xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35 
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38 
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
43 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44 
45 /*
46  * Two to anticipate panels that can do cmd/vid dynamic switching
47  * plan is to create all possible physical encoder types, and switch between
48  * them at runtime
49  */
50 #define NUM_PHYS_ENCODER_TYPES 2
51 
52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
53 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
54 
55 #define MAX_CHANNELS_PER_ENC 2
56 
57 #define IDLE_SHORT_TIMEOUT	1
58 
59 #define MAX_HDISPLAY_SPLIT 1080
60 
61 /* timeout in frames waiting for frame done */
62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
63 
64 /**
65  * enum dpu_enc_rc_events - events for resource control state machine
66  * @DPU_ENC_RC_EVENT_KICKOFF:
67  *	This event happens at NORMAL priority.
68  *	Event that signals the start of the transfer. When this event is
69  *	received, enable MDP/DSI core clocks. Regardless of the previous
70  *	state, the resource should be in ON state at the end of this event.
71  * @DPU_ENC_RC_EVENT_FRAME_DONE:
72  *	This event happens at INTERRUPT level.
73  *	Event signals the end of the data transfer after the PP FRAME_DONE
74  *	event. At the end of this event, a delayed work is scheduled to go to
75  *	IDLE_PC state after IDLE_TIMEOUT time.
76  * @DPU_ENC_RC_EVENT_PRE_STOP:
77  *	This event happens at NORMAL priority.
78  *	This event, when received during the ON state, leave the RC STATE
79  *	in the PRE_OFF state. It should be followed by the STOP event as
80  *	part of encoder disable.
81  *	If received during IDLE or OFF states, it will do nothing.
82  * @DPU_ENC_RC_EVENT_STOP:
83  *	This event happens at NORMAL priority.
84  *	When this event is received, disable all the MDP/DSI core clocks, and
85  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
86  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
87  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
88  *	Resource state should be in OFF at the end of the event.
89  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
90  *	This event happens at NORMAL priority from a work item.
91  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
92  *	This would disable MDP/DSI core clocks and change the resource state
93  *	to IDLE.
94  */
95 enum dpu_enc_rc_events {
96 	DPU_ENC_RC_EVENT_KICKOFF = 1,
97 	DPU_ENC_RC_EVENT_FRAME_DONE,
98 	DPU_ENC_RC_EVENT_PRE_STOP,
99 	DPU_ENC_RC_EVENT_STOP,
100 	DPU_ENC_RC_EVENT_ENTER_IDLE
101 };
102 
103 /*
104  * enum dpu_enc_rc_states - states that the resource control maintains
105  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
106  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
107  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
108  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
109  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
110  */
111 enum dpu_enc_rc_states {
112 	DPU_ENC_RC_STATE_OFF,
113 	DPU_ENC_RC_STATE_PRE_OFF,
114 	DPU_ENC_RC_STATE_ON,
115 	DPU_ENC_RC_STATE_IDLE
116 };
117 
118 /**
119  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
120  *	encoders. Virtual encoder manages one "logical" display. Physical
121  *	encoders manage one intf block, tied to a specific panel/sub-panel.
122  *	Virtual encoder defers as much as possible to the physical encoders.
123  *	Virtual encoder registers itself with the DRM Framework as the encoder.
124  * @base:		drm_encoder base class for registration with DRM
125  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
126  * @enabled:		True if the encoder is active, protected by enc_lock
127  * @commit_done_timedout: True if there has been a timeout on commit after
128  *			enabling the encoder.
129  * @num_phys_encs:	Actual number of physical encoders contained.
130  * @phys_encs:		Container of physical encoders managed.
131  * @cur_master:		Pointer to the current master in this mode. Optimization
132  *			Only valid after enable. Cleared as disable.
133  * @cur_slave:		As above but for the slave encoder.
134  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @hw_dsc:		Handle to the DSC blocks used for the display.
137  * @dsc_mask:		Bitmask of used DSC blocks.
138  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
139  *			for partial update right-only cases, such as pingpong
140  *			split where virtual pingpong does not generate IRQs
141  * @crtc:		Pointer to the currently assigned crtc. Normally you
142  *			would use crtc->state->encoder_mask to determine the
143  *			link between encoder/crtc. However in this case we need
144  *			to track crtc in the disable() hook which is called
145  *			_after_ encoder_mask is cleared.
146  * @connector:		If a mode is set, cached pointer to the active connector
147  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
148  *				all CTL paths
149  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
150  * @debugfs_root:		Debug file system root file node
151  * @enc_lock:			Lock around physical encoder
152  *				create/destroy/enable/disable
153  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
154  *				busy processing current command.
155  *				Bit0 = phys_encs[0] etc.
156  * @crtc_frame_event_cb:	callback handler for frame event
157  * @crtc_frame_event_cb_data:	callback handler private data
158  * @frame_done_timeout_ms:	frame done timeout in ms
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @disp_info:			local copy of msm_display_info struct
161  * @idle_pc_supported:		indicate if idle power collaps is supported
162  * @rc_lock:			resource control mutex lock to protect
163  *				virt encoder over various state changes
164  * @rc_state:			resource controller state
165  * @delayed_off_work:		delayed worker to schedule disabling of
166  *				clks and resources after IDLE_TIMEOUT time.
167  * @topology:                   topology of the display
168  * @idle_timeout:		idle timeout duration in milliseconds
169  * @wide_bus_en:		wide bus is enabled on this interface
170  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
171  */
172 struct dpu_encoder_virt {
173 	struct drm_encoder base;
174 	spinlock_t enc_spinlock;
175 
176 	bool enabled;
177 	bool commit_done_timedout;
178 
179 	unsigned int num_phys_encs;
180 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
181 	struct dpu_encoder_phys *cur_master;
182 	struct dpu_encoder_phys *cur_slave;
183 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
184 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
185 
186 	unsigned int dsc_mask;
187 
188 	bool intfs_swapped;
189 
190 	struct drm_crtc *crtc;
191 	struct drm_connector *connector;
192 
193 	struct dentry *debugfs_root;
194 	struct mutex enc_lock;
195 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
196 	void (*crtc_frame_event_cb)(void *, u32 event);
197 	void *crtc_frame_event_cb_data;
198 
199 	atomic_t frame_done_timeout_ms;
200 	struct timer_list frame_done_timer;
201 
202 	struct msm_display_info disp_info;
203 
204 	bool idle_pc_supported;
205 	struct mutex rc_lock;
206 	enum dpu_enc_rc_states rc_state;
207 	struct delayed_work delayed_off_work;
208 	struct msm_display_topology topology;
209 
210 	u32 idle_timeout;
211 
212 	bool wide_bus_en;
213 
214 	/* DSC configuration */
215 	struct drm_dsc_config *dsc;
216 };
217 
218 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
219 
220 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
221 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
222 };
223 
224 
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)225 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
226 {
227 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
228 
229 	return dpu_enc->wide_bus_en;
230 }
231 
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)232 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
233 {
234 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
235 
236 	return dpu_enc->dsc ? true : false;
237 }
238 
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)239 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
240 {
241 	struct dpu_encoder_virt *dpu_enc;
242 	int i, num_intf = 0;
243 
244 	dpu_enc = to_dpu_encoder_virt(drm_enc);
245 
246 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
247 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
248 
249 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
250 				&& phys->hw_intf->ops.collect_misr)
251 			num_intf++;
252 	}
253 
254 	return num_intf;
255 }
256 
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)257 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
258 {
259 	struct dpu_encoder_virt *dpu_enc;
260 
261 	int i;
262 
263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
264 
265 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
266 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
267 
268 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
269 			continue;
270 
271 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
272 	}
273 }
274 
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)275 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
276 {
277 	struct dpu_encoder_virt *dpu_enc;
278 
279 	int i, rc = 0, entries_added = 0;
280 
281 	if (!drm_enc->crtc) {
282 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
283 		return -EINVAL;
284 	}
285 
286 	dpu_enc = to_dpu_encoder_virt(drm_enc);
287 
288 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
289 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
290 
291 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
292 			continue;
293 
294 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
295 		if (rc)
296 			return rc;
297 		entries_added++;
298 	}
299 
300 	return entries_added;
301 }
302 
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)303 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
304 {
305 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
306 
307 	if (!hw_pp->ops.setup_dither)
308 		return;
309 
310 	switch (bpc) {
311 	case 6:
312 		dither_cfg.c0_bitdepth = 6;
313 		dither_cfg.c1_bitdepth = 6;
314 		dither_cfg.c2_bitdepth = 6;
315 		dither_cfg.c3_bitdepth = 6;
316 		dither_cfg.temporal_en = 0;
317 		break;
318 	default:
319 		hw_pp->ops.setup_dither(hw_pp, NULL);
320 		return;
321 	}
322 
323 	memcpy(&dither_cfg.matrix, dither_matrix,
324 			sizeof(u32) * DITHER_MATRIX_SZ);
325 
326 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
327 }
328 
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)329 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
330 {
331 	switch (intf_mode) {
332 	case INTF_MODE_VIDEO:
333 		return "INTF_MODE_VIDEO";
334 	case INTF_MODE_CMD:
335 		return "INTF_MODE_CMD";
336 	case INTF_MODE_WB_BLOCK:
337 		return "INTF_MODE_WB_BLOCK";
338 	case INTF_MODE_WB_LINE:
339 		return "INTF_MODE_WB_LINE";
340 	default:
341 		return "INTF_MODE_UNKNOWN";
342 	}
343 }
344 
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)345 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
346 		enum dpu_intr_idx intr_idx)
347 {
348 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
349 			DRMID(phys_enc->parent),
350 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
351 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
352 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
353 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
354 
355 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
356 				DPU_ENCODER_FRAME_EVENT_ERROR);
357 }
358 
359 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
360 		u32 irq_idx, struct dpu_encoder_wait_info *info);
361 
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)362 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
363 		int irq_idx,
364 		void (*func)(void *arg),
365 		struct dpu_encoder_wait_info *wait_info)
366 {
367 	u32 irq_status;
368 	int ret;
369 
370 	if (!wait_info) {
371 		DPU_ERROR("invalid params\n");
372 		return -EINVAL;
373 	}
374 	/* note: do master / slave checking outside */
375 
376 	/* return EWOULDBLOCK since we know the wait isn't necessary */
377 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
378 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
379 			  DRMID(phys_enc->parent), func,
380 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
381 		return -EWOULDBLOCK;
382 	}
383 
384 	if (irq_idx < 0) {
385 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
386 			      DRMID(phys_enc->parent), func);
387 		return 0;
388 	}
389 
390 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
391 		      DRMID(phys_enc->parent), func,
392 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
393 		      atomic_read(wait_info->atomic_cnt));
394 
395 	ret = dpu_encoder_helper_wait_event_timeout(
396 			DRMID(phys_enc->parent),
397 			irq_idx,
398 			wait_info);
399 
400 	if (ret <= 0) {
401 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
402 		if (irq_status) {
403 			unsigned long flags;
404 
405 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
406 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
407 				      DRMID(phys_enc->parent), func,
408 				      phys_enc->hw_pp->idx - PINGPONG_0,
409 				      atomic_read(wait_info->atomic_cnt));
410 			local_irq_save(flags);
411 			func(phys_enc);
412 			local_irq_restore(flags);
413 			ret = 0;
414 		} else {
415 			ret = -ETIMEDOUT;
416 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
417 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
418 				      DRMID(phys_enc->parent), func,
419 				      phys_enc->hw_pp->idx - PINGPONG_0,
420 				      atomic_read(wait_info->atomic_cnt));
421 		}
422 	} else {
423 		ret = 0;
424 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
425 			func, irq_idx,
426 			phys_enc->hw_pp->idx - PINGPONG_0,
427 			atomic_read(wait_info->atomic_cnt));
428 	}
429 
430 	return ret;
431 }
432 
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)433 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
434 {
435 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
436 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
437 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
438 }
439 
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)440 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
441 {
442 	struct dpu_encoder_virt *dpu_enc;
443 	struct dpu_encoder_phys *phys;
444 	int linecount = 0;
445 
446 	dpu_enc = to_dpu_encoder_virt(drm_enc);
447 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
448 
449 	if (phys && phys->ops.get_line_count)
450 		linecount = phys->ops.get_line_count(phys);
451 
452 	return linecount;
453 }
454 
dpu_encoder_destroy(struct drm_encoder * drm_enc)455 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
456 {
457 	struct dpu_encoder_virt *dpu_enc = NULL;
458 	int i = 0;
459 
460 	if (!drm_enc) {
461 		DPU_ERROR("invalid encoder\n");
462 		return;
463 	}
464 
465 	dpu_enc = to_dpu_encoder_virt(drm_enc);
466 	DPU_DEBUG_ENC(dpu_enc, "\n");
467 
468 	mutex_lock(&dpu_enc->enc_lock);
469 
470 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
471 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
472 
473 		if (phys->ops.destroy) {
474 			phys->ops.destroy(phys);
475 			--dpu_enc->num_phys_encs;
476 			dpu_enc->phys_encs[i] = NULL;
477 		}
478 	}
479 
480 	if (dpu_enc->num_phys_encs)
481 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
482 				dpu_enc->num_phys_encs);
483 	dpu_enc->num_phys_encs = 0;
484 	mutex_unlock(&dpu_enc->enc_lock);
485 
486 	drm_encoder_cleanup(drm_enc);
487 	mutex_destroy(&dpu_enc->enc_lock);
488 }
489 
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)490 void dpu_encoder_helper_split_config(
491 		struct dpu_encoder_phys *phys_enc,
492 		enum dpu_intf interface)
493 {
494 	struct dpu_encoder_virt *dpu_enc;
495 	struct split_pipe_cfg cfg = { 0 };
496 	struct dpu_hw_mdp *hw_mdptop;
497 	struct msm_display_info *disp_info;
498 
499 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
500 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
501 		return;
502 	}
503 
504 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
505 	hw_mdptop = phys_enc->hw_mdptop;
506 	disp_info = &dpu_enc->disp_info;
507 
508 	if (disp_info->intf_type != INTF_DSI)
509 		return;
510 
511 	/**
512 	 * disable split modes since encoder will be operating in as the only
513 	 * encoder, either for the entire use case in the case of, for example,
514 	 * single DSI, or for this frame in the case of left/right only partial
515 	 * update.
516 	 */
517 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
518 		if (hw_mdptop->ops.setup_split_pipe)
519 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
520 		return;
521 	}
522 
523 	cfg.en = true;
524 	cfg.mode = phys_enc->intf_mode;
525 	cfg.intf = interface;
526 
527 	if (cfg.en && phys_enc->ops.needs_single_flush &&
528 			phys_enc->ops.needs_single_flush(phys_enc))
529 		cfg.split_flush_en = true;
530 
531 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
532 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
533 
534 		if (hw_mdptop->ops.setup_split_pipe)
535 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
536 	}
537 }
538 
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)539 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
540 {
541 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
542 	int i, intf_count = 0, num_dsc = 0;
543 
544 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
545 		if (dpu_enc->phys_encs[i])
546 			intf_count++;
547 
548 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
549 	if (dpu_enc->dsc)
550 		num_dsc = 2;
551 
552 	return (num_dsc > 0) && (num_dsc > intf_count);
553 }
554 
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)555 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
556 {
557 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
558 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
559 	int index = dpu_enc->disp_info.h_tile_instance[0];
560 
561 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
562 		return msm_dsi_get_dsc_config(priv->dsi[index]);
563 
564 	return NULL;
565 }
566 
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode,struct drm_crtc_state * crtc_state,struct drm_dsc_config * dsc)567 static struct msm_display_topology dpu_encoder_get_topology(
568 			struct dpu_encoder_virt *dpu_enc,
569 			struct dpu_kms *dpu_kms,
570 			struct drm_display_mode *mode,
571 			struct drm_crtc_state *crtc_state,
572 			struct drm_dsc_config *dsc)
573 {
574 	struct msm_display_topology topology = {0};
575 	int i, intf_count = 0;
576 
577 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
578 		if (dpu_enc->phys_encs[i])
579 			intf_count++;
580 
581 	/* Datapath topology selection
582 	 *
583 	 * Dual display
584 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
585 	 *
586 	 * Single display
587 	 * 1 LM, 1 INTF
588 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
589 	 *
590 	 * Add dspps to the reservation requirements if ctm is requested
591 	 */
592 	if (intf_count == 2)
593 		topology.num_lm = 2;
594 	else if (!dpu_kms->catalog->caps->has_3d_merge)
595 		topology.num_lm = 1;
596 	else
597 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
598 
599 	if (crtc_state->ctm)
600 		topology.num_dspp = topology.num_lm;
601 
602 	topology.num_intf = intf_count;
603 
604 	if (dsc) {
605 		/*
606 		 * In case of Display Stream Compression (DSC), we would use
607 		 * 2 DSC encoders, 2 layer mixers and 1 interface
608 		 * this is power optimal and can drive up to (including) 4k
609 		 * screens
610 		 */
611 		topology.num_dsc = 2;
612 		topology.num_lm = 2;
613 		topology.num_intf = 1;
614 	}
615 
616 	return topology;
617 }
618 
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)619 static int dpu_encoder_virt_atomic_check(
620 		struct drm_encoder *drm_enc,
621 		struct drm_crtc_state *crtc_state,
622 		struct drm_connector_state *conn_state)
623 {
624 	struct dpu_encoder_virt *dpu_enc;
625 	struct msm_drm_private *priv;
626 	struct dpu_kms *dpu_kms;
627 	struct drm_display_mode *adj_mode;
628 	struct msm_display_topology topology;
629 	struct dpu_global_state *global_state;
630 	struct drm_dsc_config *dsc;
631 	int i = 0;
632 	int ret = 0;
633 
634 	if (!drm_enc || !crtc_state || !conn_state) {
635 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
636 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
637 		return -EINVAL;
638 	}
639 
640 	dpu_enc = to_dpu_encoder_virt(drm_enc);
641 	DPU_DEBUG_ENC(dpu_enc, "\n");
642 
643 	priv = drm_enc->dev->dev_private;
644 	dpu_kms = to_dpu_kms(priv->kms);
645 	adj_mode = &crtc_state->adjusted_mode;
646 	global_state = dpu_kms_get_global_state(crtc_state->state);
647 	if (IS_ERR(global_state))
648 		return PTR_ERR(global_state);
649 
650 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
651 
652 	/* perform atomic check on the first physical encoder (master) */
653 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
654 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
655 
656 		if (phys->ops.atomic_check)
657 			ret = phys->ops.atomic_check(phys, crtc_state,
658 					conn_state);
659 		if (ret) {
660 			DPU_ERROR_ENC(dpu_enc,
661 					"mode unsupported, phys idx %d\n", i);
662 			return ret;
663 		}
664 	}
665 
666 	dsc = dpu_encoder_get_dsc_config(drm_enc);
667 
668 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
669 
670 	/*
671 	 * Release and Allocate resources on every modeset
672 	 */
673 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
674 		dpu_rm_release(global_state, drm_enc);
675 
676 		if (crtc_state->enable)
677 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
678 					drm_enc, crtc_state, topology);
679 	}
680 
681 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
682 
683 	return ret;
684 }
685 
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)686 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
687 			struct msm_display_info *disp_info)
688 {
689 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
690 	struct msm_drm_private *priv;
691 	struct dpu_kms *dpu_kms;
692 	struct dpu_hw_mdp *hw_mdptop;
693 	struct drm_encoder *drm_enc;
694 	struct dpu_encoder_phys *phys_enc;
695 	int i;
696 
697 	if (!dpu_enc || !disp_info) {
698 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
699 					dpu_enc != NULL, disp_info != NULL);
700 		return;
701 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
702 		DPU_ERROR("invalid num phys enc %d/%d\n",
703 				dpu_enc->num_phys_encs,
704 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
705 		return;
706 	}
707 
708 	drm_enc = &dpu_enc->base;
709 	/* this pointers are checked in virt_enable_helper */
710 	priv = drm_enc->dev->dev_private;
711 
712 	dpu_kms = to_dpu_kms(priv->kms);
713 	hw_mdptop = dpu_kms->hw_mdp;
714 	if (!hw_mdptop) {
715 		DPU_ERROR("invalid mdptop\n");
716 		return;
717 	}
718 
719 	if (hw_mdptop->ops.setup_vsync_source &&
720 			disp_info->is_cmd_mode) {
721 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
722 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
723 
724 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
725 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
726 
727 		if (disp_info->is_te_using_watchdog_timer)
728 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
729 		else
730 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
731 
732 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
733 
734 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
735 			phys_enc = dpu_enc->phys_encs[i];
736 
737 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
738 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
739 						vsync_cfg.vsync_source);
740 		}
741 	}
742 }
743 
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)744 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
745 {
746 	struct dpu_encoder_virt *dpu_enc;
747 	int i;
748 
749 	if (!drm_enc) {
750 		DPU_ERROR("invalid encoder\n");
751 		return;
752 	}
753 
754 	dpu_enc = to_dpu_encoder_virt(drm_enc);
755 
756 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
757 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
758 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
759 
760 		if (phys->ops.irq_control)
761 			phys->ops.irq_control(phys, enable);
762 	}
763 
764 }
765 
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)766 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
767 		bool enable)
768 {
769 	struct msm_drm_private *priv;
770 	struct dpu_kms *dpu_kms;
771 	struct dpu_encoder_virt *dpu_enc;
772 
773 	dpu_enc = to_dpu_encoder_virt(drm_enc);
774 	priv = drm_enc->dev->dev_private;
775 	dpu_kms = to_dpu_kms(priv->kms);
776 
777 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
778 
779 	if (!dpu_enc->cur_master) {
780 		DPU_ERROR("encoder master not set\n");
781 		return;
782 	}
783 
784 	if (enable) {
785 		/* enable DPU core clks */
786 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
787 
788 		/* enable all the irq */
789 		_dpu_encoder_irq_control(drm_enc, true);
790 
791 	} else {
792 		/* disable all the irq */
793 		_dpu_encoder_irq_control(drm_enc, false);
794 
795 		/* disable DPU core clks */
796 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
797 	}
798 
799 }
800 
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)801 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
802 		u32 sw_event)
803 {
804 	struct dpu_encoder_virt *dpu_enc;
805 	struct msm_drm_private *priv;
806 	bool is_vid_mode = false;
807 
808 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
809 		DPU_ERROR("invalid parameters\n");
810 		return -EINVAL;
811 	}
812 	dpu_enc = to_dpu_encoder_virt(drm_enc);
813 	priv = drm_enc->dev->dev_private;
814 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
815 
816 	/*
817 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
818 	 * events and return early for other events (ie wb display).
819 	 */
820 	if (!dpu_enc->idle_pc_supported &&
821 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
822 			sw_event != DPU_ENC_RC_EVENT_STOP &&
823 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
824 		return 0;
825 
826 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
827 			 dpu_enc->rc_state, "begin");
828 
829 	switch (sw_event) {
830 	case DPU_ENC_RC_EVENT_KICKOFF:
831 		/* cancel delayed off work, if any */
832 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
833 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
834 					sw_event);
835 
836 		mutex_lock(&dpu_enc->rc_lock);
837 
838 		/* return if the resource control is already in ON state */
839 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
840 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
841 				      DRMID(drm_enc), sw_event);
842 			mutex_unlock(&dpu_enc->rc_lock);
843 			return 0;
844 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
845 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
846 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
847 				      DRMID(drm_enc), sw_event,
848 				      dpu_enc->rc_state);
849 			mutex_unlock(&dpu_enc->rc_lock);
850 			return -EINVAL;
851 		}
852 
853 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
854 			_dpu_encoder_irq_control(drm_enc, true);
855 		else
856 			_dpu_encoder_resource_control_helper(drm_enc, true);
857 
858 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
859 
860 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
861 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
862 				 "kickoff");
863 
864 		mutex_unlock(&dpu_enc->rc_lock);
865 		break;
866 
867 	case DPU_ENC_RC_EVENT_FRAME_DONE:
868 		/*
869 		 * mutex lock is not used as this event happens at interrupt
870 		 * context. And locking is not required as, the other events
871 		 * like KICKOFF and STOP does a wait-for-idle before executing
872 		 * the resource_control
873 		 */
874 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
875 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
876 				      DRMID(drm_enc), sw_event,
877 				      dpu_enc->rc_state);
878 			return -EINVAL;
879 		}
880 
881 		/*
882 		 * schedule off work item only when there are no
883 		 * frames pending
884 		 */
885 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
886 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
887 				      DRMID(drm_enc));
888 			return 0;
889 		}
890 
891 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
892 				   msecs_to_jiffies(dpu_enc->idle_timeout));
893 
894 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
895 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
896 				 "frame done");
897 		break;
898 
899 	case DPU_ENC_RC_EVENT_PRE_STOP:
900 		/* cancel delayed off work, if any */
901 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
902 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
903 					sw_event);
904 
905 		mutex_lock(&dpu_enc->rc_lock);
906 
907 		if (is_vid_mode &&
908 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
909 			_dpu_encoder_irq_control(drm_enc, true);
910 		}
911 		/* skip if is already OFF or IDLE, resources are off already */
912 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
913 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
914 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
915 				      DRMID(drm_enc), sw_event,
916 				      dpu_enc->rc_state);
917 			mutex_unlock(&dpu_enc->rc_lock);
918 			return 0;
919 		}
920 
921 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
922 
923 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
924 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
925 				 "pre stop");
926 
927 		mutex_unlock(&dpu_enc->rc_lock);
928 		break;
929 
930 	case DPU_ENC_RC_EVENT_STOP:
931 		mutex_lock(&dpu_enc->rc_lock);
932 
933 		/* return if the resource control is already in OFF state */
934 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
935 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
936 				      DRMID(drm_enc), sw_event);
937 			mutex_unlock(&dpu_enc->rc_lock);
938 			return 0;
939 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
940 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
941 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
942 			mutex_unlock(&dpu_enc->rc_lock);
943 			return -EINVAL;
944 		}
945 
946 		/**
947 		 * expect to arrive here only if in either idle state or pre-off
948 		 * and in IDLE state the resources are already disabled
949 		 */
950 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
951 			_dpu_encoder_resource_control_helper(drm_enc, false);
952 
953 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
954 
955 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
956 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
957 				 "stop");
958 
959 		mutex_unlock(&dpu_enc->rc_lock);
960 		break;
961 
962 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
963 		mutex_lock(&dpu_enc->rc_lock);
964 
965 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
966 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
967 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
968 			mutex_unlock(&dpu_enc->rc_lock);
969 			return 0;
970 		}
971 
972 		/*
973 		 * if we are in ON but a frame was just kicked off,
974 		 * ignore the IDLE event, it's probably a stale timer event
975 		 */
976 		if (dpu_enc->frame_busy_mask[0]) {
977 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
978 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
979 			mutex_unlock(&dpu_enc->rc_lock);
980 			return 0;
981 		}
982 
983 		if (is_vid_mode)
984 			_dpu_encoder_irq_control(drm_enc, false);
985 		else
986 			_dpu_encoder_resource_control_helper(drm_enc, false);
987 
988 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
989 
990 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
991 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
992 				 "idle");
993 
994 		mutex_unlock(&dpu_enc->rc_lock);
995 		break;
996 
997 	default:
998 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
999 			  sw_event);
1000 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1001 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1002 				 "error");
1003 		break;
1004 	}
1005 
1006 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1007 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1008 			 "end");
1009 	return 0;
1010 }
1011 
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1012 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1013 		struct drm_writeback_job *job)
1014 {
1015 	struct dpu_encoder_virt *dpu_enc;
1016 	int i;
1017 
1018 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1019 
1020 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1021 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1022 
1023 		if (phys->ops.prepare_wb_job)
1024 			phys->ops.prepare_wb_job(phys, job);
1025 
1026 	}
1027 }
1028 
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1029 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1030 		struct drm_writeback_job *job)
1031 {
1032 	struct dpu_encoder_virt *dpu_enc;
1033 	int i;
1034 
1035 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1036 
1037 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1038 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1039 
1040 		if (phys->ops.cleanup_wb_job)
1041 			phys->ops.cleanup_wb_job(phys, job);
1042 
1043 	}
1044 }
1045 
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1046 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1047 					     struct drm_crtc_state *crtc_state,
1048 					     struct drm_connector_state *conn_state)
1049 {
1050 	struct dpu_encoder_virt *dpu_enc;
1051 	struct msm_drm_private *priv;
1052 	struct dpu_kms *dpu_kms;
1053 	struct dpu_crtc_state *cstate;
1054 	struct dpu_global_state *global_state;
1055 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1056 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1057 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1058 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1059 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1060 	int num_lm, num_ctl, num_pp, num_dsc;
1061 	unsigned int dsc_mask = 0;
1062 	int i;
1063 
1064 	if (!drm_enc) {
1065 		DPU_ERROR("invalid encoder\n");
1066 		return;
1067 	}
1068 
1069 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1070 	DPU_DEBUG_ENC(dpu_enc, "\n");
1071 
1072 	priv = drm_enc->dev->dev_private;
1073 	dpu_kms = to_dpu_kms(priv->kms);
1074 
1075 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1076 	if (IS_ERR_OR_NULL(global_state)) {
1077 		DPU_ERROR("Failed to get global state");
1078 		return;
1079 	}
1080 
1081 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1082 
1083 	/* Query resource that have been reserved in atomic check step. */
1084 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1085 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1086 		ARRAY_SIZE(hw_pp));
1087 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1088 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1089 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1090 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1091 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1092 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1093 		ARRAY_SIZE(hw_dspp));
1094 
1095 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1096 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1097 						: NULL;
1098 
1099 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1100 						drm_enc->base.id, DPU_HW_BLK_DSC,
1101 						hw_dsc, ARRAY_SIZE(hw_dsc));
1102 	for (i = 0; i < num_dsc; i++) {
1103 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1104 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1105 	}
1106 
1107 	dpu_enc->dsc_mask = dsc_mask;
1108 
1109 	cstate = to_dpu_crtc_state(crtc_state);
1110 
1111 	for (i = 0; i < num_lm; i++) {
1112 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1113 
1114 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1115 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1116 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1117 	}
1118 
1119 	cstate->num_mixers = num_lm;
1120 
1121 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1122 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1123 
1124 		phys->hw_pp = dpu_enc->hw_pp[i];
1125 		if (!phys->hw_pp) {
1126 			DPU_ERROR_ENC(dpu_enc,
1127 				"no pp block assigned at idx: %d\n", i);
1128 			return;
1129 		}
1130 
1131 		phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1132 		if (!phys->hw_ctl) {
1133 			DPU_ERROR_ENC(dpu_enc,
1134 				"no ctl block assigned at idx: %d\n", i);
1135 			return;
1136 		}
1137 
1138 		phys->cached_mode = crtc_state->adjusted_mode;
1139 		if (phys->ops.atomic_mode_set)
1140 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1141 	}
1142 }
1143 
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1144 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1145 {
1146 	struct dpu_encoder_virt *dpu_enc = NULL;
1147 	int i;
1148 
1149 	if (!drm_enc || !drm_enc->dev) {
1150 		DPU_ERROR("invalid parameters\n");
1151 		return;
1152 	}
1153 
1154 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1155 	if (!dpu_enc || !dpu_enc->cur_master) {
1156 		DPU_ERROR("invalid dpu encoder/master\n");
1157 		return;
1158 	}
1159 
1160 
1161 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1162 		dpu_enc->cur_master->hw_mdptop &&
1163 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1164 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1165 			dpu_enc->cur_master->hw_mdptop);
1166 
1167 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1168 
1169 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1170 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1171 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1172 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1173 			if (!dpu_enc->hw_pp[i])
1174 				continue;
1175 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1176 		}
1177 	}
1178 }
1179 
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1180 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1181 {
1182 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1183 
1184 	mutex_lock(&dpu_enc->enc_lock);
1185 
1186 	if (!dpu_enc->enabled)
1187 		goto out;
1188 
1189 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1190 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1191 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1192 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1193 
1194 	_dpu_encoder_virt_enable_helper(drm_enc);
1195 
1196 out:
1197 	mutex_unlock(&dpu_enc->enc_lock);
1198 }
1199 
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1200 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1201 					struct drm_atomic_state *state)
1202 {
1203 	struct dpu_encoder_virt *dpu_enc = NULL;
1204 	int ret = 0;
1205 	struct drm_display_mode *cur_mode = NULL;
1206 
1207 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1208 
1209 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1210 
1211 	mutex_lock(&dpu_enc->enc_lock);
1212 
1213 	dpu_enc->commit_done_timedout = false;
1214 
1215 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1216 
1217 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1218 
1219 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1220 			     cur_mode->vdisplay);
1221 
1222 	/* always enable slave encoder before master */
1223 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1224 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1225 
1226 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1227 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1228 
1229 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1230 	if (ret) {
1231 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1232 				ret);
1233 		goto out;
1234 	}
1235 
1236 	_dpu_encoder_virt_enable_helper(drm_enc);
1237 
1238 	dpu_enc->enabled = true;
1239 
1240 out:
1241 	mutex_unlock(&dpu_enc->enc_lock);
1242 }
1243 
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1244 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1245 					struct drm_atomic_state *state)
1246 {
1247 	struct dpu_encoder_virt *dpu_enc = NULL;
1248 	struct drm_crtc *crtc;
1249 	struct drm_crtc_state *old_state = NULL;
1250 	int i = 0;
1251 
1252 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1253 	DPU_DEBUG_ENC(dpu_enc, "\n");
1254 
1255 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1256 	if (crtc)
1257 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1258 
1259 	/*
1260 	 * The encoder is already disabled if self refresh mode was set earlier,
1261 	 * in the old_state for the corresponding crtc.
1262 	 */
1263 	if (old_state && old_state->self_refresh_active)
1264 		return;
1265 
1266 	mutex_lock(&dpu_enc->enc_lock);
1267 	dpu_enc->enabled = false;
1268 
1269 	trace_dpu_enc_disable(DRMID(drm_enc));
1270 
1271 	/* wait for idle */
1272 	dpu_encoder_wait_for_tx_complete(drm_enc);
1273 
1274 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1275 
1276 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1277 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1278 
1279 		if (phys->ops.disable)
1280 			phys->ops.disable(phys);
1281 	}
1282 
1283 
1284 	/* after phys waits for frame-done, should be no more frames pending */
1285 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1286 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1287 		del_timer_sync(&dpu_enc->frame_done_timer);
1288 	}
1289 
1290 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1291 
1292 	dpu_enc->connector = NULL;
1293 
1294 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1295 
1296 	mutex_unlock(&dpu_enc->enc_lock);
1297 }
1298 
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1299 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1300 		struct dpu_rm *dpu_rm,
1301 		enum dpu_intf_type type, u32 controller_id)
1302 {
1303 	int i = 0;
1304 
1305 	if (type == INTF_WB)
1306 		return NULL;
1307 
1308 	for (i = 0; i < catalog->intf_count; i++) {
1309 		if (catalog->intf[i].type == type
1310 		    && catalog->intf[i].controller_id == controller_id) {
1311 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1312 		}
1313 	}
1314 
1315 	return NULL;
1316 }
1317 
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1318 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1319 		struct dpu_encoder_phys *phy_enc)
1320 {
1321 	struct dpu_encoder_virt *dpu_enc = NULL;
1322 	unsigned long lock_flags;
1323 
1324 	if (!drm_enc || !phy_enc)
1325 		return;
1326 
1327 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1328 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1329 
1330 	atomic_inc(&phy_enc->vsync_cnt);
1331 
1332 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1333 	if (dpu_enc->crtc)
1334 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1335 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1336 
1337 	DPU_ATRACE_END("encoder_vblank_callback");
1338 }
1339 
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1340 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1341 		struct dpu_encoder_phys *phy_enc)
1342 {
1343 	if (!phy_enc)
1344 		return;
1345 
1346 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1347 	atomic_inc(&phy_enc->underrun_cnt);
1348 
1349 	/* trigger dump only on the first underrun */
1350 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1351 		msm_disp_snapshot_state(drm_enc->dev);
1352 
1353 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1354 				  atomic_read(&phy_enc->underrun_cnt));
1355 	DPU_ATRACE_END("encoder_underrun_callback");
1356 }
1357 
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1358 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1359 {
1360 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1361 	unsigned long lock_flags;
1362 
1363 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1364 	/* crtc should always be cleared before re-assigning */
1365 	WARN_ON(crtc && dpu_enc->crtc);
1366 	dpu_enc->crtc = crtc;
1367 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1368 }
1369 
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1370 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1371 					struct drm_crtc *crtc, bool enable)
1372 {
1373 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1374 	unsigned long lock_flags;
1375 	int i;
1376 
1377 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1378 
1379 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1380 	if (dpu_enc->crtc != crtc) {
1381 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1382 		return;
1383 	}
1384 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1385 
1386 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1387 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1388 
1389 		if (phys->ops.control_vblank_irq)
1390 			phys->ops.control_vblank_irq(phys, enable);
1391 	}
1392 }
1393 
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1394 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1395 		void (*frame_event_cb)(void *, u32 event),
1396 		void *frame_event_cb_data)
1397 {
1398 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1399 	unsigned long lock_flags;
1400 	bool enable;
1401 
1402 	enable = frame_event_cb ? true : false;
1403 
1404 	if (!drm_enc) {
1405 		DPU_ERROR("invalid encoder\n");
1406 		return;
1407 	}
1408 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1409 
1410 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1411 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1412 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1413 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1414 }
1415 
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1416 void dpu_encoder_frame_done_callback(
1417 		struct drm_encoder *drm_enc,
1418 		struct dpu_encoder_phys *ready_phys, u32 event)
1419 {
1420 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1421 	unsigned int i;
1422 
1423 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1424 			| DPU_ENCODER_FRAME_EVENT_ERROR
1425 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1426 
1427 		if (!dpu_enc->frame_busy_mask[0]) {
1428 			/**
1429 			 * suppress frame_done without waiter,
1430 			 * likely autorefresh
1431 			 */
1432 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1433 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1434 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1435 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1436 			return;
1437 		}
1438 
1439 		/* One of the physical encoders has become idle */
1440 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1441 			if (dpu_enc->phys_encs[i] == ready_phys) {
1442 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1443 						dpu_enc->frame_busy_mask[0]);
1444 				clear_bit(i, dpu_enc->frame_busy_mask);
1445 			}
1446 		}
1447 
1448 		if (!dpu_enc->frame_busy_mask[0]) {
1449 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1450 			del_timer(&dpu_enc->frame_done_timer);
1451 
1452 			dpu_encoder_resource_control(drm_enc,
1453 					DPU_ENC_RC_EVENT_FRAME_DONE);
1454 
1455 			if (dpu_enc->crtc_frame_event_cb)
1456 				dpu_enc->crtc_frame_event_cb(
1457 					dpu_enc->crtc_frame_event_cb_data,
1458 					event);
1459 		}
1460 	} else {
1461 		if (dpu_enc->crtc_frame_event_cb)
1462 			dpu_enc->crtc_frame_event_cb(
1463 				dpu_enc->crtc_frame_event_cb_data, event);
1464 	}
1465 }
1466 
dpu_encoder_off_work(struct work_struct * work)1467 static void dpu_encoder_off_work(struct work_struct *work)
1468 {
1469 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1470 			struct dpu_encoder_virt, delayed_off_work.work);
1471 
1472 	dpu_encoder_resource_control(&dpu_enc->base,
1473 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1474 
1475 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1476 				DPU_ENCODER_FRAME_EVENT_IDLE);
1477 }
1478 
1479 /**
1480  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1481  * @drm_enc: Pointer to drm encoder structure
1482  * @phys: Pointer to physical encoder structure
1483  * @extra_flush_bits: Additional bit mask to include in flush trigger
1484  */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1485 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1486 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1487 {
1488 	struct dpu_hw_ctl *ctl;
1489 	int pending_kickoff_cnt;
1490 	u32 ret = UINT_MAX;
1491 
1492 	if (!phys->hw_pp) {
1493 		DPU_ERROR("invalid pingpong hw\n");
1494 		return;
1495 	}
1496 
1497 	ctl = phys->hw_ctl;
1498 	if (!ctl->ops.trigger_flush) {
1499 		DPU_ERROR("missing trigger cb\n");
1500 		return;
1501 	}
1502 
1503 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1504 
1505 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1506 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1507 
1508 	ctl->ops.trigger_flush(ctl);
1509 
1510 	if (ctl->ops.get_pending_flush)
1511 		ret = ctl->ops.get_pending_flush(ctl);
1512 
1513 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1514 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1515 			phys->hw_intf ? phys->hw_intf->idx : -1,
1516 			phys->hw_wb ? phys->hw_wb->idx : -1,
1517 			pending_kickoff_cnt, ctl->idx,
1518 			extra_flush_bits, ret);
1519 }
1520 
1521 /**
1522  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1523  * @phys: Pointer to physical encoder structure
1524  */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1525 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1526 {
1527 	if (!phys) {
1528 		DPU_ERROR("invalid argument(s)\n");
1529 		return;
1530 	}
1531 
1532 	if (!phys->hw_pp) {
1533 		DPU_ERROR("invalid pingpong hw\n");
1534 		return;
1535 	}
1536 
1537 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1538 		phys->ops.trigger_start(phys);
1539 }
1540 
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1541 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1542 {
1543 	struct dpu_hw_ctl *ctl;
1544 
1545 	ctl = phys_enc->hw_ctl;
1546 	if (ctl->ops.trigger_start) {
1547 		ctl->ops.trigger_start(ctl);
1548 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1549 	}
1550 }
1551 
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,u32 irq_idx,struct dpu_encoder_wait_info * info)1552 static int dpu_encoder_helper_wait_event_timeout(
1553 		int32_t drm_id,
1554 		u32 irq_idx,
1555 		struct dpu_encoder_wait_info *info)
1556 {
1557 	int rc = 0;
1558 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1559 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1560 	s64 time;
1561 
1562 	do {
1563 		rc = wait_event_timeout(*(info->wq),
1564 				atomic_read(info->atomic_cnt) == 0, jiffies);
1565 		time = ktime_to_ms(ktime_get());
1566 
1567 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1568 						 expected_time,
1569 						 atomic_read(info->atomic_cnt));
1570 	/* If we timed out, counter is valid and time is less, wait again */
1571 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1572 			(time < expected_time));
1573 
1574 	return rc;
1575 }
1576 
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1577 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1578 {
1579 	struct dpu_encoder_virt *dpu_enc;
1580 	struct dpu_hw_ctl *ctl;
1581 	int rc;
1582 	struct drm_encoder *drm_enc;
1583 
1584 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1585 	ctl = phys_enc->hw_ctl;
1586 	drm_enc = phys_enc->parent;
1587 
1588 	if (!ctl->ops.reset)
1589 		return;
1590 
1591 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1592 		      ctl->idx);
1593 
1594 	rc = ctl->ops.reset(ctl);
1595 	if (rc) {
1596 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1597 		msm_disp_snapshot_state(drm_enc->dev);
1598 	}
1599 
1600 	phys_enc->enable_state = DPU_ENC_ENABLED;
1601 }
1602 
1603 /**
1604  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1605  *	Iterate through the physical encoders and perform consolidated flush
1606  *	and/or control start triggering as needed. This is done in the virtual
1607  *	encoder rather than the individual physical ones in order to handle
1608  *	use cases that require visibility into multiple physical encoders at
1609  *	a time.
1610  * @dpu_enc: Pointer to virtual encoder structure
1611  */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1612 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1613 {
1614 	struct dpu_hw_ctl *ctl;
1615 	uint32_t i, pending_flush;
1616 	unsigned long lock_flags;
1617 
1618 	pending_flush = 0x0;
1619 
1620 	/* update pending counts and trigger kickoff ctl flush atomically */
1621 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1622 
1623 	/* don't perform flush/start operations for slave encoders */
1624 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1625 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1626 
1627 		if (phys->enable_state == DPU_ENC_DISABLED)
1628 			continue;
1629 
1630 		ctl = phys->hw_ctl;
1631 
1632 		/*
1633 		 * This is cleared in frame_done worker, which isn't invoked
1634 		 * for async commits. So don't set this for async, since it'll
1635 		 * roll over to the next commit.
1636 		 */
1637 		if (phys->split_role != ENC_ROLE_SLAVE)
1638 			set_bit(i, dpu_enc->frame_busy_mask);
1639 
1640 		if (!phys->ops.needs_single_flush ||
1641 				!phys->ops.needs_single_flush(phys))
1642 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1643 		else if (ctl->ops.get_pending_flush)
1644 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1645 	}
1646 
1647 	/* for split flush, combine pending flush masks and send to master */
1648 	if (pending_flush && dpu_enc->cur_master) {
1649 		_dpu_encoder_trigger_flush(
1650 				&dpu_enc->base,
1651 				dpu_enc->cur_master,
1652 				pending_flush);
1653 	}
1654 
1655 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1656 
1657 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1658 }
1659 
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1660 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1661 {
1662 	struct dpu_encoder_virt *dpu_enc;
1663 	struct dpu_encoder_phys *phys;
1664 	unsigned int i;
1665 	struct dpu_hw_ctl *ctl;
1666 	struct msm_display_info *disp_info;
1667 
1668 	if (!drm_enc) {
1669 		DPU_ERROR("invalid encoder\n");
1670 		return;
1671 	}
1672 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1673 	disp_info = &dpu_enc->disp_info;
1674 
1675 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1676 		phys = dpu_enc->phys_encs[i];
1677 
1678 		ctl = phys->hw_ctl;
1679 		ctl->ops.clear_pending_flush(ctl);
1680 
1681 		/* update only for command mode primary ctl */
1682 		if ((phys == dpu_enc->cur_master) &&
1683 		    disp_info->is_cmd_mode
1684 		    && ctl->ops.trigger_pending)
1685 			ctl->ops.trigger_pending(ctl);
1686 	}
1687 }
1688 
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1689 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1690 		struct drm_display_mode *mode)
1691 {
1692 	u64 pclk_rate;
1693 	u32 pclk_period;
1694 	u32 line_time;
1695 
1696 	/*
1697 	 * For linetime calculation, only operate on master encoder.
1698 	 */
1699 	if (!dpu_enc->cur_master)
1700 		return 0;
1701 
1702 	if (!dpu_enc->cur_master->ops.get_line_count) {
1703 		DPU_ERROR("get_line_count function not defined\n");
1704 		return 0;
1705 	}
1706 
1707 	pclk_rate = mode->clock; /* pixel clock in kHz */
1708 	if (pclk_rate == 0) {
1709 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1710 		return 0;
1711 	}
1712 
1713 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1714 	if (pclk_period == 0) {
1715 		DPU_ERROR("pclk period is 0\n");
1716 		return 0;
1717 	}
1718 
1719 	/*
1720 	 * Line time calculation based on Pixel clock and HTOTAL.
1721 	 * Final unit is in ns.
1722 	 */
1723 	line_time = (pclk_period * mode->htotal) / 1000;
1724 	if (line_time == 0) {
1725 		DPU_ERROR("line time calculation is 0\n");
1726 		return 0;
1727 	}
1728 
1729 	DPU_DEBUG_ENC(dpu_enc,
1730 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1731 			pclk_rate, pclk_period, line_time);
1732 
1733 	return line_time;
1734 }
1735 
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1736 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1737 {
1738 	struct drm_display_mode *mode;
1739 	struct dpu_encoder_virt *dpu_enc;
1740 	u32 cur_line;
1741 	u32 line_time;
1742 	u32 vtotal, time_to_vsync;
1743 	ktime_t cur_time;
1744 
1745 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1746 
1747 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1748 		DPU_ERROR("crtc/crtc state object is NULL\n");
1749 		return -EINVAL;
1750 	}
1751 	mode = &drm_enc->crtc->state->adjusted_mode;
1752 
1753 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1754 	if (!line_time)
1755 		return -EINVAL;
1756 
1757 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1758 
1759 	vtotal = mode->vtotal;
1760 	if (cur_line >= vtotal)
1761 		time_to_vsync = line_time * vtotal;
1762 	else
1763 		time_to_vsync = line_time * (vtotal - cur_line);
1764 
1765 	if (time_to_vsync == 0) {
1766 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1767 				vtotal);
1768 		return -EINVAL;
1769 	}
1770 
1771 	cur_time = ktime_get();
1772 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1773 
1774 	DPU_DEBUG_ENC(dpu_enc,
1775 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1776 			cur_line, vtotal, time_to_vsync,
1777 			ktime_to_ms(cur_time),
1778 			ktime_to_ms(*wakeup_time));
1779 	return 0;
1780 }
1781 
1782 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1783 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1784 				  u32 enc_ip_width)
1785 {
1786 	int ssm_delay, total_pixels, soft_slice_per_enc;
1787 
1788 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1789 
1790 	/*
1791 	 * minimum number of initial line pixels is a sum of:
1792 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1793 	 *    91 for 10 bpc) * 3
1794 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1795 	 * 3. the initial xmit delay
1796 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1797 	 * 5. 6 additional pixels as the output of the rate buffer is
1798 	 *    48 bits wide
1799 	 */
1800 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1801 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1802 	if (soft_slice_per_enc > 1)
1803 		total_pixels += (ssm_delay * 3);
1804 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1805 }
1806 
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1807 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1808 				     struct dpu_hw_dsc *hw_dsc,
1809 				     struct dpu_hw_pingpong *hw_pp,
1810 				     struct drm_dsc_config *dsc,
1811 				     u32 common_mode,
1812 				     u32 initial_lines)
1813 {
1814 	if (hw_dsc->ops.dsc_config)
1815 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1816 
1817 	if (hw_dsc->ops.dsc_config_thresh)
1818 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1819 
1820 	if (hw_pp->ops.setup_dsc)
1821 		hw_pp->ops.setup_dsc(hw_pp);
1822 
1823 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1824 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1825 
1826 	if (hw_pp->ops.enable_dsc)
1827 		hw_pp->ops.enable_dsc(hw_pp);
1828 
1829 	if (ctl->ops.update_pending_flush_dsc)
1830 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1831 }
1832 
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)1833 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1834 				 struct drm_dsc_config *dsc)
1835 {
1836 	/* coding only for 2LM, 2enc, 1 dsc config */
1837 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1838 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1839 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1840 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1841 	int this_frame_slices;
1842 	int intf_ip_w, enc_ip_w;
1843 	int dsc_common_mode;
1844 	int pic_width;
1845 	u32 initial_lines;
1846 	int i;
1847 
1848 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1849 		hw_pp[i] = dpu_enc->hw_pp[i];
1850 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1851 
1852 		if (!hw_pp[i] || !hw_dsc[i]) {
1853 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1854 			return;
1855 		}
1856 	}
1857 
1858 	dsc_common_mode = 0;
1859 	pic_width = dsc->pic_width;
1860 
1861 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1862 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
1863 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
1864 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1865 		dsc_common_mode |= DSC_MODE_VIDEO;
1866 
1867 	this_frame_slices = pic_width / dsc->slice_width;
1868 	intf_ip_w = this_frame_slices * dsc->slice_width;
1869 
1870 	/*
1871 	 * dsc merge case: when using 2 encoders for the same stream,
1872 	 * no. of slices need to be same on both the encoders.
1873 	 */
1874 	enc_ip_w = intf_ip_w / 2;
1875 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1876 
1877 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1878 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1879 					 dsc, dsc_common_mode, initial_lines);
1880 }
1881 
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1882 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1883 {
1884 	struct dpu_encoder_virt *dpu_enc;
1885 	struct dpu_encoder_phys *phys;
1886 	bool needs_hw_reset = false;
1887 	unsigned int i;
1888 
1889 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1890 
1891 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1892 
1893 	/* prepare for next kickoff, may include waiting on previous kickoff */
1894 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1895 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1896 		phys = dpu_enc->phys_encs[i];
1897 		if (phys->ops.prepare_for_kickoff)
1898 			phys->ops.prepare_for_kickoff(phys);
1899 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1900 			needs_hw_reset = true;
1901 	}
1902 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1903 
1904 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1905 
1906 	/* if any phys needs reset, reset all phys, in-order */
1907 	if (needs_hw_reset) {
1908 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1909 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1910 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1911 		}
1912 	}
1913 
1914 	if (dpu_enc->dsc)
1915 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1916 }
1917 
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)1918 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1919 {
1920 	struct dpu_encoder_virt *dpu_enc;
1921 	unsigned int i;
1922 	struct dpu_encoder_phys *phys;
1923 
1924 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1925 
1926 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1927 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1928 			phys = dpu_enc->phys_encs[i];
1929 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1930 				DPU_DEBUG("invalid FB not kicking off\n");
1931 				return false;
1932 			}
1933 		}
1934 	}
1935 
1936 	return true;
1937 }
1938 
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1939 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1940 {
1941 	struct dpu_encoder_virt *dpu_enc;
1942 	struct dpu_encoder_phys *phys;
1943 	unsigned long timeout_ms;
1944 	unsigned int i;
1945 
1946 	DPU_ATRACE_BEGIN("encoder_kickoff");
1947 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1948 
1949 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1950 
1951 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1952 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1953 
1954 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1955 	mod_timer(&dpu_enc->frame_done_timer,
1956 			jiffies + msecs_to_jiffies(timeout_ms));
1957 
1958 	/* All phys encs are ready to go, trigger the kickoff */
1959 	_dpu_encoder_kickoff_phys(dpu_enc);
1960 
1961 	/* allow phys encs to handle any post-kickoff business */
1962 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1963 		phys = dpu_enc->phys_encs[i];
1964 		if (phys->ops.handle_post_kickoff)
1965 			phys->ops.handle_post_kickoff(phys);
1966 	}
1967 
1968 	DPU_ATRACE_END("encoder_kickoff");
1969 }
1970 
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)1971 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1972 {
1973 	struct dpu_hw_mixer_cfg mixer;
1974 	int i, num_lm;
1975 	struct dpu_global_state *global_state;
1976 	struct dpu_hw_blk *hw_lm[2];
1977 	struct dpu_hw_mixer *hw_mixer[2];
1978 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1979 
1980 	memset(&mixer, 0, sizeof(mixer));
1981 
1982 	/* reset all mixers for this encoder */
1983 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1984 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1985 
1986 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1987 
1988 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1989 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1990 
1991 	for (i = 0; i < num_lm; i++) {
1992 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1993 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
1994 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
1995 
1996 		/* clear all blendstages */
1997 		if (phys_enc->hw_ctl->ops.setup_blendstage)
1998 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
1999 	}
2000 }
2001 
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2002 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2003 				     struct dpu_hw_dsc *hw_dsc,
2004 				     struct dpu_hw_pingpong *hw_pp)
2005 {
2006 	if (hw_dsc->ops.dsc_disable)
2007 		hw_dsc->ops.dsc_disable(hw_dsc);
2008 
2009 	if (hw_pp->ops.disable_dsc)
2010 		hw_pp->ops.disable_dsc(hw_pp);
2011 
2012 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2013 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2014 
2015 	if (ctl->ops.update_pending_flush_dsc)
2016 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2017 }
2018 
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2019 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2020 {
2021 	/* coding only for 2LM, 2enc, 1 dsc config */
2022 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2023 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2024 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2025 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2026 	int i;
2027 
2028 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2029 		hw_pp[i] = dpu_enc->hw_pp[i];
2030 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2031 
2032 		if (hw_pp[i] && hw_dsc[i])
2033 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2034 	}
2035 }
2036 
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2037 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2038 {
2039 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2040 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2041 	int i;
2042 	struct dpu_encoder_virt *dpu_enc;
2043 
2044 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2045 
2046 	phys_enc->hw_ctl->ops.reset(ctl);
2047 
2048 	dpu_encoder_helper_reset_mixers(phys_enc);
2049 
2050 	/*
2051 	 * TODO: move the once-only operation like CTL flush/trigger
2052 	 * into dpu_encoder_virt_disable() and all operations which need
2053 	 * to be done per phys encoder into the phys_disable() op.
2054 	 */
2055 	if (phys_enc->hw_wb) {
2056 		/* disable the PP block */
2057 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2058 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2059 
2060 		/* mark WB flush as pending */
2061 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2062 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2063 	} else {
2064 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2065 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2066 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2067 						dpu_enc->phys_encs[i]->hw_intf,
2068 						PINGPONG_NONE);
2069 
2070 			/* mark INTF flush as pending */
2071 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2072 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2073 						dpu_enc->phys_encs[i]->hw_intf->idx);
2074 		}
2075 	}
2076 
2077 	if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2078 		phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2079 
2080 	/* reset the merge 3D HW block */
2081 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2082 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2083 				BLEND_3D_NONE);
2084 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2085 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2086 					phys_enc->hw_pp->merge_3d->idx);
2087 	}
2088 
2089 	if (dpu_enc->dsc) {
2090 		dpu_encoder_unprep_dsc(dpu_enc);
2091 		dpu_enc->dsc = NULL;
2092 	}
2093 
2094 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2095 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2096 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2097 
2098 	if (phys_enc->hw_intf)
2099 		intf_cfg.intf = phys_enc->hw_intf->idx;
2100 	if (phys_enc->hw_wb)
2101 		intf_cfg.wb = phys_enc->hw_wb->idx;
2102 
2103 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2104 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2105 
2106 	if (ctl->ops.reset_intf_cfg)
2107 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2108 
2109 	ctl->ops.trigger_flush(ctl);
2110 	ctl->ops.trigger_start(ctl);
2111 	ctl->ops.clear_pending_flush(ctl);
2112 }
2113 
2114 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2115 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2116 {
2117 	struct dpu_encoder_virt *dpu_enc = s->private;
2118 	int i;
2119 
2120 	mutex_lock(&dpu_enc->enc_lock);
2121 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2122 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2123 
2124 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2125 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2126 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2127 				atomic_read(&phys->vsync_cnt),
2128 				atomic_read(&phys->underrun_cnt));
2129 
2130 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2131 	}
2132 	mutex_unlock(&dpu_enc->enc_lock);
2133 
2134 	return 0;
2135 }
2136 
2137 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2138 
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2139 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2140 {
2141 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2142 
2143 	char name[12];
2144 
2145 	if (!drm_enc->dev) {
2146 		DPU_ERROR("invalid encoder or kms\n");
2147 		return -EINVAL;
2148 	}
2149 
2150 	snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id);
2151 
2152 	/* create overall sub-directory for the encoder */
2153 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2154 			drm_enc->dev->primary->debugfs_root);
2155 
2156 	/* don't error check these */
2157 	debugfs_create_file("status", 0600,
2158 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2159 
2160 	return 0;
2161 }
2162 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)2163 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2164 {
2165 	return 0;
2166 }
2167 #endif
2168 
dpu_encoder_late_register(struct drm_encoder * encoder)2169 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2170 {
2171 	return _dpu_encoder_init_debugfs(encoder);
2172 }
2173 
dpu_encoder_early_unregister(struct drm_encoder * encoder)2174 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2175 {
2176 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2177 
2178 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2179 }
2180 
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2181 static int dpu_encoder_virt_add_phys_encs(
2182 		struct drm_device *dev,
2183 		struct msm_display_info *disp_info,
2184 		struct dpu_encoder_virt *dpu_enc,
2185 		struct dpu_enc_phys_init_params *params)
2186 {
2187 	struct dpu_encoder_phys *enc = NULL;
2188 
2189 	DPU_DEBUG_ENC(dpu_enc, "\n");
2190 
2191 	/*
2192 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2193 	 * in this function, check up-front.
2194 	 */
2195 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2196 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2197 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2198 			  dpu_enc->num_phys_encs);
2199 		return -EINVAL;
2200 	}
2201 
2202 
2203 	if (disp_info->intf_type == INTF_WB) {
2204 		enc = dpu_encoder_phys_wb_init(dev, params);
2205 
2206 		if (IS_ERR(enc)) {
2207 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2208 				PTR_ERR(enc));
2209 			return PTR_ERR(enc);
2210 		}
2211 
2212 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2213 		++dpu_enc->num_phys_encs;
2214 	} else if (disp_info->is_cmd_mode) {
2215 		enc = dpu_encoder_phys_cmd_init(dev, params);
2216 
2217 		if (IS_ERR(enc)) {
2218 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2219 				PTR_ERR(enc));
2220 			return PTR_ERR(enc);
2221 		}
2222 
2223 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2224 		++dpu_enc->num_phys_encs;
2225 	} else {
2226 		enc = dpu_encoder_phys_vid_init(dev, params);
2227 
2228 		if (IS_ERR(enc)) {
2229 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2230 				PTR_ERR(enc));
2231 			return PTR_ERR(enc);
2232 		}
2233 
2234 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2235 		++dpu_enc->num_phys_encs;
2236 	}
2237 
2238 	if (params->split_role == ENC_ROLE_SLAVE)
2239 		dpu_enc->cur_slave = enc;
2240 	else
2241 		dpu_enc->cur_master = enc;
2242 
2243 	return 0;
2244 }
2245 
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2246 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2247 				 struct dpu_kms *dpu_kms,
2248 				 struct msm_display_info *disp_info)
2249 {
2250 	int ret = 0;
2251 	int i = 0;
2252 	struct dpu_enc_phys_init_params phys_params;
2253 
2254 	if (!dpu_enc) {
2255 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2256 		return -EINVAL;
2257 	}
2258 
2259 	dpu_enc->cur_master = NULL;
2260 
2261 	memset(&phys_params, 0, sizeof(phys_params));
2262 	phys_params.dpu_kms = dpu_kms;
2263 	phys_params.parent = &dpu_enc->base;
2264 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2265 
2266 	WARN_ON(disp_info->num_of_h_tiles < 1);
2267 
2268 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2269 
2270 	if (disp_info->intf_type != INTF_WB)
2271 		dpu_enc->idle_pc_supported =
2272 				dpu_kms->catalog->caps->has_idle_pc;
2273 
2274 	mutex_lock(&dpu_enc->enc_lock);
2275 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2276 		/*
2277 		 * Left-most tile is at index 0, content is controller id
2278 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2279 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2280 		 */
2281 		u32 controller_id = disp_info->h_tile_instance[i];
2282 
2283 		if (disp_info->num_of_h_tiles > 1) {
2284 			if (i == 0)
2285 				phys_params.split_role = ENC_ROLE_MASTER;
2286 			else
2287 				phys_params.split_role = ENC_ROLE_SLAVE;
2288 		} else {
2289 			phys_params.split_role = ENC_ROLE_SOLO;
2290 		}
2291 
2292 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2293 				i, controller_id, phys_params.split_role);
2294 
2295 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2296 							   disp_info->intf_type,
2297 							   controller_id);
2298 
2299 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2300 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2301 
2302 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2303 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2304 			ret = -EINVAL;
2305 			break;
2306 		}
2307 
2308 		if (phys_params.hw_intf && phys_params.hw_wb) {
2309 			DPU_ERROR_ENC(dpu_enc,
2310 					"invalid phys both intf and wb block at idx: %d\n", i);
2311 			ret = -EINVAL;
2312 			break;
2313 		}
2314 
2315 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2316 				dpu_enc, &phys_params);
2317 		if (ret) {
2318 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2319 			break;
2320 		}
2321 	}
2322 
2323 	mutex_unlock(&dpu_enc->enc_lock);
2324 
2325 	return ret;
2326 }
2327 
dpu_encoder_frame_done_timeout(struct timer_list * t)2328 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2329 {
2330 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2331 			frame_done_timer);
2332 	struct drm_encoder *drm_enc = &dpu_enc->base;
2333 	u32 event;
2334 
2335 	if (!drm_enc->dev) {
2336 		DPU_ERROR("invalid parameters\n");
2337 		return;
2338 	}
2339 
2340 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2341 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2342 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2343 		return;
2344 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2345 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2346 		return;
2347 	}
2348 
2349 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2350 
2351 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2352 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2353 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2354 }
2355 
2356 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2357 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2358 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2359 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2360 	.atomic_check = dpu_encoder_virt_atomic_check,
2361 };
2362 
2363 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2364 		.destroy = dpu_encoder_destroy,
2365 		.late_register = dpu_encoder_late_register,
2366 		.early_unregister = dpu_encoder_early_unregister,
2367 };
2368 
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2369 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2370 		int drm_enc_mode,
2371 		struct msm_display_info *disp_info)
2372 {
2373 	struct msm_drm_private *priv = dev->dev_private;
2374 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2375 	struct drm_encoder *drm_enc = NULL;
2376 	struct dpu_encoder_virt *dpu_enc = NULL;
2377 	int ret = 0;
2378 
2379 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2380 	if (!dpu_enc)
2381 		return ERR_PTR(-ENOMEM);
2382 
2383 	ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2384 			       drm_enc_mode, NULL);
2385 	if (ret) {
2386 		devm_kfree(dev->dev, dpu_enc);
2387 		return ERR_PTR(ret);
2388 	}
2389 
2390 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2391 
2392 	spin_lock_init(&dpu_enc->enc_spinlock);
2393 	dpu_enc->enabled = false;
2394 	mutex_init(&dpu_enc->enc_lock);
2395 	mutex_init(&dpu_enc->rc_lock);
2396 
2397 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2398 	if (ret)
2399 		goto fail;
2400 
2401 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2402 	timer_setup(&dpu_enc->frame_done_timer,
2403 			dpu_encoder_frame_done_timeout, 0);
2404 
2405 	if (disp_info->intf_type == INTF_DP)
2406 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2407 				priv->dp[disp_info->h_tile_instance[0]]);
2408 
2409 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2410 			dpu_encoder_off_work);
2411 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2412 
2413 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2414 
2415 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2416 
2417 	return &dpu_enc->base;
2418 
2419 fail:
2420 	DPU_ERROR("failed to create encoder\n");
2421 	if (drm_enc)
2422 		dpu_encoder_destroy(drm_enc);
2423 
2424 	return ERR_PTR(ret);
2425 }
2426 
2427 /**
2428  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2429  * @drm_enc:	encoder pointer
2430  *
2431  * Wait for hardware to have flushed the current pending changes to hardware at
2432  * a vblank or CTL_START. Physical encoders will map this differently depending
2433  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2434  *
2435  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2436  */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2437 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2438 {
2439 	struct dpu_encoder_virt *dpu_enc = NULL;
2440 	int i, ret = 0;
2441 
2442 	if (!drm_enc) {
2443 		DPU_ERROR("invalid encoder\n");
2444 		return -EINVAL;
2445 	}
2446 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2447 	DPU_DEBUG_ENC(dpu_enc, "\n");
2448 
2449 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2450 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2451 
2452 		if (phys->ops.wait_for_commit_done) {
2453 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2454 			ret = phys->ops.wait_for_commit_done(phys);
2455 			DPU_ATRACE_END("wait_for_commit_done");
2456 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2457 				dpu_enc->commit_done_timedout = true;
2458 				msm_disp_snapshot_state(drm_enc->dev);
2459 			}
2460 			if (ret)
2461 				return ret;
2462 		}
2463 	}
2464 
2465 	return ret;
2466 }
2467 
2468 /**
2469  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2470  * @drm_enc:	encoder pointer
2471  *
2472  * Wait for the hardware to transfer all the pixels to the panel. Physical
2473  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2474  * cmd mode -> pp_done.
2475  *
2476  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2477  */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2478 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2479 {
2480 	struct dpu_encoder_virt *dpu_enc = NULL;
2481 	int i, ret = 0;
2482 
2483 	if (!drm_enc) {
2484 		DPU_ERROR("invalid encoder\n");
2485 		return -EINVAL;
2486 	}
2487 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2488 	DPU_DEBUG_ENC(dpu_enc, "\n");
2489 
2490 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2491 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2492 
2493 		if (phys->ops.wait_for_tx_complete) {
2494 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2495 			ret = phys->ops.wait_for_tx_complete(phys);
2496 			DPU_ATRACE_END("wait_for_tx_complete");
2497 			if (ret)
2498 				return ret;
2499 		}
2500 	}
2501 
2502 	return ret;
2503 }
2504 
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2505 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2506 {
2507 	struct dpu_encoder_virt *dpu_enc = NULL;
2508 
2509 	if (!encoder) {
2510 		DPU_ERROR("invalid encoder\n");
2511 		return INTF_MODE_NONE;
2512 	}
2513 	dpu_enc = to_dpu_encoder_virt(encoder);
2514 
2515 	if (dpu_enc->cur_master)
2516 		return dpu_enc->cur_master->intf_mode;
2517 
2518 	if (dpu_enc->num_phys_encs)
2519 		return dpu_enc->phys_encs[0]->intf_mode;
2520 
2521 	return INTF_MODE_NONE;
2522 }
2523 
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2524 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2525 {
2526 	struct drm_encoder *encoder = phys_enc->parent;
2527 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2528 
2529 	return dpu_enc->dsc_mask;
2530 }
2531 
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2532 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2533 			  struct dpu_enc_phys_init_params *p)
2534 {
2535 	int i;
2536 
2537 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2538 	phys_enc->hw_intf = p->hw_intf;
2539 	phys_enc->hw_wb = p->hw_wb;
2540 	phys_enc->parent = p->parent;
2541 	phys_enc->dpu_kms = p->dpu_kms;
2542 	phys_enc->split_role = p->split_role;
2543 	phys_enc->enc_spinlock = p->enc_spinlock;
2544 	phys_enc->enable_state = DPU_ENC_DISABLED;
2545 
2546 	for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++)
2547 		phys_enc->irq[i] = -EINVAL;
2548 
2549 	atomic_set(&phys_enc->vblank_refcount, 0);
2550 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2551 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2552 
2553 	atomic_set(&phys_enc->vsync_cnt, 0);
2554 	atomic_set(&phys_enc->underrun_cnt, 0);
2555 
2556 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2557 }
2558