from HDMI passive dongle to DP on the same connector),
3070 	 * switch the pixel clock source to DTO.
3071 	 */
3072 
3073 	for (i = 0; i < MAX_PIPES; i++) {
3074 		if (pipes[i].stream != NULL &&
3075 				pipes[i].stream->link == link) {
3076 			if (pipes[i].clock_source != NULL &&
3077 					pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3078 				pipes[i].clock_source = dp_cs;
3079 				pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3080 						pipes[i].stream->timing.pix_clk_100hz;
3081 				pipes[i].clock_source->funcs->program_pix_clk(
3082 						pipes[i].clock_source,
3083 						&pipes[i].stream_res.pix_clk_params,
3084 						dc->link_srv->dp_get_encoding_format(link_settings),
3085 						&pipes[i].pll_settings);
3086 			}
3087 		}
3088 	}
3089 
3090 	if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3091 		if (dc->clk_mgr->funcs->notify_link_rate_change)
3092 			dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3093 	}
3094 
3095 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3096 		dmcu->funcs->lock_phy(dmcu);
3097 
3098 	if (link_hwss->ext.enable_dp_link_output)
3099 		link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3100 				clock_source, link_settings);
3101 
3102 	link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3103 
3104 	if (dmcu != NULL && dmcu->funcs->unlock_phy)
3105 		dmcu->funcs->unlock_phy(dmcu);
3106 
3107 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3108 }
3109 
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3110 void dce110_disable_link_output(struct dc_link *link,
3111 		const struct link_resource *link_res,
3112 		enum signal_type signal)
3113 {
3114 	struct dc *dc = link->ctx->dc;
3115 	const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3116 	struct dmcu *dmcu = dc->res_pool->dmcu;
3117 
3118 	if (signal == SIGNAL_TYPE_EDP &&
3119 			link->dc->hwss.edp_backlight_control)
3120 		link->dc->hwss.edp_backlight_control(link, false);
3121 	else if (dmcu != NULL && dmcu->funcs->lock_phy)
3122 		dmcu->funcs->lock_phy(dmcu);
3123 
3124 	link_hwss->disable_link_output(link, link_res, signal);
3125 	link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3126 	/*
3127 	 * Add the logic to extract BOTH power up and power down sequences
3128 	 * from enable/disable link output and only call edp panel control
3129 	 * in enable_link_dp and disable_link_dp once.
3130 	 */
3131 	if (dmcu != NULL && dmcu->funcs->lock_phy)
3132 		dmcu->funcs->unlock_phy(dmcu);
3133 	dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3134 }
3135 
3136 static const struct hw_sequencer_funcs dce110_funcs = {
3137 	.program_gamut_remap = program_gamut_remap,
3138 	.program_output_csc = program_output_csc,
3139 	.init_hw = init_hw,
3140 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3141 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3142 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3143 	.update_plane_addr = update_plane_addr,
3144 	.update_pending_status = dce110_update_pending_status,
3145 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3146 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3147 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3148 	.update_info_frame = dce110_update_info_frame,
3149 	.enable_stream = dce110_enable_stream,
3150 	.disable_stream = dce110_disable_stream,
3151 	.unblank_stream = dce110_unblank_stream,
3152 	.blank_stream = dce110_blank_stream,
3153 	.enable_audio_stream = dce110_enable_audio_stream,
3154 	.disable_audio_stream = dce110_disable_audio_stream,
3155 	.disable_plane = dce110_power_down_fe,
3156 	.pipe_control_lock = dce_pipe_control_lock,
3157 	.interdependent_update_lock = NULL,
3158 	.cursor_lock = dce_pipe_control_lock,
3159 	.prepare_bandwidth = dce110_prepare_bandwidth,
3160 	.optimize_bandwidth = dce110_optimize_bandwidth,
3161 	.set_drr = set_drr,
3162 	.get_position = get_position,
3163 	.set_static_screen_control = set_static_screen_control,
3164 	.setup_stereo = NULL,
3165 	.set_avmute = dce110_set_avmute,
3166 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3167 	.edp_backlight_control = dce110_edp_backlight_control,
3168 	.edp_power_control = dce110_edp_power_control,
3169 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3170 	.set_cursor_position = dce110_set_cursor_position,
3171 	.set_cursor_attribute = dce110_set_cursor_attribute,
3172 	.set_backlight_level = dce110_set_backlight_level,
3173 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3174 	.set_pipe = dce110_set_pipe,
3175 	.enable_lvds_link_output = dce110_enable_lvds_link_output,
3176 	.enable_tmds_link_output = dce110_enable_tmds_link_output,
3177 	.enable_dp_link_output = dce110_enable_dp_link_output,
3178 	.disable_link_output = dce110_disable_link_output,
3179 };
3180 
3181 static const struct hwseq_private_funcs dce110_private_funcs = {
3182 	.init_pipes = init_pipes,
3183 	.update_plane_addr = update_plane_addr,
3184 	.set_input_transfer_func = dce110_set_input_transfer_func,
3185 	.set_output_transfer_func = dce110_set_output_transfer_func,
3186 	.power_down = dce110_power_down,
3187 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3188 	.enable_display_power_gating = dce110_enable_display_power_gating,
3189 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3190 	.enable_stream_timing = dce110_enable_stream_timing,
3191 	.disable_stream_gating = NULL,
3192 	.enable_stream_gating = NULL,
3193 	.edp_backlight_control = dce110_edp_backlight_control,
3194 };
3195 
dce110_hw_sequencer_construct(struct dc * dc)3196 void dce110_hw_sequencer_construct(struct dc *dc)
3197 {
3198 	dc->hwss = dce110_funcs;
3199 	dc->hwseq->funcs = dce110_private_funcs;
3200 }
3201 
3202