History log of /openbmc/linux/fs/btrfs/locking.h (Results 1 – 25 of 85)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: v6.6.25, v6.6.24, v6.6.23, v6.6.16, v6.6.15, v6.6.14, v6.6.13, v6.6.12, v6.6.11, v6.6.10, v6.6.9, v6.6.8, v6.6.7, v6.6.6, v6.6.5, v6.6.4, v6.6.3, v6.6.2, v6.5.11, v6.6.1, v6.5.10, v6.6, v6.5.9, v6.5.8, v6.5.7, v6.5.6, v6.5.5, v6.5.4, v6.5.3, v6.5.2, v6.1.51, v6.5.1, v6.1.50, v6.5, v6.1.49, v6.1.48
# 77d20c68 24-Aug-2023 Josef Bacik <josef@toxicpanda.com>

btrfs: do not block starts waiting on previous transaction commit

Internally I got a report of very long stalls on normal operations like
creating a new file when auto relocation was running. The r

btrfs: do not block starts waiting on previous transaction commit

Internally I got a report of very long stalls on normal operations like
creating a new file when auto relocation was running. The reporter used
the 'bpf offcputime' tracer to show that we would get stuck in
start_transaction for 5 to 30 seconds, and were always being woken up by
the transaction commit.

Using my timing-everything script, which times how long a function takes
and what percentage of that total time is taken up by its children, I
saw several traces like this

1083 took 32812902424 ns
29929002926 ns 91.2110% wait_for_commit_duration
25568 ns 7.7920e-05% commit_fs_roots_duration
1007751 ns 0.00307% commit_cowonly_roots_duration
446855602 ns 1.36182% btrfs_run_delayed_refs_duration
271980 ns 0.00082% btrfs_run_delayed_items_duration
2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration
9656 ns 2.9427e-05% switch_commit_roots_duration
1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration
4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration

Here I was only tracing functions that happen where we are between
START_COMMIT and UNBLOCKED in order to see what would be keeping us
blocked for so long. The wait_for_commit() we do is where we wait for a
previous transaction that hasn't completed it's commit. This can
include all of the unpin work and other cleanups, which tends to be the
longest part of our transaction commit.

There is no reason we should be blocking new things from entering the
transaction at this point, it just adds to random latency spikes for no
reason.

Fix this by adding a PREP stage. This allows us to properly deal with
multiple committers coming in at the same time, we retain the behavior
that the winner waits on the previous transaction and the losers all
wait for this transaction commit to occur. Nothing else is blocked
during the PREP stage, and then once the wait is complete we switch to
COMMIT_START and all of the same behavior as before is maintained.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


Revision tags: v6.1.46, v6.1.45, v6.1.44, v6.1.43, v6.1.42, v6.1.41, v6.1.40, v6.1.39, v6.1.38, v6.1.37, v6.1.36, v6.4, v6.1.35, v6.1.34, v6.1.33, v6.1.32, v6.1.31, v6.1.30, v6.1.29, v6.1.28, v6.1.27, v6.1.26, v6.3, v6.1.25, v6.1.24, v6.1.23, v6.1.22, v6.1.21, v6.1.20, v6.1.19, v6.1.18, v6.1.17, v6.1.16, v6.1.15
# 0b548539 01-Mar-2023 David Sterba <dsterba@suse.com>

btrfs: locking: use atomic for DREW lock writers

The DREW lock uses percpu variable to track lock counters and for that
it needs to allocate the structure. In btrfs_read_tree_root() or
btrfs_init_fs

btrfs: locking: use atomic for DREW lock writers

The DREW lock uses percpu variable to track lock counters and for that
it needs to allocate the structure. In btrfs_read_tree_root() or
btrfs_init_fs_root() this may add another error case or requires the
NOFS scope protection.

One way is to preallocate the structure as was suggested in
https://lore.kernel.org/linux-btrfs/20221214021125.28289-1-robbieko@synology.com/

We may avoid the allocation altogether if we don't use the percpu
variables but an atomic for the writer counter. This should not make any
difference, the DREW lock is used for truncate and NOCOW writes along
with other IO operations.

The percpu counter for writers has been there since the original commit
8257b2dc3c1a1057 "Btrfs: introduce btrfs_{start, end}_nocow_write() for
each subvolume". The reason could be to avoid hammering the same
cacheline from all the readers but then the writers do that anyway.

Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


Revision tags: v6.1.14, v6.1.13, v6.2, v6.1.12, v6.1.11, v6.1.10, v6.1.9, v6.1.8, v6.1.7, v6.1.6, v6.1.5, v6.0.19, v6.0.18, v6.1.4, v6.1.3, v6.0.17, v6.1.2, v6.0.16, v6.1.1, v6.0.15, v6.0.14, v6.0.13, v6.1, v6.0.12, v6.0.11, v6.0.10, v5.15.80, v6.0.9, v5.15.79, v6.0.8, v5.15.78, v6.0.7, v5.15.77, v5.15.76, v6.0.6, v6.0.5, v5.15.75, v6.0.4
# eb33a4d6 24-Oct-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move the lockdep helpers into locking.h

These more naturally fit in with the locking related code, and they're
all defines so they can easily go anywhere, move them out of ctree.h
into lockin

btrfs: move the lockdep helpers into locking.h

These more naturally fit in with the locking related code, and they're
all defines so they can easily go anywhere, move them out of ctree.h
into locking.h

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


Revision tags: v6.0.3, v6.0.2, v5.15.74, v5.15.73, v6.0.1, v5.15.72, v6.0, v5.15.71, v5.15.70, v5.15.69, v5.15.68
# 857bc13f 12-Sep-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: implement a nowait option for tree searches

For NOWAIT IOCBs we'll need a way to tell search to not wait on locks
or anything. Accomplish this by adding a path->nowait flag that will
use try

btrfs: implement a nowait option for tree searches

For NOWAIT IOCBs we'll need a way to tell search to not wait on locks
or anything. Accomplish this by adding a path->nowait flag that will
use trylocks and skip reading of metadata, returning -EAGAIN in either
of these cases. For now we only need this for reads, so only the read
side is handled. Add an ASSERT() to catch anybody trying to use this
for writes so they know they'll have to implement the write side.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


Revision tags: v5.15.67, v5.15.66, v5.15.65, v5.15.64, v5.15.63, v5.15.62, v5.15.61, v5.15.60, v5.15.59, v5.19, v5.15.58
# b40130b2 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc

btrfs: fix lockdep splat with reloc root extent buffers

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


# 0a27a047 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Joha

btrfs: move lockdep class helpers to locking.c

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


Revision tags: v5.15.57, v5.15.56, v5.15.55, v5.15.54, v5.15.53, v5.15.52, v5.15.51, v5.15.50, v5.15.49, v5.15.48, v5.15.47, v5.15.46, v5.15.45, v5.15.44, v5.15.43, v5.15.42, v5.18, v5.15.41, v5.15.40, v5.15.39, v5.15.38, v5.15.37, v5.15.36, v5.15.35, v5.15.34, v5.15.33, v5.15.32, v5.15.31, v5.17, v5.15.30, v5.15.29, v5.15.28, v5.15.27, v5.15.26, v5.15.25, v5.15.24, v5.15.23, v5.15.22, v5.15.21, v5.15.20, v5.15.19, v5.15.18, v5.15.17, v5.4.173, v5.15.16, v5.15.15, v5.16, v5.15.10, v5.15.9, v5.15.8, v5.15.7, v5.15.6, v5.15.5, v5.15.4, v5.15.3, v5.15.2, v5.15.1, v5.15, v5.14.14, v5.14.13, v5.14.12, v5.14.11, v5.14.10, v5.14.9, v5.14.8, v5.14.7
# 49d0c642 22-Sep-2021 Filipe Manana <fdmanana@suse.com>

btrfs: assert that extent buffers are write locked instead of only locked

We currently use lockdep_assert_held() at btrfs_assert_tree_locked(), and
that checks that we hold a lock either in read mod

btrfs: assert that extent buffers are write locked instead of only locked

We currently use lockdep_assert_held() at btrfs_assert_tree_locked(), and
that checks that we hold a lock either in read mode or write mode.

However in all contexts we use btrfs_assert_tree_locked(), we actually
want to check if we are holding a write lock on the extent buffer's rw
semaphore - it would be a bug if in any of those contexts we were holding
a read lock instead.

So change btrfs_assert_tree_locked() to use lockdep_assert_held_write()
instead and, to make it more explicit, rename btrfs_assert_tree_locked()
to btrfs_assert_tree_write_locked(), so that it's clear we want to check
we are holding a write lock.

For now there are no contexts where we want to assert that we must have
a read lock, but in case that is needed in the future, we can add a new
helper function that just calls out lockdep_assert_held_read().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 1b2a7dde 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARN

btrfs: fix lockdep splat with reloc root extent buffers

[ Upstream commit b40130b23ca4a08c5785d5a3559805916bddba3c ]

We have been hitting the following lockdep splat with btrfs/187 recently

WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30

-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

other info that might help us debug this:

Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1

Possible unsafe locking scenario:

CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);

*** DEADLOCK ***

7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110

stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:

dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd

This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of

reloc tree -> normal tree

for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.

However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of

normal tree -> reloc tree

which is why lockdep complains.

Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.

Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.

This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of

normal tree -> reloc tree

We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.

With this patch we no longer have the lockdep splat in btrfs/187.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


# 98dfad7f 26-Jul-2022 Josef Bacik <josef@toxicpanda.com>

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this ove

btrfs: move lockdep class helpers to locking.c

[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]

These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>

show more ...


1234