xref: /openbmc/u-boot/tools/ifdtool.c (revision 7ae350a0)
1 /*
2  * ifdtool - Manage Intel Firmware Descriptor information
3  *
4  * Copyright 2014 Google, Inc
5  *
6  * SPDX-License-Identifier:	GPL-2.0
7  *
8  * From Coreboot project, but it got a serious code clean-up
9  * and a few new features
10  */
11 
12 #include <assert.h>
13 #include <fcntl.h>
14 #include <getopt.h>
15 #include <stdlib.h>
16 #include <stdio.h>
17 #include <string.h>
18 #include <unistd.h>
19 #include <sys/types.h>
20 #include <sys/stat.h>
21 #include "ifdtool.h"
22 
23 #undef DEBUG
24 
25 #ifdef DEBUG
26 #define debug(fmt, args...)	printf(fmt, ##args)
27 #else
28 #define debug(fmt, args...)
29 #endif
30 
31 #define FD_SIGNATURE		0x0FF0A55A
32 #define FLREG_BASE(reg)		((reg & 0x00000fff) << 12);
33 #define FLREG_LIMIT(reg)	(((reg & 0x0fff0000) >> 4) | 0xfff);
34 
35 /**
36  * find_fd() - Find the flash description in the ROM image
37  *
38  * @image:	Pointer to image
39  * @size:	Size of image in bytes
40  * @return pointer to structure, or NULL if not found
41  */
42 static struct fdbar_t *find_fd(char *image, int size)
43 {
44 	uint32_t *ptr, *end;
45 
46 	/* Scan for FD signature */
47 	for (ptr = (uint32_t *)image, end = ptr + size / 4; ptr < end; ptr++) {
48 		if (*ptr == FD_SIGNATURE)
49 			break;
50 	}
51 
52 	if (ptr == end) {
53 		printf("No Flash Descriptor found in this image\n");
54 		return NULL;
55 	}
56 
57 	debug("Found Flash Descriptor signature at 0x%08x\n", i);
58 
59 	return (struct fdbar_t *)ptr;
60 }
61 
62 /**
63  * get_region() - Get information about the selected region
64  *
65  * @frba:		Flash region list
66  * @region_type:	Type of region (0..MAX_REGIONS-1)
67  * @region:		Region information is written here
68  * @return 0 if OK, else -ve
69  */
70 static int get_region(struct frba_t *frba, int region_type,
71 		      struct region_t *region)
72 {
73 	if (region_type >= MAX_REGIONS) {
74 		fprintf(stderr, "Invalid region type.\n");
75 		return -1;
76 	}
77 
78 	region->base = FLREG_BASE(frba->flreg[region_type]);
79 	region->limit = FLREG_LIMIT(frba->flreg[region_type]);
80 	region->size = region->limit - region->base + 1;
81 
82 	return 0;
83 }
84 
85 static const char *region_name(int region_type)
86 {
87 	static const char *const regions[] = {
88 		"Flash Descriptor",
89 		"BIOS",
90 		"Intel ME",
91 		"GbE",
92 		"Platform Data"
93 	};
94 
95 	assert(region_type < MAX_REGIONS);
96 
97 	return regions[region_type];
98 }
99 
100 static const char *region_filename(int region_type)
101 {
102 	static const char *const region_filenames[] = {
103 		"flashregion_0_flashdescriptor.bin",
104 		"flashregion_1_bios.bin",
105 		"flashregion_2_intel_me.bin",
106 		"flashregion_3_gbe.bin",
107 		"flashregion_4_platform_data.bin"
108 	};
109 
110 	assert(region_type < MAX_REGIONS);
111 
112 	return region_filenames[region_type];
113 }
114 
115 static int dump_region(int num, struct frba_t *frba)
116 {
117 	struct region_t region;
118 	int ret;
119 
120 	ret = get_region(frba, num, &region);
121 	if (ret)
122 		return ret;
123 
124 	printf("  Flash Region %d (%s): %08x - %08x %s\n",
125 	       num, region_name(num), region.base, region.limit,
126 	       region.size < 1 ? "(unused)" : "");
127 
128 	return ret;
129 }
130 
131 static void dump_frba(struct frba_t *frba)
132 {
133 	int i;
134 
135 	printf("Found Region Section\n");
136 	for (i = 0; i < MAX_REGIONS; i++) {
137 		printf("FLREG%d:    0x%08x\n", i, frba->flreg[i]);
138 		dump_region(i, frba);
139 	}
140 }
141 
142 static void decode_spi_frequency(unsigned int freq)
143 {
144 	switch (freq) {
145 	case SPI_FREQUENCY_20MHZ:
146 		printf("20MHz");
147 		break;
148 	case SPI_FREQUENCY_33MHZ:
149 		printf("33MHz");
150 		break;
151 	case SPI_FREQUENCY_50MHZ:
152 		printf("50MHz");
153 		break;
154 	default:
155 		printf("unknown<%x>MHz", freq);
156 	}
157 }
158 
159 static void decode_component_density(unsigned int density)
160 {
161 	switch (density) {
162 	case COMPONENT_DENSITY_512KB:
163 		printf("512KiB");
164 		break;
165 	case COMPONENT_DENSITY_1MB:
166 		printf("1MiB");
167 		break;
168 	case COMPONENT_DENSITY_2MB:
169 		printf("2MiB");
170 		break;
171 	case COMPONENT_DENSITY_4MB:
172 		printf("4MiB");
173 		break;
174 	case COMPONENT_DENSITY_8MB:
175 		printf("8MiB");
176 		break;
177 	case COMPONENT_DENSITY_16MB:
178 		printf("16MiB");
179 		break;
180 	default:
181 		printf("unknown<%x>MiB", density);
182 	}
183 }
184 
185 static void dump_fcba(struct fcba_t *fcba)
186 {
187 	printf("\nFound Component Section\n");
188 	printf("FLCOMP     0x%08x\n", fcba->flcomp);
189 	printf("  Dual Output Fast Read Support:       %ssupported\n",
190 	       (fcba->flcomp & (1 << 30)) ? "" : "not ");
191 	printf("  Read ID/Read Status Clock Frequency: ");
192 	decode_spi_frequency((fcba->flcomp >> 27) & 7);
193 	printf("\n  Write/Erase Clock Frequency:         ");
194 	decode_spi_frequency((fcba->flcomp >> 24) & 7);
195 	printf("\n  Fast Read Clock Frequency:           ");
196 	decode_spi_frequency((fcba->flcomp >> 21) & 7);
197 	printf("\n  Fast Read Support:                   %ssupported",
198 	       (fcba->flcomp & (1 << 20)) ? "" : "not ");
199 	printf("\n  Read Clock Frequency:                ");
200 	decode_spi_frequency((fcba->flcomp >> 17) & 7);
201 	printf("\n  Component 2 Density:                 ");
202 	decode_component_density((fcba->flcomp >> 3) & 7);
203 	printf("\n  Component 1 Density:                 ");
204 	decode_component_density(fcba->flcomp & 7);
205 	printf("\n");
206 	printf("FLILL      0x%08x\n", fcba->flill);
207 	printf("  Invalid Instruction 3: 0x%02x\n",
208 	       (fcba->flill >> 24) & 0xff);
209 	printf("  Invalid Instruction 2: 0x%02x\n",
210 	       (fcba->flill >> 16) & 0xff);
211 	printf("  Invalid Instruction 1: 0x%02x\n",
212 	       (fcba->flill >> 8) & 0xff);
213 	printf("  Invalid Instruction 0: 0x%02x\n",
214 	       fcba->flill & 0xff);
215 	printf("FLPB       0x%08x\n", fcba->flpb);
216 	printf("  Flash Partition Boundary Address: 0x%06x\n\n",
217 	       (fcba->flpb & 0xfff) << 12);
218 }
219 
220 static void dump_fpsba(struct fpsba_t *fpsba)
221 {
222 	int i;
223 
224 	printf("Found PCH Strap Section\n");
225 	for (i = 0; i < MAX_STRAPS; i++)
226 		printf("PCHSTRP%-2d:  0x%08x\n", i, fpsba->pchstrp[i]);
227 }
228 
229 static const char *get_enabled(int flag)
230 {
231 	return flag ? "enabled" : "disabled";
232 }
233 
234 static void decode_flmstr(uint32_t flmstr)
235 {
236 	printf("  Platform Data Region Write Access: %s\n",
237 	       get_enabled(flmstr & (1 << 28)));
238 	printf("  GbE Region Write Access:           %s\n",
239 	       get_enabled(flmstr & (1 << 27)));
240 	printf("  Intel ME Region Write Access:      %s\n",
241 	       get_enabled(flmstr & (1 << 26)));
242 	printf("  Host CPU/BIOS Region Write Access: %s\n",
243 	       get_enabled(flmstr & (1 << 25)));
244 	printf("  Flash Descriptor Write Access:     %s\n",
245 	       get_enabled(flmstr & (1 << 24)));
246 
247 	printf("  Platform Data Region Read Access:  %s\n",
248 	       get_enabled(flmstr & (1 << 20)));
249 	printf("  GbE Region Read Access:            %s\n",
250 	       get_enabled(flmstr & (1 << 19)));
251 	printf("  Intel ME Region Read Access:       %s\n",
252 	       get_enabled(flmstr & (1 << 18)));
253 	printf("  Host CPU/BIOS Region Read Access:  %s\n",
254 	       get_enabled(flmstr & (1 << 17)));
255 	printf("  Flash Descriptor Read Access:      %s\n",
256 	       get_enabled(flmstr & (1 << 16)));
257 
258 	printf("  Requester ID:                      0x%04x\n\n",
259 	       flmstr & 0xffff);
260 }
261 
262 static void dump_fmba(struct fmba_t *fmba)
263 {
264 	printf("Found Master Section\n");
265 	printf("FLMSTR1:   0x%08x (Host CPU/BIOS)\n", fmba->flmstr1);
266 	decode_flmstr(fmba->flmstr1);
267 	printf("FLMSTR2:   0x%08x (Intel ME)\n", fmba->flmstr2);
268 	decode_flmstr(fmba->flmstr2);
269 	printf("FLMSTR3:   0x%08x (GbE)\n", fmba->flmstr3);
270 	decode_flmstr(fmba->flmstr3);
271 }
272 
273 static void dump_fmsba(struct fmsba_t *fmsba)
274 {
275 	int i;
276 
277 	printf("Found Processor Strap Section\n");
278 	for (i = 0; i < 4; i++)
279 		printf("????:      0x%08x\n", fmsba->data[0]);
280 }
281 
282 static void dump_jid(uint32_t jid)
283 {
284 	printf("    SPI Component Device ID 1:          0x%02x\n",
285 	       (jid >> 16) & 0xff);
286 	printf("    SPI Component Device ID 0:          0x%02x\n",
287 	       (jid >> 8) & 0xff);
288 	printf("    SPI Component Vendor ID:            0x%02x\n",
289 	       jid & 0xff);
290 }
291 
292 static void dump_vscc(uint32_t vscc)
293 {
294 	printf("    Lower Erase Opcode:                 0x%02x\n",
295 	       vscc >> 24);
296 	printf("    Lower Write Enable on Write Status: 0x%02x\n",
297 	       vscc & (1 << 20) ? 0x06 : 0x50);
298 	printf("    Lower Write Status Required:        %s\n",
299 	       vscc & (1 << 19) ? "Yes" : "No");
300 	printf("    Lower Write Granularity:            %d bytes\n",
301 	       vscc & (1 << 18) ? 64 : 1);
302 	printf("    Lower Block / Sector Erase Size:    ");
303 	switch ((vscc >> 16) & 0x3) {
304 	case 0:
305 		printf("256 Byte\n");
306 		break;
307 	case 1:
308 		printf("4KB\n");
309 		break;
310 	case 2:
311 		printf("8KB\n");
312 		break;
313 	case 3:
314 		printf("64KB\n");
315 		break;
316 	}
317 
318 	printf("    Upper Erase Opcode:                 0x%02x\n",
319 	       (vscc >> 8) & 0xff);
320 	printf("    Upper Write Enable on Write Status: 0x%02x\n",
321 	       vscc & (1 << 4) ? 0x06 : 0x50);
322 	printf("    Upper Write Status Required:        %s\n",
323 	       vscc & (1 << 3) ? "Yes" : "No");
324 	printf("    Upper Write Granularity:            %d bytes\n",
325 	       vscc & (1 << 2) ? 64 : 1);
326 	printf("    Upper Block / Sector Erase Size:    ");
327 	switch (vscc & 0x3) {
328 	case 0:
329 		printf("256 Byte\n");
330 		break;
331 	case 1:
332 		printf("4KB\n");
333 		break;
334 	case 2:
335 		printf("8KB\n");
336 		break;
337 	case 3:
338 		printf("64KB\n");
339 		break;
340 	}
341 }
342 
343 static void dump_vtba(struct vtba_t *vtba, int vtl)
344 {
345 	int i;
346 	int num = (vtl >> 1) < 8 ? (vtl >> 1) : 8;
347 
348 	printf("ME VSCC table:\n");
349 	for (i = 0; i < num; i++) {
350 		printf("  JID%d:  0x%08x\n", i, vtba->entry[i].jid);
351 		dump_jid(vtba->entry[i].jid);
352 		printf("  VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc);
353 		dump_vscc(vtba->entry[i].vscc);
354 	}
355 	printf("\n");
356 }
357 
358 static void dump_oem(uint8_t *oem)
359 {
360 	int i, j;
361 	printf("OEM Section:\n");
362 	for (i = 0; i < 4; i++) {
363 		printf("%02x:", i << 4);
364 		for (j = 0; j < 16; j++)
365 			printf(" %02x", oem[(i<<4)+j]);
366 		printf("\n");
367 	}
368 	printf("\n");
369 }
370 
371 /**
372  * dump_fd() - Display a dump of the full flash description
373  *
374  * @image:	Pointer to image
375  * @size:	Size of image in bytes
376  * @return 0 if OK, -1 on error
377  */
378 static int dump_fd(char *image, int size)
379 {
380 	struct fdbar_t *fdb = find_fd(image, size);
381 
382 	if (!fdb)
383 		return -1;
384 
385 	printf("FLMAP0:    0x%08x\n", fdb->flmap0);
386 	printf("  NR:      %d\n", (fdb->flmap0 >> 24) & 7);
387 	printf("  FRBA:    0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4);
388 	printf("  NC:      %d\n", ((fdb->flmap0 >> 8) & 3) + 1);
389 	printf("  FCBA:    0x%x\n", ((fdb->flmap0) & 0xff) << 4);
390 
391 	printf("FLMAP1:    0x%08x\n", fdb->flmap1);
392 	printf("  ISL:     0x%02x\n", (fdb->flmap1 >> 24) & 0xff);
393 	printf("  FPSBA:   0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4);
394 	printf("  NM:      %d\n", (fdb->flmap1 >> 8) & 3);
395 	printf("  FMBA:    0x%x\n", ((fdb->flmap1) & 0xff) << 4);
396 
397 	printf("FLMAP2:    0x%08x\n", fdb->flmap2);
398 	printf("  PSL:     0x%04x\n", (fdb->flmap2 >> 8) & 0xffff);
399 	printf("  FMSBA:   0x%x\n", ((fdb->flmap2) & 0xff) << 4);
400 
401 	printf("FLUMAP1:   0x%08x\n", fdb->flumap1);
402 	printf("  Intel ME VSCC Table Length (VTL):        %d\n",
403 	       (fdb->flumap1 >> 8) & 0xff);
404 	printf("  Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n",
405 	       (fdb->flumap1 & 0xff) << 4);
406 	dump_vtba((struct vtba_t *)
407 			(image + ((fdb->flumap1 & 0xff) << 4)),
408 			(fdb->flumap1 >> 8) & 0xff);
409 	dump_oem((uint8_t *)image + 0xf00);
410 	dump_frba((struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff)
411 			<< 4)));
412 	dump_fcba((struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4)));
413 	dump_fpsba((struct fpsba_t *)
414 			(image + (((fdb->flmap1 >> 16) & 0xff) << 4)));
415 	dump_fmba((struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4)));
416 	dump_fmsba((struct fmsba_t *)(image + (((fdb->flmap2) & 0xff) << 4)));
417 
418 	return 0;
419 }
420 
421 /**
422  * write_regions() - Write each region from an image to its own file
423  *
424  * The filename to use in each case is fixed - see region_filename()
425  *
426  * @image:	Pointer to image
427  * @size:	Size of image in bytes
428  * @return 0 if OK, -ve on error
429  */
430 static int write_regions(char *image, int size)
431 {
432 	struct fdbar_t *fdb;
433 	struct frba_t *frba;
434 	int ret = 0;
435 	int i;
436 
437 	fdb =  find_fd(image, size);
438 	if (!fdb)
439 		return -1;
440 
441 	frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
442 
443 	for (i = 0; i < MAX_REGIONS; i++) {
444 		struct region_t region;
445 		int region_fd;
446 
447 		ret = get_region(frba, i, &region);
448 		if (ret)
449 			return ret;
450 		dump_region(i, frba);
451 		if (region.size == 0)
452 			continue;
453 		region_fd = open(region_filename(i),
454 				 O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
455 				 S_IWUSR | S_IRGRP | S_IROTH);
456 		if (write(region_fd, image + region.base, region.size) !=
457 				region.size) {
458 			perror("Error while writing");
459 			ret = -1;
460 		}
461 		close(region_fd);
462 	}
463 
464 	return ret;
465 }
466 
467 /**
468  * write_image() - Write the image to a file
469  *
470  * @filename:	Filename to use for the image
471  * @image:	Pointer to image
472  * @size:	Size of image in bytes
473  * @return 0 if OK, -ve on error
474  */
475 static int write_image(char *filename, char *image, int size)
476 {
477 	int new_fd;
478 
479 	debug("Writing new image to %s\n", filename);
480 
481 	new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR |
482 		      S_IWUSR | S_IRGRP | S_IROTH);
483 	if (write(new_fd, image, size) != size) {
484 		perror("Error while writing");
485 		return -1;
486 	}
487 	close(new_fd);
488 
489 	return 0;
490 }
491 
492 /**
493  * set_spi_frequency() - Set the SPI frequency to use when booting
494  *
495  * Several frequencies are supported, some of which work with fast devices.
496  * For SPI emulators, the slowest (SPI_FREQUENCY_20MHZ) is often used. The
497  * Intel boot system uses this information somehow on boot.
498  *
499  * The image is updated with the supplied value
500  *
501  * @image:	Pointer to image
502  * @size:	Size of image in bytes
503  * @freq:	SPI frequency to use
504  */
505 static void set_spi_frequency(char *image, int size, enum spi_frequency freq)
506 {
507 	struct fdbar_t *fdb = find_fd(image, size);
508 	struct fcba_t *fcba;
509 
510 	fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
511 
512 	/* clear bits 21-29 */
513 	fcba->flcomp &= ~0x3fe00000;
514 	/* Read ID and Read Status Clock Frequency */
515 	fcba->flcomp |= freq << 27;
516 	/* Write and Erase Clock Frequency */
517 	fcba->flcomp |= freq << 24;
518 	/* Fast Read Clock Frequency */
519 	fcba->flcomp |= freq << 21;
520 }
521 
522 /**
523  * set_em100_mode() - Set a SPI frequency that will work with Dediprog EM100
524  *
525  * @image:	Pointer to image
526  * @size:	Size of image in bytes
527  */
528 static void set_em100_mode(char *image, int size)
529 {
530 	struct fdbar_t *fdb = find_fd(image, size);
531 	struct fcba_t *fcba;
532 
533 	fcba = (struct fcba_t *)(image + (((fdb->flmap0) & 0xff) << 4));
534 	fcba->flcomp &= ~(1 << 30);
535 	set_spi_frequency(image, size, SPI_FREQUENCY_20MHZ);
536 }
537 
538 /**
539  * lock_descriptor() - Lock the NE descriptor so it cannot be updated
540  *
541  * @image:	Pointer to image
542  * @size:	Size of image in bytes
543  */
544 static void lock_descriptor(char *image, int size)
545 {
546 	struct fdbar_t *fdb = find_fd(image, size);
547 	struct fmba_t *fmba;
548 
549 	/*
550 	 * TODO: Dynamically take Platform Data Region and GbE Region into
551 	 * account.
552 	 */
553 	fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
554 	fmba->flmstr1 = 0x0a0b0000;
555 	fmba->flmstr2 = 0x0c0d0000;
556 	fmba->flmstr3 = 0x08080118;
557 }
558 
559 /**
560  * unlock_descriptor() - Lock the NE descriptor so it can be updated
561  *
562  * @image:	Pointer to image
563  * @size:	Size of image in bytes
564  */
565 static void unlock_descriptor(char *image, int size)
566 {
567 	struct fdbar_t *fdb = find_fd(image, size);
568 	struct fmba_t *fmba;
569 
570 	fmba = (struct fmba_t *)(image + (((fdb->flmap1) & 0xff) << 4));
571 	fmba->flmstr1 = 0xffff0000;
572 	fmba->flmstr2 = 0xffff0000;
573 	fmba->flmstr3 = 0x08080118;
574 }
575 
576 /**
577  * open_for_read() - Open a file for reading
578  *
579  * @fname:	Filename to open
580  * @sizep:	Returns file size in bytes
581  * @return 0 if OK, -1 on error
582  */
583 int open_for_read(const char *fname, int *sizep)
584 {
585 	int fd = open(fname, O_RDONLY);
586 	struct stat buf;
587 
588 	if (fd == -1) {
589 		perror("Could not open file");
590 		return -1;
591 	}
592 	if (fstat(fd, &buf) == -1) {
593 		perror("Could not stat file");
594 		return -1;
595 	}
596 	*sizep = buf.st_size;
597 	debug("File %s is %d bytes\n", fname, *sizep);
598 
599 	return fd;
600 }
601 
602 /**
603  * inject_region() - Add a file to an image region
604  *
605  * This puts a file into a particular region of the flash. Several pre-defined
606  * regions are used.
607  *
608  * @image:		Pointer to image
609  * @size:		Size of image in bytes
610  * @region_type:	Region where the file should be added
611  * @region_fname:	Filename to add to the image
612  * @return 0 if OK, -ve on error
613  */
614 int inject_region(char *image, int size, int region_type, char *region_fname)
615 {
616 	struct fdbar_t *fdb = find_fd(image, size);
617 	struct region_t region;
618 	struct frba_t *frba;
619 	int region_size;
620 	int offset = 0;
621 	int region_fd;
622 	int ret;
623 
624 	if (!fdb)
625 		exit(EXIT_FAILURE);
626 	frba = (struct frba_t *)(image + (((fdb->flmap0 >> 16) & 0xff) << 4));
627 
628 	ret = get_region(frba, region_type, &region);
629 	if (ret)
630 		return -1;
631 	if (region.size <= 0xfff) {
632 		fprintf(stderr, "Region %s is disabled in target. Not injecting.\n",
633 			region_name(region_type));
634 		return -1;
635 	}
636 
637 	region_fd = open_for_read(region_fname, &region_size);
638 	if (region_fd < 0)
639 		return region_fd;
640 
641 	if ((region_size > region.size) ||
642 	    ((region_type != 1) && (region_size > region.size))) {
643 		fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x)  bytes. Not injecting.\n",
644 			region_name(region_type), region.size,
645 			region.size, region_size, region_size);
646 		return -1;
647 	}
648 
649 	if ((region_type == 1) && (region_size < region.size)) {
650 		fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x) bytes. Padding before injecting.\n",
651 			region_name(region_type), region.size,
652 			region.size, region_size, region_size);
653 		offset = region.size - region_size;
654 		memset(image + region.base, 0xff, offset);
655 	}
656 
657 	if (size < region.base + offset + region_size) {
658 		fprintf(stderr, "Output file is too small. (%d < %d)\n",
659 			size, region.base + offset + region_size);
660 		return -1;
661 	}
662 
663 	if (read(region_fd, image + region.base + offset, region_size)
664 							!= region_size) {
665 		perror("Could not read file");
666 		return -1;
667 	}
668 
669 	close(region_fd);
670 
671 	debug("Adding %s as the %s section\n", region_fname,
672 	      region_name(region_type));
673 
674 	return 0;
675 }
676 
677 /**
678  * write_data() - Write some raw data into a region
679  *
680  * This puts a file into a particular place in the flash, ignoring the
681  * regions. Be careful not to overwrite something important.
682  *
683  * @image:		Pointer to image
684  * @size:		Size of image in bytes
685  * @addr:		x86 ROM address to put file. The ROM ends at
686  *			0xffffffff so use an address relative to that. For an
687  *			8MB ROM the start address is 0xfff80000.
688  * @write_fname:	Filename to add to the image
689  * @return 0 if OK, -ve on error
690  */
691 static int write_data(char *image, int size, unsigned int addr,
692 		      const char *write_fname)
693 {
694 	int write_fd, write_size;
695 	int offset;
696 
697 	write_fd = open_for_read(write_fname, &write_size);
698 	if (write_fd < 0)
699 		return write_fd;
700 
701 	offset = addr + size;
702 	debug("Writing %s to offset %#x\n", write_fname, offset);
703 
704 	if (offset < 0 || offset + write_size > size) {
705 		fprintf(stderr, "Output file is too small. (%d < %d)\n",
706 			size, offset + write_size);
707 		return -1;
708 	}
709 
710 	if (read(write_fd, image + offset, write_size) != write_size) {
711 		perror("Could not read file");
712 		return -1;
713 	}
714 
715 	close(write_fd);
716 
717 	return 0;
718 }
719 
720 static void print_version(void)
721 {
722 	printf("ifdtool v%s -- ", IFDTOOL_VERSION);
723 	printf("Copyright (C) 2014 Google Inc.\n\n");
724 	printf("SPDX-License-Identifier:	GPL-2.0+\n");
725 }
726 
727 static void print_usage(const char *name)
728 {
729 	printf("usage: %s [-vhdix?] <filename> [<outfile>]\n", name);
730 	printf("\n"
731 	       "   -d | --dump:                      dump intel firmware descriptor\n"
732 	       "   -x | --extract:                   extract intel fd modules\n"
733 	       "   -i | --inject <region>:<module>   inject file <module> into region <region>\n"
734 	       "   -w | --write <addr>:<file>        write file to appear at memory address <addr>\n"
735 	       "                                     multiple files can be written simultaneously\n"
736 	       "   -s | --spifreq <20|33|50>         set the SPI frequency\n"
737 	       "   -e | --em100                      set SPI frequency to 20MHz and disable\n"
738 	       "                                     Dual Output Fast Read Support\n"
739 	       "   -l | --lock                       Lock firmware descriptor and ME region\n"
740 	       "   -u | --unlock                     Unlock firmware descriptor and ME region\n"
741 	       "   -r | --romsize                    Specify ROM size\n"
742 	       "   -D | --write-descriptor <file>    Write descriptor at base\n"
743 	       "   -c | --create                     Create a new empty image\n"
744 	       "   -v | --version:                   print the version\n"
745 	       "   -h | --help:                      print this help\n\n"
746 	       "<region> is one of Descriptor, BIOS, ME, GbE, Platform\n"
747 	       "\n");
748 }
749 
750 /**
751  * get_two_words() - Convert a string into two words separated by :
752  *
753  * The supplied string is split at ':', two substrings are allocated and
754  * returned.
755  *
756  * @str:	String to split
757  * @firstp:	Returns first string
758  * @secondp:	Returns second string
759  * @return 0 if OK, -ve if @str does not have a :
760  */
761 static int get_two_words(const char *str, char **firstp, char **secondp)
762 {
763 	const char *p;
764 
765 	p = strchr(str, ':');
766 	if (!p)
767 		return -1;
768 	*firstp = strdup(str);
769 	(*firstp)[p - str] = '\0';
770 	*secondp = strdup(p + 1);
771 
772 	return 0;
773 }
774 
775 int main(int argc, char *argv[])
776 {
777 	int opt, option_index = 0;
778 	int mode_dump = 0, mode_extract = 0, mode_inject = 0;
779 	int mode_spifreq = 0, mode_em100 = 0, mode_locked = 0;
780 	int mode_unlocked = 0, mode_write = 0, mode_write_descriptor = 0;
781 	int create = 0;
782 	char *region_type_string = NULL, *inject_fname = NULL;
783 	char *desc_fname = NULL, *addr_str = NULL;
784 	int region_type = -1, inputfreq = 0;
785 	enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ;
786 	unsigned int addr[WRITE_MAX];
787 	char *wr_fname[WRITE_MAX];
788 	unsigned char wr_idx, wr_num = 0;
789 	int rom_size = -1;
790 	bool write_it;
791 	char *filename;
792 	char *outfile = NULL;
793 	struct stat buf;
794 	int size = 0;
795 	int bios_fd;
796 	char *image;
797 	int ret;
798 	static struct option long_options[] = {
799 		{"create", 0, NULL, 'c'},
800 		{"dump", 0, NULL, 'd'},
801 		{"descriptor", 1, NULL, 'D'},
802 		{"em100", 0, NULL, 'e'},
803 		{"extract", 0, NULL, 'x'},
804 		{"inject", 1, NULL, 'i'},
805 		{"lock", 0, NULL, 'l'},
806 		{"romsize", 1, NULL, 'r'},
807 		{"spifreq", 1, NULL, 's'},
808 		{"unlock", 0, NULL, 'u'},
809 		{"write", 1, NULL, 'w'},
810 		{"version", 0, NULL, 'v'},
811 		{"help", 0, NULL, 'h'},
812 		{0, 0, 0, 0}
813 	};
814 
815 	while ((opt = getopt_long(argc, argv, "cdD:ehi:lr:s:uvw:x?",
816 				  long_options, &option_index)) != EOF) {
817 		switch (opt) {
818 		case 'c':
819 			create = 1;
820 			break;
821 		case 'd':
822 			mode_dump = 1;
823 			break;
824 		case 'D':
825 			mode_write_descriptor = 1;
826 			desc_fname = optarg;
827 			break;
828 		case 'e':
829 			mode_em100 = 1;
830 			break;
831 		case 'i':
832 			if (get_two_words(optarg, &region_type_string,
833 					  &inject_fname)) {
834 				print_usage(argv[0]);
835 				exit(EXIT_FAILURE);
836 			}
837 			if (!strcasecmp("Descriptor", region_type_string))
838 				region_type = 0;
839 			else if (!strcasecmp("BIOS", region_type_string))
840 				region_type = 1;
841 			else if (!strcasecmp("ME", region_type_string))
842 				region_type = 2;
843 			else if (!strcasecmp("GbE", region_type_string))
844 				region_type = 3;
845 			else if (!strcasecmp("Platform", region_type_string))
846 				region_type = 4;
847 			if (region_type == -1) {
848 				fprintf(stderr, "No such region type: '%s'\n\n",
849 					region_type_string);
850 				print_usage(argv[0]);
851 				exit(EXIT_FAILURE);
852 			}
853 			mode_inject = 1;
854 			break;
855 		case 'l':
856 			mode_locked = 1;
857 			break;
858 		case 'r':
859 			rom_size = strtol(optarg, NULL, 0);
860 			debug("ROM size %d\n", rom_size);
861 			break;
862 		case 's':
863 			/* Parse the requested SPI frequency */
864 			inputfreq = strtol(optarg, NULL, 0);
865 			switch (inputfreq) {
866 			case 20:
867 				spifreq = SPI_FREQUENCY_20MHZ;
868 				break;
869 			case 33:
870 				spifreq = SPI_FREQUENCY_33MHZ;
871 				break;
872 			case 50:
873 				spifreq = SPI_FREQUENCY_50MHZ;
874 				break;
875 			default:
876 				fprintf(stderr, "Invalid SPI Frequency: %d\n",
877 					inputfreq);
878 				print_usage(argv[0]);
879 				exit(EXIT_FAILURE);
880 			}
881 			mode_spifreq = 1;
882 			break;
883 		case 'u':
884 			mode_unlocked = 1;
885 			break;
886 		case 'v':
887 			print_version();
888 			exit(EXIT_SUCCESS);
889 			break;
890 		case 'w':
891 			mode_write = 1;
892 			if (wr_num < WRITE_MAX) {
893 				if (get_two_words(optarg, &addr_str,
894 						  &wr_fname[wr_num])) {
895 					print_usage(argv[0]);
896 					exit(EXIT_FAILURE);
897 				}
898 				addr[wr_num] = strtol(optarg, NULL, 0);
899 				wr_num++;
900 			} else {
901 				fprintf(stderr,
902 					"The number of files to write simultaneously exceeds the limitation (%d)\n",
903 					WRITE_MAX);
904 			}
905 			break;
906 		case 'x':
907 			mode_extract = 1;
908 			break;
909 		case 'h':
910 		case '?':
911 		default:
912 			print_usage(argv[0]);
913 			exit(EXIT_SUCCESS);
914 			break;
915 		}
916 	}
917 
918 	if (mode_locked == 1 && mode_unlocked == 1) {
919 		fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n");
920 		exit(EXIT_FAILURE);
921 	}
922 
923 	if (mode_inject == 1 && mode_write == 1) {
924 		fprintf(stderr, "Inject/Write are mutually exclusive\n");
925 		exit(EXIT_FAILURE);
926 	}
927 
928 	if ((mode_dump + mode_extract + mode_inject +
929 		(mode_spifreq | mode_em100 | mode_unlocked |
930 		 mode_locked)) > 1) {
931 		fprintf(stderr, "You may not specify more than one mode.\n\n");
932 		print_usage(argv[0]);
933 		exit(EXIT_FAILURE);
934 	}
935 
936 	if ((mode_dump + mode_extract + mode_inject + mode_spifreq +
937 	     mode_em100 + mode_locked + mode_unlocked + mode_write +
938 	     mode_write_descriptor) == 0 && !create) {
939 		fprintf(stderr, "You need to specify a mode.\n\n");
940 		print_usage(argv[0]);
941 		exit(EXIT_FAILURE);
942 	}
943 
944 	if (create && rom_size == -1) {
945 		fprintf(stderr, "You need to specify a rom size when creating.\n\n");
946 		exit(EXIT_FAILURE);
947 	}
948 
949 	if (optind + 1 != argc) {
950 		fprintf(stderr, "You need to specify a file.\n\n");
951 		print_usage(argv[0]);
952 		exit(EXIT_FAILURE);
953 	}
954 
955 	filename = argv[optind];
956 	if (optind + 2 != argc)
957 		outfile = argv[optind + 1];
958 
959 	if (create)
960 		bios_fd = open(filename, O_WRONLY | O_CREAT, 0666);
961 	else
962 		bios_fd = open(filename, outfile ? O_RDONLY : O_RDWR);
963 
964 	if (bios_fd == -1) {
965 		perror("Could not open file");
966 		exit(EXIT_FAILURE);
967 	}
968 
969 	if (!create) {
970 		if (fstat(bios_fd, &buf) == -1) {
971 			perror("Could not stat file");
972 			exit(EXIT_FAILURE);
973 		}
974 		size = buf.st_size;
975 	}
976 
977 	debug("File %s is %d bytes\n", filename, size);
978 
979 	if (rom_size == -1)
980 		rom_size = size;
981 
982 	image = malloc(rom_size);
983 	if (!image) {
984 		printf("Out of memory.\n");
985 		exit(EXIT_FAILURE);
986 	}
987 
988 	memset(image, '\xff', rom_size);
989 	if (!create && read(bios_fd, image, size) != size) {
990 		perror("Could not read file");
991 		exit(EXIT_FAILURE);
992 	}
993 	if (size != rom_size) {
994 		debug("ROM size changed to %d bytes\n", rom_size);
995 		size = rom_size;
996 	}
997 
998 	write_it = true;
999 	ret = 0;
1000 	if (mode_dump) {
1001 		ret = dump_fd(image, size);
1002 		write_it = false;
1003 	}
1004 
1005 	if (mode_extract) {
1006 		ret = write_regions(image, size);
1007 		write_it = false;
1008 	}
1009 
1010 	if (mode_write_descriptor)
1011 		ret = write_data(image, size, -size, desc_fname);
1012 
1013 	if (mode_inject)
1014 		ret = inject_region(image, size, region_type, inject_fname);
1015 
1016 	if (mode_write) {
1017 		for (wr_idx = 0; wr_idx < wr_num; wr_idx++) {
1018 			ret = write_data(image, size,
1019 					 addr[wr_idx], wr_fname[wr_idx]);
1020 			if (ret)
1021 				break;
1022 		}
1023 	}
1024 
1025 	if (mode_spifreq)
1026 		set_spi_frequency(image, size, spifreq);
1027 
1028 	if (mode_em100)
1029 		set_em100_mode(image, size);
1030 
1031 	if (mode_locked)
1032 		lock_descriptor(image, size);
1033 
1034 	if (mode_unlocked)
1035 		unlock_descriptor(image, size);
1036 
1037 	if (write_it) {
1038 		if (outfile) {
1039 			ret = write_image(outfile, image, size);
1040 		} else {
1041 			if (lseek(bios_fd, 0, SEEK_SET)) {
1042 				perror("Error while seeking");
1043 				ret = -1;
1044 			}
1045 			if (write(bios_fd, image, size) != size) {
1046 				perror("Error while writing");
1047 				ret = -1;
1048 			}
1049 		}
1050 	}
1051 
1052 	free(image);
1053 	close(bios_fd);
1054 
1055 	return ret ? 1 : 0;
1056 }
1057