1 /* 2 * ifdtool - Manage Intel Firmware Descriptor information 3 * 4 * Copyright 2014 Google, Inc 5 * 6 * SPDX-License-Identifier: GPL-2.0 7 * 8 * From Coreboot project, but it got a serious code clean-up 9 * and a few new features 10 */ 11 12 #include <assert.h> 13 #include <fcntl.h> 14 #include <getopt.h> 15 #include <stdlib.h> 16 #include <stdio.h> 17 #include <string.h> 18 #include <unistd.h> 19 #include <sys/types.h> 20 #include <sys/stat.h> 21 #include <libfdt.h> 22 #include "ifdtool.h" 23 24 #undef DEBUG 25 26 #ifdef DEBUG 27 #define debug(fmt, args...) printf(fmt, ##args) 28 #else 29 #define debug(fmt, args...) 30 #endif 31 32 #define FD_SIGNATURE 0x0FF0A55A 33 #define FLREG_BASE(reg) ((reg & 0x00000fff) << 12); 34 #define FLREG_LIMIT(reg) (((reg & 0x0fff0000) >> 4) | 0xfff); 35 36 enum input_file_type_t { 37 IF_normal, 38 IF_fdt, 39 IF_uboot, 40 }; 41 42 struct input_file { 43 char *fname; 44 unsigned int addr; 45 enum input_file_type_t type; 46 }; 47 48 /** 49 * find_fd() - Find the flash description in the ROM image 50 * 51 * @image: Pointer to image 52 * @size: Size of image in bytes 53 * @return pointer to structure, or NULL if not found 54 */ 55 static struct fdbar_t *find_fd(char *image, int size) 56 { 57 uint32_t *ptr, *end; 58 59 /* Scan for FD signature */ 60 for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) { 61 if (*ptr == FD_SIGNATURE) 62 break; 63 } 64 65 if (ptr == end) { 66 printf("No Flash Descriptor found in this image\n"); 67 return NULL; 68 } 69 70 debug("Found Flash Descriptor signature at 0x%08lx\n", 71 (char *)ptr - image); 72 73 return (struct fdbar_t *)ptr; 74 } 75 76 /** 77 * get_region() - Get information about the selected region 78 * 79 * @frba: Flash region list 80 * @region_type: Type of region (0..MAX_REGIONS-1) 81 * @region: Region information is written here 82 * @return 0 if OK, else -ve 83 */ 84 static int get_region(struct frba_t *frba, int region_type, 85 struct region_t *region) 86 { 87 if (region_type >= MAX_REGIONS) { 88 fprintf(stderr, "Invalid region type.\n"); 89 return -1; 90 } 91 92 region->base = FLREG_BASE(frba->flreg[region_type]); 93 region->limit = FLREG_LIMIT(frba->flreg[region_type]); 94 region->size = region->limit - region->base + 1; 95 96 return 0; 97 } 98 99 static const char *region_name(int region_type) 100 { 101 static const char *const regions[] = { 102 "Flash Descriptor", 103 "BIOS", 104 "Intel ME", 105 "GbE", 106 "Platform Data" 107 }; 108 109 assert(region_type < MAX_REGIONS); 110 111 return regions[region_type]; 112 } 113 114 static const char *region_filename(int region_type) 115 { 116 static const char *const region_filenames[] = { 117 "flashregion_0_flashdescriptor.bin", 118 "flashregion_1_bios.bin", 119 "flashregion_2_intel_me.bin", 120 "flashregion_3_gbe.bin", 121 "flashregion_4_platform_data.bin" 122 }; 123 124 assert(region_type < MAX_REGIONS); 125 126 return region_filenames[region_type]; 127 } 128 129 static int dump_region(int num, struct frba_t *frba) 130 { 131 struct region_t region; 132 int ret; 133 134 ret = get_region(frba, num, ®ion); 135 if (ret) 136 return ret; 137 138 printf(" Flash Region %d (%s): %08x - %08x %s\n", 139 num, region_name(num), region.base, region.limit, 140 region.size < 1 ? "(unused)" : ""); 141 142 return ret; 143 } 144 145 static void dump_frba(struct frba_t *frba) 146 { 147 int i; 148 149 printf("Found Region Section\n"); 150 for (i = 0; i < MAX_REGIONS; i++) { 151 printf("FLREG%d: 0x%08x\n", i, frba->flreg[i]); 152 dump_region(i, frba); 153 } 154 } 155 156 static void decode_spi_frequency(unsigned int freq) 157 { 158 switch (freq) { 159 case SPI_FREQUENCY_20MHZ: 160 printf("20MHz"); 161 break; 162 case SPI_FREQUENCY_33MHZ: 163 printf("33MHz"); 164 break; 165 case SPI_FREQUENCY_50MHZ: 166 printf("50MHz"); 167 break; 168 default: 169 printf("unknown<%x>MHz", freq); 170 } 171 } 172 173 static void decode_component_density(unsigned int density) 174 { 175 switch (density) { 176 case COMPONENT_DENSITY_512KB: 177 printf("512KiB"); 178 break; 179 case COMPONENT_DENSITY_1MB: 180 printf("1MiB"); 181 break; 182 case COMPONENT_DENSITY_2MB: 183 printf("2MiB"); 184 break; 185 case COMPONENT_DENSITY_4MB: 186 printf("4MiB"); 187 break; 188 case COMPONENT_DENSITY_8MB: 189 printf("8MiB"); 190 break; 191 case COMPONENT_DENSITY_16MB: 192 printf("16MiB"); 193 break; 194 default: 195 printf("unknown<%x>MiB", density); 196 } 197 } 198 199 static void dump_fcba(struct fcba_t *fcba) 200 { 201 printf("\nFound Component Section\n"); 202 printf("FLCOMP 0x%08x\n", fcba->flcomp); 203 printf(" Dual Output Fast Read Support: %ssupported\n", 204 (fcba->flcomp & (1 << 30)) ? "" : "not "); 205 printf(" Read ID/Read Status Clock Frequency: "); 206 decode_spi_frequency((fcba->flcomp >> 27) & 7); 207 printf("\n Write/Erase Clock Frequency: "); 208 decode_spi_frequency((fcba->flcomp >> 24) & 7); 209 printf("\n Fast Read Clock Frequency: "); 210 decode_spi_frequency((fcba->flcomp >> 21) & 7); 211 printf("\n Fast Read Support: %ssupported", 212 (fcba->flcomp & (1 << 20)) ? "" : "not "); 213 printf("\n Read Clock Frequency: "); 214 decode_spi_frequency((fcba->flcomp >> 17) & 7); 215 printf("\n Component 2 Density: "); 216 decode_component_density((fcba->flcomp >> 3) & 7); 217 printf("\n Component 1 Density: "); 218 decode_component_density(fcba->flcomp & 7); 219 printf("\n"); 220 printf("FLILL 0x%08x\n", fcba->flill); 221 printf(" Invalid Instruction 3: 0x%02x\n", 222 (fcba->flill >> 24) & 0xff); 223 printf(" Invalid Instruction 2: 0x%02x\n", 224 (fcba->flill >> 16) & 0xff); 225 printf(" Invalid Instruction 1: 0x%02x\n", 226 (fcba->flill >> 8) & 0xff); 227 printf(" Invalid Instruction 0: 0x%02x\n", 228 fcba->flill & 0xff); 229 printf("FLPB 0x%08x\n", fcba->flpb); 230 printf(" Flash Partition Boundary Address: 0x%06x\n\n", 231 (fcba->flpb & 0xfff) << 12); 232 } 233 234 static void dump_fpsba(struct fpsba_t *fpsba) 235 { 236 int i; 237 238 printf("Found PCH Strap Section\n"); 239 for (i = 0; i < MAX_STRAPS; i++) 240 printf("PCHSTRP%-2d: 0x%08x\n", i, fpsba->pchstrp[i]); 241 } 242 243 static const char *get_enabled(int flag) 244 { 245 return flag ? "enabled" : "disabled"; 246 } 247 248 static void decode_flmstr(uint32_t flmstr) 249 { 250 printf(" Platform Data Region Write Access: %s\n", 251 get_enabled(flmstr & (1 << 28))); 252 printf(" GbE Region Write Access: %s\n", 253 get_enabled(flmstr & (1 << 27))); 254 printf(" Intel ME Region Write Access: %s\n", 255 get_enabled(flmstr & (1 << 26))); 256 printf(" Host CPU/BIOS Region Write Access: %s\n", 257 get_enabled(flmstr & (1 << 25))); 258 printf(" Flash Descriptor Write Access: %s\n", 259 get_enabled(flmstr & (1 << 24))); 260 261 printf(" Platform Data Region Read Access: %s\n", 262 get_enabled(flmstr & (1 << 20))); 263 printf(" GbE Region Read Access: %s\n", 264 get_enabled(flmstr & (1 << 19))); 265 printf(" Intel ME Region Read Access: %s\n", 266 get_enabled(flmstr & (1 << 18))); 267 printf(" Host CPU/BIOS Region Read Access: %s\n", 268 get_enabled(flmstr & (1 << 17))); 269 printf(" Flash Descriptor Read Access: %s\n", 270 get_enabled(flmstr & (1 << 16))); 271 272 printf(" Requester ID: 0x%04x\n\n", 273 flmstr & 0xffff); 274 } 275 276 static void dump_fmba(struct fmba_t *fmba) 277 { 278 printf("Found Master Section\n"); 279 printf("FLMSTR1: 0x%08x (Host CPU/BIOS)\n", fmba->flmstr1); 280 decode_flmstr(fmba->flmstr1); 281 printf("FLMSTR2: 0x%08x (Intel ME)\n", fmba->flmstr2); 282 decode_flmstr(fmba->flmstr2); 283 printf("FLMSTR3: 0x%08x (GbE)\n", fmba->flmstr3); 284 decode_flmstr(fmba->flmstr3); 285 } 286 287 static void dump_fmsba(struct fmsba_t *fmsba) 288 { 289 int i; 290 291 printf("Found Processor Strap Section\n"); 292 for (i = 0; i < 4; i++) 293 printf("????: 0x%08x\n", fmsba->data[0]); 294 } 295 296 static void dump_jid(uint32_t jid) 297 { 298 printf(" SPI Component Device ID 1: 0x%02x\n", 299 (jid >> 16) & 0xff); 300 printf(" SPI Component Device ID 0: 0x%02x\n", 301 (jid >> 8) & 0xff); 302 printf(" SPI Component Vendor ID: 0x%02x\n", 303 jid & 0xff); 304 } 305 306 static void dump_vscc(uint32_t vscc) 307 { 308 printf(" Lower Erase Opcode: 0x%02x\n", 309 vscc >> 24); 310 printf(" Lower Write Enable on Write Status: 0x%02x\n", 311 vscc & (1 << 20) ? 0x06 : 0x50); 312 printf(" Lower Write Status Required: %s\n", 313 vscc & (1 << 19) ? "Yes" : "No"); 314 printf(" Lower Write Granularity: %d bytes\n", 315 vscc & (1 << 18) ? 64 : 1); 316 printf(" Lower Block / Sector Erase Size: "); 317 switch ((vscc >> 16) & 0x3) { 318 case 0: 319 printf("256 Byte\n"); 320 break; 321 case 1: 322 printf("4KB\n"); 323 break; 324 case 2: 325 printf("8KB\n"); 326 break; 327 case 3: 328 printf("64KB\n"); 329 break; 330 } 331 332 printf(" Upper Erase Opcode: 0x%02x\n", 333 (vscc >> 8) & 0xff); 334 printf(" Upper Write Enable on Write Status: 0x%02x\n", 335 vscc & (1 << 4) ? 0x06 : 0x50); 336 printf(" Upper Write Status Required: %s\n", 337 vscc & (1 << 3) ? "Yes" : "No"); 338 printf(" Upper Write Granularity: %d bytes\n", 339 vscc & (1 << 2) ? 64 : 1); 340 printf(" Upper Block / Sector Erase Size: "); 341 switch (vscc & 0x3) { 342 case 0: 343 printf("256 Byte\n"); 344 break; 345 case 1: 346 printf("4KB\n"); 347 break; 348 case 2: 349 printf("8KB\n"); 350 break; 351 case 3: 352 printf("64KB\n"); 353 break; 354 } 355 } 356 357 static void dump_vtba(struct vtba_t *vtba, int vtl) 358 { 359 int i; 360 int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8; 361 362 printf("ME VSCC table:\n"); 363 for (i = 0; i < num; i++) { 364 printf(" JID%d: 0x%08x\n", i, vtba->entry[i].jid); 365 dump_jid(vtba->entry[i].jid); 366 printf(" VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc); 367 dump_vscc(vtba->entry[i].vscc); 368 } 369 printf("\n"); 370 } 371 372 static void dump_oem(uint8_t *oem) 373 { 374 int i, j; 375 printf("OEM Section:\n"); 376 for (i = 0; i < 4; i++) { 377 printf("%02x:", i << 4); 378 for (j = 0; j < 16; j++) 379 printf(" %02x", oem[(i<<4)+j]); 380 printf("\n"); 381 } 382 printf("\n"); 383 } 384 385 /** 386 * dump_fd() - Display a dump of the full flash description 387 * 388 * @image: Pointer to image 389 * @size: Size of image in bytes 390 * @return 0 if OK, -1 on error 391 */ 392 static int dump_fd(char *image, int size) 393 { 394 struct fdbar_t *fdb = find_fd(image, size); 395 396 if (!fdb) 397 return -1; 398 399 printf("FLMAP0: 0x%08x\n", fdb->flmap0); 400 printf(" NR: %d\n", (fdb->flmap0 >> 24) & 7); 401 printf(" FRBA: 0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4); 402 printf(" NC: %d\n", ((fdb->flmap0 >> 8) & 3) + 1); 403 printf(" FCBA: 0x%x\n", ((fdb->flmap0) & 0xff) << 4); 404 405 printf("FLMAP1: 0x%08x\n", fdb->flmap1); 406 printf(" ISL: 0x%02x\n", (fdb->flmap1 >> 24) & 0xff); 407 printf(" FPSBA: 0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4); 408 printf(" NM: %d\n", (fdb->flmap1 >> 8) & 3); 409 printf(" FMBA: 0x%x\n", ((fdb->flmap1) & 0xff) << 4); 410 411 printf("FLMAP2: 0x%08x\n", fdb->flmap2); 412 printf(" PSL: 0x%04x\n", (fdb->flmap2 >> 8) & 0xffff); 413 printf(" FMSBA: 0x%x\n", ((fdb->flmap2) & 0xff) << 4); 414 415 printf("FLUMAP1: 0x%08x\n", fdb->flumap1); 416 printf(" Intel ME VSCC Table Length (VTL): %d\n", 417 (fdb->flumap1 >> 8) & 0xff); 418 printf(" Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n", 419 (fdb->flumap1 & 0xff) << 4); 420 dump_vtba((struct vtba_t *) 421 (image + ((fdb->flumap1 & 0xff) << 4)), 422 (fdb->flumap1 >> 8) & 0xff); 423 dump_oem((uint8_t *)image + 0xf00); 424 dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) 425 << 4))); 426 dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4))); 427 dump_fpsba((struct fpsba_t *) 428 (image + (((fdb->flmap1 >> 16) & 0xff) << 4))); 429 dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4))); 430 dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4))); 431 432 return 0; 433 } 434 435 /** 436 * write_regions() - Write each region from an image to its own file 437 * 438 * The filename to use in each case is fixed - see region_filename() 439 * 440 * @image: Pointer to image 441 * @size: Size of image in bytes 442 * @return 0 if OK, -ve on error 443 */ 444 static int write_regions(char *image, int size) 445 { 446 struct fdbar_t *fdb; 447 struct frba_t *frba; 448 int ret = 0; 449 int i; 450 451 fdb = find_fd(image, size); 452 if (!fdb) 453 return -1; 454 455 frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4)); 456 457 for (i = 0; i < MAX_REGIONS; i++) { 458 struct region_t region; 459 int region_fd; 460 461 ret = get_region(frba, i, ®ion); 462 if (ret) 463 return ret; 464 dump_region(i, frba); 465 if (region.size <= 0) 466 continue; 467 region_fd = open(region_filename(i), 468 O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | 469 S_IWUSR | S_IRGRP | S_IROTH); 470 if (write(region_fd, image + region.base, region.size) != 471 region.size) { 472 perror("Error while writing"); 473 ret = -1; 474 } 475 close(region_fd); 476 } 477 478 return ret; 479 } 480 481 static int perror_fname(const char *fmt, const char *fname) 482 { 483 char msg[strlen(fmt) + strlen(fname) + 1]; 484 485 sprintf(msg, fmt, fname); 486 perror(msg); 487 488 return -1; 489 } 490 491 /** 492 * write_image() - Write the image to a file 493 * 494 * @filename: Filename to use for the image 495 * @image: Pointer to image 496 * @size: Size of image in bytes 497 * @return 0 if OK, -ve on error 498 */ 499 static int write_image(char *filename, char *image, int size) 500 { 501 int new_fd; 502 503 debug("Writing new image to %s\n", filename); 504 505 new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | 506 S_IWUSR | S_IRGRP | S_IROTH); 507 if (new_fd < 0) 508 return perror_fname("Could not open file '%s'", filename); 509 if (write(new_fd, image, size) != size) 510 return perror_fname("Could not write file '%s'", filename); 511 close(new_fd); 512 513 return 0; 514 } 515 516 /** 517 * set_spi_frequency() - Set the SPI frequency to use when booting 518 * 519 * Several frequencies are supported, some of which work with fast devices. 520 * For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The 521 * Intel boot system uses this information somehow on boot. 522 * 523 * The image is updated with the supplied value 524 * 525 * @image: Pointer to image 526 * @size: Size of image in bytes 527 * @freq: SPI frequency to use 528 */ 529 static void set_spi_frequency(char *image, int size, enum spi_frequency freq) 530 { 531 struct fdbar_t *fdb = find_fd(image, size); 532 struct fcba_t *fcba; 533 534 fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)); 535 536 /* clear bits 21-29 */ 537 fcba->flcomp &= ~0x3fe00000; 538 /* Read ID and Read Status Clock Frequency */ 539 fcba->flcomp |= freq << 27; 540 /* Write and Erase Clock Frequency */ 541 fcba->flcomp |= freq << 24; 542 /* Fast Read Clock Frequency */ 543 fcba->flcomp |= freq << 21; 544 } 545 546 /** 547 * set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100 548 * 549 * @image: Pointer to image 550 * @size: Size of image in bytes 551 */ 552 static void set_em100_mode(char *image, int size) 553 { 554 struct fdbar_t *fdb = find_fd(image, size); 555 struct fcba_t *fcba; 556 557 fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)); 558 fcba->flcomp &= ~(1 << 30); 559 set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ); 560 } 561 562 /** 563 * lock_descriptor() - Lock the NE descriptor so it cannot be updated 564 * 565 * @image: Pointer to image 566 * @size: Size of image in bytes 567 */ 568 static void lock_descriptor(char *image, int size) 569 { 570 struct fdbar_t *fdb = find_fd(image, size); 571 struct fmba_t *fmba; 572 573 /* 574 * TODO: Dynamically take Platform Data Region and GbE Region into 575 * account. 576 */ 577 fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)); 578 fmba->flmstr1 = 0x0a0b0000; 579 fmba->flmstr2 = 0x0c0d0000; 580 fmba->flmstr3 = 0x08080118; 581 } 582 583 /** 584 * unlock_descriptor() - Lock the NE descriptor so it can be updated 585 * 586 * @image: Pointer to image 587 * @size: Size of image in bytes 588 */ 589 static void unlock_descriptor(char *image, int size) 590 { 591 struct fdbar_t *fdb = find_fd(image, size); 592 struct fmba_t *fmba; 593 594 fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)); 595 fmba->flmstr1 = 0xffff0000; 596 fmba->flmstr2 = 0xffff0000; 597 fmba->flmstr3 = 0x08080118; 598 } 599 600 /** 601 * open_for_read() - Open a file for reading 602 * 603 * @fname: Filename to open 604 * @sizep: Returns file size in bytes 605 * @return 0 if OK, -1 on error 606 */ 607 int open_for_read(const char *fname, int *sizep) 608 { 609 int fd = open(fname, O_RDONLY); 610 struct stat buf; 611 612 if (fd == -1) 613 return perror_fname("Could not open file '%s'", fname); 614 if (fstat(fd, &buf) == -1) 615 return perror_fname("Could not stat file '%s'", fname); 616 *sizep = buf.st_size; 617 debug("File %s is %d bytes\n", fname, *sizep); 618 619 return fd; 620 } 621 622 /** 623 * inject_region() - Add a file to an image region 624 * 625 * This puts a file into a particular region of the flash. Several pre-defined 626 * regions are used. 627 * 628 * @image: Pointer to image 629 * @size: Size of image in bytes 630 * @region_type: Region where the file should be added 631 * @region_fname: Filename to add to the image 632 * @return 0 if OK, -ve on error 633 */ 634 int inject_region(char *image, int size, int region_type, char *region_fname) 635 { 636 struct fdbar_t *fdb = find_fd(image, size); 637 struct region_t region; 638 struct frba_t *frba; 639 int region_size; 640 int offset = 0; 641 int region_fd; 642 int ret; 643 644 if (!fdb) 645 exit(EXIT_FAILURE); 646 frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4)); 647 648 ret = get_region(frba, region_type, ®ion); 649 if (ret) 650 return -1; 651 if (region.size <= 0xfff) { 652 fprintf(stderr, "Region %s is disabled in target. Not injecting.\n", 653 region_name(region_type)); 654 return -1; 655 } 656 657 region_fd = open_for_read(region_fname, ®ion_size); 658 if (region_fd < 0) 659 return region_fd; 660 661 if ((region_size > region.size) || 662 ((region_type != 1) && (region_size > region.size))) { 663 fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Not injecting.\n", 664 region_name(region_type), region.size, 665 region.size, region_size, region_size); 666 return -1; 667 } 668 669 if ((region_type == 1) && (region_size < region.size)) { 670 fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n", 671 region_name(region_type), region.size, 672 region.size, region_size, region_size); 673 offset = region.size - region_size; 674 memset(image + region.base, 0xff, offset); 675 } 676 677 if (size < region.base + offset + region_size) { 678 fprintf(stderr, "Output file is too small. (%d < %d)\n", 679 size, region.base + offset + region_size); 680 return -1; 681 } 682 683 if (read(region_fd, image + region.base + offset, region_size) 684 != region_size) { 685 perror("Could not read file"); 686 return -1; 687 } 688 689 close(region_fd); 690 691 debug("Adding %s as the %s section\n", region_fname, 692 region_name(region_type)); 693 694 return 0; 695 } 696 697 /** 698 * write_data() - Write some raw data into a region 699 * 700 * This puts a file into a particular place in the flash, ignoring the 701 * regions. Be careful not to overwrite something important. 702 * 703 * @image: Pointer to image 704 * @size: Size of image in bytes 705 * @addr: x86 ROM address to put file. The ROM ends at 706 * 0xffffffff so use an address relative to that. For an 707 * 8MB ROM the start address is 0xfff80000. 708 * @write_fname: Filename to add to the image 709 * @offset_uboot_top: Offset of the top of U-Boot 710 * @return number of bytes written if OK, -ve on error 711 */ 712 static int write_data(char *image, int size, unsigned int addr, 713 const char *write_fname, int offset_uboot_top) 714 { 715 int write_fd, write_size; 716 int offset; 717 718 write_fd = open_for_read(write_fname, &write_size); 719 if (write_fd < 0) 720 return write_fd; 721 722 offset = (uint32_t)(addr + size); 723 if (offset_uboot_top && offset_uboot_top >= offset) { 724 fprintf(stderr, "U-Boot image overlaps with region '%s'\n", 725 write_fname); 726 fprintf(stderr, 727 "U-Boot finishes at offset %x, file starts at %x\n", 728 offset_uboot_top, offset); 729 return -EXDEV; 730 } 731 debug("Writing %s to offset %#x\n", write_fname, offset); 732 733 if (offset < 0 || offset + write_size > size) { 734 fprintf(stderr, "Output file is too small. (%d < %d)\n", 735 size, offset + write_size); 736 return -1; 737 } 738 739 if (read(write_fd, image + offset, write_size) != write_size) { 740 perror("Could not read file"); 741 return -1; 742 } 743 744 close(write_fd); 745 746 return write_size; 747 } 748 749 static int scan_ucode(const void *blob, char *ucode_base, int *countp, 750 const char **datap, int *data_sizep) 751 { 752 const char *data = NULL; 753 int node, count; 754 int data_size; 755 char *ucode; 756 757 for (node = 0, count = 0, ucode = ucode_base; node >= 0; count++) { 758 node = fdt_node_offset_by_compatible(blob, node, 759 "intel,microcode"); 760 if (node < 0) 761 break; 762 763 data = fdt_getprop(blob, node, "data", &data_size); 764 if (!data) { 765 debug("Missing microcode data in FDT '%s': %s\n", 766 fdt_get_name(blob, node, NULL), 767 fdt_strerror(data_size)); 768 return -ENOENT; 769 } 770 771 if (ucode_base) 772 memcpy(ucode, data, data_size); 773 ucode += data_size; 774 } 775 776 if (countp) 777 *countp = count; 778 if (datap) 779 *datap = data; 780 if (data_sizep) 781 *data_sizep = data_size; 782 783 return ucode - ucode_base; 784 } 785 786 static int remove_ucode(char *blob) 787 { 788 int node, count; 789 int ret; 790 791 /* Keep going until we find no more microcode to remove */ 792 do { 793 for (node = 0, count = 0; node >= 0;) { 794 int ret; 795 796 node = fdt_node_offset_by_compatible(blob, node, 797 "intel,microcode"); 798 if (node < 0) 799 break; 800 801 ret = fdt_delprop(blob, node, "data"); 802 803 /* 804 * -FDT_ERR_NOTFOUND means we already removed the 805 * data for this one, so we just continue. 806 * 0 means we did remove it, so offsets may have 807 * changed and we need to restart our scan. 808 * Anything else indicates an error we should report. 809 */ 810 if (ret == -FDT_ERR_NOTFOUND) 811 continue; 812 else if (!ret) 813 node = 0; 814 else 815 return ret; 816 } 817 } while (count); 818 819 /* Pack down to remove excees space */ 820 ret = fdt_pack(blob); 821 if (ret) 822 return ret; 823 824 return fdt_totalsize(blob); 825 } 826 827 static int write_ucode(char *image, int size, struct input_file *fdt, 828 int fdt_size, unsigned int ucode_ptr, 829 int collate_ucode) 830 { 831 const char *data = NULL; 832 char *ucode_buf; 833 const void *blob; 834 char *ucode_base; 835 uint32_t *ptr; 836 int ucode_size; 837 int data_size; 838 int offset; 839 int count; 840 int ret; 841 842 blob = (void *)image + (uint32_t)(fdt->addr + size); 843 844 debug("DTB at %lx\n", (char *)blob - image); 845 846 /* Find out about the micrcode we have */ 847 ucode_size = scan_ucode(blob, NULL, &count, &data, &data_size); 848 if (ucode_size < 0) 849 return ucode_size; 850 if (!count) { 851 debug("No microcode found in FDT\n"); 852 return -ENOENT; 853 } 854 855 if (count > 1 && !collate_ucode) { 856 fprintf(stderr, 857 "Cannot handle multiple microcode blocks - please use -C flag to collate them\n"); 858 return -EMLINK; 859 } 860 861 /* 862 * Collect the microcode into a buffer, remove it from the device 863 * tree and place it immediately above the (now smaller) device tree. 864 */ 865 if (collate_ucode && count > 1) { 866 ucode_buf = malloc(ucode_size); 867 if (!ucode_buf) { 868 fprintf(stderr, 869 "Out of memory for microcode (%d bytes)\n", 870 ucode_size); 871 return -ENOMEM; 872 } 873 ret = scan_ucode(blob, ucode_buf, NULL, NULL, NULL); 874 if (ret < 0) 875 return ret; 876 877 /* Remove the microcode from the device tree */ 878 ret = remove_ucode((char *)blob); 879 if (ret < 0) { 880 debug("Could not remove FDT microcode: %s\n", 881 fdt_strerror(ret)); 882 return -EINVAL; 883 } 884 debug("Collated %d microcode block(s)\n", count); 885 debug("Device tree reduced from %x to %x bytes\n", 886 fdt_size, ret); 887 fdt_size = ret; 888 889 /* 890 * Place microcode area immediately above the FDT, aligned 891 * to a 16-byte boundary. 892 */ 893 ucode_base = (char *)(((unsigned long)blob + fdt_size + 15) & 894 ~15); 895 896 data = ucode_base; 897 data_size = ucode_size; 898 memcpy(ucode_base, ucode_buf, ucode_size); 899 free(ucode_buf); 900 } 901 902 offset = (uint32_t)(ucode_ptr + size); 903 ptr = (void *)image + offset; 904 905 ptr[0] = (data - image) - size; 906 ptr[1] = data_size; 907 debug("Wrote microcode pointer at %x: addr=%x, size=%x\n", ucode_ptr, 908 ptr[0], ptr[1]); 909 910 return (collate_ucode ? data + data_size : (char *)blob + fdt_size) - 911 image; 912 } 913 914 /** 915 * write_uboot() - Write U-Boot, device tree and microcode pointer 916 * 917 * This writes U-Boot into a place in the flash, followed by its device tree. 918 * The microcode pointer is written so that U-Boot can find the microcode in 919 * the device tree very early in boot. 920 * 921 * @image: Pointer to image 922 * @size: Size of image in bytes 923 * @uboot: Input file information for u-boot.bin 924 * @fdt: Input file information for u-boot.dtb 925 * @ucode_ptr: Address in U-Boot where the microcode pointer should be placed 926 * @return 0 if OK, -ve on error 927 */ 928 static int write_uboot(char *image, int size, struct input_file *uboot, 929 struct input_file *fdt, unsigned int ucode_ptr, 930 int collate_ucode) 931 { 932 const void *blob; 933 int uboot_size, fdt_size; 934 935 uboot_size = write_data(image, size, uboot->addr, uboot->fname, 0); 936 if (uboot_size < 0) 937 return uboot_size; 938 fdt->addr = uboot->addr + uboot_size; 939 debug("U-Boot size %#x, FDT at %#x\n", uboot_size, fdt->addr); 940 fdt_size = write_data(image, size, fdt->addr, fdt->fname, 0); 941 if (fdt_size < 0) 942 return fdt_size; 943 blob = (void *)image + (uint32_t)(fdt->addr + size); 944 945 if (ucode_ptr) { 946 return write_ucode(image, size, fdt, fdt_size, ucode_ptr, 947 collate_ucode); 948 } 949 950 return ((char *)blob + fdt_size) - image; 951 } 952 953 static void print_version(void) 954 { 955 printf("ifdtool v%s -- ", IFDTOOL_VERSION); 956 printf("Copyright (C) 2014 Google Inc.\n\n"); 957 printf("SPDX-License-Identifier: GPL-2.0+\n"); 958 } 959 960 static void print_usage(const char *name) 961 { 962 printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name); 963 printf("\n" 964 " -d | --dump: dump intel firmware descriptor\n" 965 " -x | --extract: extract intel fd modules\n" 966 " -i | --inject <region>:<module> inject file <module> into region <region>\n" 967 " -w | --write <addr>:<file> write file to appear at memory address <addr>\n" 968 " multiple files can be written simultaneously\n" 969 " -s | --spifreq <20|33|50> set the SPI frequency\n" 970 " -e | --em100 set SPI frequency to 20MHz and disable\n" 971 " Dual Output Fast Read Support\n" 972 " -l | --lock Lock firmware descriptor and ME region\n" 973 " -u | --unlock Unlock firmware descriptor and ME region\n" 974 " -r | --romsize Specify ROM size\n" 975 " -D | --write-descriptor <file> Write descriptor at base\n" 976 " -c | --create Create a new empty image\n" 977 " -v | --version: print the version\n" 978 " -h | --help: print this help\n\n" 979 "<region> is one of Descriptor, BIOS, ME, GbE, Platform\n" 980 "\n"); 981 } 982 983 /** 984 * get_two_words() - Convert a string into two words separated by : 985 * 986 * The supplied string is split at ':', two substrings are allocated and 987 * returned. 988 * 989 * @str: String to split 990 * @firstp: Returns first string 991 * @secondp: Returns second string 992 * @return 0 if OK, -ve if @str does not have a : 993 */ 994 static int get_two_words(const char *str, char **firstp, char **secondp) 995 { 996 const char *p; 997 998 p = strchr(str, ':'); 999 if (!p) 1000 return -1; 1001 *firstp = strdup(str); 1002 (*firstp)[p - str] = '\0'; 1003 *secondp = strdup(p + 1); 1004 1005 return 0; 1006 } 1007 1008 int main(int argc, char *argv[]) 1009 { 1010 int opt, option_index = 0; 1011 int mode_dump = 0, mode_extract = 0, mode_inject = 0; 1012 int mode_spifreq = 0, mode_em100 = 0, mode_locked = 0; 1013 int mode_unlocked = 0, mode_write = 0, mode_write_descriptor = 0; 1014 int create = 0, collate_ucode = 0; 1015 char *region_type_string = NULL, *inject_fname = NULL; 1016 char *desc_fname = NULL, *addr_str = NULL; 1017 int region_type = -1, inputfreq = 0; 1018 enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ; 1019 struct input_file input_file[WRITE_MAX], *ifile, *fdt = NULL; 1020 unsigned char wr_idx, wr_num = 0; 1021 int rom_size = -1; 1022 bool write_it; 1023 char *filename; 1024 char *outfile = NULL; 1025 struct stat buf; 1026 int size = 0; 1027 unsigned int ucode_ptr = 0; 1028 bool have_uboot = false; 1029 int bios_fd; 1030 char *image; 1031 int ret; 1032 static struct option long_options[] = { 1033 {"create", 0, NULL, 'c'}, 1034 {"collate-microcode", 0, NULL, 'C'}, 1035 {"dump", 0, NULL, 'd'}, 1036 {"descriptor", 1, NULL, 'D'}, 1037 {"em100", 0, NULL, 'e'}, 1038 {"extract", 0, NULL, 'x'}, 1039 {"fdt", 1, NULL, 'f'}, 1040 {"inject", 1, NULL, 'i'}, 1041 {"lock", 0, NULL, 'l'}, 1042 {"microcode", 1, NULL, 'm'}, 1043 {"romsize", 1, NULL, 'r'}, 1044 {"spifreq", 1, NULL, 's'}, 1045 {"unlock", 0, NULL, 'u'}, 1046 {"uboot", 1, NULL, 'U'}, 1047 {"write", 1, NULL, 'w'}, 1048 {"version", 0, NULL, 'v'}, 1049 {"help", 0, NULL, 'h'}, 1050 {0, 0, 0, 0} 1051 }; 1052 1053 while ((opt = getopt_long(argc, argv, "cCdD:ef:hi:lm:r:s:uU:vw:x?", 1054 long_options, &option_index)) != EOF) { 1055 switch (opt) { 1056 case 'c': 1057 create = 1; 1058 break; 1059 case 'C': 1060 collate_ucode = 1; 1061 break; 1062 case 'd': 1063 mode_dump = 1; 1064 break; 1065 case 'D': 1066 mode_write_descriptor = 1; 1067 desc_fname = optarg; 1068 break; 1069 case 'e': 1070 mode_em100 = 1; 1071 break; 1072 case 'i': 1073 if (get_two_words(optarg, ®ion_type_string, 1074 &inject_fname)) { 1075 print_usage(argv[0]); 1076 exit(EXIT_FAILURE); 1077 } 1078 if (!strcasecmp("Descriptor", region_type_string)) 1079 region_type = 0; 1080 else if (!strcasecmp("BIOS", region_type_string)) 1081 region_type = 1; 1082 else if (!strcasecmp("ME", region_type_string)) 1083 region_type = 2; 1084 else if (!strcasecmp("GbE", region_type_string)) 1085 region_type = 3; 1086 else if (!strcasecmp("Platform", region_type_string)) 1087 region_type = 4; 1088 if (region_type == -1) { 1089 fprintf(stderr, "No such region type: '%s'\n\n", 1090 region_type_string); 1091 print_usage(argv[0]); 1092 exit(EXIT_FAILURE); 1093 } 1094 mode_inject = 1; 1095 break; 1096 case 'l': 1097 mode_locked = 1; 1098 break; 1099 case 'm': 1100 ucode_ptr = strtoul(optarg, NULL, 0); 1101 break; 1102 case 'r': 1103 rom_size = strtol(optarg, NULL, 0); 1104 debug("ROM size %d\n", rom_size); 1105 break; 1106 case 's': 1107 /* Parse the requested SPI frequency */ 1108 inputfreq = strtol(optarg, NULL, 0); 1109 switch (inputfreq) { 1110 case 20: 1111 spifreq = SPI_FREQUENCY_20MHZ; 1112 break; 1113 case 33: 1114 spifreq = SPI_FREQUENCY_33MHZ; 1115 break; 1116 case 50: 1117 spifreq = SPI_FREQUENCY_50MHZ; 1118 break; 1119 default: 1120 fprintf(stderr, "Invalid SPI Frequency: %d\n", 1121 inputfreq); 1122 print_usage(argv[0]); 1123 exit(EXIT_FAILURE); 1124 } 1125 mode_spifreq = 1; 1126 break; 1127 case 'u': 1128 mode_unlocked = 1; 1129 break; 1130 case 'v': 1131 print_version(); 1132 exit(EXIT_SUCCESS); 1133 break; 1134 case 'w': 1135 case 'U': 1136 case 'f': 1137 ifile = &input_file[wr_num]; 1138 mode_write = 1; 1139 if (wr_num < WRITE_MAX) { 1140 if (get_two_words(optarg, &addr_str, 1141 &ifile->fname)) { 1142 print_usage(argv[0]); 1143 exit(EXIT_FAILURE); 1144 } 1145 ifile->addr = strtoll(optarg, NULL, 0); 1146 ifile->type = opt == 'f' ? IF_fdt : 1147 opt == 'U' ? IF_uboot : IF_normal; 1148 if (ifile->type == IF_fdt) 1149 fdt = ifile; 1150 else if (ifile->type == IF_uboot) 1151 have_uboot = true; 1152 wr_num++; 1153 } else { 1154 fprintf(stderr, 1155 "The number of files to write simultaneously exceeds the limitation (%d)\n", 1156 WRITE_MAX); 1157 } 1158 break; 1159 case 'x': 1160 mode_extract = 1; 1161 break; 1162 case 'h': 1163 case '?': 1164 default: 1165 print_usage(argv[0]); 1166 exit(EXIT_SUCCESS); 1167 break; 1168 } 1169 } 1170 1171 if (mode_locked == 1 && mode_unlocked == 1) { 1172 fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n"); 1173 exit(EXIT_FAILURE); 1174 } 1175 1176 if (mode_inject == 1 && mode_write == 1) { 1177 fprintf(stderr, "Inject/Write are mutually exclusive\n"); 1178 exit(EXIT_FAILURE); 1179 } 1180 1181 if ((mode_dump + mode_extract + mode_inject + 1182 (mode_spifreq | mode_em100 | mode_unlocked | 1183 mode_locked)) > 1) { 1184 fprintf(stderr, "You may not specify more than one mode.\n\n"); 1185 print_usage(argv[0]); 1186 exit(EXIT_FAILURE); 1187 } 1188 1189 if ((mode_dump + mode_extract + mode_inject + mode_spifreq + 1190 mode_em100 + mode_locked + mode_unlocked + mode_write + 1191 mode_write_descriptor) == 0 && !create) { 1192 fprintf(stderr, "You need to specify a mode.\n\n"); 1193 print_usage(argv[0]); 1194 exit(EXIT_FAILURE); 1195 } 1196 1197 if (create && rom_size == -1) { 1198 fprintf(stderr, "You need to specify a rom size when creating.\n\n"); 1199 exit(EXIT_FAILURE); 1200 } 1201 1202 if (optind + 1 != argc) { 1203 fprintf(stderr, "You need to specify a file.\n\n"); 1204 print_usage(argv[0]); 1205 exit(EXIT_FAILURE); 1206 } 1207 1208 if (have_uboot && !fdt) { 1209 fprintf(stderr, 1210 "You must supply a device tree file for U-Boot\n\n"); 1211 print_usage(argv[0]); 1212 exit(EXIT_FAILURE); 1213 } 1214 1215 filename = argv[optind]; 1216 if (optind + 2 != argc) 1217 outfile = argv[optind + 1]; 1218 1219 if (create) 1220 bios_fd = open(filename, O_WRONLY | O_CREAT, 0666); 1221 else 1222 bios_fd = open(filename, outfile ? O_RDONLY : O_RDWR); 1223 1224 if (bios_fd == -1) { 1225 perror("Could not open file"); 1226 exit(EXIT_FAILURE); 1227 } 1228 1229 if (!create) { 1230 if (fstat(bios_fd, &buf) == -1) { 1231 perror("Could not stat file"); 1232 exit(EXIT_FAILURE); 1233 } 1234 size = buf.st_size; 1235 } 1236 1237 debug("File %s is %d bytes\n", filename, size); 1238 1239 if (rom_size == -1) 1240 rom_size = size; 1241 1242 image = malloc(rom_size); 1243 if (!image) { 1244 printf("Out of memory.\n"); 1245 exit(EXIT_FAILURE); 1246 } 1247 1248 memset(image, '\xff', rom_size); 1249 if (!create && read(bios_fd, image, size) != size) { 1250 perror("Could not read file"); 1251 exit(EXIT_FAILURE); 1252 } 1253 if (size != rom_size) { 1254 debug("ROM size changed to %d bytes\n", rom_size); 1255 size = rom_size; 1256 } 1257 1258 write_it = true; 1259 ret = 0; 1260 if (mode_dump) { 1261 ret = dump_fd(image, size); 1262 write_it = false; 1263 } 1264 1265 if (mode_extract) { 1266 ret = write_regions(image, size); 1267 write_it = false; 1268 } 1269 1270 if (mode_write_descriptor) 1271 ret = write_data(image, size, -size, desc_fname, 0); 1272 1273 if (mode_inject) 1274 ret = inject_region(image, size, region_type, inject_fname); 1275 1276 if (mode_write) { 1277 int offset_uboot_top = 0; 1278 1279 for (wr_idx = 0; wr_idx < wr_num; wr_idx++) { 1280 ifile = &input_file[wr_idx]; 1281 if (ifile->type == IF_fdt) { 1282 continue; 1283 } else if (ifile->type == IF_uboot) { 1284 ret = write_uboot(image, size, ifile, fdt, 1285 ucode_ptr, collate_ucode); 1286 offset_uboot_top = ret; 1287 } else { 1288 ret = write_data(image, size, ifile->addr, 1289 ifile->fname, offset_uboot_top); 1290 } 1291 if (ret < 0) 1292 break; 1293 } 1294 } 1295 1296 if (mode_spifreq) 1297 set_spi_frequency(image, size, spifreq); 1298 1299 if (mode_em100) 1300 set_em100_mode(image, size); 1301 1302 if (mode_locked) 1303 lock_descriptor(image, size); 1304 1305 if (mode_unlocked) 1306 unlock_descriptor(image, size); 1307 1308 if (write_it) { 1309 if (outfile) { 1310 ret = write_image(outfile, image, size); 1311 } else { 1312 if (lseek(bios_fd, 0, SEEK_SET)) { 1313 perror("Error while seeking"); 1314 ret = -1; 1315 } 1316 if (write(bios_fd, image, size) != size) { 1317 perror("Error while writing"); 1318 ret = -1; 1319 } 1320 } 1321 } 1322 1323 free(image); 1324 close(bios_fd); 1325 1326 return ret < 0 ? 1 : 0; 1327 } 1328