1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 
36 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37 
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81 	return (x * y) >> EXT_FRAC_BITS;
82 }
83 
84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86 	return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88 
89 /**
90  * struct sample -	Store performance sample
91  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
92  *			performance during last sample period
93  * @busy_scaled:	Scaled busy value which is used to calculate next
94  *			P state. This can be different than core_avg_perf
95  *			to account for cpu idle period
96  * @aperf:		Difference of actual performance frequency clock count
97  *			read from APERF MSR between last and current sample
98  * @mperf:		Difference of maximum performance frequency clock count
99  *			read from MPERF MSR between last and current sample
100  * @tsc:		Difference of time stamp counter between last and
101  *			current sample
102  * @time:		Current time from scheduler
103  *
104  * This structure is used in the cpudata structure to store performance sample
105  * data for choosing next P State.
106  */
107 struct sample {
108 	int32_t core_avg_perf;
109 	int32_t busy_scaled;
110 	u64 aperf;
111 	u64 mperf;
112 	u64 tsc;
113 	u64 time;
114 };
115 
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:	Current requested P state
119  * @min_pstate:		Min P state possible for this platform
120  * @max_pstate:		Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *			This can be higher than the max_pstate which can
123  *			be limited by platform thermal design power limits
124  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
125  * @scaling:		Scaling factor between performance and frequency
126  * @turbo_pstate:	Max Turbo P state possible for this platform
127  * @min_freq:		@min_pstate frequency in cpufreq units
128  * @max_freq:		@max_pstate frequency in cpufreq units
129  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
130  *
131  * Stores the per cpu model P state limits and current P state.
132  */
133 struct pstate_data {
134 	int	current_pstate;
135 	int	min_pstate;
136 	int	max_pstate;
137 	int	max_pstate_physical;
138 	int	perf_ctl_scaling;
139 	int	scaling;
140 	int	turbo_pstate;
141 	unsigned int min_freq;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct global_params - Global parameters, mostly tunable via sysfs.
168  * @no_turbo:		Whether or not to use turbo P-states.
169  * @turbo_disabled:	Whether or not turbo P-states are available at all,
170  *			based on the MSR_IA32_MISC_ENABLE value and whether or
171  *			not the maximum reported turbo P-state is different from
172  *			the maximum reported non-turbo one.
173  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
174  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
175  *			P-state capacity.
176  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
177  *			P-state capacity.
178  */
179 struct global_params {
180 	bool no_turbo;
181 	bool turbo_disabled;
182 	bool turbo_disabled_mf;
183 	int max_perf_pct;
184 	int min_perf_pct;
185 };
186 
187 /**
188  * struct cpudata -	Per CPU instance data storage
189  * @cpu:		CPU number for this instance data
190  * @policy:		CPUFreq policy value
191  * @update_util:	CPUFreq utility callback information
192  * @update_util_set:	CPUFreq utility callback is set
193  * @iowait_boost:	iowait-related boost fraction
194  * @last_update:	Time of the last update.
195  * @pstate:		Stores P state limits for this CPU
196  * @vid:		Stores VID limits for this CPU
197  * @last_sample_time:	Last Sample time
198  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
199  * @prev_aperf:		Last APERF value read from APERF MSR
200  * @prev_mperf:		Last MPERF value read from MPERF MSR
201  * @prev_tsc:		Last timestamp counter (TSC) value
202  * @prev_cummulative_iowait: IO Wait time difference from last and
203  *			current sample
204  * @sample:		Storage for storing last Sample data
205  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
206  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
207  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
208  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
209  * @epp_powersave:	Last saved HWP energy performance preference
210  *			(EPP) or energy performance bias (EPB),
211  *			when policy switched to performance
212  * @epp_policy:		Last saved policy used to set EPP/EPB
213  * @epp_default:	Power on default HWP energy performance
214  *			preference/bias
215  * @epp_cached		Cached HWP energy-performance preference value
216  * @hwp_req_cached:	Cached value of the last HWP Request MSR
217  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
218  * @last_io_update:	Last time when IO wake flag was set
219  * @sched_flags:	Store scheduler flags for possible cross CPU update
220  * @hwp_boost_min:	Last HWP boosted min performance
221  * @suspended:		Whether or not the driver has been suspended.
222  *
223  * This structure stores per CPU instance data for all CPUs.
224  */
225 struct cpudata {
226 	int cpu;
227 
228 	unsigned int policy;
229 	struct update_util_data update_util;
230 	bool   update_util_set;
231 
232 	struct pstate_data pstate;
233 	struct vid_data vid;
234 
235 	u64	last_update;
236 	u64	last_sample_time;
237 	u64	aperf_mperf_shift;
238 	u64	prev_aperf;
239 	u64	prev_mperf;
240 	u64	prev_tsc;
241 	u64	prev_cummulative_iowait;
242 	struct sample sample;
243 	int32_t	min_perf_ratio;
244 	int32_t	max_perf_ratio;
245 #ifdef CONFIG_ACPI
246 	struct acpi_processor_performance acpi_perf_data;
247 	bool valid_pss_table;
248 #endif
249 	unsigned int iowait_boost;
250 	s16 epp_powersave;
251 	s16 epp_policy;
252 	s16 epp_default;
253 	s16 epp_cached;
254 	u64 hwp_req_cached;
255 	u64 hwp_cap_cached;
256 	u64 last_io_update;
257 	unsigned int sched_flags;
258 	u32 hwp_boost_min;
259 	bool suspended;
260 };
261 
262 static struct cpudata **all_cpu_data;
263 
264 /**
265  * struct pstate_funcs - Per CPU model specific callbacks
266  * @get_max:		Callback to get maximum non turbo effective P state
267  * @get_max_physical:	Callback to get maximum non turbo physical P state
268  * @get_min:		Callback to get minimum P state
269  * @get_turbo:		Callback to get turbo P state
270  * @get_scaling:	Callback to get frequency scaling factor
271  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
272  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
273  * @get_val:		Callback to convert P state to actual MSR write value
274  * @get_vid:		Callback to get VID data for Atom platforms
275  *
276  * Core and Atom CPU models have different way to get P State limits. This
277  * structure is used to store those callbacks.
278  */
279 struct pstate_funcs {
280 	int (*get_max)(int cpu);
281 	int (*get_max_physical)(int cpu);
282 	int (*get_min)(int cpu);
283 	int (*get_turbo)(int cpu);
284 	int (*get_scaling)(void);
285 	int (*get_cpu_scaling)(int cpu);
286 	int (*get_aperf_mperf_shift)(void);
287 	u64 (*get_val)(struct cpudata*, int pstate);
288 	void (*get_vid)(struct cpudata *);
289 };
290 
291 static struct pstate_funcs pstate_funcs __read_mostly;
292 
293 static int hwp_active __read_mostly;
294 static int hwp_mode_bdw __read_mostly;
295 static bool per_cpu_limits __read_mostly;
296 static bool hwp_boost __read_mostly;
297 
298 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
299 
300 #ifdef CONFIG_ACPI
301 static bool acpi_ppc;
302 #endif
303 
304 static struct global_params global;
305 
306 static DEFINE_MUTEX(intel_pstate_driver_lock);
307 static DEFINE_MUTEX(intel_pstate_limits_lock);
308 
309 #ifdef CONFIG_ACPI
310 
311 static bool intel_pstate_acpi_pm_profile_server(void)
312 {
313 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
314 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
315 		return true;
316 
317 	return false;
318 }
319 
320 static bool intel_pstate_get_ppc_enable_status(void)
321 {
322 	if (intel_pstate_acpi_pm_profile_server())
323 		return true;
324 
325 	return acpi_ppc;
326 }
327 
328 #ifdef CONFIG_ACPI_CPPC_LIB
329 
330 /* The work item is needed to avoid CPU hotplug locking issues */
331 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
332 {
333 	sched_set_itmt_support();
334 }
335 
336 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
337 
338 #define CPPC_MAX_PERF	U8_MAX
339 
340 static void intel_pstate_set_itmt_prio(int cpu)
341 {
342 	struct cppc_perf_caps cppc_perf;
343 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
344 	int ret;
345 
346 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
347 	if (ret)
348 		return;
349 
350 	/*
351 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
352 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
353 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
354 	 */
355 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
356 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
357 
358 	/*
359 	 * The priorities can be set regardless of whether or not
360 	 * sched_set_itmt_support(true) has been called and it is valid to
361 	 * update them at any time after it has been called.
362 	 */
363 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
364 
365 	if (max_highest_perf <= min_highest_perf) {
366 		if (cppc_perf.highest_perf > max_highest_perf)
367 			max_highest_perf = cppc_perf.highest_perf;
368 
369 		if (cppc_perf.highest_perf < min_highest_perf)
370 			min_highest_perf = cppc_perf.highest_perf;
371 
372 		if (max_highest_perf > min_highest_perf) {
373 			/*
374 			 * This code can be run during CPU online under the
375 			 * CPU hotplug locks, so sched_set_itmt_support()
376 			 * cannot be called from here.  Queue up a work item
377 			 * to invoke it.
378 			 */
379 			schedule_work(&sched_itmt_work);
380 		}
381 	}
382 }
383 
384 static int intel_pstate_get_cppc_guaranteed(int cpu)
385 {
386 	struct cppc_perf_caps cppc_perf;
387 	int ret;
388 
389 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
390 	if (ret)
391 		return ret;
392 
393 	if (cppc_perf.guaranteed_perf)
394 		return cppc_perf.guaranteed_perf;
395 
396 	return cppc_perf.nominal_perf;
397 }
398 
399 static u32 intel_pstate_cppc_nominal(int cpu)
400 {
401 	u64 nominal_perf;
402 
403 	if (cppc_get_nominal_perf(cpu, &nominal_perf))
404 		return 0;
405 
406 	return nominal_perf;
407 }
408 #else /* CONFIG_ACPI_CPPC_LIB */
409 static inline void intel_pstate_set_itmt_prio(int cpu)
410 {
411 }
412 #endif /* CONFIG_ACPI_CPPC_LIB */
413 
414 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
415 {
416 	struct cpudata *cpu;
417 	int ret;
418 	int i;
419 
420 	if (hwp_active) {
421 		intel_pstate_set_itmt_prio(policy->cpu);
422 		return;
423 	}
424 
425 	if (!intel_pstate_get_ppc_enable_status())
426 		return;
427 
428 	cpu = all_cpu_data[policy->cpu];
429 
430 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
431 						  policy->cpu);
432 	if (ret)
433 		return;
434 
435 	/*
436 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
437 	 * guarantee that the states returned by it map to the states in our
438 	 * list directly.
439 	 */
440 	if (cpu->acpi_perf_data.control_register.space_id !=
441 						ACPI_ADR_SPACE_FIXED_HARDWARE)
442 		goto err;
443 
444 	/*
445 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
446 	 * usual without taking _PSS into account
447 	 */
448 	if (cpu->acpi_perf_data.state_count < 2)
449 		goto err;
450 
451 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
452 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
453 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
454 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
455 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
456 			 (u32) cpu->acpi_perf_data.states[i].power,
457 			 (u32) cpu->acpi_perf_data.states[i].control);
458 	}
459 
460 	/*
461 	 * The _PSS table doesn't contain whole turbo frequency range.
462 	 * This just contains +1 MHZ above the max non turbo frequency,
463 	 * with control value corresponding to max turbo ratio. But
464 	 * when cpufreq set policy is called, it will call with this
465 	 * max frequency, which will cause a reduced performance as
466 	 * this driver uses real max turbo frequency as the max
467 	 * frequency. So correct this frequency in _PSS table to
468 	 * correct max turbo frequency based on the turbo state.
469 	 * Also need to convert to MHz as _PSS freq is in MHz.
470 	 */
471 	if (!global.turbo_disabled)
472 		cpu->acpi_perf_data.states[0].core_frequency =
473 					policy->cpuinfo.max_freq / 1000;
474 	cpu->valid_pss_table = true;
475 	pr_debug("_PPC limits will be enforced\n");
476 
477 	return;
478 
479  err:
480 	cpu->valid_pss_table = false;
481 	acpi_processor_unregister_performance(policy->cpu);
482 }
483 
484 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 	struct cpudata *cpu;
487 
488 	cpu = all_cpu_data[policy->cpu];
489 	if (!cpu->valid_pss_table)
490 		return;
491 
492 	acpi_processor_unregister_performance(policy->cpu);
493 }
494 #else /* CONFIG_ACPI */
495 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
496 {
497 }
498 
499 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
500 {
501 }
502 
503 static inline bool intel_pstate_acpi_pm_profile_server(void)
504 {
505 	return false;
506 }
507 #endif /* CONFIG_ACPI */
508 
509 #ifndef CONFIG_ACPI_CPPC_LIB
510 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
511 {
512 	return -ENOTSUPP;
513 }
514 #endif /* CONFIG_ACPI_CPPC_LIB */
515 
516 /**
517  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
518  * @cpu: Target CPU.
519  *
520  * On hybrid processors, HWP may expose more performance levels than there are
521  * P-states accessible through the PERF_CTL interface.  If that happens, the
522  * scaling factor between HWP performance levels and CPU frequency will be less
523  * than the scaling factor between P-state values and CPU frequency.
524  *
525  * In that case, adjust the CPU parameters used in computations accordingly.
526  */
527 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
528 {
529 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
530 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
531 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
532 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
533 	int scaling = cpu->pstate.scaling;
534 
535 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
536 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max(cpu->cpu));
537 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
538 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
539 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
540 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
541 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
542 
543 	/*
544 	 * If the product of the HWP performance scaling factor and the HWP_CAP
545 	 * highest performance is greater than the maximum turbo frequency
546 	 * corresponding to the pstate_funcs.get_turbo() return value, the
547 	 * scaling factor is too high, so recompute it to make the HWP_CAP
548 	 * highest performance correspond to the maximum turbo frequency.
549 	 */
550 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
551 	if (turbo_freq < cpu->pstate.turbo_freq) {
552 		cpu->pstate.turbo_freq = turbo_freq;
553 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
554 		cpu->pstate.scaling = scaling;
555 
556 		pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
557 			 cpu->cpu, scaling);
558 	}
559 
560 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
561 					 perf_ctl_scaling);
562 
563 	cpu->pstate.max_pstate_physical =
564 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
565 				     scaling);
566 
567 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
568 	/*
569 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
570 	 * the effective range of HWP performance levels.
571 	 */
572 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
573 }
574 
575 static inline void update_turbo_state(void)
576 {
577 	u64 misc_en;
578 	struct cpudata *cpu;
579 
580 	cpu = all_cpu_data[0];
581 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
582 	global.turbo_disabled =
583 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
584 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
585 }
586 
587 static int min_perf_pct_min(void)
588 {
589 	struct cpudata *cpu = all_cpu_data[0];
590 	int turbo_pstate = cpu->pstate.turbo_pstate;
591 
592 	return turbo_pstate ?
593 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
594 }
595 
596 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
597 {
598 	u64 epb;
599 	int ret;
600 
601 	if (!boot_cpu_has(X86_FEATURE_EPB))
602 		return -ENXIO;
603 
604 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
605 	if (ret)
606 		return (s16)ret;
607 
608 	return (s16)(epb & 0x0f);
609 }
610 
611 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
612 {
613 	s16 epp;
614 
615 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
616 		/*
617 		 * When hwp_req_data is 0, means that caller didn't read
618 		 * MSR_HWP_REQUEST, so need to read and get EPP.
619 		 */
620 		if (!hwp_req_data) {
621 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
622 					    &hwp_req_data);
623 			if (epp)
624 				return epp;
625 		}
626 		epp = (hwp_req_data >> 24) & 0xff;
627 	} else {
628 		/* When there is no EPP present, HWP uses EPB settings */
629 		epp = intel_pstate_get_epb(cpu_data);
630 	}
631 
632 	return epp;
633 }
634 
635 static int intel_pstate_set_epb(int cpu, s16 pref)
636 {
637 	u64 epb;
638 	int ret;
639 
640 	if (!boot_cpu_has(X86_FEATURE_EPB))
641 		return -ENXIO;
642 
643 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
644 	if (ret)
645 		return ret;
646 
647 	epb = (epb & ~0x0f) | pref;
648 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
649 
650 	return 0;
651 }
652 
653 /*
654  * EPP/EPB display strings corresponding to EPP index in the
655  * energy_perf_strings[]
656  *	index		String
657  *-------------------------------------
658  *	0		default
659  *	1		performance
660  *	2		balance_performance
661  *	3		balance_power
662  *	4		power
663  */
664 static const char * const energy_perf_strings[] = {
665 	"default",
666 	"performance",
667 	"balance_performance",
668 	"balance_power",
669 	"power",
670 	NULL
671 };
672 static const unsigned int epp_values[] = {
673 	HWP_EPP_PERFORMANCE,
674 	HWP_EPP_BALANCE_PERFORMANCE,
675 	HWP_EPP_BALANCE_POWERSAVE,
676 	HWP_EPP_POWERSAVE
677 };
678 
679 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
680 {
681 	s16 epp;
682 	int index = -EINVAL;
683 
684 	*raw_epp = 0;
685 	epp = intel_pstate_get_epp(cpu_data, 0);
686 	if (epp < 0)
687 		return epp;
688 
689 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
690 		if (epp == HWP_EPP_PERFORMANCE)
691 			return 1;
692 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
693 			return 2;
694 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
695 			return 3;
696 		if (epp == HWP_EPP_POWERSAVE)
697 			return 4;
698 		*raw_epp = epp;
699 		return 0;
700 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
701 		/*
702 		 * Range:
703 		 *	0x00-0x03	:	Performance
704 		 *	0x04-0x07	:	Balance performance
705 		 *	0x08-0x0B	:	Balance power
706 		 *	0x0C-0x0F	:	Power
707 		 * The EPB is a 4 bit value, but our ranges restrict the
708 		 * value which can be set. Here only using top two bits
709 		 * effectively.
710 		 */
711 		index = (epp >> 2) + 1;
712 	}
713 
714 	return index;
715 }
716 
717 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
718 {
719 	int ret;
720 
721 	/*
722 	 * Use the cached HWP Request MSR value, because in the active mode the
723 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
724 	 * intel_pstate_hwp_boost_down() at any time.
725 	 */
726 	u64 value = READ_ONCE(cpu->hwp_req_cached);
727 
728 	value &= ~GENMASK_ULL(31, 24);
729 	value |= (u64)epp << 24;
730 	/*
731 	 * The only other updater of hwp_req_cached in the active mode,
732 	 * intel_pstate_hwp_set(), is called under the same lock as this
733 	 * function, so it cannot run in parallel with the update below.
734 	 */
735 	WRITE_ONCE(cpu->hwp_req_cached, value);
736 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
737 	if (!ret)
738 		cpu->epp_cached = epp;
739 
740 	return ret;
741 }
742 
743 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
744 					      int pref_index, bool use_raw,
745 					      u32 raw_epp)
746 {
747 	int epp = -EINVAL;
748 	int ret;
749 
750 	if (!pref_index)
751 		epp = cpu_data->epp_default;
752 
753 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
754 		if (use_raw)
755 			epp = raw_epp;
756 		else if (epp == -EINVAL)
757 			epp = epp_values[pref_index - 1];
758 
759 		/*
760 		 * To avoid confusion, refuse to set EPP to any values different
761 		 * from 0 (performance) if the current policy is "performance",
762 		 * because those values would be overridden.
763 		 */
764 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
765 			return -EBUSY;
766 
767 		ret = intel_pstate_set_epp(cpu_data, epp);
768 	} else {
769 		if (epp == -EINVAL)
770 			epp = (pref_index - 1) << 2;
771 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
772 	}
773 
774 	return ret;
775 }
776 
777 static ssize_t show_energy_performance_available_preferences(
778 				struct cpufreq_policy *policy, char *buf)
779 {
780 	int i = 0;
781 	int ret = 0;
782 
783 	while (energy_perf_strings[i] != NULL)
784 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
785 
786 	ret += sprintf(&buf[ret], "\n");
787 
788 	return ret;
789 }
790 
791 cpufreq_freq_attr_ro(energy_performance_available_preferences);
792 
793 static struct cpufreq_driver intel_pstate;
794 
795 static ssize_t store_energy_performance_preference(
796 		struct cpufreq_policy *policy, const char *buf, size_t count)
797 {
798 	struct cpudata *cpu = all_cpu_data[policy->cpu];
799 	char str_preference[21];
800 	bool raw = false;
801 	ssize_t ret;
802 	u32 epp = 0;
803 
804 	ret = sscanf(buf, "%20s", str_preference);
805 	if (ret != 1)
806 		return -EINVAL;
807 
808 	ret = match_string(energy_perf_strings, -1, str_preference);
809 	if (ret < 0) {
810 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
811 			return ret;
812 
813 		ret = kstrtouint(buf, 10, &epp);
814 		if (ret)
815 			return ret;
816 
817 		if (epp > 255)
818 			return -EINVAL;
819 
820 		raw = true;
821 	}
822 
823 	/*
824 	 * This function runs with the policy R/W semaphore held, which
825 	 * guarantees that the driver pointer will not change while it is
826 	 * running.
827 	 */
828 	if (!intel_pstate_driver)
829 		return -EAGAIN;
830 
831 	mutex_lock(&intel_pstate_limits_lock);
832 
833 	if (intel_pstate_driver == &intel_pstate) {
834 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
835 	} else {
836 		/*
837 		 * In the passive mode the governor needs to be stopped on the
838 		 * target CPU before the EPP update and restarted after it,
839 		 * which is super-heavy-weight, so make sure it is worth doing
840 		 * upfront.
841 		 */
842 		if (!raw)
843 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
844 
845 		if (cpu->epp_cached != epp) {
846 			int err;
847 
848 			cpufreq_stop_governor(policy);
849 			ret = intel_pstate_set_epp(cpu, epp);
850 			err = cpufreq_start_governor(policy);
851 			if (!ret)
852 				ret = err;
853 		}
854 	}
855 
856 	mutex_unlock(&intel_pstate_limits_lock);
857 
858 	return ret ?: count;
859 }
860 
861 static ssize_t show_energy_performance_preference(
862 				struct cpufreq_policy *policy, char *buf)
863 {
864 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
865 	int preference, raw_epp;
866 
867 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
868 	if (preference < 0)
869 		return preference;
870 
871 	if (raw_epp)
872 		return  sprintf(buf, "%d\n", raw_epp);
873 	else
874 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
875 }
876 
877 cpufreq_freq_attr_rw(energy_performance_preference);
878 
879 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
880 {
881 	struct cpudata *cpu = all_cpu_data[policy->cpu];
882 	int ratio, freq;
883 
884 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
885 	if (ratio <= 0) {
886 		u64 cap;
887 
888 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
889 		ratio = HWP_GUARANTEED_PERF(cap);
890 	}
891 
892 	freq = ratio * cpu->pstate.scaling;
893 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
894 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
895 
896 	return sprintf(buf, "%d\n", freq);
897 }
898 
899 cpufreq_freq_attr_ro(base_frequency);
900 
901 static struct freq_attr *hwp_cpufreq_attrs[] = {
902 	&energy_performance_preference,
903 	&energy_performance_available_preferences,
904 	&base_frequency,
905 	NULL,
906 };
907 
908 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
909 {
910 	u64 cap;
911 
912 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
913 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
914 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
915 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
916 }
917 
918 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
919 {
920 	int scaling = cpu->pstate.scaling;
921 
922 	__intel_pstate_get_hwp_cap(cpu);
923 
924 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
925 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
926 	if (scaling != cpu->pstate.perf_ctl_scaling) {
927 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
928 
929 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
930 						 perf_ctl_scaling);
931 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
932 						   perf_ctl_scaling);
933 	}
934 }
935 
936 static void intel_pstate_hwp_set(unsigned int cpu)
937 {
938 	struct cpudata *cpu_data = all_cpu_data[cpu];
939 	int max, min;
940 	u64 value;
941 	s16 epp;
942 
943 	max = cpu_data->max_perf_ratio;
944 	min = cpu_data->min_perf_ratio;
945 
946 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
947 		min = max;
948 
949 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
950 
951 	value &= ~HWP_MIN_PERF(~0L);
952 	value |= HWP_MIN_PERF(min);
953 
954 	value &= ~HWP_MAX_PERF(~0L);
955 	value |= HWP_MAX_PERF(max);
956 
957 	if (cpu_data->epp_policy == cpu_data->policy)
958 		goto skip_epp;
959 
960 	cpu_data->epp_policy = cpu_data->policy;
961 
962 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
963 		epp = intel_pstate_get_epp(cpu_data, value);
964 		cpu_data->epp_powersave = epp;
965 		/* If EPP read was failed, then don't try to write */
966 		if (epp < 0)
967 			goto skip_epp;
968 
969 		epp = 0;
970 	} else {
971 		/* skip setting EPP, when saved value is invalid */
972 		if (cpu_data->epp_powersave < 0)
973 			goto skip_epp;
974 
975 		/*
976 		 * No need to restore EPP when it is not zero. This
977 		 * means:
978 		 *  - Policy is not changed
979 		 *  - user has manually changed
980 		 *  - Error reading EPB
981 		 */
982 		epp = intel_pstate_get_epp(cpu_data, value);
983 		if (epp)
984 			goto skip_epp;
985 
986 		epp = cpu_data->epp_powersave;
987 	}
988 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
989 		value &= ~GENMASK_ULL(31, 24);
990 		value |= (u64)epp << 24;
991 	} else {
992 		intel_pstate_set_epb(cpu, epp);
993 	}
994 skip_epp:
995 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
996 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
997 }
998 
999 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1000 {
1001 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1002 	int min_perf;
1003 
1004 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1005 		/*
1006 		 * In case the EPP has been set to "performance" by the
1007 		 * active mode "performance" scaling algorithm, replace that
1008 		 * temporary value with the cached EPP one.
1009 		 */
1010 		value &= ~GENMASK_ULL(31, 24);
1011 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1012 		/*
1013 		 * However, make sure that EPP will be set to "performance" when
1014 		 * the CPU is brought back online again and the "performance"
1015 		 * scaling algorithm is still in effect.
1016 		 */
1017 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1018 	}
1019 
1020 	/*
1021 	 * Clear the desired perf field in the cached HWP request value to
1022 	 * prevent nonzero desired values from being leaked into the active
1023 	 * mode.
1024 	 */
1025 	value &= ~HWP_DESIRED_PERF(~0L);
1026 	WRITE_ONCE(cpu->hwp_req_cached, value);
1027 
1028 	value &= ~GENMASK_ULL(31, 0);
1029 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1030 
1031 	/* Set hwp_max = hwp_min */
1032 	value |= HWP_MAX_PERF(min_perf);
1033 	value |= HWP_MIN_PERF(min_perf);
1034 
1035 	/* Set EPP to min */
1036 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1037 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1038 
1039 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1040 }
1041 
1042 #define POWER_CTL_EE_ENABLE	1
1043 #define POWER_CTL_EE_DISABLE	2
1044 
1045 static int power_ctl_ee_state;
1046 
1047 static void set_power_ctl_ee_state(bool input)
1048 {
1049 	u64 power_ctl;
1050 
1051 	mutex_lock(&intel_pstate_driver_lock);
1052 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1053 	if (input) {
1054 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1055 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1056 	} else {
1057 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1058 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1059 	}
1060 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1061 	mutex_unlock(&intel_pstate_driver_lock);
1062 }
1063 
1064 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1065 
1066 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1067 {
1068 	intel_pstate_hwp_enable(cpu);
1069 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1070 }
1071 
1072 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1073 {
1074 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1075 
1076 	pr_debug("CPU %d suspending\n", cpu->cpu);
1077 
1078 	cpu->suspended = true;
1079 
1080 	return 0;
1081 }
1082 
1083 static int intel_pstate_resume(struct cpufreq_policy *policy)
1084 {
1085 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1086 
1087 	pr_debug("CPU %d resuming\n", cpu->cpu);
1088 
1089 	/* Only restore if the system default is changed */
1090 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1091 		set_power_ctl_ee_state(true);
1092 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1093 		set_power_ctl_ee_state(false);
1094 
1095 	if (cpu->suspended && hwp_active) {
1096 		mutex_lock(&intel_pstate_limits_lock);
1097 
1098 		/* Re-enable HWP, because "online" has not done that. */
1099 		intel_pstate_hwp_reenable(cpu);
1100 
1101 		mutex_unlock(&intel_pstate_limits_lock);
1102 	}
1103 
1104 	cpu->suspended = false;
1105 
1106 	return 0;
1107 }
1108 
1109 static void intel_pstate_update_policies(void)
1110 {
1111 	int cpu;
1112 
1113 	for_each_possible_cpu(cpu)
1114 		cpufreq_update_policy(cpu);
1115 }
1116 
1117 static void intel_pstate_update_max_freq(unsigned int cpu)
1118 {
1119 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1120 	struct cpudata *cpudata;
1121 
1122 	if (!policy)
1123 		return;
1124 
1125 	cpudata = all_cpu_data[cpu];
1126 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1127 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1128 
1129 	refresh_frequency_limits(policy);
1130 
1131 	cpufreq_cpu_release(policy);
1132 }
1133 
1134 static void intel_pstate_update_limits(unsigned int cpu)
1135 {
1136 	mutex_lock(&intel_pstate_driver_lock);
1137 
1138 	update_turbo_state();
1139 	/*
1140 	 * If turbo has been turned on or off globally, policy limits for
1141 	 * all CPUs need to be updated to reflect that.
1142 	 */
1143 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1144 		global.turbo_disabled_mf = global.turbo_disabled;
1145 		arch_set_max_freq_ratio(global.turbo_disabled);
1146 		for_each_possible_cpu(cpu)
1147 			intel_pstate_update_max_freq(cpu);
1148 	} else {
1149 		cpufreq_update_policy(cpu);
1150 	}
1151 
1152 	mutex_unlock(&intel_pstate_driver_lock);
1153 }
1154 
1155 /************************** sysfs begin ************************/
1156 #define show_one(file_name, object)					\
1157 	static ssize_t show_##file_name					\
1158 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1159 	{								\
1160 		return sprintf(buf, "%u\n", global.object);		\
1161 	}
1162 
1163 static ssize_t intel_pstate_show_status(char *buf);
1164 static int intel_pstate_update_status(const char *buf, size_t size);
1165 
1166 static ssize_t show_status(struct kobject *kobj,
1167 			   struct kobj_attribute *attr, char *buf)
1168 {
1169 	ssize_t ret;
1170 
1171 	mutex_lock(&intel_pstate_driver_lock);
1172 	ret = intel_pstate_show_status(buf);
1173 	mutex_unlock(&intel_pstate_driver_lock);
1174 
1175 	return ret;
1176 }
1177 
1178 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1179 			    const char *buf, size_t count)
1180 {
1181 	char *p = memchr(buf, '\n', count);
1182 	int ret;
1183 
1184 	mutex_lock(&intel_pstate_driver_lock);
1185 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1186 	mutex_unlock(&intel_pstate_driver_lock);
1187 
1188 	return ret < 0 ? ret : count;
1189 }
1190 
1191 static ssize_t show_turbo_pct(struct kobject *kobj,
1192 				struct kobj_attribute *attr, char *buf)
1193 {
1194 	struct cpudata *cpu;
1195 	int total, no_turbo, turbo_pct;
1196 	uint32_t turbo_fp;
1197 
1198 	mutex_lock(&intel_pstate_driver_lock);
1199 
1200 	if (!intel_pstate_driver) {
1201 		mutex_unlock(&intel_pstate_driver_lock);
1202 		return -EAGAIN;
1203 	}
1204 
1205 	cpu = all_cpu_data[0];
1206 
1207 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1208 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1209 	turbo_fp = div_fp(no_turbo, total);
1210 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1211 
1212 	mutex_unlock(&intel_pstate_driver_lock);
1213 
1214 	return sprintf(buf, "%u\n", turbo_pct);
1215 }
1216 
1217 static ssize_t show_num_pstates(struct kobject *kobj,
1218 				struct kobj_attribute *attr, char *buf)
1219 {
1220 	struct cpudata *cpu;
1221 	int total;
1222 
1223 	mutex_lock(&intel_pstate_driver_lock);
1224 
1225 	if (!intel_pstate_driver) {
1226 		mutex_unlock(&intel_pstate_driver_lock);
1227 		return -EAGAIN;
1228 	}
1229 
1230 	cpu = all_cpu_data[0];
1231 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1232 
1233 	mutex_unlock(&intel_pstate_driver_lock);
1234 
1235 	return sprintf(buf, "%u\n", total);
1236 }
1237 
1238 static ssize_t show_no_turbo(struct kobject *kobj,
1239 			     struct kobj_attribute *attr, char *buf)
1240 {
1241 	ssize_t ret;
1242 
1243 	mutex_lock(&intel_pstate_driver_lock);
1244 
1245 	if (!intel_pstate_driver) {
1246 		mutex_unlock(&intel_pstate_driver_lock);
1247 		return -EAGAIN;
1248 	}
1249 
1250 	update_turbo_state();
1251 	if (global.turbo_disabled)
1252 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1253 	else
1254 		ret = sprintf(buf, "%u\n", global.no_turbo);
1255 
1256 	mutex_unlock(&intel_pstate_driver_lock);
1257 
1258 	return ret;
1259 }
1260 
1261 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1262 			      const char *buf, size_t count)
1263 {
1264 	unsigned int input;
1265 	int ret;
1266 
1267 	ret = sscanf(buf, "%u", &input);
1268 	if (ret != 1)
1269 		return -EINVAL;
1270 
1271 	mutex_lock(&intel_pstate_driver_lock);
1272 
1273 	if (!intel_pstate_driver) {
1274 		mutex_unlock(&intel_pstate_driver_lock);
1275 		return -EAGAIN;
1276 	}
1277 
1278 	mutex_lock(&intel_pstate_limits_lock);
1279 
1280 	update_turbo_state();
1281 	if (global.turbo_disabled) {
1282 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1283 		mutex_unlock(&intel_pstate_limits_lock);
1284 		mutex_unlock(&intel_pstate_driver_lock);
1285 		return -EPERM;
1286 	}
1287 
1288 	global.no_turbo = clamp_t(int, input, 0, 1);
1289 
1290 	if (global.no_turbo) {
1291 		struct cpudata *cpu = all_cpu_data[0];
1292 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1293 
1294 		/* Squash the global minimum into the permitted range. */
1295 		if (global.min_perf_pct > pct)
1296 			global.min_perf_pct = pct;
1297 	}
1298 
1299 	mutex_unlock(&intel_pstate_limits_lock);
1300 
1301 	intel_pstate_update_policies();
1302 
1303 	mutex_unlock(&intel_pstate_driver_lock);
1304 
1305 	return count;
1306 }
1307 
1308 static void update_qos_request(enum freq_qos_req_type type)
1309 {
1310 	struct freq_qos_request *req;
1311 	struct cpufreq_policy *policy;
1312 	int i;
1313 
1314 	for_each_possible_cpu(i) {
1315 		struct cpudata *cpu = all_cpu_data[i];
1316 		unsigned int freq, perf_pct;
1317 
1318 		policy = cpufreq_cpu_get(i);
1319 		if (!policy)
1320 			continue;
1321 
1322 		req = policy->driver_data;
1323 		cpufreq_cpu_put(policy);
1324 
1325 		if (!req)
1326 			continue;
1327 
1328 		if (hwp_active)
1329 			intel_pstate_get_hwp_cap(cpu);
1330 
1331 		if (type == FREQ_QOS_MIN) {
1332 			perf_pct = global.min_perf_pct;
1333 		} else {
1334 			req++;
1335 			perf_pct = global.max_perf_pct;
1336 		}
1337 
1338 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1339 
1340 		if (freq_qos_update_request(req, freq) < 0)
1341 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1342 	}
1343 }
1344 
1345 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1346 				  const char *buf, size_t count)
1347 {
1348 	unsigned int input;
1349 	int ret;
1350 
1351 	ret = sscanf(buf, "%u", &input);
1352 	if (ret != 1)
1353 		return -EINVAL;
1354 
1355 	mutex_lock(&intel_pstate_driver_lock);
1356 
1357 	if (!intel_pstate_driver) {
1358 		mutex_unlock(&intel_pstate_driver_lock);
1359 		return -EAGAIN;
1360 	}
1361 
1362 	mutex_lock(&intel_pstate_limits_lock);
1363 
1364 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1365 
1366 	mutex_unlock(&intel_pstate_limits_lock);
1367 
1368 	if (intel_pstate_driver == &intel_pstate)
1369 		intel_pstate_update_policies();
1370 	else
1371 		update_qos_request(FREQ_QOS_MAX);
1372 
1373 	mutex_unlock(&intel_pstate_driver_lock);
1374 
1375 	return count;
1376 }
1377 
1378 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1379 				  const char *buf, size_t count)
1380 {
1381 	unsigned int input;
1382 	int ret;
1383 
1384 	ret = sscanf(buf, "%u", &input);
1385 	if (ret != 1)
1386 		return -EINVAL;
1387 
1388 	mutex_lock(&intel_pstate_driver_lock);
1389 
1390 	if (!intel_pstate_driver) {
1391 		mutex_unlock(&intel_pstate_driver_lock);
1392 		return -EAGAIN;
1393 	}
1394 
1395 	mutex_lock(&intel_pstate_limits_lock);
1396 
1397 	global.min_perf_pct = clamp_t(int, input,
1398 				      min_perf_pct_min(), global.max_perf_pct);
1399 
1400 	mutex_unlock(&intel_pstate_limits_lock);
1401 
1402 	if (intel_pstate_driver == &intel_pstate)
1403 		intel_pstate_update_policies();
1404 	else
1405 		update_qos_request(FREQ_QOS_MIN);
1406 
1407 	mutex_unlock(&intel_pstate_driver_lock);
1408 
1409 	return count;
1410 }
1411 
1412 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1413 				struct kobj_attribute *attr, char *buf)
1414 {
1415 	return sprintf(buf, "%u\n", hwp_boost);
1416 }
1417 
1418 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1419 				       struct kobj_attribute *b,
1420 				       const char *buf, size_t count)
1421 {
1422 	unsigned int input;
1423 	int ret;
1424 
1425 	ret = kstrtouint(buf, 10, &input);
1426 	if (ret)
1427 		return ret;
1428 
1429 	mutex_lock(&intel_pstate_driver_lock);
1430 	hwp_boost = !!input;
1431 	intel_pstate_update_policies();
1432 	mutex_unlock(&intel_pstate_driver_lock);
1433 
1434 	return count;
1435 }
1436 
1437 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1438 				      char *buf)
1439 {
1440 	u64 power_ctl;
1441 	int enable;
1442 
1443 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1444 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1445 	return sprintf(buf, "%d\n", !enable);
1446 }
1447 
1448 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1449 				       const char *buf, size_t count)
1450 {
1451 	bool input;
1452 	int ret;
1453 
1454 	ret = kstrtobool(buf, &input);
1455 	if (ret)
1456 		return ret;
1457 
1458 	set_power_ctl_ee_state(input);
1459 
1460 	return count;
1461 }
1462 
1463 show_one(max_perf_pct, max_perf_pct);
1464 show_one(min_perf_pct, min_perf_pct);
1465 
1466 define_one_global_rw(status);
1467 define_one_global_rw(no_turbo);
1468 define_one_global_rw(max_perf_pct);
1469 define_one_global_rw(min_perf_pct);
1470 define_one_global_ro(turbo_pct);
1471 define_one_global_ro(num_pstates);
1472 define_one_global_rw(hwp_dynamic_boost);
1473 define_one_global_rw(energy_efficiency);
1474 
1475 static struct attribute *intel_pstate_attributes[] = {
1476 	&status.attr,
1477 	&no_turbo.attr,
1478 	NULL
1479 };
1480 
1481 static const struct attribute_group intel_pstate_attr_group = {
1482 	.attrs = intel_pstate_attributes,
1483 };
1484 
1485 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1486 
1487 static struct kobject *intel_pstate_kobject;
1488 
1489 static void __init intel_pstate_sysfs_expose_params(void)
1490 {
1491 	int rc;
1492 
1493 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1494 						&cpu_subsys.dev_root->kobj);
1495 	if (WARN_ON(!intel_pstate_kobject))
1496 		return;
1497 
1498 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1499 	if (WARN_ON(rc))
1500 		return;
1501 
1502 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1503 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1504 		WARN_ON(rc);
1505 
1506 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1507 		WARN_ON(rc);
1508 	}
1509 
1510 	/*
1511 	 * If per cpu limits are enforced there are no global limits, so
1512 	 * return without creating max/min_perf_pct attributes
1513 	 */
1514 	if (per_cpu_limits)
1515 		return;
1516 
1517 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1518 	WARN_ON(rc);
1519 
1520 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1521 	WARN_ON(rc);
1522 
1523 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1524 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1525 		WARN_ON(rc);
1526 	}
1527 }
1528 
1529 static void __init intel_pstate_sysfs_remove(void)
1530 {
1531 	if (!intel_pstate_kobject)
1532 		return;
1533 
1534 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1535 
1536 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1537 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1538 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1539 	}
1540 
1541 	if (!per_cpu_limits) {
1542 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1543 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1544 
1545 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1546 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1547 	}
1548 
1549 	kobject_put(intel_pstate_kobject);
1550 }
1551 
1552 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1553 {
1554 	int rc;
1555 
1556 	if (!hwp_active)
1557 		return;
1558 
1559 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1560 	WARN_ON_ONCE(rc);
1561 }
1562 
1563 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1564 {
1565 	if (!hwp_active)
1566 		return;
1567 
1568 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1569 }
1570 
1571 /************************** sysfs end ************************/
1572 
1573 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1574 {
1575 	/* First disable HWP notification interrupt as we don't process them */
1576 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1577 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1578 
1579 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1580 	if (cpudata->epp_default == -EINVAL)
1581 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1582 }
1583 
1584 static int atom_get_min_pstate(int not_used)
1585 {
1586 	u64 value;
1587 
1588 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1589 	return (value >> 8) & 0x7F;
1590 }
1591 
1592 static int atom_get_max_pstate(int not_used)
1593 {
1594 	u64 value;
1595 
1596 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1597 	return (value >> 16) & 0x7F;
1598 }
1599 
1600 static int atom_get_turbo_pstate(int not_used)
1601 {
1602 	u64 value;
1603 
1604 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1605 	return value & 0x7F;
1606 }
1607 
1608 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1609 {
1610 	u64 val;
1611 	int32_t vid_fp;
1612 	u32 vid;
1613 
1614 	val = (u64)pstate << 8;
1615 	if (global.no_turbo && !global.turbo_disabled)
1616 		val |= (u64)1 << 32;
1617 
1618 	vid_fp = cpudata->vid.min + mul_fp(
1619 		int_tofp(pstate - cpudata->pstate.min_pstate),
1620 		cpudata->vid.ratio);
1621 
1622 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1623 	vid = ceiling_fp(vid_fp);
1624 
1625 	if (pstate > cpudata->pstate.max_pstate)
1626 		vid = cpudata->vid.turbo;
1627 
1628 	return val | vid;
1629 }
1630 
1631 static int silvermont_get_scaling(void)
1632 {
1633 	u64 value;
1634 	int i;
1635 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1636 	static int silvermont_freq_table[] = {
1637 		83300, 100000, 133300, 116700, 80000};
1638 
1639 	rdmsrl(MSR_FSB_FREQ, value);
1640 	i = value & 0x7;
1641 	WARN_ON(i > 4);
1642 
1643 	return silvermont_freq_table[i];
1644 }
1645 
1646 static int airmont_get_scaling(void)
1647 {
1648 	u64 value;
1649 	int i;
1650 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1651 	static int airmont_freq_table[] = {
1652 		83300, 100000, 133300, 116700, 80000,
1653 		93300, 90000, 88900, 87500};
1654 
1655 	rdmsrl(MSR_FSB_FREQ, value);
1656 	i = value & 0xF;
1657 	WARN_ON(i > 8);
1658 
1659 	return airmont_freq_table[i];
1660 }
1661 
1662 static void atom_get_vid(struct cpudata *cpudata)
1663 {
1664 	u64 value;
1665 
1666 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1667 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1668 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1669 	cpudata->vid.ratio = div_fp(
1670 		cpudata->vid.max - cpudata->vid.min,
1671 		int_tofp(cpudata->pstate.max_pstate -
1672 			cpudata->pstate.min_pstate));
1673 
1674 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1675 	cpudata->vid.turbo = value & 0x7f;
1676 }
1677 
1678 static int core_get_min_pstate(int cpu)
1679 {
1680 	u64 value;
1681 
1682 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1683 	return (value >> 40) & 0xFF;
1684 }
1685 
1686 static int core_get_max_pstate_physical(int cpu)
1687 {
1688 	u64 value;
1689 
1690 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1691 	return (value >> 8) & 0xFF;
1692 }
1693 
1694 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1695 {
1696 	/* Check how many TDP levels present */
1697 	if (plat_info & 0x600000000) {
1698 		u64 tdp_ctrl;
1699 		u64 tdp_ratio;
1700 		int tdp_msr;
1701 		int err;
1702 
1703 		/* Get the TDP level (0, 1, 2) to get ratios */
1704 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1705 		if (err)
1706 			return err;
1707 
1708 		/* TDP MSR are continuous starting at 0x648 */
1709 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1710 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1711 		if (err)
1712 			return err;
1713 
1714 		/* For level 1 and 2, bits[23:16] contain the ratio */
1715 		if (tdp_ctrl & 0x03)
1716 			tdp_ratio >>= 16;
1717 
1718 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1719 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1720 
1721 		return (int)tdp_ratio;
1722 	}
1723 
1724 	return -ENXIO;
1725 }
1726 
1727 static int core_get_max_pstate(int cpu)
1728 {
1729 	u64 tar;
1730 	u64 plat_info;
1731 	int max_pstate;
1732 	int tdp_ratio;
1733 	int err;
1734 
1735 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1736 	max_pstate = (plat_info >> 8) & 0xFF;
1737 
1738 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1739 	if (tdp_ratio <= 0)
1740 		return max_pstate;
1741 
1742 	if (hwp_active) {
1743 		/* Turbo activation ratio is not used on HWP platforms */
1744 		return tdp_ratio;
1745 	}
1746 
1747 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1748 	if (!err) {
1749 		int tar_levels;
1750 
1751 		/* Do some sanity checking for safety */
1752 		tar_levels = tar & 0xff;
1753 		if (tdp_ratio - 1 == tar_levels) {
1754 			max_pstate = tar_levels;
1755 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1756 		}
1757 	}
1758 
1759 	return max_pstate;
1760 }
1761 
1762 static int core_get_turbo_pstate(int cpu)
1763 {
1764 	u64 value;
1765 	int nont, ret;
1766 
1767 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1768 	nont = core_get_max_pstate(cpu);
1769 	ret = (value) & 255;
1770 	if (ret <= nont)
1771 		ret = nont;
1772 	return ret;
1773 }
1774 
1775 static inline int core_get_scaling(void)
1776 {
1777 	return 100000;
1778 }
1779 
1780 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1781 {
1782 	u64 val;
1783 
1784 	val = (u64)pstate << 8;
1785 	if (global.no_turbo && !global.turbo_disabled)
1786 		val |= (u64)1 << 32;
1787 
1788 	return val;
1789 }
1790 
1791 static int knl_get_aperf_mperf_shift(void)
1792 {
1793 	return 10;
1794 }
1795 
1796 static int knl_get_turbo_pstate(int cpu)
1797 {
1798 	u64 value;
1799 	int nont, ret;
1800 
1801 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1802 	nont = core_get_max_pstate(cpu);
1803 	ret = (((value) >> 8) & 0xFF);
1804 	if (ret <= nont)
1805 		ret = nont;
1806 	return ret;
1807 }
1808 
1809 #ifdef CONFIG_ACPI_CPPC_LIB
1810 static u32 hybrid_ref_perf;
1811 
1812 static int hybrid_get_cpu_scaling(int cpu)
1813 {
1814 	return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1815 			    intel_pstate_cppc_nominal(cpu));
1816 }
1817 
1818 static void intel_pstate_cppc_set_cpu_scaling(void)
1819 {
1820 	u32 min_nominal_perf = U32_MAX;
1821 	int cpu;
1822 
1823 	for_each_present_cpu(cpu) {
1824 		u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1825 
1826 		if (nominal_perf && nominal_perf < min_nominal_perf)
1827 			min_nominal_perf = nominal_perf;
1828 	}
1829 
1830 	if (min_nominal_perf < U32_MAX) {
1831 		hybrid_ref_perf = min_nominal_perf;
1832 		pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1833 	}
1834 }
1835 #else
1836 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1837 {
1838 }
1839 #endif /* CONFIG_ACPI_CPPC_LIB */
1840 
1841 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1842 {
1843 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1844 	cpu->pstate.current_pstate = pstate;
1845 	/*
1846 	 * Generally, there is no guarantee that this code will always run on
1847 	 * the CPU being updated, so force the register update to run on the
1848 	 * right CPU.
1849 	 */
1850 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1851 		      pstate_funcs.get_val(cpu, pstate));
1852 }
1853 
1854 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1855 {
1856 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1857 }
1858 
1859 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1860 {
1861 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1862 
1863 	update_turbo_state();
1864 	intel_pstate_set_pstate(cpu, pstate);
1865 }
1866 
1867 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1868 {
1869 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
1870 	int perf_ctl_scaling = pstate_funcs.get_scaling();
1871 
1872 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
1873 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1874 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1875 
1876 	if (hwp_active && !hwp_mode_bdw) {
1877 		__intel_pstate_get_hwp_cap(cpu);
1878 
1879 		if (pstate_funcs.get_cpu_scaling) {
1880 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1881 			if (cpu->pstate.scaling != perf_ctl_scaling)
1882 				intel_pstate_hybrid_hwp_adjust(cpu);
1883 		} else {
1884 			cpu->pstate.scaling = perf_ctl_scaling;
1885 		}
1886 	} else {
1887 		cpu->pstate.scaling = perf_ctl_scaling;
1888 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
1889 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
1890 	}
1891 
1892 	if (cpu->pstate.scaling == perf_ctl_scaling) {
1893 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1894 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1895 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1896 	}
1897 
1898 	if (pstate_funcs.get_aperf_mperf_shift)
1899 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1900 
1901 	if (pstate_funcs.get_vid)
1902 		pstate_funcs.get_vid(cpu);
1903 
1904 	intel_pstate_set_min_pstate(cpu);
1905 }
1906 
1907 /*
1908  * Long hold time will keep high perf limits for long time,
1909  * which negatively impacts perf/watt for some workloads,
1910  * like specpower. 3ms is based on experiements on some
1911  * workoads.
1912  */
1913 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1914 
1915 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1916 {
1917 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1918 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1919 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1920 	u32 min_limit = (hwp_req & 0xff);
1921 	u32 boost_level1;
1922 
1923 	/*
1924 	 * Cases to consider (User changes via sysfs or boot time):
1925 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1926 	 *	No boost, return.
1927 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1928 	 *     Should result in one level boost only for P0.
1929 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1930 	 *     Should result in two level boost:
1931 	 *         (min + p1)/2 and P1.
1932 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1933 	 *     Should result in three level boost:
1934 	 *        (min + p1)/2, P1 and P0.
1935 	 */
1936 
1937 	/* If max and min are equal or already at max, nothing to boost */
1938 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1939 		return;
1940 
1941 	if (!cpu->hwp_boost_min)
1942 		cpu->hwp_boost_min = min_limit;
1943 
1944 	/* level at half way mark between min and guranteed */
1945 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1946 
1947 	if (cpu->hwp_boost_min < boost_level1)
1948 		cpu->hwp_boost_min = boost_level1;
1949 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1950 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1951 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1952 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1953 		cpu->hwp_boost_min = max_limit;
1954 	else
1955 		return;
1956 
1957 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1958 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1959 	cpu->last_update = cpu->sample.time;
1960 }
1961 
1962 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1963 {
1964 	if (cpu->hwp_boost_min) {
1965 		bool expired;
1966 
1967 		/* Check if we are idle for hold time to boost down */
1968 		expired = time_after64(cpu->sample.time, cpu->last_update +
1969 				       hwp_boost_hold_time_ns);
1970 		if (expired) {
1971 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1972 			cpu->hwp_boost_min = 0;
1973 		}
1974 	}
1975 	cpu->last_update = cpu->sample.time;
1976 }
1977 
1978 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1979 						      u64 time)
1980 {
1981 	cpu->sample.time = time;
1982 
1983 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1984 		bool do_io = false;
1985 
1986 		cpu->sched_flags = 0;
1987 		/*
1988 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1989 		 * is set all the time, we can't just conclude that there is
1990 		 * some IO bound activity is scheduled on this CPU with just
1991 		 * one occurrence. If we receive at least two in two
1992 		 * consecutive ticks, then we treat as boost candidate.
1993 		 */
1994 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1995 			do_io = true;
1996 
1997 		cpu->last_io_update = time;
1998 
1999 		if (do_io)
2000 			intel_pstate_hwp_boost_up(cpu);
2001 
2002 	} else {
2003 		intel_pstate_hwp_boost_down(cpu);
2004 	}
2005 }
2006 
2007 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2008 						u64 time, unsigned int flags)
2009 {
2010 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2011 
2012 	cpu->sched_flags |= flags;
2013 
2014 	if (smp_processor_id() == cpu->cpu)
2015 		intel_pstate_update_util_hwp_local(cpu, time);
2016 }
2017 
2018 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2019 {
2020 	struct sample *sample = &cpu->sample;
2021 
2022 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2023 }
2024 
2025 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2026 {
2027 	u64 aperf, mperf;
2028 	unsigned long flags;
2029 	u64 tsc;
2030 
2031 	local_irq_save(flags);
2032 	rdmsrl(MSR_IA32_APERF, aperf);
2033 	rdmsrl(MSR_IA32_MPERF, mperf);
2034 	tsc = rdtsc();
2035 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2036 		local_irq_restore(flags);
2037 		return false;
2038 	}
2039 	local_irq_restore(flags);
2040 
2041 	cpu->last_sample_time = cpu->sample.time;
2042 	cpu->sample.time = time;
2043 	cpu->sample.aperf = aperf;
2044 	cpu->sample.mperf = mperf;
2045 	cpu->sample.tsc =  tsc;
2046 	cpu->sample.aperf -= cpu->prev_aperf;
2047 	cpu->sample.mperf -= cpu->prev_mperf;
2048 	cpu->sample.tsc -= cpu->prev_tsc;
2049 
2050 	cpu->prev_aperf = aperf;
2051 	cpu->prev_mperf = mperf;
2052 	cpu->prev_tsc = tsc;
2053 	/*
2054 	 * First time this function is invoked in a given cycle, all of the
2055 	 * previous sample data fields are equal to zero or stale and they must
2056 	 * be populated with meaningful numbers for things to work, so assume
2057 	 * that sample.time will always be reset before setting the utilization
2058 	 * update hook and make the caller skip the sample then.
2059 	 */
2060 	if (cpu->last_sample_time) {
2061 		intel_pstate_calc_avg_perf(cpu);
2062 		return true;
2063 	}
2064 	return false;
2065 }
2066 
2067 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2068 {
2069 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2070 }
2071 
2072 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2073 {
2074 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2075 			  cpu->sample.core_avg_perf);
2076 }
2077 
2078 static inline int32_t get_target_pstate(struct cpudata *cpu)
2079 {
2080 	struct sample *sample = &cpu->sample;
2081 	int32_t busy_frac;
2082 	int target, avg_pstate;
2083 
2084 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2085 			   sample->tsc);
2086 
2087 	if (busy_frac < cpu->iowait_boost)
2088 		busy_frac = cpu->iowait_boost;
2089 
2090 	sample->busy_scaled = busy_frac * 100;
2091 
2092 	target = global.no_turbo || global.turbo_disabled ?
2093 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2094 	target += target >> 2;
2095 	target = mul_fp(target, busy_frac);
2096 	if (target < cpu->pstate.min_pstate)
2097 		target = cpu->pstate.min_pstate;
2098 
2099 	/*
2100 	 * If the average P-state during the previous cycle was higher than the
2101 	 * current target, add 50% of the difference to the target to reduce
2102 	 * possible performance oscillations and offset possible performance
2103 	 * loss related to moving the workload from one CPU to another within
2104 	 * a package/module.
2105 	 */
2106 	avg_pstate = get_avg_pstate(cpu);
2107 	if (avg_pstate > target)
2108 		target += (avg_pstate - target) >> 1;
2109 
2110 	return target;
2111 }
2112 
2113 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2114 {
2115 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2116 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2117 
2118 	return clamp_t(int, pstate, min_pstate, max_pstate);
2119 }
2120 
2121 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2122 {
2123 	if (pstate == cpu->pstate.current_pstate)
2124 		return;
2125 
2126 	cpu->pstate.current_pstate = pstate;
2127 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2128 }
2129 
2130 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2131 {
2132 	int from = cpu->pstate.current_pstate;
2133 	struct sample *sample;
2134 	int target_pstate;
2135 
2136 	update_turbo_state();
2137 
2138 	target_pstate = get_target_pstate(cpu);
2139 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2140 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2141 	intel_pstate_update_pstate(cpu, target_pstate);
2142 
2143 	sample = &cpu->sample;
2144 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2145 		fp_toint(sample->busy_scaled),
2146 		from,
2147 		cpu->pstate.current_pstate,
2148 		sample->mperf,
2149 		sample->aperf,
2150 		sample->tsc,
2151 		get_avg_frequency(cpu),
2152 		fp_toint(cpu->iowait_boost * 100));
2153 }
2154 
2155 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2156 				     unsigned int flags)
2157 {
2158 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2159 	u64 delta_ns;
2160 
2161 	/* Don't allow remote callbacks */
2162 	if (smp_processor_id() != cpu->cpu)
2163 		return;
2164 
2165 	delta_ns = time - cpu->last_update;
2166 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2167 		/* Start over if the CPU may have been idle. */
2168 		if (delta_ns > TICK_NSEC) {
2169 			cpu->iowait_boost = ONE_EIGHTH_FP;
2170 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2171 			cpu->iowait_boost <<= 1;
2172 			if (cpu->iowait_boost > int_tofp(1))
2173 				cpu->iowait_boost = int_tofp(1);
2174 		} else {
2175 			cpu->iowait_boost = ONE_EIGHTH_FP;
2176 		}
2177 	} else if (cpu->iowait_boost) {
2178 		/* Clear iowait_boost if the CPU may have been idle. */
2179 		if (delta_ns > TICK_NSEC)
2180 			cpu->iowait_boost = 0;
2181 		else
2182 			cpu->iowait_boost >>= 1;
2183 	}
2184 	cpu->last_update = time;
2185 	delta_ns = time - cpu->sample.time;
2186 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2187 		return;
2188 
2189 	if (intel_pstate_sample(cpu, time))
2190 		intel_pstate_adjust_pstate(cpu);
2191 }
2192 
2193 static struct pstate_funcs core_funcs = {
2194 	.get_max = core_get_max_pstate,
2195 	.get_max_physical = core_get_max_pstate_physical,
2196 	.get_min = core_get_min_pstate,
2197 	.get_turbo = core_get_turbo_pstate,
2198 	.get_scaling = core_get_scaling,
2199 	.get_val = core_get_val,
2200 };
2201 
2202 static const struct pstate_funcs silvermont_funcs = {
2203 	.get_max = atom_get_max_pstate,
2204 	.get_max_physical = atom_get_max_pstate,
2205 	.get_min = atom_get_min_pstate,
2206 	.get_turbo = atom_get_turbo_pstate,
2207 	.get_val = atom_get_val,
2208 	.get_scaling = silvermont_get_scaling,
2209 	.get_vid = atom_get_vid,
2210 };
2211 
2212 static const struct pstate_funcs airmont_funcs = {
2213 	.get_max = atom_get_max_pstate,
2214 	.get_max_physical = atom_get_max_pstate,
2215 	.get_min = atom_get_min_pstate,
2216 	.get_turbo = atom_get_turbo_pstate,
2217 	.get_val = atom_get_val,
2218 	.get_scaling = airmont_get_scaling,
2219 	.get_vid = atom_get_vid,
2220 };
2221 
2222 static const struct pstate_funcs knl_funcs = {
2223 	.get_max = core_get_max_pstate,
2224 	.get_max_physical = core_get_max_pstate_physical,
2225 	.get_min = core_get_min_pstate,
2226 	.get_turbo = knl_get_turbo_pstate,
2227 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2228 	.get_scaling = core_get_scaling,
2229 	.get_val = core_get_val,
2230 };
2231 
2232 #define X86_MATCH(model, policy)					 \
2233 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2234 					   X86_FEATURE_APERFMPERF, &policy)
2235 
2236 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2237 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2238 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2239 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2240 	X86_MATCH(IVYBRIDGE,		core_funcs),
2241 	X86_MATCH(HASWELL,		core_funcs),
2242 	X86_MATCH(BROADWELL,		core_funcs),
2243 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2244 	X86_MATCH(HASWELL_X,		core_funcs),
2245 	X86_MATCH(HASWELL_L,		core_funcs),
2246 	X86_MATCH(HASWELL_G,		core_funcs),
2247 	X86_MATCH(BROADWELL_G,		core_funcs),
2248 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2249 	X86_MATCH(SKYLAKE_L,		core_funcs),
2250 	X86_MATCH(BROADWELL_X,		core_funcs),
2251 	X86_MATCH(SKYLAKE,		core_funcs),
2252 	X86_MATCH(BROADWELL_D,		core_funcs),
2253 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2254 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2255 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2256 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2257 	X86_MATCH(SKYLAKE_X,		core_funcs),
2258 	X86_MATCH(COMETLAKE,		core_funcs),
2259 	X86_MATCH(ICELAKE_X,		core_funcs),
2260 	X86_MATCH(TIGERLAKE,		core_funcs),
2261 	{}
2262 };
2263 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2264 
2265 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2266 	X86_MATCH(BROADWELL_D,		core_funcs),
2267 	X86_MATCH(BROADWELL_X,		core_funcs),
2268 	X86_MATCH(SKYLAKE_X,		core_funcs),
2269 	X86_MATCH(ICELAKE_X,		core_funcs),
2270 	{}
2271 };
2272 
2273 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2274 	X86_MATCH(KABYLAKE,		core_funcs),
2275 	{}
2276 };
2277 
2278 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2279 	X86_MATCH(SKYLAKE_X,		core_funcs),
2280 	X86_MATCH(SKYLAKE,		core_funcs),
2281 	{}
2282 };
2283 
2284 static int intel_pstate_init_cpu(unsigned int cpunum)
2285 {
2286 	struct cpudata *cpu;
2287 
2288 	cpu = all_cpu_data[cpunum];
2289 
2290 	if (!cpu) {
2291 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2292 		if (!cpu)
2293 			return -ENOMEM;
2294 
2295 		all_cpu_data[cpunum] = cpu;
2296 
2297 		cpu->cpu = cpunum;
2298 
2299 		cpu->epp_default = -EINVAL;
2300 
2301 		if (hwp_active) {
2302 			const struct x86_cpu_id *id;
2303 
2304 			intel_pstate_hwp_enable(cpu);
2305 
2306 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2307 			if (id && intel_pstate_acpi_pm_profile_server())
2308 				hwp_boost = true;
2309 		}
2310 	} else if (hwp_active) {
2311 		/*
2312 		 * Re-enable HWP in case this happens after a resume from ACPI
2313 		 * S3 if the CPU was offline during the whole system/resume
2314 		 * cycle.
2315 		 */
2316 		intel_pstate_hwp_reenable(cpu);
2317 	}
2318 
2319 	cpu->epp_powersave = -EINVAL;
2320 	cpu->epp_policy = 0;
2321 
2322 	intel_pstate_get_cpu_pstates(cpu);
2323 
2324 	pr_debug("controlling: cpu %d\n", cpunum);
2325 
2326 	return 0;
2327 }
2328 
2329 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2330 {
2331 	struct cpudata *cpu = all_cpu_data[cpu_num];
2332 
2333 	if (hwp_active && !hwp_boost)
2334 		return;
2335 
2336 	if (cpu->update_util_set)
2337 		return;
2338 
2339 	/* Prevent intel_pstate_update_util() from using stale data. */
2340 	cpu->sample.time = 0;
2341 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2342 				     (hwp_active ?
2343 				      intel_pstate_update_util_hwp :
2344 				      intel_pstate_update_util));
2345 	cpu->update_util_set = true;
2346 }
2347 
2348 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2349 {
2350 	struct cpudata *cpu_data = all_cpu_data[cpu];
2351 
2352 	if (!cpu_data->update_util_set)
2353 		return;
2354 
2355 	cpufreq_remove_update_util_hook(cpu);
2356 	cpu_data->update_util_set = false;
2357 	synchronize_rcu();
2358 }
2359 
2360 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2361 {
2362 	return global.turbo_disabled || global.no_turbo ?
2363 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2364 }
2365 
2366 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2367 					    unsigned int policy_min,
2368 					    unsigned int policy_max)
2369 {
2370 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2371 	int32_t max_policy_perf, min_policy_perf;
2372 
2373 	max_policy_perf = policy_max / perf_ctl_scaling;
2374 	if (policy_max == policy_min) {
2375 		min_policy_perf = max_policy_perf;
2376 	} else {
2377 		min_policy_perf = policy_min / perf_ctl_scaling;
2378 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2379 					  0, max_policy_perf);
2380 	}
2381 
2382 	/*
2383 	 * HWP needs some special consideration, because HWP_REQUEST uses
2384 	 * abstract values to represent performance rather than pure ratios.
2385 	 */
2386 	if (hwp_active) {
2387 		intel_pstate_get_hwp_cap(cpu);
2388 
2389 		if (cpu->pstate.scaling != perf_ctl_scaling) {
2390 			int scaling = cpu->pstate.scaling;
2391 			int freq;
2392 
2393 			freq = max_policy_perf * perf_ctl_scaling;
2394 			max_policy_perf = DIV_ROUND_UP(freq, scaling);
2395 			freq = min_policy_perf * perf_ctl_scaling;
2396 			min_policy_perf = DIV_ROUND_UP(freq, scaling);
2397 		}
2398 	}
2399 
2400 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2401 		 cpu->cpu, min_policy_perf, max_policy_perf);
2402 
2403 	/* Normalize user input to [min_perf, max_perf] */
2404 	if (per_cpu_limits) {
2405 		cpu->min_perf_ratio = min_policy_perf;
2406 		cpu->max_perf_ratio = max_policy_perf;
2407 	} else {
2408 		int turbo_max = cpu->pstate.turbo_pstate;
2409 		int32_t global_min, global_max;
2410 
2411 		/* Global limits are in percent of the maximum turbo P-state. */
2412 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2413 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2414 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2415 
2416 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2417 			 global_min, global_max);
2418 
2419 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2420 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2421 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2422 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2423 
2424 		/* Make sure min_perf <= max_perf */
2425 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2426 					  cpu->max_perf_ratio);
2427 
2428 	}
2429 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2430 		 cpu->max_perf_ratio,
2431 		 cpu->min_perf_ratio);
2432 }
2433 
2434 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2435 {
2436 	struct cpudata *cpu;
2437 
2438 	if (!policy->cpuinfo.max_freq)
2439 		return -ENODEV;
2440 
2441 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2442 		 policy->cpuinfo.max_freq, policy->max);
2443 
2444 	cpu = all_cpu_data[policy->cpu];
2445 	cpu->policy = policy->policy;
2446 
2447 	mutex_lock(&intel_pstate_limits_lock);
2448 
2449 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2450 
2451 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2452 		/*
2453 		 * NOHZ_FULL CPUs need this as the governor callback may not
2454 		 * be invoked on them.
2455 		 */
2456 		intel_pstate_clear_update_util_hook(policy->cpu);
2457 		intel_pstate_max_within_limits(cpu);
2458 	} else {
2459 		intel_pstate_set_update_util_hook(policy->cpu);
2460 	}
2461 
2462 	if (hwp_active) {
2463 		/*
2464 		 * When hwp_boost was active before and dynamically it
2465 		 * was turned off, in that case we need to clear the
2466 		 * update util hook.
2467 		 */
2468 		if (!hwp_boost)
2469 			intel_pstate_clear_update_util_hook(policy->cpu);
2470 		intel_pstate_hwp_set(policy->cpu);
2471 	}
2472 
2473 	mutex_unlock(&intel_pstate_limits_lock);
2474 
2475 	return 0;
2476 }
2477 
2478 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2479 					   struct cpufreq_policy_data *policy)
2480 {
2481 	if (!hwp_active &&
2482 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2483 	    policy->max < policy->cpuinfo.max_freq &&
2484 	    policy->max > cpu->pstate.max_freq) {
2485 		pr_debug("policy->max > max non turbo frequency\n");
2486 		policy->max = policy->cpuinfo.max_freq;
2487 	}
2488 }
2489 
2490 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2491 					   struct cpufreq_policy_data *policy)
2492 {
2493 	int max_freq;
2494 
2495 	update_turbo_state();
2496 	if (hwp_active) {
2497 		intel_pstate_get_hwp_cap(cpu);
2498 		max_freq = global.no_turbo || global.turbo_disabled ?
2499 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2500 	} else {
2501 		max_freq = intel_pstate_get_max_freq(cpu);
2502 	}
2503 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2504 
2505 	intel_pstate_adjust_policy_max(cpu, policy);
2506 }
2507 
2508 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2509 {
2510 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2511 
2512 	return 0;
2513 }
2514 
2515 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2516 {
2517 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2518 
2519 	pr_debug("CPU %d going offline\n", cpu->cpu);
2520 
2521 	if (cpu->suspended)
2522 		return 0;
2523 
2524 	/*
2525 	 * If the CPU is an SMT thread and it goes offline with the performance
2526 	 * settings different from the minimum, it will prevent its sibling
2527 	 * from getting to lower performance levels, so force the minimum
2528 	 * performance on CPU offline to prevent that from happening.
2529 	 */
2530 	if (hwp_active)
2531 		intel_pstate_hwp_offline(cpu);
2532 	else
2533 		intel_pstate_set_min_pstate(cpu);
2534 
2535 	intel_pstate_exit_perf_limits(policy);
2536 
2537 	return 0;
2538 }
2539 
2540 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2541 {
2542 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2543 
2544 	pr_debug("CPU %d going online\n", cpu->cpu);
2545 
2546 	intel_pstate_init_acpi_perf_limits(policy);
2547 
2548 	if (hwp_active) {
2549 		/*
2550 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2551 		 * know that it need not do that.
2552 		 */
2553 		intel_pstate_hwp_reenable(cpu);
2554 		cpu->suspended = false;
2555 	}
2556 
2557 	return 0;
2558 }
2559 
2560 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2561 {
2562 	intel_pstate_clear_update_util_hook(policy->cpu);
2563 
2564 	return intel_cpufreq_cpu_offline(policy);
2565 }
2566 
2567 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2568 {
2569 	pr_debug("CPU %d exiting\n", policy->cpu);
2570 
2571 	policy->fast_switch_possible = false;
2572 
2573 	return 0;
2574 }
2575 
2576 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2577 {
2578 	struct cpudata *cpu;
2579 	int rc;
2580 
2581 	rc = intel_pstate_init_cpu(policy->cpu);
2582 	if (rc)
2583 		return rc;
2584 
2585 	cpu = all_cpu_data[policy->cpu];
2586 
2587 	cpu->max_perf_ratio = 0xFF;
2588 	cpu->min_perf_ratio = 0;
2589 
2590 	/* cpuinfo and default policy values */
2591 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2592 	update_turbo_state();
2593 	global.turbo_disabled_mf = global.turbo_disabled;
2594 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2595 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2596 
2597 	policy->min = policy->cpuinfo.min_freq;
2598 	policy->max = policy->cpuinfo.max_freq;
2599 
2600 	intel_pstate_init_acpi_perf_limits(policy);
2601 
2602 	policy->fast_switch_possible = true;
2603 
2604 	return 0;
2605 }
2606 
2607 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2608 {
2609 	int ret = __intel_pstate_cpu_init(policy);
2610 
2611 	if (ret)
2612 		return ret;
2613 
2614 	/*
2615 	 * Set the policy to powersave to provide a valid fallback value in case
2616 	 * the default cpufreq governor is neither powersave nor performance.
2617 	 */
2618 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2619 
2620 	if (hwp_active) {
2621 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2622 
2623 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static struct cpufreq_driver intel_pstate = {
2630 	.flags		= CPUFREQ_CONST_LOOPS,
2631 	.verify		= intel_pstate_verify_policy,
2632 	.setpolicy	= intel_pstate_set_policy,
2633 	.suspend	= intel_pstate_suspend,
2634 	.resume		= intel_pstate_resume,
2635 	.init		= intel_pstate_cpu_init,
2636 	.exit		= intel_pstate_cpu_exit,
2637 	.offline	= intel_pstate_cpu_offline,
2638 	.online		= intel_pstate_cpu_online,
2639 	.update_limits	= intel_pstate_update_limits,
2640 	.name		= "intel_pstate",
2641 };
2642 
2643 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2644 {
2645 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2646 
2647 	intel_pstate_verify_cpu_policy(cpu, policy);
2648 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2649 
2650 	return 0;
2651 }
2652 
2653 /* Use of trace in passive mode:
2654  *
2655  * In passive mode the trace core_busy field (also known as the
2656  * performance field, and lablelled as such on the graphs; also known as
2657  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2658  * driver call was via the normal or fast switch path. Various graphs
2659  * output from the intel_pstate_tracer.py utility that include core_busy
2660  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2661  * so we use 10 to indicate the normal path through the driver, and
2662  * 90 to indicate the fast switch path through the driver.
2663  * The scaled_busy field is not used, and is set to 0.
2664  */
2665 
2666 #define	INTEL_PSTATE_TRACE_TARGET 10
2667 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2668 
2669 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2670 {
2671 	struct sample *sample;
2672 
2673 	if (!trace_pstate_sample_enabled())
2674 		return;
2675 
2676 	if (!intel_pstate_sample(cpu, ktime_get()))
2677 		return;
2678 
2679 	sample = &cpu->sample;
2680 	trace_pstate_sample(trace_type,
2681 		0,
2682 		old_pstate,
2683 		cpu->pstate.current_pstate,
2684 		sample->mperf,
2685 		sample->aperf,
2686 		sample->tsc,
2687 		get_avg_frequency(cpu),
2688 		fp_toint(cpu->iowait_boost * 100));
2689 }
2690 
2691 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2692 				     u32 desired, bool fast_switch)
2693 {
2694 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2695 
2696 	value &= ~HWP_MIN_PERF(~0L);
2697 	value |= HWP_MIN_PERF(min);
2698 
2699 	value &= ~HWP_MAX_PERF(~0L);
2700 	value |= HWP_MAX_PERF(max);
2701 
2702 	value &= ~HWP_DESIRED_PERF(~0L);
2703 	value |= HWP_DESIRED_PERF(desired);
2704 
2705 	if (value == prev)
2706 		return;
2707 
2708 	WRITE_ONCE(cpu->hwp_req_cached, value);
2709 	if (fast_switch)
2710 		wrmsrl(MSR_HWP_REQUEST, value);
2711 	else
2712 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2713 }
2714 
2715 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2716 					  u32 target_pstate, bool fast_switch)
2717 {
2718 	if (fast_switch)
2719 		wrmsrl(MSR_IA32_PERF_CTL,
2720 		       pstate_funcs.get_val(cpu, target_pstate));
2721 	else
2722 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2723 			      pstate_funcs.get_val(cpu, target_pstate));
2724 }
2725 
2726 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2727 				       int target_pstate, bool fast_switch)
2728 {
2729 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2730 	int old_pstate = cpu->pstate.current_pstate;
2731 
2732 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2733 	if (hwp_active) {
2734 		int max_pstate = policy->strict_target ?
2735 					target_pstate : cpu->max_perf_ratio;
2736 
2737 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2738 					 fast_switch);
2739 	} else if (target_pstate != old_pstate) {
2740 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2741 	}
2742 
2743 	cpu->pstate.current_pstate = target_pstate;
2744 
2745 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2746 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2747 
2748 	return target_pstate;
2749 }
2750 
2751 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2752 				unsigned int target_freq,
2753 				unsigned int relation)
2754 {
2755 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2756 	struct cpufreq_freqs freqs;
2757 	int target_pstate;
2758 
2759 	update_turbo_state();
2760 
2761 	freqs.old = policy->cur;
2762 	freqs.new = target_freq;
2763 
2764 	cpufreq_freq_transition_begin(policy, &freqs);
2765 
2766 	switch (relation) {
2767 	case CPUFREQ_RELATION_L:
2768 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2769 		break;
2770 	case CPUFREQ_RELATION_H:
2771 		target_pstate = freqs.new / cpu->pstate.scaling;
2772 		break;
2773 	default:
2774 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2775 		break;
2776 	}
2777 
2778 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2779 
2780 	freqs.new = target_pstate * cpu->pstate.scaling;
2781 
2782 	cpufreq_freq_transition_end(policy, &freqs, false);
2783 
2784 	return 0;
2785 }
2786 
2787 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2788 					      unsigned int target_freq)
2789 {
2790 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2791 	int target_pstate;
2792 
2793 	update_turbo_state();
2794 
2795 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2796 
2797 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2798 
2799 	return target_pstate * cpu->pstate.scaling;
2800 }
2801 
2802 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2803 				      unsigned long min_perf,
2804 				      unsigned long target_perf,
2805 				      unsigned long capacity)
2806 {
2807 	struct cpudata *cpu = all_cpu_data[cpunum];
2808 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2809 	int old_pstate = cpu->pstate.current_pstate;
2810 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2811 
2812 	update_turbo_state();
2813 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2814 					     HWP_HIGHEST_PERF(hwp_cap);
2815 
2816 	/* Optimization: Avoid unnecessary divisions. */
2817 
2818 	target_pstate = cap_pstate;
2819 	if (target_perf < capacity)
2820 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2821 
2822 	min_pstate = cap_pstate;
2823 	if (min_perf < capacity)
2824 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2825 
2826 	if (min_pstate < cpu->pstate.min_pstate)
2827 		min_pstate = cpu->pstate.min_pstate;
2828 
2829 	if (min_pstate < cpu->min_perf_ratio)
2830 		min_pstate = cpu->min_perf_ratio;
2831 
2832 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2833 	if (max_pstate < min_pstate)
2834 		max_pstate = min_pstate;
2835 
2836 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2837 
2838 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2839 
2840 	cpu->pstate.current_pstate = target_pstate;
2841 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2842 }
2843 
2844 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2845 {
2846 	struct freq_qos_request *req;
2847 	struct cpudata *cpu;
2848 	struct device *dev;
2849 	int ret, freq;
2850 
2851 	dev = get_cpu_device(policy->cpu);
2852 	if (!dev)
2853 		return -ENODEV;
2854 
2855 	ret = __intel_pstate_cpu_init(policy);
2856 	if (ret)
2857 		return ret;
2858 
2859 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2860 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2861 	policy->cur = policy->cpuinfo.min_freq;
2862 
2863 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2864 	if (!req) {
2865 		ret = -ENOMEM;
2866 		goto pstate_exit;
2867 	}
2868 
2869 	cpu = all_cpu_data[policy->cpu];
2870 
2871 	if (hwp_active) {
2872 		u64 value;
2873 
2874 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2875 
2876 		intel_pstate_get_hwp_cap(cpu);
2877 
2878 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2879 		WRITE_ONCE(cpu->hwp_req_cached, value);
2880 
2881 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2882 	} else {
2883 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2884 	}
2885 
2886 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2887 
2888 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2889 				   freq);
2890 	if (ret < 0) {
2891 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2892 		goto free_req;
2893 	}
2894 
2895 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2896 
2897 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2898 				   freq);
2899 	if (ret < 0) {
2900 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2901 		goto remove_min_req;
2902 	}
2903 
2904 	policy->driver_data = req;
2905 
2906 	return 0;
2907 
2908 remove_min_req:
2909 	freq_qos_remove_request(req);
2910 free_req:
2911 	kfree(req);
2912 pstate_exit:
2913 	intel_pstate_exit_perf_limits(policy);
2914 
2915 	return ret;
2916 }
2917 
2918 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2919 {
2920 	struct freq_qos_request *req;
2921 
2922 	req = policy->driver_data;
2923 
2924 	freq_qos_remove_request(req + 1);
2925 	freq_qos_remove_request(req);
2926 	kfree(req);
2927 
2928 	return intel_pstate_cpu_exit(policy);
2929 }
2930 
2931 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
2932 {
2933 	intel_pstate_suspend(policy);
2934 
2935 	if (hwp_active) {
2936 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2937 		u64 value = READ_ONCE(cpu->hwp_req_cached);
2938 
2939 		/*
2940 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
2941 		 * intel_cpufreq_adjust_perf() is in use and the last value
2942 		 * written by it may not be suitable.
2943 		 */
2944 		value &= ~HWP_DESIRED_PERF(~0L);
2945 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2946 		WRITE_ONCE(cpu->hwp_req_cached, value);
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 static struct cpufreq_driver intel_cpufreq = {
2953 	.flags		= CPUFREQ_CONST_LOOPS,
2954 	.verify		= intel_cpufreq_verify_policy,
2955 	.target		= intel_cpufreq_target,
2956 	.fast_switch	= intel_cpufreq_fast_switch,
2957 	.init		= intel_cpufreq_cpu_init,
2958 	.exit		= intel_cpufreq_cpu_exit,
2959 	.offline	= intel_cpufreq_cpu_offline,
2960 	.online		= intel_pstate_cpu_online,
2961 	.suspend	= intel_cpufreq_suspend,
2962 	.resume		= intel_pstate_resume,
2963 	.update_limits	= intel_pstate_update_limits,
2964 	.name		= "intel_cpufreq",
2965 };
2966 
2967 static struct cpufreq_driver *default_driver;
2968 
2969 static void intel_pstate_driver_cleanup(void)
2970 {
2971 	unsigned int cpu;
2972 
2973 	cpus_read_lock();
2974 	for_each_online_cpu(cpu) {
2975 		if (all_cpu_data[cpu]) {
2976 			if (intel_pstate_driver == &intel_pstate)
2977 				intel_pstate_clear_update_util_hook(cpu);
2978 
2979 			kfree(all_cpu_data[cpu]);
2980 			all_cpu_data[cpu] = NULL;
2981 		}
2982 	}
2983 	cpus_read_unlock();
2984 
2985 	intel_pstate_driver = NULL;
2986 }
2987 
2988 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2989 {
2990 	int ret;
2991 
2992 	if (driver == &intel_pstate)
2993 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
2994 
2995 	memset(&global, 0, sizeof(global));
2996 	global.max_perf_pct = 100;
2997 
2998 	intel_pstate_driver = driver;
2999 	ret = cpufreq_register_driver(intel_pstate_driver);
3000 	if (ret) {
3001 		intel_pstate_driver_cleanup();
3002 		return ret;
3003 	}
3004 
3005 	global.min_perf_pct = min_perf_pct_min();
3006 
3007 	return 0;
3008 }
3009 
3010 static ssize_t intel_pstate_show_status(char *buf)
3011 {
3012 	if (!intel_pstate_driver)
3013 		return sprintf(buf, "off\n");
3014 
3015 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3016 					"active" : "passive");
3017 }
3018 
3019 static int intel_pstate_update_status(const char *buf, size_t size)
3020 {
3021 	if (size == 3 && !strncmp(buf, "off", size)) {
3022 		if (!intel_pstate_driver)
3023 			return -EINVAL;
3024 
3025 		if (hwp_active)
3026 			return -EBUSY;
3027 
3028 		cpufreq_unregister_driver(intel_pstate_driver);
3029 		intel_pstate_driver_cleanup();
3030 		return 0;
3031 	}
3032 
3033 	if (size == 6 && !strncmp(buf, "active", size)) {
3034 		if (intel_pstate_driver) {
3035 			if (intel_pstate_driver == &intel_pstate)
3036 				return 0;
3037 
3038 			cpufreq_unregister_driver(intel_pstate_driver);
3039 		}
3040 
3041 		return intel_pstate_register_driver(&intel_pstate);
3042 	}
3043 
3044 	if (size == 7 && !strncmp(buf, "passive", size)) {
3045 		if (intel_pstate_driver) {
3046 			if (intel_pstate_driver == &intel_cpufreq)
3047 				return 0;
3048 
3049 			cpufreq_unregister_driver(intel_pstate_driver);
3050 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3051 		}
3052 
3053 		return intel_pstate_register_driver(&intel_cpufreq);
3054 	}
3055 
3056 	return -EINVAL;
3057 }
3058 
3059 static int no_load __initdata;
3060 static int no_hwp __initdata;
3061 static int hwp_only __initdata;
3062 static unsigned int force_load __initdata;
3063 
3064 static int __init intel_pstate_msrs_not_valid(void)
3065 {
3066 	if (!pstate_funcs.get_max(0) ||
3067 	    !pstate_funcs.get_min(0) ||
3068 	    !pstate_funcs.get_turbo(0))
3069 		return -ENODEV;
3070 
3071 	return 0;
3072 }
3073 
3074 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3075 {
3076 	pstate_funcs.get_max   = funcs->get_max;
3077 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3078 	pstate_funcs.get_min   = funcs->get_min;
3079 	pstate_funcs.get_turbo = funcs->get_turbo;
3080 	pstate_funcs.get_scaling = funcs->get_scaling;
3081 	pstate_funcs.get_val   = funcs->get_val;
3082 	pstate_funcs.get_vid   = funcs->get_vid;
3083 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3084 }
3085 
3086 #ifdef CONFIG_ACPI
3087 
3088 static bool __init intel_pstate_no_acpi_pss(void)
3089 {
3090 	int i;
3091 
3092 	for_each_possible_cpu(i) {
3093 		acpi_status status;
3094 		union acpi_object *pss;
3095 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3096 		struct acpi_processor *pr = per_cpu(processors, i);
3097 
3098 		if (!pr)
3099 			continue;
3100 
3101 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3102 		if (ACPI_FAILURE(status))
3103 			continue;
3104 
3105 		pss = buffer.pointer;
3106 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3107 			kfree(pss);
3108 			return false;
3109 		}
3110 
3111 		kfree(pss);
3112 	}
3113 
3114 	pr_debug("ACPI _PSS not found\n");
3115 	return true;
3116 }
3117 
3118 static bool __init intel_pstate_no_acpi_pcch(void)
3119 {
3120 	acpi_status status;
3121 	acpi_handle handle;
3122 
3123 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3124 	if (ACPI_FAILURE(status))
3125 		goto not_found;
3126 
3127 	if (acpi_has_method(handle, "PCCH"))
3128 		return false;
3129 
3130 not_found:
3131 	pr_debug("ACPI PCCH not found\n");
3132 	return true;
3133 }
3134 
3135 static bool __init intel_pstate_has_acpi_ppc(void)
3136 {
3137 	int i;
3138 
3139 	for_each_possible_cpu(i) {
3140 		struct acpi_processor *pr = per_cpu(processors, i);
3141 
3142 		if (!pr)
3143 			continue;
3144 		if (acpi_has_method(pr->handle, "_PPC"))
3145 			return true;
3146 	}
3147 	pr_debug("ACPI _PPC not found\n");
3148 	return false;
3149 }
3150 
3151 enum {
3152 	PSS,
3153 	PPC,
3154 };
3155 
3156 /* Hardware vendor-specific info that has its own power management modes */
3157 static struct acpi_platform_list plat_info[] __initdata = {
3158 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3159 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3160 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3161 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3162 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3163 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3164 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3165 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3166 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3167 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3168 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3169 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3170 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3171 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3172 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3173 	{ } /* End */
3174 };
3175 
3176 #define BITMASK_OOB	(BIT(8) | BIT(18))
3177 
3178 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3179 {
3180 	const struct x86_cpu_id *id;
3181 	u64 misc_pwr;
3182 	int idx;
3183 
3184 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3185 	if (id) {
3186 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3187 		if (misc_pwr & BITMASK_OOB) {
3188 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3189 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3190 			return true;
3191 		}
3192 	}
3193 
3194 	idx = acpi_match_platform_list(plat_info);
3195 	if (idx < 0)
3196 		return false;
3197 
3198 	switch (plat_info[idx].data) {
3199 	case PSS:
3200 		if (!intel_pstate_no_acpi_pss())
3201 			return false;
3202 
3203 		return intel_pstate_no_acpi_pcch();
3204 	case PPC:
3205 		return intel_pstate_has_acpi_ppc() && !force_load;
3206 	}
3207 
3208 	return false;
3209 }
3210 
3211 static void intel_pstate_request_control_from_smm(void)
3212 {
3213 	/*
3214 	 * It may be unsafe to request P-states control from SMM if _PPC support
3215 	 * has not been enabled.
3216 	 */
3217 	if (acpi_ppc)
3218 		acpi_processor_pstate_control();
3219 }
3220 #else /* CONFIG_ACPI not enabled */
3221 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3222 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3223 static inline void intel_pstate_request_control_from_smm(void) {}
3224 #endif /* CONFIG_ACPI */
3225 
3226 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3227 
3228 #define X86_MATCH_HWP(model, hwp_mode)					\
3229 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3230 					   X86_FEATURE_HWP, hwp_mode)
3231 
3232 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3233 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3234 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3235 	X86_MATCH_HWP(ANY,		0),
3236 	{}
3237 };
3238 
3239 static bool intel_pstate_hwp_is_enabled(void)
3240 {
3241 	u64 value;
3242 
3243 	rdmsrl(MSR_PM_ENABLE, value);
3244 	return !!(value & 0x1);
3245 }
3246 
3247 static int __init intel_pstate_init(void)
3248 {
3249 	const struct x86_cpu_id *id;
3250 	int rc;
3251 
3252 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3253 		return -ENODEV;
3254 
3255 	id = x86_match_cpu(hwp_support_ids);
3256 	if (id) {
3257 		bool hwp_forced = intel_pstate_hwp_is_enabled();
3258 
3259 		if (hwp_forced)
3260 			pr_info("HWP enabled by BIOS\n");
3261 		else if (no_load)
3262 			return -ENODEV;
3263 
3264 		copy_cpu_funcs(&core_funcs);
3265 		/*
3266 		 * Avoid enabling HWP for processors without EPP support,
3267 		 * because that means incomplete HWP implementation which is a
3268 		 * corner case and supporting it is generally problematic.
3269 		 *
3270 		 * If HWP is enabled already, though, there is no choice but to
3271 		 * deal with it.
3272 		 */
3273 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3274 			hwp_active++;
3275 			hwp_mode_bdw = id->driver_data;
3276 			intel_pstate.attr = hwp_cpufreq_attrs;
3277 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3278 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3279 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3280 			if (!default_driver)
3281 				default_driver = &intel_pstate;
3282 
3283 			if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3284 				intel_pstate_cppc_set_cpu_scaling();
3285 
3286 			goto hwp_cpu_matched;
3287 		}
3288 		pr_info("HWP not enabled\n");
3289 	} else {
3290 		if (no_load)
3291 			return -ENODEV;
3292 
3293 		id = x86_match_cpu(intel_pstate_cpu_ids);
3294 		if (!id) {
3295 			pr_info("CPU model not supported\n");
3296 			return -ENODEV;
3297 		}
3298 
3299 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3300 	}
3301 
3302 	if (intel_pstate_msrs_not_valid()) {
3303 		pr_info("Invalid MSRs\n");
3304 		return -ENODEV;
3305 	}
3306 	/* Without HWP start in the passive mode. */
3307 	if (!default_driver)
3308 		default_driver = &intel_cpufreq;
3309 
3310 hwp_cpu_matched:
3311 	/*
3312 	 * The Intel pstate driver will be ignored if the platform
3313 	 * firmware has its own power management modes.
3314 	 */
3315 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3316 		pr_info("P-states controlled by the platform\n");
3317 		return -ENODEV;
3318 	}
3319 
3320 	if (!hwp_active && hwp_only)
3321 		return -ENOTSUPP;
3322 
3323 	pr_info("Intel P-state driver initializing\n");
3324 
3325 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3326 	if (!all_cpu_data)
3327 		return -ENOMEM;
3328 
3329 	intel_pstate_request_control_from_smm();
3330 
3331 	intel_pstate_sysfs_expose_params();
3332 
3333 	mutex_lock(&intel_pstate_driver_lock);
3334 	rc = intel_pstate_register_driver(default_driver);
3335 	mutex_unlock(&intel_pstate_driver_lock);
3336 	if (rc) {
3337 		intel_pstate_sysfs_remove();
3338 		return rc;
3339 	}
3340 
3341 	if (hwp_active) {
3342 		const struct x86_cpu_id *id;
3343 
3344 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3345 		if (id) {
3346 			set_power_ctl_ee_state(false);
3347 			pr_info("Disabling energy efficiency optimization\n");
3348 		}
3349 
3350 		pr_info("HWP enabled\n");
3351 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3352 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3353 	}
3354 
3355 	return 0;
3356 }
3357 device_initcall(intel_pstate_init);
3358 
3359 static int __init intel_pstate_setup(char *str)
3360 {
3361 	if (!str)
3362 		return -EINVAL;
3363 
3364 	if (!strcmp(str, "disable"))
3365 		no_load = 1;
3366 	else if (!strcmp(str, "active"))
3367 		default_driver = &intel_pstate;
3368 	else if (!strcmp(str, "passive"))
3369 		default_driver = &intel_cpufreq;
3370 
3371 	if (!strcmp(str, "no_hwp"))
3372 		no_hwp = 1;
3373 
3374 	if (!strcmp(str, "force"))
3375 		force_load = 1;
3376 	if (!strcmp(str, "hwp_only"))
3377 		hwp_only = 1;
3378 	if (!strcmp(str, "per_cpu_perf_limits"))
3379 		per_cpu_limits = true;
3380 
3381 #ifdef CONFIG_ACPI
3382 	if (!strcmp(str, "support_acpi_ppc"))
3383 		acpi_ppc = true;
3384 #endif
3385 
3386 	return 0;
3387 }
3388 early_param("intel_pstate", intel_pstate_setup);
3389 
3390 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3391 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3392 MODULE_LICENSE("GPL");
3393