History log of /openbmc/linux/drivers/cpufreq/intel_pstate.c (Results 76 – 100 of 1302)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 3423a341 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running

cpufreq: intel_pstate: Read all MSRs on the target CPU

commit 8dbab94d45fb1094cefac7956b7fb987a36e2b12 upstream.

Some of the MSR accesses in intel_pstate are carried out on the CPU
that is running the code, but the values coming from them are used
for the performance scaling of the other CPUs.

This is problematic, for example, on hybrid platforms where
MSR_TURBO_RATIO_LIMIT for P-cores and E-cores is different, so the
values read from it on a P-core are generally not applicable to E-cores
and the other way around.

For this reason, make the driver access all MSRs on the target CPU on
platforms using the "core" pstate_funcs callbacks which is the case for
all of the hybrid platforms released to date. For this purpose, pass
a CPU argument to the ->get_max(), ->get_max_physical(), ->get_min()
and ->get_turbo() pstate_funcs callbacks and from there pass it to
rdmsrl_on_cpu() or rdmsrl_safe_on_cpu() to access the MSR on the target
CPU.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


# 24030742 24-Oct-2022 Rafael J. Wysocki <rafael.j.wysocki@intel.com>

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibra

cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores

commit f5c8cf2a4992dd929fa0c2f25c09ee69b8dcbce1 upstream.

Commit 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP
calibration") attempted to use the information from CPPC (the nominal
performance in particular) to obtain the scaling factor allowing the
frequency to be computed if the HWP performance level of the given CPU
is known or vice versa.

However, it turns out that on some platforms this doesn't work, because
the CPPC information on them does not align with the contents of the
MSR_HWP_CAPABILITIES registers.

This basically means that the only way to make intel_pstate work on all
of the hybrid platforms to date is to use the observation that on all
of them the scaling factor between the HWP performance levels and
frequency for P-cores is 78741 (approximately 100000/1.27). For
E-cores it is 100000, which is the same as for all of the non-hybrid
"core" platforms and does not require any changes.

Accordingly, make intel_pstate use 78741 as the scaling factor between
HWP performance levels and frequency for P-cores on all hybrid platforms
and drop the dependency of the HWP calibration code on CPPC.

Fixes: 46573fd6369f ("cpufreq: intel_pstate: hybrid: Rework HWP calibration")
Reported-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: 5.15+ <stable@vger.kernel.org> # 5.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

show more ...


12345678910>>...53