1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30
31 static QemuOptsList qed_create_opts;
32
bdrv_qed_probe(const uint8_t * buf,int buf_size,const char * filename)33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
35 {
36 const QEDHeader *header = (const QEDHeader *)buf;
37
38 if (buf_size < sizeof(*header)) {
39 return 0;
40 }
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
43 }
44 return 100;
45 }
46
47 /**
48 * Check whether an image format is raw
49 *
50 * @fmt: Backing file format, may be NULL
51 */
qed_fmt_is_raw(const char * fmt)52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54 return fmt && strcmp(fmt, "raw") == 0;
55 }
56
qed_header_le_to_cpu(const QEDHeader * le,QEDHeader * cpu)57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71
qed_header_cpu_to_le(const QEDHeader * cpu,QEDHeader * le)72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86
qed_write_header_sync(BDRVQEDState * s)87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89 QEDHeader le;
90
91 qed_header_cpu_to_le(&s->header, &le);
92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
97 *
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
100 *
101 * No new allocating reqs can start while this function runs.
102 */
qed_write_header(BDRVQEDState * s)103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
109 */
110
111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112 size_t len = nsectors * BDRV_SECTOR_SIZE;
113 uint8_t *buf;
114 int ret;
115
116 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117
118 buf = qemu_blockalign(s->bs, len);
119
120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121 if (ret < 0) {
122 goto out;
123 }
124
125 /* Update header */
126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127
128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
129 if (ret < 0) {
130 goto out;
131 }
132
133 ret = 0;
134 out:
135 qemu_vfree(buf);
136 return ret;
137 }
138
qed_max_image_size(uint32_t cluster_size,uint32_t table_size)139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141 uint64_t table_entries;
142 uint64_t l2_size;
143
144 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145 l2_size = table_entries * cluster_size;
146
147 return l2_size * table_entries;
148 }
149
qed_is_cluster_size_valid(uint32_t cluster_size)150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153 cluster_size > QED_MAX_CLUSTER_SIZE) {
154 return false;
155 }
156 if (cluster_size & (cluster_size - 1)) {
157 return false; /* not power of 2 */
158 }
159 return true;
160 }
161
qed_is_table_size_valid(uint32_t table_size)162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164 if (table_size < QED_MIN_TABLE_SIZE ||
165 table_size > QED_MAX_TABLE_SIZE) {
166 return false;
167 }
168 if (table_size & (table_size - 1)) {
169 return false; /* not power of 2 */
170 }
171 return true;
172 }
173
qed_is_image_size_valid(uint64_t image_size,uint32_t cluster_size,uint32_t table_size)174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175 uint32_t table_size)
176 {
177 if (image_size % BDRV_SECTOR_SIZE != 0) {
178 return false; /* not multiple of sector size */
179 }
180 if (image_size > qed_max_image_size(cluster_size, table_size)) {
181 return false; /* image is too large */
182 }
183 return true;
184 }
185
186 /**
187 * Read a string of known length from the image file
188 *
189 * @file: Image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
195 *
196 * The string is NUL-terminated.
197 */
198 static int coroutine_fn GRAPH_RDLOCK
qed_read_string(BdrvChild * file,uint64_t offset,size_t n,char * buf,size_t buflen)199 qed_read_string(BdrvChild *file, uint64_t offset,
200 size_t n, char *buf, size_t buflen)
201 {
202 int ret;
203 if (n >= buflen) {
204 return -EINVAL;
205 }
206 ret = bdrv_co_pread(file, offset, n, buf, 0);
207 if (ret < 0) {
208 return ret;
209 }
210 buf[n] = '\0';
211 return 0;
212 }
213
214 /**
215 * Allocate new clusters
216 *
217 * @s: QED state
218 * @n: Number of contiguous clusters to allocate
219 * @ret: Offset of first allocated cluster
220 *
221 * This function only produces the offset where the new clusters should be
222 * written. It updates BDRVQEDState but does not make any changes to the image
223 * file.
224 *
225 * Called with table_lock held.
226 */
qed_alloc_clusters(BDRVQEDState * s,unsigned int n)227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 {
229 uint64_t offset = s->file_size;
230 s->file_size += n * s->header.cluster_size;
231 return offset;
232 }
233
qed_alloc_table(BDRVQEDState * s)234 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 {
236 /* Honor O_DIRECT memory alignment requirements */
237 return qemu_blockalign(s->bs,
238 s->header.cluster_size * s->header.table_size);
239 }
240
241 /**
242 * Allocate a new zeroed L2 table
243 *
244 * Called with table_lock held.
245 */
qed_new_l2_table(BDRVQEDState * s)246 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
247 {
248 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
249
250 l2_table->table = qed_alloc_table(s);
251 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
252
253 memset(l2_table->table->offsets, 0,
254 s->header.cluster_size * s->header.table_size);
255 return l2_table;
256 }
257
qed_plug_allocating_write_reqs(BDRVQEDState * s)258 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
259 {
260 qemu_co_mutex_lock(&s->table_lock);
261
262 /* No reentrancy is allowed. */
263 assert(!s->allocating_write_reqs_plugged);
264 if (s->allocating_acb != NULL) {
265 /* Another allocating write came concurrently. This cannot happen
266 * from bdrv_qed_drain_begin, but it can happen when the timer runs.
267 */
268 qemu_co_mutex_unlock(&s->table_lock);
269 return false;
270 }
271
272 s->allocating_write_reqs_plugged = true;
273 qemu_co_mutex_unlock(&s->table_lock);
274 return true;
275 }
276
qed_unplug_allocating_write_reqs(BDRVQEDState * s)277 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
278 {
279 qemu_co_mutex_lock(&s->table_lock);
280 assert(s->allocating_write_reqs_plugged);
281 s->allocating_write_reqs_plugged = false;
282 qemu_co_queue_next(&s->allocating_write_reqs);
283 qemu_co_mutex_unlock(&s->table_lock);
284 }
285
qed_need_check_timer(BDRVQEDState * s)286 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
287 {
288 int ret;
289
290 trace_qed_need_check_timer_cb(s);
291 assert_bdrv_graph_readable();
292
293 if (!qed_plug_allocating_write_reqs(s)) {
294 return;
295 }
296
297 /* Ensure writes are on disk before clearing flag */
298 ret = bdrv_co_flush(s->bs->file->bs);
299 if (ret < 0) {
300 qed_unplug_allocating_write_reqs(s);
301 return;
302 }
303
304 s->header.features &= ~QED_F_NEED_CHECK;
305 ret = qed_write_header(s);
306 (void) ret;
307
308 qed_unplug_allocating_write_reqs(s);
309
310 ret = bdrv_co_flush(s->bs);
311 (void) ret;
312 }
313
qed_need_check_timer_entry(void * opaque)314 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
315 {
316 BDRVQEDState *s = opaque;
317 GRAPH_RDLOCK_GUARD();
318
319 qed_need_check_timer(opaque);
320 bdrv_dec_in_flight(s->bs);
321 }
322
qed_need_check_timer_cb(void * opaque)323 static void qed_need_check_timer_cb(void *opaque)
324 {
325 BDRVQEDState *s = opaque;
326 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
327
328 bdrv_inc_in_flight(s->bs);
329 qemu_coroutine_enter(co);
330 }
331
qed_start_need_check_timer(BDRVQEDState * s)332 static void qed_start_need_check_timer(BDRVQEDState *s)
333 {
334 trace_qed_start_need_check_timer(s);
335
336 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
337 * migration.
338 */
339 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
340 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
341 }
342
343 /* It's okay to call this multiple times or when no timer is started */
qed_cancel_need_check_timer(BDRVQEDState * s)344 static void qed_cancel_need_check_timer(BDRVQEDState *s)
345 {
346 trace_qed_cancel_need_check_timer(s);
347 timer_del(s->need_check_timer);
348 }
349
bdrv_qed_detach_aio_context(BlockDriverState * bs)350 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
351 {
352 BDRVQEDState *s = bs->opaque;
353
354 qed_cancel_need_check_timer(s);
355 timer_free(s->need_check_timer);
356 }
357
bdrv_qed_attach_aio_context(BlockDriverState * bs,AioContext * new_context)358 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
359 AioContext *new_context)
360 {
361 BDRVQEDState *s = bs->opaque;
362
363 s->need_check_timer = aio_timer_new(new_context,
364 QEMU_CLOCK_VIRTUAL, SCALE_NS,
365 qed_need_check_timer_cb, s);
366 if (s->header.features & QED_F_NEED_CHECK) {
367 qed_start_need_check_timer(s);
368 }
369 }
370
bdrv_qed_drain_begin(BlockDriverState * bs)371 static void bdrv_qed_drain_begin(BlockDriverState *bs)
372 {
373 BDRVQEDState *s = bs->opaque;
374
375 /* Fire the timer immediately in order to start doing I/O as soon as the
376 * header is flushed.
377 */
378 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
379 Coroutine *co;
380
381 qed_cancel_need_check_timer(s);
382 co = qemu_coroutine_create(qed_need_check_timer_entry, s);
383 bdrv_inc_in_flight(bs);
384 aio_co_enter(bdrv_get_aio_context(bs), co);
385 }
386 }
387
bdrv_qed_init_state(BlockDriverState * bs)388 static void bdrv_qed_init_state(BlockDriverState *bs)
389 {
390 BDRVQEDState *s = bs->opaque;
391
392 memset(s, 0, sizeof(BDRVQEDState));
393 s->bs = bs;
394 qemu_co_mutex_init(&s->table_lock);
395 qemu_co_queue_init(&s->allocating_write_reqs);
396 }
397
398 /* Called with table_lock held. */
399 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_do_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)400 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
401 {
402 BDRVQEDState *s = bs->opaque;
403 QEDHeader le_header;
404 int64_t file_size;
405 int ret;
406
407 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
408 if (ret < 0) {
409 error_setg(errp, "Failed to read QED header");
410 return ret;
411 }
412 qed_header_le_to_cpu(&le_header, &s->header);
413
414 if (s->header.magic != QED_MAGIC) {
415 error_setg(errp, "Image not in QED format");
416 return -EINVAL;
417 }
418 if (s->header.features & ~QED_FEATURE_MASK) {
419 /* image uses unsupported feature bits */
420 error_setg(errp, "Unsupported QED features: %" PRIx64,
421 s->header.features & ~QED_FEATURE_MASK);
422 return -ENOTSUP;
423 }
424 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
425 error_setg(errp, "QED cluster size is invalid");
426 return -EINVAL;
427 }
428
429 /* Round down file size to the last cluster */
430 file_size = bdrv_co_getlength(bs->file->bs);
431 if (file_size < 0) {
432 error_setg(errp, "Failed to get file length");
433 return file_size;
434 }
435 s->file_size = qed_start_of_cluster(s, file_size);
436
437 if (!qed_is_table_size_valid(s->header.table_size)) {
438 error_setg(errp, "QED table size is invalid");
439 return -EINVAL;
440 }
441 if (!qed_is_image_size_valid(s->header.image_size,
442 s->header.cluster_size,
443 s->header.table_size)) {
444 error_setg(errp, "QED image size is invalid");
445 return -EINVAL;
446 }
447 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
448 error_setg(errp, "QED table offset is invalid");
449 return -EINVAL;
450 }
451
452 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
453 sizeof(uint64_t);
454 s->l2_shift = ctz32(s->header.cluster_size);
455 s->l2_mask = s->table_nelems - 1;
456 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
457
458 /* Header size calculation must not overflow uint32_t */
459 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
460 error_setg(errp, "QED header size is too large");
461 return -EINVAL;
462 }
463
464 if ((s->header.features & QED_F_BACKING_FILE)) {
465 g_autofree char *backing_file_str = NULL;
466
467 if ((uint64_t)s->header.backing_filename_offset +
468 s->header.backing_filename_size >
469 s->header.cluster_size * s->header.header_size) {
470 error_setg(errp, "QED backing filename offset is invalid");
471 return -EINVAL;
472 }
473
474 backing_file_str = g_malloc(sizeof(bs->backing_file));
475 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
476 s->header.backing_filename_size,
477 backing_file_str, sizeof(bs->backing_file));
478 if (ret < 0) {
479 error_setg(errp, "Failed to read backing filename");
480 return ret;
481 }
482
483 if (!g_str_equal(backing_file_str, bs->backing_file)) {
484 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
485 backing_file_str);
486 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
487 backing_file_str);
488 }
489
490 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
491 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
492 }
493 }
494
495 /* Reset unknown autoclear feature bits. This is a backwards
496 * compatibility mechanism that allows images to be opened by older
497 * programs, which "knock out" unknown feature bits. When an image is
498 * opened by a newer program again it can detect that the autoclear
499 * feature is no longer valid.
500 */
501 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
502 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
503 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
504
505 ret = qed_write_header_sync(s);
506 if (ret) {
507 error_setg(errp, "Failed to update header");
508 return ret;
509 }
510
511 /* From here on only known autoclear feature bits are valid */
512 bdrv_co_flush(bs->file->bs);
513 }
514
515 s->l1_table = qed_alloc_table(s);
516 qed_init_l2_cache(&s->l2_cache);
517
518 ret = qed_read_l1_table_sync(s);
519 if (ret) {
520 error_setg(errp, "Failed to read L1 table");
521 goto out;
522 }
523
524 /* If image was not closed cleanly, check consistency */
525 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
526 /* Read-only images cannot be fixed. There is no risk of corruption
527 * since write operations are not possible. Therefore, allow
528 * potentially inconsistent images to be opened read-only. This can
529 * aid data recovery from an otherwise inconsistent image.
530 */
531 if (!bdrv_is_read_only(bs->file->bs) &&
532 !(flags & BDRV_O_INACTIVE)) {
533 BdrvCheckResult result = {0};
534
535 ret = qed_check(s, &result, true);
536 if (ret) {
537 error_setg(errp, "Image corrupted");
538 goto out;
539 }
540 }
541 }
542
543 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
544
545 out:
546 if (ret) {
547 qed_free_l2_cache(&s->l2_cache);
548 qemu_vfree(s->l1_table);
549 }
550 return ret;
551 }
552
553 typedef struct QEDOpenCo {
554 BlockDriverState *bs;
555 QDict *options;
556 int flags;
557 Error **errp;
558 int ret;
559 } QEDOpenCo;
560
bdrv_qed_open_entry(void * opaque)561 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
562 {
563 QEDOpenCo *qoc = opaque;
564 BDRVQEDState *s = qoc->bs->opaque;
565
566 GRAPH_RDLOCK_GUARD();
567
568 qemu_co_mutex_lock(&s->table_lock);
569 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
570 qemu_co_mutex_unlock(&s->table_lock);
571 }
572
bdrv_qed_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)573 static int coroutine_mixed_fn bdrv_qed_open(BlockDriverState *bs, QDict *options,
574 int flags, Error **errp)
575 {
576 QEDOpenCo qoc = {
577 .bs = bs,
578 .options = options,
579 .flags = flags,
580 .errp = errp,
581 .ret = -EINPROGRESS
582 };
583 int ret;
584
585 ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
586 if (ret < 0) {
587 return ret;
588 }
589
590 bdrv_qed_init_state(bs);
591 assert(!qemu_in_coroutine());
592 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
593 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
594 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
595
596 return qoc.ret;
597 }
598
bdrv_qed_refresh_limits(BlockDriverState * bs,Error ** errp)599 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
600 {
601 BDRVQEDState *s = bs->opaque;
602
603 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
604 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
605 }
606
607 /* We have nothing to do for QED reopen, stubs just return
608 * success */
bdrv_qed_reopen_prepare(BDRVReopenState * state,BlockReopenQueue * queue,Error ** errp)609 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
610 BlockReopenQueue *queue, Error **errp)
611 {
612 return 0;
613 }
614
bdrv_qed_do_close(BlockDriverState * bs)615 static void GRAPH_RDLOCK bdrv_qed_do_close(BlockDriverState *bs)
616 {
617 BDRVQEDState *s = bs->opaque;
618
619 bdrv_qed_detach_aio_context(bs);
620
621 /* Ensure writes reach stable storage */
622 bdrv_flush(bs->file->bs);
623
624 /* Clean shutdown, no check required on next open */
625 if (s->header.features & QED_F_NEED_CHECK) {
626 s->header.features &= ~QED_F_NEED_CHECK;
627 qed_write_header_sync(s);
628 }
629
630 qed_free_l2_cache(&s->l2_cache);
631 qemu_vfree(s->l1_table);
632 }
633
bdrv_qed_close(BlockDriverState * bs)634 static void GRAPH_UNLOCKED bdrv_qed_close(BlockDriverState *bs)
635 {
636 GLOBAL_STATE_CODE();
637 GRAPH_RDLOCK_GUARD_MAINLOOP();
638
639 bdrv_qed_do_close(bs);
640 }
641
642 static int coroutine_fn GRAPH_UNLOCKED
bdrv_qed_co_create(BlockdevCreateOptions * opts,Error ** errp)643 bdrv_qed_co_create(BlockdevCreateOptions *opts, Error **errp)
644 {
645 BlockdevCreateOptionsQed *qed_opts;
646 BlockBackend *blk = NULL;
647 BlockDriverState *bs = NULL;
648
649 QEDHeader header;
650 QEDHeader le_header;
651 uint8_t *l1_table = NULL;
652 size_t l1_size;
653 int ret = 0;
654
655 assert(opts->driver == BLOCKDEV_DRIVER_QED);
656 qed_opts = &opts->u.qed;
657
658 /* Validate options and set default values */
659 if (!qed_opts->has_cluster_size) {
660 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
661 }
662 if (!qed_opts->has_table_size) {
663 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
664 }
665
666 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
667 error_setg(errp, "QED cluster size must be within range [%u, %u] "
668 "and power of 2",
669 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
670 return -EINVAL;
671 }
672 if (!qed_is_table_size_valid(qed_opts->table_size)) {
673 error_setg(errp, "QED table size must be within range [%u, %u] "
674 "and power of 2",
675 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
676 return -EINVAL;
677 }
678 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
679 qed_opts->table_size))
680 {
681 error_setg(errp, "QED image size must be a non-zero multiple of "
682 "cluster size and less than %" PRIu64 " bytes",
683 qed_max_image_size(qed_opts->cluster_size,
684 qed_opts->table_size));
685 return -EINVAL;
686 }
687
688 /* Create BlockBackend to write to the image */
689 bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
690 if (bs == NULL) {
691 return -EIO;
692 }
693
694 blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
695 errp);
696 if (!blk) {
697 ret = -EPERM;
698 goto out;
699 }
700 blk_set_allow_write_beyond_eof(blk, true);
701
702 /* Prepare image format */
703 header = (QEDHeader) {
704 .magic = QED_MAGIC,
705 .cluster_size = qed_opts->cluster_size,
706 .table_size = qed_opts->table_size,
707 .header_size = 1,
708 .features = 0,
709 .compat_features = 0,
710 .l1_table_offset = qed_opts->cluster_size,
711 .image_size = qed_opts->size,
712 };
713
714 l1_size = header.cluster_size * header.table_size;
715
716 /*
717 * The QED format associates file length with allocation status,
718 * so a new file (which is empty) must have a length of 0.
719 */
720 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
721 if (ret < 0) {
722 goto out;
723 }
724
725 if (qed_opts->backing_file) {
726 header.features |= QED_F_BACKING_FILE;
727 header.backing_filename_offset = sizeof(le_header);
728 header.backing_filename_size = strlen(qed_opts->backing_file);
729
730 if (qed_opts->has_backing_fmt) {
731 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
732 if (qed_fmt_is_raw(backing_fmt)) {
733 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
734 }
735 }
736 }
737
738 qed_header_cpu_to_le(&header, &le_header);
739 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
740 if (ret < 0) {
741 goto out;
742 }
743 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
744 qed_opts->backing_file, 0);
745 if (ret < 0) {
746 goto out;
747 }
748
749 l1_table = g_malloc0(l1_size);
750 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
751 if (ret < 0) {
752 goto out;
753 }
754
755 ret = 0; /* success */
756 out:
757 g_free(l1_table);
758 blk_co_unref(blk);
759 bdrv_co_unref(bs);
760 return ret;
761 }
762
763 static int coroutine_fn GRAPH_UNLOCKED
bdrv_qed_co_create_opts(BlockDriver * drv,const char * filename,QemuOpts * opts,Error ** errp)764 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
765 QemuOpts *opts, Error **errp)
766 {
767 BlockdevCreateOptions *create_options = NULL;
768 QDict *qdict;
769 Visitor *v;
770 BlockDriverState *bs = NULL;
771 int ret;
772
773 static const QDictRenames opt_renames[] = {
774 { BLOCK_OPT_BACKING_FILE, "backing-file" },
775 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
776 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
777 { BLOCK_OPT_TABLE_SIZE, "table-size" },
778 { NULL, NULL },
779 };
780
781 /* Parse options and convert legacy syntax */
782 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
783
784 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
785 ret = -EINVAL;
786 goto fail;
787 }
788
789 /* Create and open the file (protocol layer) */
790 ret = bdrv_co_create_file(filename, opts, errp);
791 if (ret < 0) {
792 goto fail;
793 }
794
795 bs = bdrv_co_open(filename, NULL, NULL,
796 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
797 if (bs == NULL) {
798 ret = -EIO;
799 goto fail;
800 }
801
802 /* Now get the QAPI type BlockdevCreateOptions */
803 qdict_put_str(qdict, "driver", "qed");
804 qdict_put_str(qdict, "file", bs->node_name);
805
806 v = qobject_input_visitor_new_flat_confused(qdict, errp);
807 if (!v) {
808 ret = -EINVAL;
809 goto fail;
810 }
811
812 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
813 visit_free(v);
814 if (!create_options) {
815 ret = -EINVAL;
816 goto fail;
817 }
818
819 /* Silently round up size */
820 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
821 create_options->u.qed.size =
822 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
823
824 /* Create the qed image (format layer) */
825 ret = bdrv_qed_co_create(create_options, errp);
826
827 fail:
828 qobject_unref(qdict);
829 bdrv_co_unref(bs);
830 qapi_free_BlockdevCreateOptions(create_options);
831 return ret;
832 }
833
834 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_block_status(BlockDriverState * bs,bool want_zero,int64_t pos,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)835 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
836 int64_t bytes, int64_t *pnum, int64_t *map,
837 BlockDriverState **file)
838 {
839 BDRVQEDState *s = bs->opaque;
840 size_t len = MIN(bytes, SIZE_MAX);
841 int status;
842 QEDRequest request = { .l2_table = NULL };
843 uint64_t offset;
844 int ret;
845
846 qemu_co_mutex_lock(&s->table_lock);
847 ret = qed_find_cluster(s, &request, pos, &len, &offset);
848
849 *pnum = len;
850 switch (ret) {
851 case QED_CLUSTER_FOUND:
852 *map = offset | qed_offset_into_cluster(s, pos);
853 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
854 *file = bs->file->bs;
855 break;
856 case QED_CLUSTER_ZERO:
857 status = BDRV_BLOCK_ZERO;
858 break;
859 case QED_CLUSTER_L2:
860 case QED_CLUSTER_L1:
861 status = 0;
862 break;
863 default:
864 assert(ret < 0);
865 status = ret;
866 break;
867 }
868
869 qed_unref_l2_cache_entry(request.l2_table);
870 qemu_co_mutex_unlock(&s->table_lock);
871
872 return status;
873 }
874
acb_to_s(QEDAIOCB * acb)875 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
876 {
877 return acb->bs->opaque;
878 }
879
880 /**
881 * Read from the backing file or zero-fill if no backing file
882 *
883 * @s: QED state
884 * @pos: Byte position in device
885 * @qiov: Destination I/O vector
886 *
887 * This function reads qiov->size bytes starting at pos from the backing file.
888 * If there is no backing file then zeroes are read.
889 */
890 static int coroutine_fn GRAPH_RDLOCK
qed_read_backing_file(BDRVQEDState * s,uint64_t pos,QEMUIOVector * qiov)891 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
892 {
893 if (s->bs->backing) {
894 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
895 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
896 }
897 qemu_iovec_memset(qiov, 0, 0, qiov->size);
898 return 0;
899 }
900
901 /**
902 * Copy data from backing file into the image
903 *
904 * @s: QED state
905 * @pos: Byte position in device
906 * @len: Number of bytes
907 * @offset: Byte offset in image file
908 */
909 static int coroutine_fn GRAPH_RDLOCK
qed_copy_from_backing_file(BDRVQEDState * s,uint64_t pos,uint64_t len,uint64_t offset)910 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
911 uint64_t offset)
912 {
913 QEMUIOVector qiov;
914 int ret;
915
916 /* Skip copy entirely if there is no work to do */
917 if (len == 0) {
918 return 0;
919 }
920
921 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
922
923 ret = qed_read_backing_file(s, pos, &qiov);
924
925 if (ret) {
926 goto out;
927 }
928
929 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_COW_WRITE);
930 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
931 if (ret < 0) {
932 goto out;
933 }
934 ret = 0;
935 out:
936 qemu_vfree(qemu_iovec_buf(&qiov));
937 return ret;
938 }
939
940 /**
941 * Link one or more contiguous clusters into a table
942 *
943 * @s: QED state
944 * @table: L2 table
945 * @index: First cluster index
946 * @n: Number of contiguous clusters
947 * @cluster: First cluster offset
948 *
949 * The cluster offset may be an allocated byte offset in the image file, the
950 * zero cluster marker, or the unallocated cluster marker.
951 *
952 * Called with table_lock held.
953 */
qed_update_l2_table(BDRVQEDState * s,QEDTable * table,int index,unsigned int n,uint64_t cluster)954 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
955 int index, unsigned int n,
956 uint64_t cluster)
957 {
958 int i;
959 for (i = index; i < index + n; i++) {
960 table->offsets[i] = cluster;
961 if (!qed_offset_is_unalloc_cluster(cluster) &&
962 !qed_offset_is_zero_cluster(cluster)) {
963 cluster += s->header.cluster_size;
964 }
965 }
966 }
967
968 /* Called with table_lock held. */
qed_aio_complete(QEDAIOCB * acb)969 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
970 {
971 BDRVQEDState *s = acb_to_s(acb);
972
973 /* Free resources */
974 qemu_iovec_destroy(&acb->cur_qiov);
975 qed_unref_l2_cache_entry(acb->request.l2_table);
976
977 /* Free the buffer we may have allocated for zero writes */
978 if (acb->flags & QED_AIOCB_ZERO) {
979 qemu_vfree(acb->qiov->iov[0].iov_base);
980 acb->qiov->iov[0].iov_base = NULL;
981 }
982
983 /* Start next allocating write request waiting behind this one. Note that
984 * requests enqueue themselves when they first hit an unallocated cluster
985 * but they wait until the entire request is finished before waking up the
986 * next request in the queue. This ensures that we don't cycle through
987 * requests multiple times but rather finish one at a time completely.
988 */
989 if (acb == s->allocating_acb) {
990 s->allocating_acb = NULL;
991 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
992 qemu_co_queue_next(&s->allocating_write_reqs);
993 } else if (s->header.features & QED_F_NEED_CHECK) {
994 qed_start_need_check_timer(s);
995 }
996 }
997 }
998
999 /**
1000 * Update L1 table with new L2 table offset and write it out
1001 *
1002 * Called with table_lock held.
1003 */
qed_aio_write_l1_update(QEDAIOCB * acb)1004 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
1005 {
1006 BDRVQEDState *s = acb_to_s(acb);
1007 CachedL2Table *l2_table = acb->request.l2_table;
1008 uint64_t l2_offset = l2_table->offset;
1009 int index, ret;
1010
1011 index = qed_l1_index(s, acb->cur_pos);
1012 s->l1_table->offsets[index] = l2_table->offset;
1013
1014 ret = qed_write_l1_table(s, index, 1);
1015
1016 /* Commit the current L2 table to the cache */
1017 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1018
1019 /* This is guaranteed to succeed because we just committed the entry to the
1020 * cache.
1021 */
1022 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1023 assert(acb->request.l2_table != NULL);
1024
1025 return ret;
1026 }
1027
1028
1029 /**
1030 * Update L2 table with new cluster offsets and write them out
1031 *
1032 * Called with table_lock held.
1033 */
1034 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_l2_update(QEDAIOCB * acb,uint64_t offset)1035 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1036 {
1037 BDRVQEDState *s = acb_to_s(acb);
1038 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1039 int index, ret;
1040
1041 if (need_alloc) {
1042 qed_unref_l2_cache_entry(acb->request.l2_table);
1043 acb->request.l2_table = qed_new_l2_table(s);
1044 }
1045
1046 index = qed_l2_index(s, acb->cur_pos);
1047 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1048 offset);
1049
1050 if (need_alloc) {
1051 /* Write out the whole new L2 table */
1052 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1053 if (ret) {
1054 return ret;
1055 }
1056 return qed_aio_write_l1_update(acb);
1057 } else {
1058 /* Write out only the updated part of the L2 table */
1059 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1060 false);
1061 if (ret) {
1062 return ret;
1063 }
1064 }
1065 return 0;
1066 }
1067
1068 /**
1069 * Write data to the image file
1070 *
1071 * Called with table_lock *not* held.
1072 */
qed_aio_write_main(QEDAIOCB * acb)1073 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1074 {
1075 BDRVQEDState *s = acb_to_s(acb);
1076 uint64_t offset = acb->cur_cluster +
1077 qed_offset_into_cluster(s, acb->cur_pos);
1078
1079 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1080
1081 BLKDBG_CO_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1082 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1083 &acb->cur_qiov, 0);
1084 }
1085
1086 /**
1087 * Populate untouched regions of new data cluster
1088 *
1089 * Called with table_lock held.
1090 */
qed_aio_write_cow(QEDAIOCB * acb)1091 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1092 {
1093 BDRVQEDState *s = acb_to_s(acb);
1094 uint64_t start, len, offset;
1095 int ret;
1096
1097 qemu_co_mutex_unlock(&s->table_lock);
1098
1099 /* Populate front untouched region of new data cluster */
1100 start = qed_start_of_cluster(s, acb->cur_pos);
1101 len = qed_offset_into_cluster(s, acb->cur_pos);
1102
1103 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1104 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1105 if (ret < 0) {
1106 goto out;
1107 }
1108
1109 /* Populate back untouched region of new data cluster */
1110 start = acb->cur_pos + acb->cur_qiov.size;
1111 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1112 offset = acb->cur_cluster +
1113 qed_offset_into_cluster(s, acb->cur_pos) +
1114 acb->cur_qiov.size;
1115
1116 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1117 ret = qed_copy_from_backing_file(s, start, len, offset);
1118 if (ret < 0) {
1119 goto out;
1120 }
1121
1122 ret = qed_aio_write_main(acb);
1123 if (ret < 0) {
1124 goto out;
1125 }
1126
1127 if (s->bs->backing) {
1128 /*
1129 * Flush new data clusters before updating the L2 table
1130 *
1131 * This flush is necessary when a backing file is in use. A crash
1132 * during an allocating write could result in empty clusters in the
1133 * image. If the write only touched a subregion of the cluster,
1134 * then backing image sectors have been lost in the untouched
1135 * region. The solution is to flush after writing a new data
1136 * cluster and before updating the L2 table.
1137 */
1138 ret = bdrv_co_flush(s->bs->file->bs);
1139 }
1140
1141 out:
1142 qemu_co_mutex_lock(&s->table_lock);
1143 return ret;
1144 }
1145
1146 /**
1147 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1148 */
qed_should_set_need_check(BDRVQEDState * s)1149 static bool GRAPH_RDLOCK qed_should_set_need_check(BDRVQEDState *s)
1150 {
1151 /* The flush before L2 update path ensures consistency */
1152 if (s->bs->backing) {
1153 return false;
1154 }
1155
1156 return !(s->header.features & QED_F_NEED_CHECK);
1157 }
1158
1159 /**
1160 * Write new data cluster
1161 *
1162 * @acb: Write request
1163 * @len: Length in bytes
1164 *
1165 * This path is taken when writing to previously unallocated clusters.
1166 *
1167 * Called with table_lock held.
1168 */
1169 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_alloc(QEDAIOCB * acb,size_t len)1170 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1171 {
1172 BDRVQEDState *s = acb_to_s(acb);
1173 int ret;
1174
1175 /* Cancel timer when the first allocating request comes in */
1176 if (s->allocating_acb == NULL) {
1177 qed_cancel_need_check_timer(s);
1178 }
1179
1180 /* Freeze this request if another allocating write is in progress */
1181 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1182 if (s->allocating_acb != NULL) {
1183 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1184 assert(s->allocating_acb == NULL);
1185 }
1186 s->allocating_acb = acb;
1187 return -EAGAIN; /* start over with looking up table entries */
1188 }
1189
1190 acb->cur_nclusters = qed_bytes_to_clusters(s,
1191 qed_offset_into_cluster(s, acb->cur_pos) + len);
1192 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1193
1194 if (acb->flags & QED_AIOCB_ZERO) {
1195 /* Skip ahead if the clusters are already zero */
1196 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1197 return 0;
1198 }
1199 acb->cur_cluster = 1;
1200 } else {
1201 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1202 }
1203
1204 if (qed_should_set_need_check(s)) {
1205 s->header.features |= QED_F_NEED_CHECK;
1206 ret = qed_write_header(s);
1207 if (ret < 0) {
1208 return ret;
1209 }
1210 }
1211
1212 if (!(acb->flags & QED_AIOCB_ZERO)) {
1213 ret = qed_aio_write_cow(acb);
1214 if (ret < 0) {
1215 return ret;
1216 }
1217 }
1218
1219 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1220 }
1221
1222 /**
1223 * Write data cluster in place
1224 *
1225 * @acb: Write request
1226 * @offset: Cluster offset in bytes
1227 * @len: Length in bytes
1228 *
1229 * This path is taken when writing to already allocated clusters.
1230 *
1231 * Called with table_lock held.
1232 */
1233 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_inplace(QEDAIOCB * acb,uint64_t offset,size_t len)1234 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1235 {
1236 BDRVQEDState *s = acb_to_s(acb);
1237 int r;
1238
1239 qemu_co_mutex_unlock(&s->table_lock);
1240
1241 /* Allocate buffer for zero writes */
1242 if (acb->flags & QED_AIOCB_ZERO) {
1243 struct iovec *iov = acb->qiov->iov;
1244
1245 if (!iov->iov_base) {
1246 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1247 if (iov->iov_base == NULL) {
1248 r = -ENOMEM;
1249 goto out;
1250 }
1251 memset(iov->iov_base, 0, iov->iov_len);
1252 }
1253 }
1254
1255 /* Calculate the I/O vector */
1256 acb->cur_cluster = offset;
1257 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1258
1259 /* Do the actual write. */
1260 r = qed_aio_write_main(acb);
1261 out:
1262 qemu_co_mutex_lock(&s->table_lock);
1263 return r;
1264 }
1265
1266 /**
1267 * Write data cluster
1268 *
1269 * @opaque: Write request
1270 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1271 * @offset: Cluster offset in bytes
1272 * @len: Length in bytes
1273 *
1274 * Called with table_lock held.
1275 */
1276 static int coroutine_fn GRAPH_RDLOCK
qed_aio_write_data(void * opaque,int ret,uint64_t offset,size_t len)1277 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1278 {
1279 QEDAIOCB *acb = opaque;
1280
1281 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1282
1283 acb->find_cluster_ret = ret;
1284
1285 switch (ret) {
1286 case QED_CLUSTER_FOUND:
1287 return qed_aio_write_inplace(acb, offset, len);
1288
1289 case QED_CLUSTER_L2:
1290 case QED_CLUSTER_L1:
1291 case QED_CLUSTER_ZERO:
1292 return qed_aio_write_alloc(acb, len);
1293
1294 default:
1295 g_assert_not_reached();
1296 }
1297 }
1298
1299 /**
1300 * Read data cluster
1301 *
1302 * @opaque: Read request
1303 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1304 * @offset: Cluster offset in bytes
1305 * @len: Length in bytes
1306 *
1307 * Called with table_lock held.
1308 */
1309 static int coroutine_fn GRAPH_RDLOCK
qed_aio_read_data(void * opaque,int ret,uint64_t offset,size_t len)1310 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1311 {
1312 QEDAIOCB *acb = opaque;
1313 BDRVQEDState *s = acb_to_s(acb);
1314 BlockDriverState *bs = acb->bs;
1315 int r;
1316
1317 qemu_co_mutex_unlock(&s->table_lock);
1318
1319 /* Adjust offset into cluster */
1320 offset += qed_offset_into_cluster(s, acb->cur_pos);
1321
1322 trace_qed_aio_read_data(s, acb, ret, offset, len);
1323
1324 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1325
1326 /* Handle zero cluster and backing file reads, otherwise read
1327 * data cluster directly.
1328 */
1329 if (ret == QED_CLUSTER_ZERO) {
1330 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1331 r = 0;
1332 } else if (ret != QED_CLUSTER_FOUND) {
1333 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1334 } else {
1335 BLKDBG_CO_EVENT(bs->file, BLKDBG_READ_AIO);
1336 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1337 &acb->cur_qiov, 0);
1338 }
1339
1340 qemu_co_mutex_lock(&s->table_lock);
1341 return r;
1342 }
1343
1344 /**
1345 * Begin next I/O or complete the request
1346 */
qed_aio_next_io(QEDAIOCB * acb)1347 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1348 {
1349 BDRVQEDState *s = acb_to_s(acb);
1350 uint64_t offset;
1351 size_t len;
1352 int ret;
1353
1354 qemu_co_mutex_lock(&s->table_lock);
1355 while (1) {
1356 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1357
1358 acb->qiov_offset += acb->cur_qiov.size;
1359 acb->cur_pos += acb->cur_qiov.size;
1360 qemu_iovec_reset(&acb->cur_qiov);
1361
1362 /* Complete request */
1363 if (acb->cur_pos >= acb->end_pos) {
1364 ret = 0;
1365 break;
1366 }
1367
1368 /* Find next cluster and start I/O */
1369 len = acb->end_pos - acb->cur_pos;
1370 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1371 if (ret < 0) {
1372 break;
1373 }
1374
1375 if (acb->flags & QED_AIOCB_WRITE) {
1376 ret = qed_aio_write_data(acb, ret, offset, len);
1377 } else {
1378 ret = qed_aio_read_data(acb, ret, offset, len);
1379 }
1380
1381 if (ret < 0 && ret != -EAGAIN) {
1382 break;
1383 }
1384 }
1385
1386 trace_qed_aio_complete(s, acb, ret);
1387 qed_aio_complete(acb);
1388 qemu_co_mutex_unlock(&s->table_lock);
1389 return ret;
1390 }
1391
1392 static int coroutine_fn GRAPH_RDLOCK
qed_co_request(BlockDriverState * bs,int64_t sector_num,QEMUIOVector * qiov,int nb_sectors,int flags)1393 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1394 int nb_sectors, int flags)
1395 {
1396 QEDAIOCB acb = {
1397 .bs = bs,
1398 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1399 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1400 .qiov = qiov,
1401 .flags = flags,
1402 };
1403 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1404
1405 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1406
1407 /* Start request */
1408 return qed_aio_next_io(&acb);
1409 }
1410
1411 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_readv(BlockDriverState * bs,int64_t sector_num,int nb_sectors,QEMUIOVector * qiov)1412 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1413 QEMUIOVector *qiov)
1414 {
1415 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1416 }
1417
1418 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_writev(BlockDriverState * bs,int64_t sector_num,int nb_sectors,QEMUIOVector * qiov,int flags)1419 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1420 QEMUIOVector *qiov, int flags)
1421 {
1422 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1423 }
1424
1425 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1426 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1427 BdrvRequestFlags flags)
1428 {
1429 BDRVQEDState *s = bs->opaque;
1430
1431 /*
1432 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1433 * then it will be allocated during request processing.
1434 */
1435 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1436
1437 /*
1438 * QED is not prepared for 63bit write-zero requests, so rely on
1439 * max_pwrite_zeroes.
1440 */
1441 assert(bytes <= INT_MAX);
1442
1443 /* Fall back if the request is not aligned */
1444 if (qed_offset_into_cluster(s, offset) ||
1445 qed_offset_into_cluster(s, bytes)) {
1446 return -ENOTSUP;
1447 }
1448
1449 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1450 bytes >> BDRV_SECTOR_BITS,
1451 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1452 }
1453
1454 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_truncate(BlockDriverState * bs,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)1455 bdrv_qed_co_truncate(BlockDriverState *bs, int64_t offset, bool exact,
1456 PreallocMode prealloc, BdrvRequestFlags flags,
1457 Error **errp)
1458 {
1459 BDRVQEDState *s = bs->opaque;
1460 uint64_t old_image_size;
1461 int ret;
1462
1463 if (prealloc != PREALLOC_MODE_OFF) {
1464 error_setg(errp, "Unsupported preallocation mode '%s'",
1465 PreallocMode_str(prealloc));
1466 return -ENOTSUP;
1467 }
1468
1469 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1470 s->header.table_size)) {
1471 error_setg(errp, "Invalid image size specified");
1472 return -EINVAL;
1473 }
1474
1475 if ((uint64_t)offset < s->header.image_size) {
1476 error_setg(errp, "Shrinking images is currently not supported");
1477 return -ENOTSUP;
1478 }
1479
1480 old_image_size = s->header.image_size;
1481 s->header.image_size = offset;
1482 ret = qed_write_header_sync(s);
1483 if (ret < 0) {
1484 s->header.image_size = old_image_size;
1485 error_setg_errno(errp, -ret, "Failed to update the image size");
1486 }
1487 return ret;
1488 }
1489
bdrv_qed_co_getlength(BlockDriverState * bs)1490 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1491 {
1492 BDRVQEDState *s = bs->opaque;
1493 return s->header.image_size;
1494 }
1495
1496 static int coroutine_fn
bdrv_qed_co_get_info(BlockDriverState * bs,BlockDriverInfo * bdi)1497 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1498 {
1499 BDRVQEDState *s = bs->opaque;
1500
1501 memset(bdi, 0, sizeof(*bdi));
1502 bdi->cluster_size = s->header.cluster_size;
1503 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1504 return 0;
1505 }
1506
1507 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_change_backing_file(BlockDriverState * bs,const char * backing_file,const char * backing_fmt)1508 bdrv_qed_co_change_backing_file(BlockDriverState *bs, const char *backing_file,
1509 const char *backing_fmt)
1510 {
1511 BDRVQEDState *s = bs->opaque;
1512 QEDHeader new_header, le_header;
1513 void *buffer;
1514 size_t buffer_len, backing_file_len;
1515 int ret;
1516
1517 /* Refuse to set backing filename if unknown compat feature bits are
1518 * active. If the image uses an unknown compat feature then we may not
1519 * know the layout of data following the header structure and cannot safely
1520 * add a new string.
1521 */
1522 if (backing_file && (s->header.compat_features &
1523 ~QED_COMPAT_FEATURE_MASK)) {
1524 return -ENOTSUP;
1525 }
1526
1527 memcpy(&new_header, &s->header, sizeof(new_header));
1528
1529 new_header.features &= ~(QED_F_BACKING_FILE |
1530 QED_F_BACKING_FORMAT_NO_PROBE);
1531
1532 /* Adjust feature flags */
1533 if (backing_file) {
1534 new_header.features |= QED_F_BACKING_FILE;
1535
1536 if (qed_fmt_is_raw(backing_fmt)) {
1537 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1538 }
1539 }
1540
1541 /* Calculate new header size */
1542 backing_file_len = 0;
1543
1544 if (backing_file) {
1545 backing_file_len = strlen(backing_file);
1546 }
1547
1548 buffer_len = sizeof(new_header);
1549 new_header.backing_filename_offset = buffer_len;
1550 new_header.backing_filename_size = backing_file_len;
1551 buffer_len += backing_file_len;
1552
1553 /* Make sure we can rewrite header without failing */
1554 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1555 return -ENOSPC;
1556 }
1557
1558 /* Prepare new header */
1559 buffer = g_malloc(buffer_len);
1560
1561 qed_header_cpu_to_le(&new_header, &le_header);
1562 memcpy(buffer, &le_header, sizeof(le_header));
1563 buffer_len = sizeof(le_header);
1564
1565 if (backing_file) {
1566 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1567 buffer_len += backing_file_len;
1568 }
1569
1570 /* Write new header */
1571 ret = bdrv_co_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1572 g_free(buffer);
1573 if (ret == 0) {
1574 memcpy(&s->header, &new_header, sizeof(new_header));
1575 }
1576 return ret;
1577 }
1578
1579 static void coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_invalidate_cache(BlockDriverState * bs,Error ** errp)1580 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1581 {
1582 ERRP_GUARD();
1583 BDRVQEDState *s = bs->opaque;
1584 int ret;
1585
1586 bdrv_qed_do_close(bs);
1587
1588 bdrv_qed_init_state(bs);
1589 qemu_co_mutex_lock(&s->table_lock);
1590 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1591 qemu_co_mutex_unlock(&s->table_lock);
1592 if (ret < 0) {
1593 error_prepend(errp, "Could not reopen qed layer: ");
1594 }
1595 }
1596
1597 static int coroutine_fn GRAPH_RDLOCK
bdrv_qed_co_check(BlockDriverState * bs,BdrvCheckResult * result,BdrvCheckMode fix)1598 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1599 BdrvCheckMode fix)
1600 {
1601 BDRVQEDState *s = bs->opaque;
1602 int ret;
1603
1604 qemu_co_mutex_lock(&s->table_lock);
1605 ret = qed_check(s, result, !!fix);
1606 qemu_co_mutex_unlock(&s->table_lock);
1607
1608 return ret;
1609 }
1610
1611 static QemuOptsList qed_create_opts = {
1612 .name = "qed-create-opts",
1613 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1614 .desc = {
1615 {
1616 .name = BLOCK_OPT_SIZE,
1617 .type = QEMU_OPT_SIZE,
1618 .help = "Virtual disk size"
1619 },
1620 {
1621 .name = BLOCK_OPT_BACKING_FILE,
1622 .type = QEMU_OPT_STRING,
1623 .help = "File name of a base image"
1624 },
1625 {
1626 .name = BLOCK_OPT_BACKING_FMT,
1627 .type = QEMU_OPT_STRING,
1628 .help = "Image format of the base image"
1629 },
1630 {
1631 .name = BLOCK_OPT_CLUSTER_SIZE,
1632 .type = QEMU_OPT_SIZE,
1633 .help = "Cluster size (in bytes)",
1634 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1635 },
1636 {
1637 .name = BLOCK_OPT_TABLE_SIZE,
1638 .type = QEMU_OPT_SIZE,
1639 .help = "L1/L2 table size (in clusters)"
1640 },
1641 { /* end of list */ }
1642 }
1643 };
1644
1645 static BlockDriver bdrv_qed = {
1646 .format_name = "qed",
1647 .instance_size = sizeof(BDRVQEDState),
1648 .create_opts = &qed_create_opts,
1649 .is_format = true,
1650 .supports_backing = true,
1651
1652 .bdrv_probe = bdrv_qed_probe,
1653 .bdrv_open = bdrv_qed_open,
1654 .bdrv_close = bdrv_qed_close,
1655 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1656 .bdrv_child_perm = bdrv_default_perms,
1657 .bdrv_co_create = bdrv_qed_co_create,
1658 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1659 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1660 .bdrv_co_block_status = bdrv_qed_co_block_status,
1661 .bdrv_co_readv = bdrv_qed_co_readv,
1662 .bdrv_co_writev = bdrv_qed_co_writev,
1663 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1664 .bdrv_co_truncate = bdrv_qed_co_truncate,
1665 .bdrv_co_getlength = bdrv_qed_co_getlength,
1666 .bdrv_co_get_info = bdrv_qed_co_get_info,
1667 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1668 .bdrv_co_change_backing_file = bdrv_qed_co_change_backing_file,
1669 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1670 .bdrv_co_check = bdrv_qed_co_check,
1671 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1672 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1673 .bdrv_drain_begin = bdrv_qed_drain_begin,
1674 };
1675
bdrv_qed_init(void)1676 static void bdrv_qed_init(void)
1677 {
1678 bdrv_register(&bdrv_qed);
1679 }
1680
1681 block_init(bdrv_qed_init);
1682