1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2021, Red Hat, Inc.
4 *
5 * Tests for Hyper-V clocksources
6 */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "hyperv.h"
11
12 struct ms_hyperv_tsc_page {
13 volatile u32 tsc_sequence;
14 u32 reserved1;
15 volatile u64 tsc_scale;
16 volatile s64 tsc_offset;
17 } __packed;
18
19 /* Simplified mul_u64_u64_shr() */
mul_u64_u64_shr64(u64 a,u64 b)20 static inline u64 mul_u64_u64_shr64(u64 a, u64 b)
21 {
22 union {
23 u64 ll;
24 struct {
25 u32 low, high;
26 } l;
27 } rm, rn, rh, a0, b0;
28 u64 c;
29
30 a0.ll = a;
31 b0.ll = b;
32
33 rm.ll = (u64)a0.l.low * b0.l.high;
34 rn.ll = (u64)a0.l.high * b0.l.low;
35 rh.ll = (u64)a0.l.high * b0.l.high;
36
37 rh.l.low = c = rm.l.high + rn.l.high + rh.l.low;
38 rh.l.high = (c >> 32) + rh.l.high;
39
40 return rh.ll;
41 }
42
nop_loop(void)43 static inline void nop_loop(void)
44 {
45 int i;
46
47 for (i = 0; i < 100000000; i++)
48 asm volatile("nop");
49 }
50
check_tsc_msr_rdtsc(void)51 static inline void check_tsc_msr_rdtsc(void)
52 {
53 u64 tsc_freq, r1, r2, t1, t2;
54 s64 delta_ns;
55
56 tsc_freq = rdmsr(HV_X64_MSR_TSC_FREQUENCY);
57 GUEST_ASSERT(tsc_freq > 0);
58
59 /* For increased accuracy, take mean rdtsc() before and afrer rdmsr() */
60 r1 = rdtsc();
61 t1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
62 r1 = (r1 + rdtsc()) / 2;
63 nop_loop();
64 r2 = rdtsc();
65 t2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
66 r2 = (r2 + rdtsc()) / 2;
67
68 GUEST_ASSERT(r2 > r1 && t2 > t1);
69
70 /* HV_X64_MSR_TIME_REF_COUNT is in 100ns */
71 delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq);
72 if (delta_ns < 0)
73 delta_ns = -delta_ns;
74
75 /* 1% tolerance */
76 GUEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100);
77 }
78
get_tscpage_ts(struct ms_hyperv_tsc_page * tsc_page)79 static inline u64 get_tscpage_ts(struct ms_hyperv_tsc_page *tsc_page)
80 {
81 return mul_u64_u64_shr64(rdtsc(), tsc_page->tsc_scale) + tsc_page->tsc_offset;
82 }
83
check_tsc_msr_tsc_page(struct ms_hyperv_tsc_page * tsc_page)84 static inline void check_tsc_msr_tsc_page(struct ms_hyperv_tsc_page *tsc_page)
85 {
86 u64 r1, r2, t1, t2;
87
88 /* Compare TSC page clocksource with HV_X64_MSR_TIME_REF_COUNT */
89 t1 = get_tscpage_ts(tsc_page);
90 r1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
91
92 /* 10 ms tolerance */
93 GUEST_ASSERT(r1 >= t1 && r1 - t1 < 100000);
94 nop_loop();
95
96 t2 = get_tscpage_ts(tsc_page);
97 r2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT);
98 GUEST_ASSERT(r2 >= t1 && r2 - t2 < 100000);
99 }
100
guest_main(struct ms_hyperv_tsc_page * tsc_page,vm_paddr_t tsc_page_gpa)101 static void guest_main(struct ms_hyperv_tsc_page *tsc_page, vm_paddr_t tsc_page_gpa)
102 {
103 u64 tsc_scale, tsc_offset;
104
105 /* Set Guest OS id to enable Hyper-V emulation */
106 GUEST_SYNC(1);
107 wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
108 GUEST_SYNC(2);
109
110 check_tsc_msr_rdtsc();
111
112 GUEST_SYNC(3);
113
114 /* Set up TSC page is disabled state, check that it's clean */
115 wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa);
116 GUEST_ASSERT(tsc_page->tsc_sequence == 0);
117 GUEST_ASSERT(tsc_page->tsc_scale == 0);
118 GUEST_ASSERT(tsc_page->tsc_offset == 0);
119
120 GUEST_SYNC(4);
121
122 /* Set up TSC page is enabled state */
123 wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa | 0x1);
124 GUEST_ASSERT(tsc_page->tsc_sequence != 0);
125
126 GUEST_SYNC(5);
127
128 check_tsc_msr_tsc_page(tsc_page);
129
130 GUEST_SYNC(6);
131
132 tsc_offset = tsc_page->tsc_offset;
133 /* Call KVM_SET_CLOCK from userspace, check that TSC page was updated */
134
135 GUEST_SYNC(7);
136 /* Sanity check TSC page timestamp, it should be close to 0 */
137 GUEST_ASSERT(get_tscpage_ts(tsc_page) < 100000);
138
139 GUEST_ASSERT(tsc_page->tsc_offset != tsc_offset);
140
141 nop_loop();
142
143 /*
144 * Enable Re-enlightenment and check that TSC page stays constant across
145 * KVM_SET_CLOCK.
146 */
147 wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0x1 << 16 | 0xff);
148 wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0x1);
149 tsc_offset = tsc_page->tsc_offset;
150 tsc_scale = tsc_page->tsc_scale;
151 GUEST_SYNC(8);
152 GUEST_ASSERT(tsc_page->tsc_offset == tsc_offset);
153 GUEST_ASSERT(tsc_page->tsc_scale == tsc_scale);
154
155 GUEST_SYNC(9);
156
157 check_tsc_msr_tsc_page(tsc_page);
158
159 /*
160 * Disable re-enlightenment and TSC page, check that KVM doesn't update
161 * it anymore.
162 */
163 wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
164 wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
165 wrmsr(HV_X64_MSR_REFERENCE_TSC, 0);
166 memset(tsc_page, 0, sizeof(*tsc_page));
167
168 GUEST_SYNC(10);
169 GUEST_ASSERT(tsc_page->tsc_sequence == 0);
170 GUEST_ASSERT(tsc_page->tsc_offset == 0);
171 GUEST_ASSERT(tsc_page->tsc_scale == 0);
172
173 GUEST_DONE();
174 }
175
host_check_tsc_msr_rdtsc(struct kvm_vcpu * vcpu)176 static void host_check_tsc_msr_rdtsc(struct kvm_vcpu *vcpu)
177 {
178 u64 tsc_freq, r1, r2, t1, t2;
179 s64 delta_ns;
180
181 tsc_freq = vcpu_get_msr(vcpu, HV_X64_MSR_TSC_FREQUENCY);
182 TEST_ASSERT(tsc_freq > 0, "TSC frequency must be nonzero");
183
184 /* For increased accuracy, take mean rdtsc() before and afrer ioctl */
185 r1 = rdtsc();
186 t1 = vcpu_get_msr(vcpu, HV_X64_MSR_TIME_REF_COUNT);
187 r1 = (r1 + rdtsc()) / 2;
188 nop_loop();
189 r2 = rdtsc();
190 t2 = vcpu_get_msr(vcpu, HV_X64_MSR_TIME_REF_COUNT);
191 r2 = (r2 + rdtsc()) / 2;
192
193 TEST_ASSERT(t2 > t1, "Time reference MSR is not monotonic (%ld <= %ld)", t1, t2);
194
195 /* HV_X64_MSR_TIME_REF_COUNT is in 100ns */
196 delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq);
197 if (delta_ns < 0)
198 delta_ns = -delta_ns;
199
200 /* 1% tolerance */
201 TEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100,
202 "Elapsed time does not match (MSR=%ld, TSC=%ld)",
203 (t2 - t1) * 100, (r2 - r1) * 1000000000 / tsc_freq);
204 }
205
main(void)206 int main(void)
207 {
208 struct kvm_vcpu *vcpu;
209 struct kvm_vm *vm;
210 struct ucall uc;
211 vm_vaddr_t tsc_page_gva;
212 int stage;
213
214 vm = vm_create_with_one_vcpu(&vcpu, guest_main);
215
216 vcpu_set_hv_cpuid(vcpu);
217
218 tsc_page_gva = vm_vaddr_alloc_page(vm);
219 memset(addr_gva2hva(vm, tsc_page_gva), 0x0, getpagesize());
220 TEST_ASSERT((addr_gva2gpa(vm, tsc_page_gva) & (getpagesize() - 1)) == 0,
221 "TSC page has to be page aligned\n");
222 vcpu_args_set(vcpu, 2, tsc_page_gva, addr_gva2gpa(vm, tsc_page_gva));
223
224 host_check_tsc_msr_rdtsc(vcpu);
225
226 for (stage = 1;; stage++) {
227 vcpu_run(vcpu);
228 TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
229
230 switch (get_ucall(vcpu, &uc)) {
231 case UCALL_ABORT:
232 REPORT_GUEST_ASSERT(uc);
233 /* NOT REACHED */
234 case UCALL_SYNC:
235 break;
236 case UCALL_DONE:
237 /* Keep in sync with guest_main() */
238 TEST_ASSERT(stage == 11, "Testing ended prematurely, stage %d\n",
239 stage);
240 goto out;
241 default:
242 TEST_FAIL("Unknown ucall %lu", uc.cmd);
243 }
244
245 TEST_ASSERT(!strcmp((const char *)uc.args[0], "hello") &&
246 uc.args[1] == stage,
247 "Stage %d: Unexpected register values vmexit, got %lx",
248 stage, (ulong)uc.args[1]);
249
250 /* Reset kvmclock triggering TSC page update */
251 if (stage == 7 || stage == 8 || stage == 10) {
252 struct kvm_clock_data clock = {0};
253
254 vm_ioctl(vm, KVM_SET_CLOCK, &clock);
255 }
256 }
257
258 out:
259 kvm_vm_free(vm);
260 }
261