History log of /openbmc/linux/drivers/nvdimm/region_devs.c (Results 76 – 100 of 188)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: v4.4.21, v4.7.4, v4.7.3, v4.4.20, v4.7.2, v4.4.19, openbmc-4.4-20160819-1, v4.7.1, v4.4.18, v4.4.17, openbmc-4.4-20160804-1, v4.4.16, v4.7, openbmc-4.4-20160722-1, openbmc-20160722-1, openbmc-20160713-1, v4.4.15, v4.6.4, v4.6.3, v4.4.14, v4.6.2, v4.4.13, openbmc-20160606-1, v4.6.1, v4.4.12
# 0c27af60 27-May-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm: cycle flush hints

When the NFIT provides multiple flush hint addresses per-dimm it is
expressing that the platform is capable of processing multiple flush
requests in parallel. There is

libnvdimm: cycle flush hints

When the NFIT provides multiple flush hint addresses per-dimm it is
expressing that the platform is capable of processing multiple flush
requests in parallel. There is some fixed cost per flush request, let
the cost be shared in parallel on multiple cpus.

Since there may not be enough flush hint addresses for each cpu to have
one, keep a per-cpu index of the last used hint, hash it with current
pid, and assume that access pattern and scheduler randomness will keep
the flush-hint usage somewhat staggered across cpus.

Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# f284a4f2 07-Jul-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush()

nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is
an optional write flushing mechanism that an nvdimm bus can provi

libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush()

nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is
an optional write flushing mechanism that an nvdimm bus can provide for
the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider
nvdimm_flush() is implemented as a series of flush-hint-address [1]
writes to each dimm in the interleave set (region) that backs the
namespace.

The nvdimm_has_flush() routine relies on platform firmware to describe
the flushing capabilities of a platform. It uses the heuristic of
whether an nvdimm bus provider provides flush address data to return a
ternary result:

1: flush addresses defined
0: dimm topology described without flush addresses (assume ADR)
-errno: no topology information, unable to determine flush mechanism

The pmem driver is expected to take the following actions on this ternary
result:

1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown
0: do not set, WC or FUA on the queue, take no further action
-errno: warn and then operate as if nvdimm_has_flush() returned '0'

The caveat of this heuristic is that it can not distinguish the "dimm
does not have flush address" case from the "platform firmware is broken
and failed to describe a flush address". Given we are already
explicitly trusting the NFIT there's not much more we can do beyond
blacklisting broken firmwares if they are ever encountered.

Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# e5ae3b25 07-Jun-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm, nfit: move flush hint mapping to region-device driver-data

In preparation for triggering flushes of a DIMM's writes-posted-queue
(WPQ) via the pmem driver move mapping of flush hint addre

libnvdimm, nfit: move flush hint mapping to region-device driver-data

In preparation for triggering flushes of a DIMM's writes-posted-queue
(WPQ) via the pmem driver move mapping of flush hint addresses to the
region driver. Since this uses devm_nvdimm_memremap() the flush
addresses will remain mapped while any region to which the dimm belongs
is active.

We need to communicate more information to the nvdimm core to facilitate
this mapping, namely each dimm object now carries an array of flush hint
address resources.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# a8a6d2e0 07-Jun-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm, nfit: remove nfit_spa_map() infrastructure

Now that all shared mappings are handled by devm_nvdimm_memremap() we no
longer need nfit_spa_map() nor do we need to trigger a callback to the

libnvdimm, nfit: remove nfit_spa_map() infrastructure

Now that all shared mappings are handled by devm_nvdimm_memremap() we no
longer need nfit_spa_map() nor do we need to trigger a callback to the
bus provider at region disable time.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: openbmc-20160521-1, v4.4.11, openbmc-20160518-1
# b354aba0 17-May-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm: release ida resources

ida instances allocate some internal memory for ->free_bitmap in
addition to the base 'struct ida'. Use ida_destroy() to release that
memory at module_exit().

Repo

libnvdimm: release ida resources

ida instances allocate some internal memory for ->free_bitmap in
addition to the base 'struct ida'. Use ida_destroy() to release that
memory at module_exit().

Reported-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: v4.6, v4.4.10, openbmc-20160511-1, openbmc-20160505-1, v4.4.9, v4.4.8, v4.4.7, openbmc-20160329-2, openbmc-20160329-1, openbmc-20160321-1, v4.4.6, v4.5
# cd03412a 11-Mar-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm, dax: introduce device-dax infrastructure

Device DAX is the device-centric analogue of Filesystem DAX
(CONFIG_FS_DAX). It allows persistent memory ranges to be allocated and
mapped withou

libnvdimm, dax: introduce device-dax infrastructure

Device DAX is the device-centric analogue of Filesystem DAX
(CONFIG_FS_DAX). It allows persistent memory ranges to be allocated and
mapped without need of an intervening file system. This initial
infrastructure arranges for a libnvdimm pfn-device to be represented as
a different device-type so that it can be attached to a driver other
than the pmem driver.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: v4.4.5, v4.4.4, v4.4.3, openbmc-20160222-1, v4.4.2, openbmc-20160212-1, openbmc-20160210-1, openbmc-20160202-2, openbmc-20160202-1, v4.4.1, openbmc-20160127-1, openbmc-20160120-1, v4.4
# e07ecd76 05-Jan-2016 Dan Williams <dan.j.williams@intel.com>

libnvdimm: fix namespace object confusion in is_uuid_busy()

When btt devices were re-worked to be child devices of regions this
routine was overlooked. It mistakenly attempts to_nd_namespace_pmem()

libnvdimm: fix namespace object confusion in is_uuid_busy()

When btt devices were re-worked to be child devices of regions this
routine was overlooked. It mistakenly attempts to_nd_namespace_pmem()
or to_nd_namespace_blk() conversions on btt and pfn devices. By luck to
date we have happened to be hitting valid memory leading to a uuid
miscompare, but a recent change to struct nd_namespace_common causes:

BUG: unable to handle kernel NULL pointer dereference at 0000000000000001
IP: [<ffffffff814610dc>] memcmp+0xc/0x40
[..]
Call Trace:
[<ffffffffa0028631>] is_uuid_busy+0xc1/0x2a0 [libnvdimm]
[<ffffffffa0028570>] ? to_nd_blk_region+0x50/0x50 [libnvdimm]
[<ffffffff8158c9c0>] device_for_each_child+0x50/0x90

Cc: <stable@vger.kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: openbmc-20151217-1
# 2dc43331 13-Dec-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm, pfn: fix pfn seed creation

Similar to btt, plant a new pfn seed when the existing one is activated.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>


Revision tags: openbmc-20151210-1
# 6bb691ac 02-Dec-2015 Dmitry Krivenok <krivenok.dmitry@gmail.com>

nvdimm: do not show pfn_seed for non pmem regions

This simple change hides pfn_seed attribute for non pmem
regions because they don't support pfn anyway.

Signed-off-by: Dmitry V. Krivenok <krivenok

nvdimm: do not show pfn_seed for non pmem regions

This simple change hides pfn_seed attribute for non pmem
regions because they don't support pfn anyway.

Signed-off-by: Dmitry V. Krivenok <krivenok.dmitry@gmail.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: openbmc-20151202-1, openbmc-20151123-1, openbmc-20151118-1, openbmc-20151104-1, v4.3, openbmc-20151102-1, openbmc-20151028-1, v4.3-rc1, v4.2
# 004f1afb 24-Aug-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm, pmem: direct map legacy pmem by default

The expectation is that the legacy / non-standard pmem discovery method
(e820 type-12) will only ever be used to describe small quantities of
persi

libnvdimm, pmem: direct map legacy pmem by default

The expectation is that the legacy / non-standard pmem discovery method
(e820 type-12) will only ever be used to describe small quantities of
persistent memory. Larger capacities will be described via the ACPI
NFIT. When "allocate struct page from pmem" support is added this default
policy can be overridden by assigning a legacy pmem namespace to a pfn
device, however this would be only be necessary if a platform used the
legacy mechanism to define a very large range.

Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: v4.2-rc8, v4.2-rc7, v4.2-rc6, v4.2-rc5
# e1455744 30-Jul-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm, pfn: 'struct page' provider infrastructure

Implement the base infrastructure for libnvdimm PFN devices. Similar to
BTT devices they take a namespace as a backing device and layer
function

libnvdimm, pfn: 'struct page' provider infrastructure

Implement the base infrastructure for libnvdimm PFN devices. Similar to
BTT devices they take a namespace as a backing device and layer
functionality on top. In this case the functionality is reserving space
for an array of 'struct page' entries to be handed out through
pfn_to_page(). For now this is just the basic libnvdimm-device-model for
configuring the base PFN device.

As the namespace claiming mechanism for PFN devices is mostly identical
to BTT devices drivers/nvdimm/claim.c is created to house the common
bits.

Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: v4.2-rc4
# 8ca24353 24-Jul-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm: fix namespace seed creation

A new BLK namespace "seed" device is created whenever the current seed
is successfully probed. However, if that namespace is assigned to a BTT
it may never di

libnvdimm: fix namespace seed creation

A new BLK namespace "seed" device is created whenever the current seed
is successfully probed. However, if that namespace is assigned to a BTT
it may never directly experience a successful probe as it is a
subordinate device to a BTT configuration.

The effect of the current code is that no new namespaces can be
instantiated, after the seed namespace, to consume available BLK DPA
capacity. Fix this by treating a successful BTT probe event as a
successful probe event for the backing namespace.

Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: v4.2-rc3, v4.2-rc2, v4.2-rc1, v4.1
# 41d7a6d6 19-Jun-2015 Toshi Kani <toshi.kani@hp.com>

libnvdimm: Set numa_node to NVDIMM devices

ACPI NFIT table has System Physical Address Range Structure entries that
describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is
set in the

libnvdimm: Set numa_node to NVDIMM devices

ACPI NFIT table has System Physical Address Range Structure entries that
describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is
set in the flags.

Change acpi_nfit_register_region() to map a proximity ID to its node ID,
and set it to a new numa_node field of nd_region_desc, which is then
conveyed to the nd_region device.

The device core arranges for btt and namespace devices to inherit their
node from their parent region.

Signed-off-by: Toshi Kani <toshi.kani@hp.com>
[djbw: move set_dev_node() from region.c to bus.c]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# 58138820 23-Jun-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only

Upon detection of an unarmed dimm in a region, arrange for descendant
BTT, PMEM, or BLK instances to be read-only. A dimm is primari

libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only

Upon detection of an unarmed dimm in a region, arrange for descendant
BTT, PMEM, or BLK instances to be read-only. A dimm is primarily marked
"unarmed" via flags passed by platform firmware (NFIT).

The flags in the NFIT memory device sub-structure indicate the state of
the data on the nvdimm relative to its energy source or last "flush to
persistence". For the most part there is nothing the driver can do but
advertise the state of these flags in sysfs and emit a message if
firmware indicates that the contents of the device may be corrupted.
However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for
the block devices incorporating that nvdimm to be marked read-only.
This is a safe default as the data is still available and new writes are
held off until the administrator either forces read-write mode, or the
energy source becomes armed.

A 'read_only' attribute is added to REGION devices to allow for
overriding the default read-only policy of all descendant block devices.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# 047fc8a1 25-Jun-2015 Ross Zwisler <ross.zwisler@linux.intel.com>

libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory

The libnvdimm implementation handles allocating dimm address space (DPA)
between PMEM and BLK mode interfaces. After DPA has be

libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory

The libnvdimm implementation handles allocating dimm address space (DPA)
between PMEM and BLK mode interfaces. After DPA has been allocated from
a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O
as a struct bio based block device. Unlike PMEM, BLK is required to
handle platform specific details like mmio register formats and memory
controller interleave. For this reason the libnvdimm generic nd_blk
driver calls back into the bus provider to carry out the I/O.

This initial implementation handles the BLK interface defined by the
ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from
DCR (dimm control region), BDW (block data window), IDT (interleave
descriptor) NFIT structures and the hardware register format.
[1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
[2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# 5212e11f 25-Jun-2015 Vishal Verma <vishal.l.verma@intel.com>

nd_btt: atomic sector updates

BTT stands for Block Translation Table, and is a way to provide power
fail sector atomicity semantics for block devices that have the ability
to perform byte granularit

nd_btt: atomic sector updates

BTT stands for Block Translation Table, and is a way to provide power
fail sector atomicity semantics for block devices that have the ability
to perform byte granularity IO. It relies on the capability of libnvdimm
namespace devices to do byte aligned IO.

The BTT works as a stacked blocked device, and reserves a chunk of space
from the backing device for its accounting metadata. It is a bio-based
driver because all IO is done synchronously, and there is no queuing or
asynchronous completions at either the device or the driver level.

The BTT uses 'lanes' to index into various 'on-disk' data structures,
and lanes also act as a synchronization mechanism in case there are more
CPUs than available lanes. We did a comparison between two lane lock
strategies - first where we kept an atomic counter around that tracked
which was the last lane that was used, and 'our' lane was determined by
atomically incrementing that. That way, for the nr_cpus > nr_lanes case,
theoretically, no CPU would be blocked waiting for a lane. The other
strategy was to use the cpu number we're scheduled on to and hash it to
a lane number. Theoretically, this could block an IO that could've
otherwise run using a different, free lane. But some fio workloads
showed that the direct cpu -> lane hash performed faster than tracking
'last lane' - my reasoning is the cache thrash caused by moving the
atomic variable made that approach slower than simply waiting out the
in-progress IO. This supports the conclusion that the driver can be a
very simple bio-based one that does synchronous IOs instead of queuing.

Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Neil Brown <neilb@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
[jmoyer: fix nmi watchdog timeout in btt_map_init]
[jmoyer: move btt initialization to module load path]
[jmoyer: fix memory leak in the btt initialization path]
[jmoyer: Don't overwrite corrupted arenas]
Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# 8c2f7e86 25-Jun-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm: infrastructure for btt devices

NVDIMM namespaces, in addition to accepting "struct bio" based requests,
also have the capability to perform byte-aligned accesses. By default
only the bio

libnvdimm: infrastructure for btt devices

NVDIMM namespaces, in addition to accepting "struct bio" based requests,
also have the capability to perform byte-aligned accesses. By default
only the bio/block interface is used. However, if another driver can
make effective use of the byte-aligned capability it can claim namespace
interface and use the byte-aligned ->rw_bytes() interface.

The BTT driver is the initial first consumer of this mechanism to allow
adding atomic sector update semantics to a pmem or blk namespace. This
patch is the sysfs infrastructure to allow configuring a BTT instance
for a namespace. Enabling that BTT and performing i/o is in a
subsequent patch.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


Revision tags: v4.1-rc8, v4.1-rc7, v4.1-rc6, v4.1-rc5, v4.1-rc4, v4.1-rc3, v4.1-rc2
# 1b40e09a 01-May-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm: blk labels and namespace instantiation

A blk label set describes a namespace comprised of one or more
discontiguous dpa ranges on a single dimm. They may alias with one or
more pmem inte

libnvdimm: blk labels and namespace instantiation

A blk label set describes a namespace comprised of one or more
discontiguous dpa ranges on a single dimm. They may alias with one or
more pmem interleave sets that include the given dimm.

This is the runtime/volatile configuration infrastructure for sysfs
manipulation of 'alt_name', 'uuid', 'size', and 'sector_size'. A later
patch will make these settings persistent by writing back the label(s).

Unlike pmem namespaces, multiple blk namespaces can be created per
region. Once a blk namespace has been created a new seed device
(unconfigured child of a parent blk region) is instantiated. As long as
a region has 'available_size' != 0 new child namespaces may be created.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# bf9bccc1 17-Jun-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm: pmem label sets and namespace instantiation.

A complete label set is a PMEM-label per-dimm per-interleave-set where
all the UUIDs match and the interleave set cookie matches the hosting
i

libnvdimm: pmem label sets and namespace instantiation.

A complete label set is a PMEM-label per-dimm per-interleave-set where
all the UUIDs match and the interleave set cookie matches the hosting
interleave set.

Present sysfs attributes for manipulation of a PMEM-namespace's
'alt_name', 'uuid', and 'size' attributes. A later patch will make
these settings persistent by writing back the label.

Note that PMEM allocations grow forwards from the start of an interleave
set (lowest dimm-physical-address (DPA)). BLK-namespaces that alias
with a PMEM interleave set will grow allocations backward from the
highest DPA.

Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# eaf96153 01-May-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm, nfit: add interleave-set state-tracking infrastructure

On platforms that have firmware support for reading/writing per-dimm
label space, a portion of the dimm may be accessible via an int

libnvdimm, nfit: add interleave-set state-tracking infrastructure

On platforms that have firmware support for reading/writing per-dimm
label space, a portion of the dimm may be accessible via an interleave
set PMEM mapping in addition to the dimm's BLK (block-data-window
aperture(s)) interface. A label, stored in a "configuration data
region" on the dimm, disambiguates which dimm addresses are accessed
through which exclusive interface.

Add infrastructure that allows the kernel to block modifications to a
label in the set while any member dimm is active. Note that this is
meant only for enforcing "no modifications of active labels" via the
coarse ioctl command. Adding/deleting namespaces from an active
interleave set is always possible via sysfs.

Another aspect of tracking interleave sets is tracking their integrity
when DIMMs in a set are physically re-ordered. For this purpose we
generate an "interleave-set cookie" that can be recorded in a label and
validated against the current configuration. It is the bus provider
implementation's responsibility to calculate the interleave set cookie
and attach it to a given region.

Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# 3d88002e 31-May-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm: support for legacy (non-aliasing) nvdimms

The libnvdimm region driver is an intermediary driver that translates
non-volatile "region"s into "namespace" sub-devices that are surfaced by
pe

libnvdimm: support for legacy (non-aliasing) nvdimms

The libnvdimm region driver is an intermediary driver that translates
non-volatile "region"s into "namespace" sub-devices that are surfaced by
persistent memory block-device drivers (PMEM and BLK).

ACPI 6 introduces the concept that a given nvdimm may simultaneously
offer multiple access modes to its media through direct PMEM load/store
access, or windowed BLK mode. Existing nvdimms mostly implement a PMEM
interface, some offer a BLK-like mode, but never both as ACPI 6 defines.
If an nvdimm is single interfaced, then there is no need for dimm
metadata labels. For these devices we can take the region boundaries
directly to create a child namespace device (nd_namespace_io).

Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# 1f7df6f8 09-Jun-2015 Dan Williams <dan.j.williams@intel.com>

libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory)

A "region" device represents the maximum capacity of a BLK range (mmio
block-data-window(s)), or a PMEM range (DAX-ca

libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory)

A "region" device represents the maximum capacity of a BLK range (mmio
block-data-window(s)), or a PMEM range (DAX-capable persistent memory or
volatile memory), without regard for aliasing. Aliasing, in the
dimm-local address space (DPA), is resolved by metadata on a dimm to
designate which exclusive interface will access the aliased DPA ranges.
Support for the per-dimm metadata/label arrvies is in a subsequent
patch.

The name format of "region" devices is "regionN" where, like dimms, N is
a global ida index assigned at discovery time. This id is not reliable
across reboots nor in the presence of hotplug. Look to attributes of
the region or static id-data of the sub-namespace to generate a
persistent name. However, if the platform configuration does not change
it is reasonable to expect the same region id to be assigned at the next
boot.

"region"s have 2 generic attributes "size", and "mapping"s where:
- size: the BLK accessible capacity or the span of the
system physical address range in the case of PMEM.

- mappingN: a tuple describing a dimm's contribution to the region's
capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region
there will be at least one mapping per dimm in the interleave set. For
a BLK-region there is only "mapping0" listing the starting DPA of the
BLK-region and the available DPA capacity of that space (matches "size"
above).

The max number of mappings per "region" is hard coded per the
constraints of sysfs attribute groups. That said the number of mappings
per region should never exceed the maximum number of possible dimms in
the system. If the current number turns out to not be enough then the
"mappings" attribute clarifies how many there are supposed to be. "32
should be enough for anybody...".

Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>

show more ...


# eb82199e 02-Apr-2021 Vaibhav Jain <vaibhav@linux.ibm.com>

libnvdimm/region: Fix nvdimm_has_flush() to handle ND_REGION_ASYNC

commit a2948b17f6b936fc52f86c0f92c46d2f91928b79 upstream.

In case a platform doesn't provide explicit flush-hints

libnvdimm/region: Fix nvdimm_has_flush() to handle ND_REGION_ASYNC

commit a2948b17f6b936fc52f86c0f92c46d2f91928b79 upstream.

In case a platform doesn't provide explicit flush-hints but provides an
explicit flush callback via ND_REGION_ASYNC region flag, then
nvdimm_has_flush() still returns '0' indicating that writes do not
require flushing. This happens on PPC64 with patch at [1] applied, where
'deep_flush' of a region was denied even though an explicit flush
function was provided.

Fix this by adding a condition to nvdimm_has_flush() to test for the
ND_REGION_ASYNC flag on the region and see if a 'region->flush' callback
is assigned.

Link: http://lore.kernel.org/r/161703936121.36.7260632399582101498.stgit@e1fbed493c87 [1]
Fixes: c5d4355d10d4 ("libnvdimm: nd_region flush callback support")
Reported-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Link: https://lore.kernel.org/r/20210402092555.208590-1-vaibhav@linux.ibm.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 4bf5e361 11-Aug-2020 Linus Torvalds <torvalds@linux-foundation.org>

Merge tag 'libnvdimm-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updayes from Vishal Verma:
"You'd normally receive this pull request from Dan

Merge tag 'libnvdimm-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updayes from Vishal Verma:
"You'd normally receive this pull request from Dan Williams, but he's
busy watching a newborn (Congrats Dan!), so I'm watching libnvdimm
this cycle.

This adds a new feature in libnvdimm - 'Runtime Firmware Activation',
and a few small cleanups and fixes in libnvdimm and DAX. I'd
originally intended to make separate topic-based pull requests - one
for libnvdimm, and one for DAX, but some of the DAX material fell out
since it wasn't quite ready.

Summary:

- add 'Runtime Firmware Activation' support for NVDIMMs that
advertise the relevant capability

- misc libnvdimm and DAX cleanups"

* tag 'libnvdimm-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm/security: ensure sysfs poll thread woke up and fetch updated attr
libnvdimm/security: the 'security' attr never show 'overwrite' state
libnvdimm/security: fix a typo
ACPI: NFIT: Fix ARS zero-sized allocation
dax: Fix incorrect argument passed to xas_set_err()
ACPI: NFIT: Add runtime firmware activate support
PM, libnvdimm: Add runtime firmware activation support
libnvdimm: Convert to DEVICE_ATTR_ADMIN_RO()
drivers/dax: Expand lock scope to cover the use of addresses
fs/dax: Remove unused size parameter
dax: print error message by pr_info() in __generic_fsdax_supported()
driver-core: Introduce DEVICE_ATTR_ADMIN_{RO,RW}
tools/testing/nvdimm: Emulate firmware activation commands
tools/testing/nvdimm: Prepare nfit_ctl_test() for ND_CMD_CALL emulation
tools/testing/nvdimm: Add command debug messages
tools/testing/nvdimm: Cleanup dimm index passing
ACPI: NFIT: Define runtime firmware activation commands
ACPI: NFIT: Move bus_dsm_mask out of generic nvdimm_bus_descriptor
libnvdimm: Validate command family indices

show more ...


Revision tags: v5.10.22, v5.10.21, v5.10.20, v5.10.19, v5.4.101, v5.10.18, v5.10.17, v5.11, v5.10.16, v5.10.15, v5.10.14, v5.10, v5.8.17, v5.8.16, v5.8.15, v5.9, v5.8.14, v5.8.13, v5.8.12, v5.8.11, v5.8.10, v5.8.9, v5.8.8, v5.8.7, v5.8.6, v5.4.62, v5.8.5, v5.8.4, v5.4.61, v5.8.3, v5.4.60, v5.8.2, v5.4.59, v5.8.1, v5.4.58, v5.4.57, v5.4.56, v5.8, v5.7.12, v5.4.55, v5.7.11, v5.4.54, v5.7.10, v5.4.53
# 5cf81ce1 20-Jul-2020 Dan Williams <dan.j.williams@intel.com>

libnvdimm: Convert to DEVICE_ATTR_ADMIN_RO()

Move libnvdimm sysfs attributes that currently use an open coded
DEVICE_ATTR() to hide sensitive root-only information (physical memory
l

libnvdimm: Convert to DEVICE_ATTR_ADMIN_RO()

Move libnvdimm sysfs attributes that currently use an open coded
DEVICE_ATTR() to hide sensitive root-only information (physical memory
layout) to the new DEVICE_ATTR_ADMIN_RO() helper.

Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>

show more ...


12345678