xref: /openbmc/linux/drivers/nvdimm/region_devs.c (revision f284a4f2)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/pmem.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23 
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 
30 static DEFINE_IDA(region_ida);
31 
32 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
33 		struct nd_region_data *ndrd)
34 {
35 	int i, j;
36 
37 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
38 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
39 	for (i = 0; i < nvdimm->num_flush; i++) {
40 		struct resource *res = &nvdimm->flush_wpq[i];
41 		unsigned long pfn = PHYS_PFN(res->start);
42 		void __iomem *flush_page;
43 
44 		/* check if flush hints share a page */
45 		for (j = 0; j < i; j++) {
46 			struct resource *res_j = &nvdimm->flush_wpq[j];
47 			unsigned long pfn_j = PHYS_PFN(res_j->start);
48 
49 			if (pfn == pfn_j)
50 				break;
51 		}
52 
53 		if (j < i)
54 			flush_page = (void __iomem *) ((unsigned long)
55 					ndrd->flush_wpq[dimm][j] & PAGE_MASK);
56 		else
57 			flush_page = devm_nvdimm_ioremap(dev,
58 					PHYS_PFN(pfn), PAGE_SIZE);
59 		if (!flush_page)
60 			return -ENXIO;
61 		ndrd->flush_wpq[dimm][i] = flush_page
62 			+ (res->start & ~PAGE_MASK);
63 	}
64 
65 	return 0;
66 }
67 
68 int nd_region_activate(struct nd_region *nd_region)
69 {
70 	int i;
71 	struct nd_region_data *ndrd;
72 	struct device *dev = &nd_region->dev;
73 	size_t flush_data_size = sizeof(void *);
74 
75 	nvdimm_bus_lock(&nd_region->dev);
76 	for (i = 0; i < nd_region->ndr_mappings; i++) {
77 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
78 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
79 
80 		/* at least one null hint slot per-dimm for the "no-hint" case */
81 		flush_data_size += sizeof(void *);
82 		if (!nvdimm->num_flush)
83 			continue;
84 		flush_data_size += nvdimm->num_flush * sizeof(void *);
85 	}
86 	nvdimm_bus_unlock(&nd_region->dev);
87 
88 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 	if (!ndrd)
90 		return -ENOMEM;
91 	dev_set_drvdata(dev, ndrd);
92 
93 	for (i = 0; i < nd_region->ndr_mappings; i++) {
94 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
95 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
96 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
97 
98 		if (rc)
99 			return rc;
100 	}
101 
102 	return 0;
103 }
104 
105 static void nd_region_release(struct device *dev)
106 {
107 	struct nd_region *nd_region = to_nd_region(dev);
108 	u16 i;
109 
110 	for (i = 0; i < nd_region->ndr_mappings; i++) {
111 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
112 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
113 
114 		put_device(&nvdimm->dev);
115 	}
116 	free_percpu(nd_region->lane);
117 	ida_simple_remove(&region_ida, nd_region->id);
118 	if (is_nd_blk(dev))
119 		kfree(to_nd_blk_region(dev));
120 	else
121 		kfree(nd_region);
122 }
123 
124 static struct device_type nd_blk_device_type = {
125 	.name = "nd_blk",
126 	.release = nd_region_release,
127 };
128 
129 static struct device_type nd_pmem_device_type = {
130 	.name = "nd_pmem",
131 	.release = nd_region_release,
132 };
133 
134 static struct device_type nd_volatile_device_type = {
135 	.name = "nd_volatile",
136 	.release = nd_region_release,
137 };
138 
139 bool is_nd_pmem(struct device *dev)
140 {
141 	return dev ? dev->type == &nd_pmem_device_type : false;
142 }
143 
144 bool is_nd_blk(struct device *dev)
145 {
146 	return dev ? dev->type == &nd_blk_device_type : false;
147 }
148 
149 struct nd_region *to_nd_region(struct device *dev)
150 {
151 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
152 
153 	WARN_ON(dev->type->release != nd_region_release);
154 	return nd_region;
155 }
156 EXPORT_SYMBOL_GPL(to_nd_region);
157 
158 struct nd_blk_region *to_nd_blk_region(struct device *dev)
159 {
160 	struct nd_region *nd_region = to_nd_region(dev);
161 
162 	WARN_ON(!is_nd_blk(dev));
163 	return container_of(nd_region, struct nd_blk_region, nd_region);
164 }
165 EXPORT_SYMBOL_GPL(to_nd_blk_region);
166 
167 void *nd_region_provider_data(struct nd_region *nd_region)
168 {
169 	return nd_region->provider_data;
170 }
171 EXPORT_SYMBOL_GPL(nd_region_provider_data);
172 
173 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
174 {
175 	return ndbr->blk_provider_data;
176 }
177 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
178 
179 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
180 {
181 	ndbr->blk_provider_data = data;
182 }
183 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
184 
185 /**
186  * nd_region_to_nstype() - region to an integer namespace type
187  * @nd_region: region-device to interrogate
188  *
189  * This is the 'nstype' attribute of a region as well, an input to the
190  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
191  * namespace devices with namespace drivers.
192  */
193 int nd_region_to_nstype(struct nd_region *nd_region)
194 {
195 	if (is_nd_pmem(&nd_region->dev)) {
196 		u16 i, alias;
197 
198 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
199 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
200 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
201 
202 			if (nvdimm->flags & NDD_ALIASING)
203 				alias++;
204 		}
205 		if (alias)
206 			return ND_DEVICE_NAMESPACE_PMEM;
207 		else
208 			return ND_DEVICE_NAMESPACE_IO;
209 	} else if (is_nd_blk(&nd_region->dev)) {
210 		return ND_DEVICE_NAMESPACE_BLK;
211 	}
212 
213 	return 0;
214 }
215 EXPORT_SYMBOL(nd_region_to_nstype);
216 
217 static ssize_t size_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct nd_region *nd_region = to_nd_region(dev);
221 	unsigned long long size = 0;
222 
223 	if (is_nd_pmem(dev)) {
224 		size = nd_region->ndr_size;
225 	} else if (nd_region->ndr_mappings == 1) {
226 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
227 
228 		size = nd_mapping->size;
229 	}
230 
231 	return sprintf(buf, "%llu\n", size);
232 }
233 static DEVICE_ATTR_RO(size);
234 
235 static ssize_t mappings_show(struct device *dev,
236 		struct device_attribute *attr, char *buf)
237 {
238 	struct nd_region *nd_region = to_nd_region(dev);
239 
240 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
241 }
242 static DEVICE_ATTR_RO(mappings);
243 
244 static ssize_t nstype_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct nd_region *nd_region = to_nd_region(dev);
248 
249 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
250 }
251 static DEVICE_ATTR_RO(nstype);
252 
253 static ssize_t set_cookie_show(struct device *dev,
254 		struct device_attribute *attr, char *buf)
255 {
256 	struct nd_region *nd_region = to_nd_region(dev);
257 	struct nd_interleave_set *nd_set = nd_region->nd_set;
258 
259 	if (is_nd_pmem(dev) && nd_set)
260 		/* pass, should be precluded by region_visible */;
261 	else
262 		return -ENXIO;
263 
264 	return sprintf(buf, "%#llx\n", nd_set->cookie);
265 }
266 static DEVICE_ATTR_RO(set_cookie);
267 
268 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
269 {
270 	resource_size_t blk_max_overlap = 0, available, overlap;
271 	int i;
272 
273 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
274 
275  retry:
276 	available = 0;
277 	overlap = blk_max_overlap;
278 	for (i = 0; i < nd_region->ndr_mappings; i++) {
279 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
280 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
281 
282 		/* if a dimm is disabled the available capacity is zero */
283 		if (!ndd)
284 			return 0;
285 
286 		if (is_nd_pmem(&nd_region->dev)) {
287 			available += nd_pmem_available_dpa(nd_region,
288 					nd_mapping, &overlap);
289 			if (overlap > blk_max_overlap) {
290 				blk_max_overlap = overlap;
291 				goto retry;
292 			}
293 		} else if (is_nd_blk(&nd_region->dev)) {
294 			available += nd_blk_available_dpa(nd_mapping);
295 		}
296 	}
297 
298 	return available;
299 }
300 
301 static ssize_t available_size_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct nd_region *nd_region = to_nd_region(dev);
305 	unsigned long long available = 0;
306 
307 	/*
308 	 * Flush in-flight updates and grab a snapshot of the available
309 	 * size.  Of course, this value is potentially invalidated the
310 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
311 	 * problem to not race itself.
312 	 */
313 	nvdimm_bus_lock(dev);
314 	wait_nvdimm_bus_probe_idle(dev);
315 	available = nd_region_available_dpa(nd_region);
316 	nvdimm_bus_unlock(dev);
317 
318 	return sprintf(buf, "%llu\n", available);
319 }
320 static DEVICE_ATTR_RO(available_size);
321 
322 static ssize_t init_namespaces_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
326 	ssize_t rc;
327 
328 	nvdimm_bus_lock(dev);
329 	if (ndrd)
330 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
331 	else
332 		rc = -ENXIO;
333 	nvdimm_bus_unlock(dev);
334 
335 	return rc;
336 }
337 static DEVICE_ATTR_RO(init_namespaces);
338 
339 static ssize_t namespace_seed_show(struct device *dev,
340 		struct device_attribute *attr, char *buf)
341 {
342 	struct nd_region *nd_region = to_nd_region(dev);
343 	ssize_t rc;
344 
345 	nvdimm_bus_lock(dev);
346 	if (nd_region->ns_seed)
347 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
348 	else
349 		rc = sprintf(buf, "\n");
350 	nvdimm_bus_unlock(dev);
351 	return rc;
352 }
353 static DEVICE_ATTR_RO(namespace_seed);
354 
355 static ssize_t btt_seed_show(struct device *dev,
356 		struct device_attribute *attr, char *buf)
357 {
358 	struct nd_region *nd_region = to_nd_region(dev);
359 	ssize_t rc;
360 
361 	nvdimm_bus_lock(dev);
362 	if (nd_region->btt_seed)
363 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
364 	else
365 		rc = sprintf(buf, "\n");
366 	nvdimm_bus_unlock(dev);
367 
368 	return rc;
369 }
370 static DEVICE_ATTR_RO(btt_seed);
371 
372 static ssize_t pfn_seed_show(struct device *dev,
373 		struct device_attribute *attr, char *buf)
374 {
375 	struct nd_region *nd_region = to_nd_region(dev);
376 	ssize_t rc;
377 
378 	nvdimm_bus_lock(dev);
379 	if (nd_region->pfn_seed)
380 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
381 	else
382 		rc = sprintf(buf, "\n");
383 	nvdimm_bus_unlock(dev);
384 
385 	return rc;
386 }
387 static DEVICE_ATTR_RO(pfn_seed);
388 
389 static ssize_t dax_seed_show(struct device *dev,
390 		struct device_attribute *attr, char *buf)
391 {
392 	struct nd_region *nd_region = to_nd_region(dev);
393 	ssize_t rc;
394 
395 	nvdimm_bus_lock(dev);
396 	if (nd_region->dax_seed)
397 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
398 	else
399 		rc = sprintf(buf, "\n");
400 	nvdimm_bus_unlock(dev);
401 
402 	return rc;
403 }
404 static DEVICE_ATTR_RO(dax_seed);
405 
406 static ssize_t read_only_show(struct device *dev,
407 		struct device_attribute *attr, char *buf)
408 {
409 	struct nd_region *nd_region = to_nd_region(dev);
410 
411 	return sprintf(buf, "%d\n", nd_region->ro);
412 }
413 
414 static ssize_t read_only_store(struct device *dev,
415 		struct device_attribute *attr, const char *buf, size_t len)
416 {
417 	bool ro;
418 	int rc = strtobool(buf, &ro);
419 	struct nd_region *nd_region = to_nd_region(dev);
420 
421 	if (rc)
422 		return rc;
423 
424 	nd_region->ro = ro;
425 	return len;
426 }
427 static DEVICE_ATTR_RW(read_only);
428 
429 static struct attribute *nd_region_attributes[] = {
430 	&dev_attr_size.attr,
431 	&dev_attr_nstype.attr,
432 	&dev_attr_mappings.attr,
433 	&dev_attr_btt_seed.attr,
434 	&dev_attr_pfn_seed.attr,
435 	&dev_attr_dax_seed.attr,
436 	&dev_attr_read_only.attr,
437 	&dev_attr_set_cookie.attr,
438 	&dev_attr_available_size.attr,
439 	&dev_attr_namespace_seed.attr,
440 	&dev_attr_init_namespaces.attr,
441 	NULL,
442 };
443 
444 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
445 {
446 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
447 	struct nd_region *nd_region = to_nd_region(dev);
448 	struct nd_interleave_set *nd_set = nd_region->nd_set;
449 	int type = nd_region_to_nstype(nd_region);
450 
451 	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
452 		return 0;
453 
454 	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
455 		return 0;
456 
457 	if (a != &dev_attr_set_cookie.attr
458 			&& a != &dev_attr_available_size.attr)
459 		return a->mode;
460 
461 	if ((type == ND_DEVICE_NAMESPACE_PMEM
462 				|| type == ND_DEVICE_NAMESPACE_BLK)
463 			&& a == &dev_attr_available_size.attr)
464 		return a->mode;
465 	else if (is_nd_pmem(dev) && nd_set)
466 		return a->mode;
467 
468 	return 0;
469 }
470 
471 struct attribute_group nd_region_attribute_group = {
472 	.attrs = nd_region_attributes,
473 	.is_visible = region_visible,
474 };
475 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
476 
477 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
478 {
479 	struct nd_interleave_set *nd_set = nd_region->nd_set;
480 
481 	if (nd_set)
482 		return nd_set->cookie;
483 	return 0;
484 }
485 
486 /*
487  * Upon successful probe/remove, take/release a reference on the
488  * associated interleave set (if present), and plant new btt + namespace
489  * seeds.  Also, on the removal of a BLK region, notify the provider to
490  * disable the region.
491  */
492 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
493 		struct device *dev, bool probe)
494 {
495 	struct nd_region *nd_region;
496 
497 	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
498 		int i;
499 
500 		nd_region = to_nd_region(dev);
501 		for (i = 0; i < nd_region->ndr_mappings; i++) {
502 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
503 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
504 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
505 
506 			kfree(nd_mapping->labels);
507 			nd_mapping->labels = NULL;
508 			put_ndd(ndd);
509 			nd_mapping->ndd = NULL;
510 			if (ndd)
511 				atomic_dec(&nvdimm->busy);
512 		}
513 
514 		if (is_nd_pmem(dev))
515 			return;
516 	}
517 	if (dev->parent && is_nd_blk(dev->parent) && probe) {
518 		nd_region = to_nd_region(dev->parent);
519 		nvdimm_bus_lock(dev);
520 		if (nd_region->ns_seed == dev)
521 			nd_region_create_blk_seed(nd_region);
522 		nvdimm_bus_unlock(dev);
523 	}
524 	if (is_nd_btt(dev) && probe) {
525 		struct nd_btt *nd_btt = to_nd_btt(dev);
526 
527 		nd_region = to_nd_region(dev->parent);
528 		nvdimm_bus_lock(dev);
529 		if (nd_region->btt_seed == dev)
530 			nd_region_create_btt_seed(nd_region);
531 		if (nd_region->ns_seed == &nd_btt->ndns->dev &&
532 				is_nd_blk(dev->parent))
533 			nd_region_create_blk_seed(nd_region);
534 		nvdimm_bus_unlock(dev);
535 	}
536 	if (is_nd_pfn(dev) && probe) {
537 		nd_region = to_nd_region(dev->parent);
538 		nvdimm_bus_lock(dev);
539 		if (nd_region->pfn_seed == dev)
540 			nd_region_create_pfn_seed(nd_region);
541 		nvdimm_bus_unlock(dev);
542 	}
543 	if (is_nd_dax(dev) && probe) {
544 		nd_region = to_nd_region(dev->parent);
545 		nvdimm_bus_lock(dev);
546 		if (nd_region->dax_seed == dev)
547 			nd_region_create_dax_seed(nd_region);
548 		nvdimm_bus_unlock(dev);
549 	}
550 }
551 
552 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
553 {
554 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
555 }
556 
557 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
558 {
559 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
560 }
561 
562 static ssize_t mappingN(struct device *dev, char *buf, int n)
563 {
564 	struct nd_region *nd_region = to_nd_region(dev);
565 	struct nd_mapping *nd_mapping;
566 	struct nvdimm *nvdimm;
567 
568 	if (n >= nd_region->ndr_mappings)
569 		return -ENXIO;
570 	nd_mapping = &nd_region->mapping[n];
571 	nvdimm = nd_mapping->nvdimm;
572 
573 	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
574 			nd_mapping->start, nd_mapping->size);
575 }
576 
577 #define REGION_MAPPING(idx) \
578 static ssize_t mapping##idx##_show(struct device *dev,		\
579 		struct device_attribute *attr, char *buf)	\
580 {								\
581 	return mappingN(dev, buf, idx);				\
582 }								\
583 static DEVICE_ATTR_RO(mapping##idx)
584 
585 /*
586  * 32 should be enough for a while, even in the presence of socket
587  * interleave a 32-way interleave set is a degenerate case.
588  */
589 REGION_MAPPING(0);
590 REGION_MAPPING(1);
591 REGION_MAPPING(2);
592 REGION_MAPPING(3);
593 REGION_MAPPING(4);
594 REGION_MAPPING(5);
595 REGION_MAPPING(6);
596 REGION_MAPPING(7);
597 REGION_MAPPING(8);
598 REGION_MAPPING(9);
599 REGION_MAPPING(10);
600 REGION_MAPPING(11);
601 REGION_MAPPING(12);
602 REGION_MAPPING(13);
603 REGION_MAPPING(14);
604 REGION_MAPPING(15);
605 REGION_MAPPING(16);
606 REGION_MAPPING(17);
607 REGION_MAPPING(18);
608 REGION_MAPPING(19);
609 REGION_MAPPING(20);
610 REGION_MAPPING(21);
611 REGION_MAPPING(22);
612 REGION_MAPPING(23);
613 REGION_MAPPING(24);
614 REGION_MAPPING(25);
615 REGION_MAPPING(26);
616 REGION_MAPPING(27);
617 REGION_MAPPING(28);
618 REGION_MAPPING(29);
619 REGION_MAPPING(30);
620 REGION_MAPPING(31);
621 
622 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
623 {
624 	struct device *dev = container_of(kobj, struct device, kobj);
625 	struct nd_region *nd_region = to_nd_region(dev);
626 
627 	if (n < nd_region->ndr_mappings)
628 		return a->mode;
629 	return 0;
630 }
631 
632 static struct attribute *mapping_attributes[] = {
633 	&dev_attr_mapping0.attr,
634 	&dev_attr_mapping1.attr,
635 	&dev_attr_mapping2.attr,
636 	&dev_attr_mapping3.attr,
637 	&dev_attr_mapping4.attr,
638 	&dev_attr_mapping5.attr,
639 	&dev_attr_mapping6.attr,
640 	&dev_attr_mapping7.attr,
641 	&dev_attr_mapping8.attr,
642 	&dev_attr_mapping9.attr,
643 	&dev_attr_mapping10.attr,
644 	&dev_attr_mapping11.attr,
645 	&dev_attr_mapping12.attr,
646 	&dev_attr_mapping13.attr,
647 	&dev_attr_mapping14.attr,
648 	&dev_attr_mapping15.attr,
649 	&dev_attr_mapping16.attr,
650 	&dev_attr_mapping17.attr,
651 	&dev_attr_mapping18.attr,
652 	&dev_attr_mapping19.attr,
653 	&dev_attr_mapping20.attr,
654 	&dev_attr_mapping21.attr,
655 	&dev_attr_mapping22.attr,
656 	&dev_attr_mapping23.attr,
657 	&dev_attr_mapping24.attr,
658 	&dev_attr_mapping25.attr,
659 	&dev_attr_mapping26.attr,
660 	&dev_attr_mapping27.attr,
661 	&dev_attr_mapping28.attr,
662 	&dev_attr_mapping29.attr,
663 	&dev_attr_mapping30.attr,
664 	&dev_attr_mapping31.attr,
665 	NULL,
666 };
667 
668 struct attribute_group nd_mapping_attribute_group = {
669 	.is_visible = mapping_visible,
670 	.attrs = mapping_attributes,
671 };
672 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
673 
674 int nd_blk_region_init(struct nd_region *nd_region)
675 {
676 	struct device *dev = &nd_region->dev;
677 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
678 
679 	if (!is_nd_blk(dev))
680 		return 0;
681 
682 	if (nd_region->ndr_mappings < 1) {
683 		dev_err(dev, "invalid BLK region\n");
684 		return -ENXIO;
685 	}
686 
687 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
688 }
689 
690 /**
691  * nd_region_acquire_lane - allocate and lock a lane
692  * @nd_region: region id and number of lanes possible
693  *
694  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
695  * We optimize for the common case where there are 256 lanes, one
696  * per-cpu.  For larger systems we need to lock to share lanes.  For now
697  * this implementation assumes the cost of maintaining an allocator for
698  * free lanes is on the order of the lock hold time, so it implements a
699  * static lane = cpu % num_lanes mapping.
700  *
701  * In the case of a BTT instance on top of a BLK namespace a lane may be
702  * acquired recursively.  We lock on the first instance.
703  *
704  * In the case of a BTT instance on top of PMEM, we only acquire a lane
705  * for the BTT metadata updates.
706  */
707 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
708 {
709 	unsigned int cpu, lane;
710 
711 	cpu = get_cpu();
712 	if (nd_region->num_lanes < nr_cpu_ids) {
713 		struct nd_percpu_lane *ndl_lock, *ndl_count;
714 
715 		lane = cpu % nd_region->num_lanes;
716 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
717 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
718 		if (ndl_count->count++ == 0)
719 			spin_lock(&ndl_lock->lock);
720 	} else
721 		lane = cpu;
722 
723 	return lane;
724 }
725 EXPORT_SYMBOL(nd_region_acquire_lane);
726 
727 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
728 {
729 	if (nd_region->num_lanes < nr_cpu_ids) {
730 		unsigned int cpu = get_cpu();
731 		struct nd_percpu_lane *ndl_lock, *ndl_count;
732 
733 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
734 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
735 		if (--ndl_count->count == 0)
736 			spin_unlock(&ndl_lock->lock);
737 		put_cpu();
738 	}
739 	put_cpu();
740 }
741 EXPORT_SYMBOL(nd_region_release_lane);
742 
743 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
744 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
745 		const char *caller)
746 {
747 	struct nd_region *nd_region;
748 	struct device *dev;
749 	void *region_buf;
750 	unsigned int i;
751 	int ro = 0;
752 
753 	for (i = 0; i < ndr_desc->num_mappings; i++) {
754 		struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
755 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
756 
757 		if ((nd_mapping->start | nd_mapping->size) % SZ_4K) {
758 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
759 					caller, dev_name(&nvdimm->dev), i);
760 
761 			return NULL;
762 		}
763 
764 		if (nvdimm->flags & NDD_UNARMED)
765 			ro = 1;
766 	}
767 
768 	if (dev_type == &nd_blk_device_type) {
769 		struct nd_blk_region_desc *ndbr_desc;
770 		struct nd_blk_region *ndbr;
771 
772 		ndbr_desc = to_blk_region_desc(ndr_desc);
773 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
774 				* ndr_desc->num_mappings,
775 				GFP_KERNEL);
776 		if (ndbr) {
777 			nd_region = &ndbr->nd_region;
778 			ndbr->enable = ndbr_desc->enable;
779 			ndbr->do_io = ndbr_desc->do_io;
780 		}
781 		region_buf = ndbr;
782 	} else {
783 		nd_region = kzalloc(sizeof(struct nd_region)
784 				+ sizeof(struct nd_mapping)
785 				* ndr_desc->num_mappings,
786 				GFP_KERNEL);
787 		region_buf = nd_region;
788 	}
789 
790 	if (!region_buf)
791 		return NULL;
792 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
793 	if (nd_region->id < 0)
794 		goto err_id;
795 
796 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
797 	if (!nd_region->lane)
798 		goto err_percpu;
799 
800         for (i = 0; i < nr_cpu_ids; i++) {
801 		struct nd_percpu_lane *ndl;
802 
803 		ndl = per_cpu_ptr(nd_region->lane, i);
804 		spin_lock_init(&ndl->lock);
805 		ndl->count = 0;
806 	}
807 
808 	memcpy(nd_region->mapping, ndr_desc->nd_mapping,
809 			sizeof(struct nd_mapping) * ndr_desc->num_mappings);
810 	for (i = 0; i < ndr_desc->num_mappings; i++) {
811 		struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
812 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
813 
814 		get_device(&nvdimm->dev);
815 	}
816 	nd_region->ndr_mappings = ndr_desc->num_mappings;
817 	nd_region->provider_data = ndr_desc->provider_data;
818 	nd_region->nd_set = ndr_desc->nd_set;
819 	nd_region->num_lanes = ndr_desc->num_lanes;
820 	nd_region->flags = ndr_desc->flags;
821 	nd_region->ro = ro;
822 	nd_region->numa_node = ndr_desc->numa_node;
823 	ida_init(&nd_region->ns_ida);
824 	ida_init(&nd_region->btt_ida);
825 	ida_init(&nd_region->pfn_ida);
826 	ida_init(&nd_region->dax_ida);
827 	dev = &nd_region->dev;
828 	dev_set_name(dev, "region%d", nd_region->id);
829 	dev->parent = &nvdimm_bus->dev;
830 	dev->type = dev_type;
831 	dev->groups = ndr_desc->attr_groups;
832 	nd_region->ndr_size = resource_size(ndr_desc->res);
833 	nd_region->ndr_start = ndr_desc->res->start;
834 	nd_device_register(dev);
835 
836 	return nd_region;
837 
838  err_percpu:
839 	ida_simple_remove(&region_ida, nd_region->id);
840  err_id:
841 	kfree(region_buf);
842 	return NULL;
843 }
844 
845 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
846 		struct nd_region_desc *ndr_desc)
847 {
848 	ndr_desc->num_lanes = ND_MAX_LANES;
849 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
850 			__func__);
851 }
852 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
853 
854 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
855 		struct nd_region_desc *ndr_desc)
856 {
857 	if (ndr_desc->num_mappings > 1)
858 		return NULL;
859 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
860 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
861 			__func__);
862 }
863 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
864 
865 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
866 		struct nd_region_desc *ndr_desc)
867 {
868 	ndr_desc->num_lanes = ND_MAX_LANES;
869 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
870 			__func__);
871 }
872 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
873 
874 /**
875  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
876  * @nd_region: blk or interleaved pmem region
877  */
878 void nvdimm_flush(struct nd_region *nd_region)
879 {
880 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
881 	int i;
882 
883 	/*
884 	 * The first wmb() is needed to 'sfence' all previous writes
885 	 * such that they are architecturally visible for the platform
886 	 * buffer flush.  Note that we've already arranged for pmem
887 	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
888 	 * final wmb() ensures ordering for the NVDIMM flush write.
889 	 */
890 	wmb();
891 	for (i = 0; i < nd_region->ndr_mappings; i++)
892 		if (ndrd->flush_wpq[i][0])
893 			writeq(1, ndrd->flush_wpq[i][0]);
894 	wmb();
895 }
896 EXPORT_SYMBOL_GPL(nvdimm_flush);
897 
898 /**
899  * nvdimm_has_flush - determine write flushing requirements
900  * @nd_region: blk or interleaved pmem region
901  *
902  * Returns 1 if writes require flushing
903  * Returns 0 if writes do not require flushing
904  * Returns -ENXIO if flushing capability can not be determined
905  */
906 int nvdimm_has_flush(struct nd_region *nd_region)
907 {
908 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
909 	int i;
910 
911 	/* no nvdimm == flushing capability unknown */
912 	if (nd_region->ndr_mappings == 0)
913 		return -ENXIO;
914 
915 	for (i = 0; i < nd_region->ndr_mappings; i++)
916 		/* flush hints present, flushing required */
917 		if (ndrd->flush_wpq[i][0])
918 			return 1;
919 
920 	/*
921 	 * The platform defines dimm devices without hints, assume
922 	 * platform persistence mechanism like ADR
923 	 */
924 	return 0;
925 }
926 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
927 
928 void __exit nd_region_devs_exit(void)
929 {
930 	ida_destroy(&region_ida);
931 }
932