1 /* 2 * Freescale i.MX28 image generator 3 * 4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> 5 * on behalf of DENX Software Engineering GmbH 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #include <fcntl.h> 11 #include <sys/stat.h> 12 #include <sys/types.h> 13 #include <unistd.h> 14 15 #include "compiler.h" 16 17 /* Taken from <linux/kernel.h> */ 18 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 19 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 20 21 /* 22 * Default BCB layout. 23 * 24 * TWEAK this if you have blown any OCOTP fuses. 25 */ 26 #define STRIDE_PAGES 64 27 #define STRIDE_COUNT 4 28 29 /* 30 * Layout for 256Mb big NAND with 2048b page size, 64b OOB size and 31 * 128kb erase size. 32 * 33 * TWEAK this if you have different kind of NAND chip. 34 */ 35 static uint32_t nand_writesize = 2048; 36 static uint32_t nand_oobsize = 64; 37 static uint32_t nand_erasesize = 128 * 1024; 38 39 /* 40 * Sector on which the SigmaTel boot partition (0x53) starts. 41 */ 42 static uint32_t sd_sector = 2048; 43 44 /* 45 * Each of the U-Boot bootstreams is at maximum 1MB big. 46 * 47 * TWEAK this if, for some wild reason, you need to boot bigger image. 48 */ 49 #define MAX_BOOTSTREAM_SIZE (1 * 1024 * 1024) 50 51 /* i.MX28 NAND controller-specific constants. DO NOT TWEAK! */ 52 #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 53 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 54 #define MXS_NAND_METADATA_SIZE 10 55 #define MXS_NAND_BITS_PER_ECC_LEVEL 13 56 #define MXS_NAND_COMMAND_BUFFER_SIZE 32 57 58 struct mx28_nand_fcb { 59 uint32_t checksum; 60 uint32_t fingerprint; 61 uint32_t version; 62 struct { 63 uint8_t data_setup; 64 uint8_t data_hold; 65 uint8_t address_setup; 66 uint8_t dsample_time; 67 uint8_t nand_timing_state; 68 uint8_t rea; 69 uint8_t rloh; 70 uint8_t rhoh; 71 } timing; 72 uint32_t page_data_size; 73 uint32_t total_page_size; 74 uint32_t sectors_per_block; 75 uint32_t number_of_nands; /* Ignored */ 76 uint32_t total_internal_die; /* Ignored */ 77 uint32_t cell_type; /* Ignored */ 78 uint32_t ecc_block_n_ecc_type; 79 uint32_t ecc_block_0_size; 80 uint32_t ecc_block_n_size; 81 uint32_t ecc_block_0_ecc_type; 82 uint32_t metadata_bytes; 83 uint32_t num_ecc_blocks_per_page; 84 uint32_t ecc_block_n_ecc_level_sdk; /* Ignored */ 85 uint32_t ecc_block_0_size_sdk; /* Ignored */ 86 uint32_t ecc_block_n_size_sdk; /* Ignored */ 87 uint32_t ecc_block_0_ecc_level_sdk; /* Ignored */ 88 uint32_t num_ecc_blocks_per_page_sdk; /* Ignored */ 89 uint32_t metadata_bytes_sdk; /* Ignored */ 90 uint32_t erase_threshold; 91 uint32_t boot_patch; 92 uint32_t patch_sectors; 93 uint32_t firmware1_starting_sector; 94 uint32_t firmware2_starting_sector; 95 uint32_t sectors_in_firmware1; 96 uint32_t sectors_in_firmware2; 97 uint32_t dbbt_search_area_start_address; 98 uint32_t badblock_marker_byte; 99 uint32_t badblock_marker_start_bit; 100 uint32_t bb_marker_physical_offset; 101 }; 102 103 struct mx28_nand_dbbt { 104 uint32_t checksum; 105 uint32_t fingerprint; 106 uint32_t version; 107 uint32_t number_bb; 108 uint32_t number_2k_pages_bb; 109 }; 110 111 struct mx28_nand_bbt { 112 uint32_t nand; 113 uint32_t number_bb; 114 uint32_t badblock[510]; 115 }; 116 117 struct mx28_sd_drive_info { 118 uint32_t chip_num; 119 uint32_t drive_type; 120 uint32_t tag; 121 uint32_t first_sector_number; 122 uint32_t sector_count; 123 }; 124 125 struct mx28_sd_config_block { 126 uint32_t signature; 127 uint32_t primary_boot_tag; 128 uint32_t secondary_boot_tag; 129 uint32_t num_copies; 130 struct mx28_sd_drive_info drv_info[1]; 131 }; 132 133 static inline uint32_t mx28_nand_ecc_chunk_cnt(uint32_t page_data_size) 134 { 135 return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; 136 } 137 138 static inline uint32_t mx28_nand_ecc_size_in_bits(uint32_t ecc_strength) 139 { 140 return ecc_strength * MXS_NAND_BITS_PER_ECC_LEVEL; 141 } 142 143 static inline uint32_t mx28_nand_get_ecc_strength(uint32_t page_data_size, 144 uint32_t page_oob_size) 145 { 146 int ecc_strength; 147 148 /* 149 * Determine the ECC layout with the formula: 150 * ECC bits per chunk = (total page spare data bits) / 151 * (bits per ECC level) / (chunks per page) 152 * where: 153 * total page spare data bits = 154 * (page oob size - meta data size) * (bits per byte) 155 */ 156 ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8) 157 / (MXS_NAND_BITS_PER_ECC_LEVEL * 158 mx28_nand_ecc_chunk_cnt(page_data_size)); 159 160 return round_down(ecc_strength, 2); 161 } 162 163 static inline uint32_t mx28_nand_get_mark_offset(uint32_t page_data_size, 164 uint32_t ecc_strength) 165 { 166 uint32_t chunk_data_size_in_bits; 167 uint32_t chunk_ecc_size_in_bits; 168 uint32_t chunk_total_size_in_bits; 169 uint32_t block_mark_chunk_number; 170 uint32_t block_mark_chunk_bit_offset; 171 uint32_t block_mark_bit_offset; 172 173 chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; 174 chunk_ecc_size_in_bits = mx28_nand_ecc_size_in_bits(ecc_strength); 175 176 chunk_total_size_in_bits = 177 chunk_data_size_in_bits + chunk_ecc_size_in_bits; 178 179 /* Compute the bit offset of the block mark within the physical page. */ 180 block_mark_bit_offset = page_data_size * 8; 181 182 /* Subtract the metadata bits. */ 183 block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; 184 185 /* 186 * Compute the chunk number (starting at zero) in which the block mark 187 * appears. 188 */ 189 block_mark_chunk_number = 190 block_mark_bit_offset / chunk_total_size_in_bits; 191 192 /* 193 * Compute the bit offset of the block mark within its chunk, and 194 * validate it. 195 */ 196 block_mark_chunk_bit_offset = block_mark_bit_offset - 197 (block_mark_chunk_number * chunk_total_size_in_bits); 198 199 if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) 200 return 1; 201 202 /* 203 * Now that we know the chunk number in which the block mark appears, 204 * we can subtract all the ECC bits that appear before it. 205 */ 206 block_mark_bit_offset -= 207 block_mark_chunk_number * chunk_ecc_size_in_bits; 208 209 return block_mark_bit_offset; 210 } 211 212 static inline uint32_t mx28_nand_mark_byte_offset(void) 213 { 214 uint32_t ecc_strength; 215 ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize); 216 return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) >> 3; 217 } 218 219 static inline uint32_t mx28_nand_mark_bit_offset(void) 220 { 221 uint32_t ecc_strength; 222 ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize); 223 return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) & 0x7; 224 } 225 226 static uint32_t mx28_nand_block_csum(uint8_t *block, uint32_t size) 227 { 228 uint32_t csum = 0; 229 int i; 230 231 for (i = 0; i < size; i++) 232 csum += block[i]; 233 234 return csum ^ 0xffffffff; 235 } 236 237 static struct mx28_nand_fcb *mx28_nand_get_fcb(uint32_t size) 238 { 239 struct mx28_nand_fcb *fcb; 240 uint32_t bcb_size_bytes; 241 uint32_t stride_size_bytes; 242 uint32_t bootstream_size_pages; 243 uint32_t fw1_start_page; 244 uint32_t fw2_start_page; 245 246 fcb = malloc(nand_writesize); 247 if (!fcb) { 248 printf("MX28 NAND: Unable to allocate FCB\n"); 249 return NULL; 250 } 251 252 memset(fcb, 0, nand_writesize); 253 254 fcb->fingerprint = 0x20424346; 255 fcb->version = 0x01000000; 256 257 /* 258 * FIXME: These here are default values as found in kobs-ng. We should 259 * probably retrieve the data from NAND or something. 260 */ 261 fcb->timing.data_setup = 80; 262 fcb->timing.data_hold = 60; 263 fcb->timing.address_setup = 25; 264 fcb->timing.dsample_time = 6; 265 266 fcb->page_data_size = nand_writesize; 267 fcb->total_page_size = nand_writesize + nand_oobsize; 268 fcb->sectors_per_block = nand_erasesize / nand_writesize; 269 270 fcb->num_ecc_blocks_per_page = (nand_writesize / 512) - 1; 271 fcb->ecc_block_0_size = 512; 272 fcb->ecc_block_n_size = 512; 273 fcb->metadata_bytes = 10; 274 275 if (nand_writesize == 2048) { 276 fcb->ecc_block_n_ecc_type = 4; 277 fcb->ecc_block_0_ecc_type = 4; 278 } else if (nand_writesize == 4096) { 279 if (nand_oobsize == 128) { 280 fcb->ecc_block_n_ecc_type = 4; 281 fcb->ecc_block_0_ecc_type = 4; 282 } else if (nand_oobsize == 218) { 283 fcb->ecc_block_n_ecc_type = 8; 284 fcb->ecc_block_0_ecc_type = 8; 285 } else if (nand_oobsize == 224) { 286 fcb->ecc_block_n_ecc_type = 8; 287 fcb->ecc_block_0_ecc_type = 8; 288 } 289 } 290 291 if (fcb->ecc_block_n_ecc_type == 0) { 292 printf("MX28 NAND: Unsupported NAND geometry\n"); 293 goto err; 294 } 295 296 fcb->boot_patch = 0; 297 fcb->patch_sectors = 0; 298 299 fcb->badblock_marker_byte = mx28_nand_mark_byte_offset(); 300 fcb->badblock_marker_start_bit = mx28_nand_mark_bit_offset(); 301 fcb->bb_marker_physical_offset = nand_writesize; 302 303 stride_size_bytes = STRIDE_PAGES * nand_writesize; 304 bcb_size_bytes = stride_size_bytes * STRIDE_COUNT; 305 306 bootstream_size_pages = (size + (nand_writesize - 1)) / 307 nand_writesize; 308 309 fw1_start_page = 2 * bcb_size_bytes / nand_writesize; 310 fw2_start_page = (2 * bcb_size_bytes + MAX_BOOTSTREAM_SIZE) / 311 nand_writesize; 312 313 fcb->firmware1_starting_sector = fw1_start_page; 314 fcb->firmware2_starting_sector = fw2_start_page; 315 fcb->sectors_in_firmware1 = bootstream_size_pages; 316 fcb->sectors_in_firmware2 = bootstream_size_pages; 317 318 fcb->dbbt_search_area_start_address = STRIDE_PAGES * STRIDE_COUNT; 319 320 return fcb; 321 322 err: 323 free(fcb); 324 return NULL; 325 } 326 327 static struct mx28_nand_dbbt *mx28_nand_get_dbbt(void) 328 { 329 struct mx28_nand_dbbt *dbbt; 330 331 dbbt = malloc(nand_writesize); 332 if (!dbbt) { 333 printf("MX28 NAND: Unable to allocate DBBT\n"); 334 return NULL; 335 } 336 337 memset(dbbt, 0, nand_writesize); 338 339 dbbt->fingerprint = 0x54424244; 340 dbbt->version = 0x1; 341 342 return dbbt; 343 } 344 345 static inline uint8_t mx28_nand_parity_13_8(const uint8_t b) 346 { 347 uint32_t parity = 0, tmp; 348 349 tmp = ((b >> 6) ^ (b >> 5) ^ (b >> 3) ^ (b >> 2)) & 1; 350 parity |= tmp << 0; 351 352 tmp = ((b >> 7) ^ (b >> 5) ^ (b >> 4) ^ (b >> 2) ^ (b >> 1)) & 1; 353 parity |= tmp << 1; 354 355 tmp = ((b >> 7) ^ (b >> 6) ^ (b >> 5) ^ (b >> 1) ^ (b >> 0)) & 1; 356 parity |= tmp << 2; 357 358 tmp = ((b >> 7) ^ (b >> 4) ^ (b >> 3) ^ (b >> 0)) & 1; 359 parity |= tmp << 3; 360 361 tmp = ((b >> 6) ^ (b >> 4) ^ (b >> 3) ^ 362 (b >> 2) ^ (b >> 1) ^ (b >> 0)) & 1; 363 parity |= tmp << 4; 364 365 return parity; 366 } 367 368 static uint8_t *mx28_nand_fcb_block(struct mx28_nand_fcb *fcb) 369 { 370 uint8_t *block; 371 uint8_t *ecc; 372 int i; 373 374 block = malloc(nand_writesize + nand_oobsize); 375 if (!block) { 376 printf("MX28 NAND: Unable to allocate FCB block\n"); 377 return NULL; 378 } 379 380 memset(block, 0, nand_writesize + nand_oobsize); 381 382 /* Update the FCB checksum */ 383 fcb->checksum = mx28_nand_block_csum(((uint8_t *)fcb) + 4, 508); 384 385 /* Figure 12-11. in iMX28RM, rev. 1, says FCB is at offset 12 */ 386 memcpy(block + 12, fcb, sizeof(struct mx28_nand_fcb)); 387 388 /* ECC is at offset 12 + 512 */ 389 ecc = block + 12 + 512; 390 391 /* Compute the ECC parity */ 392 for (i = 0; i < sizeof(struct mx28_nand_fcb); i++) 393 ecc[i] = mx28_nand_parity_13_8(block[i + 12]); 394 395 return block; 396 } 397 398 static int mx28_nand_write_fcb(struct mx28_nand_fcb *fcb, uint8_t *buf) 399 { 400 uint32_t offset; 401 uint8_t *fcbblock; 402 int ret = 0; 403 int i; 404 405 fcbblock = mx28_nand_fcb_block(fcb); 406 if (!fcbblock) 407 return -1; 408 409 for (i = 0; i < STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) { 410 offset = i * nand_writesize; 411 memcpy(buf + offset, fcbblock, nand_writesize + nand_oobsize); 412 /* Mark the NAND page is OK. */ 413 buf[offset + nand_writesize] = 0xff; 414 } 415 416 free(fcbblock); 417 return ret; 418 } 419 420 static int mx28_nand_write_dbbt(struct mx28_nand_dbbt *dbbt, uint8_t *buf) 421 { 422 uint32_t offset; 423 int i = STRIDE_PAGES * STRIDE_COUNT; 424 425 for (; i < 2 * STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) { 426 offset = i * nand_writesize; 427 memcpy(buf + offset, dbbt, sizeof(struct mx28_nand_dbbt)); 428 } 429 430 return 0; 431 } 432 433 static int mx28_nand_write_firmware(struct mx28_nand_fcb *fcb, int infd, 434 uint8_t *buf) 435 { 436 int ret; 437 off_t size; 438 uint32_t offset1, offset2; 439 440 size = lseek(infd, 0, SEEK_END); 441 lseek(infd, 0, SEEK_SET); 442 443 offset1 = fcb->firmware1_starting_sector * nand_writesize; 444 offset2 = fcb->firmware2_starting_sector * nand_writesize; 445 446 ret = read(infd, buf + offset1, size); 447 if (ret != size) 448 return -1; 449 450 memcpy(buf + offset2, buf + offset1, size); 451 452 return 0; 453 } 454 455 static void usage(void) 456 { 457 printf( 458 "Usage: mxsboot [ops] <type> <infile> <outfile>\n" 459 "Augment BootStream file with a proper header for i.MX28 boot\n" 460 "\n" 461 " <type> type of image:\n" 462 " \"nand\" for NAND image\n" 463 " \"sd\" for SD image\n" 464 " <infile> input file, the u-boot.sb bootstream\n" 465 " <outfile> output file, the bootable image\n" 466 "\n"); 467 printf( 468 "For NAND boot, these options are accepted:\n" 469 " -w <size> NAND page size\n" 470 " -o <size> NAND OOB size\n" 471 " -e <size> NAND erase size\n" 472 "\n" 473 "For SD boot, these options are accepted:\n" 474 " -p <sector> Sector where the SGTL partition starts\n" 475 ); 476 } 477 478 static int mx28_create_nand_image(int infd, int outfd) 479 { 480 struct mx28_nand_fcb *fcb; 481 struct mx28_nand_dbbt *dbbt; 482 int ret = -1; 483 uint8_t *buf; 484 int size; 485 ssize_t wr_size; 486 487 size = nand_writesize * 512 + 2 * MAX_BOOTSTREAM_SIZE; 488 489 buf = malloc(size); 490 if (!buf) { 491 printf("Can not allocate output buffer of %d bytes\n", size); 492 goto err0; 493 } 494 495 memset(buf, 0, size); 496 497 fcb = mx28_nand_get_fcb(MAX_BOOTSTREAM_SIZE); 498 if (!fcb) { 499 printf("Unable to compile FCB\n"); 500 goto err1; 501 } 502 503 dbbt = mx28_nand_get_dbbt(); 504 if (!dbbt) { 505 printf("Unable to compile DBBT\n"); 506 goto err2; 507 } 508 509 ret = mx28_nand_write_fcb(fcb, buf); 510 if (ret) { 511 printf("Unable to write FCB to buffer\n"); 512 goto err3; 513 } 514 515 ret = mx28_nand_write_dbbt(dbbt, buf); 516 if (ret) { 517 printf("Unable to write DBBT to buffer\n"); 518 goto err3; 519 } 520 521 ret = mx28_nand_write_firmware(fcb, infd, buf); 522 if (ret) { 523 printf("Unable to write firmware to buffer\n"); 524 goto err3; 525 } 526 527 wr_size = write(outfd, buf, size); 528 if (wr_size != size) { 529 ret = -1; 530 goto err3; 531 } 532 533 ret = 0; 534 535 err3: 536 free(dbbt); 537 err2: 538 free(fcb); 539 err1: 540 free(buf); 541 err0: 542 return ret; 543 } 544 545 static int mx28_create_sd_image(int infd, int outfd) 546 { 547 int ret = -1; 548 uint32_t *buf; 549 int size; 550 off_t fsize; 551 ssize_t wr_size; 552 struct mx28_sd_config_block *cb; 553 554 fsize = lseek(infd, 0, SEEK_END); 555 lseek(infd, 0, SEEK_SET); 556 size = fsize + 4 * 512; 557 558 buf = malloc(size); 559 if (!buf) { 560 printf("Can not allocate output buffer of %d bytes\n", size); 561 goto err0; 562 } 563 564 ret = read(infd, (uint8_t *)buf + 4 * 512, fsize); 565 if (ret != fsize) { 566 ret = -1; 567 goto err1; 568 } 569 570 cb = (struct mx28_sd_config_block *)buf; 571 572 cb->signature = 0x00112233; 573 cb->primary_boot_tag = 0x1; 574 cb->secondary_boot_tag = 0x1; 575 cb->num_copies = 1; 576 cb->drv_info[0].chip_num = 0x0; 577 cb->drv_info[0].drive_type = 0x0; 578 cb->drv_info[0].tag = 0x1; 579 cb->drv_info[0].first_sector_number = sd_sector + 4; 580 cb->drv_info[0].sector_count = (size - 4) / 512; 581 582 wr_size = write(outfd, buf, size); 583 if (wr_size != size) { 584 ret = -1; 585 goto err1; 586 } 587 588 ret = 0; 589 590 err1: 591 free(buf); 592 err0: 593 return ret; 594 } 595 596 static int parse_ops(int argc, char **argv) 597 { 598 int i; 599 int tmp; 600 char *end; 601 enum param { 602 PARAM_WRITE, 603 PARAM_OOB, 604 PARAM_ERASE, 605 PARAM_PART, 606 PARAM_SD, 607 PARAM_NAND 608 }; 609 int type; 610 611 if (argc < 4) 612 return -1; 613 614 for (i = 1; i < argc; i++) { 615 if (!strncmp(argv[i], "-w", 2)) 616 type = PARAM_WRITE; 617 else if (!strncmp(argv[i], "-o", 2)) 618 type = PARAM_OOB; 619 else if (!strncmp(argv[i], "-e", 2)) 620 type = PARAM_ERASE; 621 else if (!strncmp(argv[i], "-p", 2)) 622 type = PARAM_PART; 623 else /* SD/MMC */ 624 break; 625 626 tmp = strtol(argv[++i], &end, 10); 627 if (tmp % 2) 628 return -1; 629 if (tmp <= 0) 630 return -1; 631 632 if (type == PARAM_WRITE) 633 nand_writesize = tmp; 634 if (type == PARAM_OOB) 635 nand_oobsize = tmp; 636 if (type == PARAM_ERASE) 637 nand_erasesize = tmp; 638 if (type == PARAM_PART) 639 sd_sector = tmp; 640 } 641 642 if (strcmp(argv[i], "sd") && strcmp(argv[i], "nand")) 643 return -1; 644 645 if (i + 3 != argc) 646 return -1; 647 648 return i; 649 } 650 651 int main(int argc, char **argv) 652 { 653 int infd, outfd; 654 int ret = 0; 655 int offset; 656 657 offset = parse_ops(argc, argv); 658 if (offset < 0) { 659 usage(); 660 ret = 1; 661 goto err1; 662 } 663 664 infd = open(argv[offset + 1], O_RDONLY); 665 if (infd < 0) { 666 printf("Input BootStream file can not be opened\n"); 667 ret = 2; 668 goto err1; 669 } 670 671 outfd = open(argv[offset + 2], O_CREAT | O_TRUNC | O_WRONLY, 672 S_IRUSR | S_IWUSR); 673 if (outfd < 0) { 674 printf("Output file can not be created\n"); 675 ret = 3; 676 goto err2; 677 } 678 679 if (!strcmp(argv[offset], "sd")) 680 ret = mx28_create_sd_image(infd, outfd); 681 else if (!strcmp(argv[offset], "nand")) 682 ret = mx28_create_nand_image(infd, outfd); 683 684 close(outfd); 685 err2: 686 close(infd); 687 err1: 688 return ret; 689 } 690