1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2018 Simon Goldschmidt 4 */ 5 6 #include <common.h> 7 #include <lmb.h> 8 #include <dm/test.h> 9 #include <test/ut.h> 10 11 static int check_lmb(struct unit_test_state *uts, struct lmb *lmb, 12 phys_addr_t ram_base, phys_size_t ram_size, 13 unsigned long num_reserved, 14 phys_addr_t base1, phys_size_t size1, 15 phys_addr_t base2, phys_size_t size2, 16 phys_addr_t base3, phys_size_t size3) 17 { 18 ut_asserteq(lmb->memory.cnt, 1); 19 ut_asserteq(lmb->memory.region[0].base, ram_base); 20 ut_asserteq(lmb->memory.region[0].size, ram_size); 21 22 ut_asserteq(lmb->reserved.cnt, num_reserved); 23 if (num_reserved > 0) { 24 ut_asserteq(lmb->reserved.region[0].base, base1); 25 ut_asserteq(lmb->reserved.region[0].size, size1); 26 } 27 if (num_reserved > 1) { 28 ut_asserteq(lmb->reserved.region[1].base, base2); 29 ut_asserteq(lmb->reserved.region[1].size, size2); 30 } 31 if (num_reserved > 2) { 32 ut_asserteq(lmb->reserved.region[2].base, base3); 33 ut_asserteq(lmb->reserved.region[2].size, size3); 34 } 35 return 0; 36 } 37 38 #define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \ 39 base2, size2, base3, size3) \ 40 ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \ 41 num_reserved, base1, size1, base2, size2, base3, \ 42 size3)) 43 44 /* 45 * Test helper function that reserves 64 KiB somewhere in the simulated RAM and 46 * then does some alloc + free tests. 47 */ 48 static int test_multi_alloc(struct unit_test_state *uts, 49 const phys_addr_t ram, const phys_size_t ram_size, 50 const phys_addr_t alloc_64k_addr) 51 { 52 const phys_addr_t ram_end = ram + ram_size; 53 const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000; 54 55 struct lmb lmb; 56 long ret; 57 phys_addr_t a, a2, b, b2, c, d; 58 59 /* check for overflow */ 60 ut_assert(ram_end == 0 || ram_end > ram); 61 ut_assert(alloc_64k_end > alloc_64k_addr); 62 /* check input addresses + size */ 63 ut_assert(alloc_64k_addr >= ram + 8); 64 ut_assert(alloc_64k_end <= ram_end - 8); 65 66 lmb_init(&lmb); 67 68 ret = lmb_add(&lmb, ram, ram_size); 69 ut_asserteq(ret, 0); 70 71 /* reserve 64KiB somewhere */ 72 ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); 73 ut_asserteq(ret, 0); 74 ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 75 0, 0, 0, 0); 76 77 /* allocate somewhere, should be at the end of RAM */ 78 a = lmb_alloc(&lmb, 4, 1); 79 ut_asserteq(a, ram_end - 4); 80 ASSERT_LMB(&lmb, ram, ram_size, 2, alloc_64k_addr, 0x10000, 81 ram_end - 4, 4, 0, 0); 82 /* alloc below end of reserved region -> below reserved region */ 83 b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); 84 ut_asserteq(b, alloc_64k_addr - 4); 85 ASSERT_LMB(&lmb, ram, ram_size, 2, 86 alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0); 87 88 /* 2nd time */ 89 c = lmb_alloc(&lmb, 4, 1); 90 ut_asserteq(c, ram_end - 8); 91 ASSERT_LMB(&lmb, ram, ram_size, 2, 92 alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0); 93 d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); 94 ut_asserteq(d, alloc_64k_addr - 8); 95 ASSERT_LMB(&lmb, ram, ram_size, 2, 96 alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); 97 98 ret = lmb_free(&lmb, a, 4); 99 ut_asserteq(ret, 0); 100 ASSERT_LMB(&lmb, ram, ram_size, 2, 101 alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); 102 /* allocate again to ensure we get the same address */ 103 a2 = lmb_alloc(&lmb, 4, 1); 104 ut_asserteq(a, a2); 105 ASSERT_LMB(&lmb, ram, ram_size, 2, 106 alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); 107 ret = lmb_free(&lmb, a2, 4); 108 ut_asserteq(ret, 0); 109 ASSERT_LMB(&lmb, ram, ram_size, 2, 110 alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); 111 112 ret = lmb_free(&lmb, b, 4); 113 ut_asserteq(ret, 0); 114 ASSERT_LMB(&lmb, ram, ram_size, 3, 115 alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 116 ram_end - 8, 4); 117 /* allocate again to ensure we get the same address */ 118 b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); 119 ut_asserteq(b, b2); 120 ASSERT_LMB(&lmb, ram, ram_size, 2, 121 alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); 122 ret = lmb_free(&lmb, b2, 4); 123 ut_asserteq(ret, 0); 124 ASSERT_LMB(&lmb, ram, ram_size, 3, 125 alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 126 ram_end - 8, 4); 127 128 ret = lmb_free(&lmb, c, 4); 129 ut_asserteq(ret, 0); 130 ASSERT_LMB(&lmb, ram, ram_size, 2, 131 alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0); 132 ret = lmb_free(&lmb, d, 4); 133 ut_asserteq(ret, 0); 134 ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 135 0, 0, 0, 0); 136 137 return 0; 138 } 139 140 static int test_multi_alloc_512mb(struct unit_test_state *uts, 141 const phys_addr_t ram) 142 { 143 return test_multi_alloc(uts, ram, 0x20000000, ram + 0x10000000); 144 } 145 146 /* Create a memory region with one reserved region and allocate */ 147 static int lib_test_lmb_simple(struct unit_test_state *uts) 148 { 149 int ret; 150 151 /* simulate 512 MiB RAM beginning at 1GiB */ 152 ret = test_multi_alloc_512mb(uts, 0x40000000); 153 if (ret) 154 return ret; 155 156 /* simulate 512 MiB RAM beginning at 1.5GiB */ 157 return test_multi_alloc_512mb(uts, 0xE0000000); 158 } 159 160 DM_TEST(lib_test_lmb_simple, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 161 162 /* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */ 163 static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram) 164 { 165 const phys_size_t ram_size = 0x20000000; 166 const phys_size_t big_block_size = 0x10000000; 167 const phys_addr_t ram_end = ram + ram_size; 168 const phys_addr_t alloc_64k_addr = ram + 0x10000000; 169 struct lmb lmb; 170 long ret; 171 phys_addr_t a, b; 172 173 /* check for overflow */ 174 ut_assert(ram_end == 0 || ram_end > ram); 175 176 lmb_init(&lmb); 177 178 ret = lmb_add(&lmb, ram, ram_size); 179 ut_asserteq(ret, 0); 180 181 /* reserve 64KiB in the middle of RAM */ 182 ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); 183 ut_asserteq(ret, 0); 184 ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 185 0, 0, 0, 0); 186 187 /* allocate a big block, should be below reserved */ 188 a = lmb_alloc(&lmb, big_block_size, 1); 189 ut_asserteq(a, ram); 190 ASSERT_LMB(&lmb, ram, ram_size, 1, a, 191 big_block_size + 0x10000, 0, 0, 0, 0); 192 /* allocate 2nd big block */ 193 /* This should fail, printing an error */ 194 b = lmb_alloc(&lmb, big_block_size, 1); 195 ut_asserteq(b, 0); 196 ASSERT_LMB(&lmb, ram, ram_size, 1, a, 197 big_block_size + 0x10000, 0, 0, 0, 0); 198 199 ret = lmb_free(&lmb, a, big_block_size); 200 ut_asserteq(ret, 0); 201 ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 202 0, 0, 0, 0); 203 204 /* allocate too big block */ 205 /* This should fail, printing an error */ 206 a = lmb_alloc(&lmb, ram_size, 1); 207 ut_asserteq(a, 0); 208 ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 209 0, 0, 0, 0); 210 211 return 0; 212 } 213 214 static int lib_test_lmb_big(struct unit_test_state *uts) 215 { 216 int ret; 217 218 /* simulate 512 MiB RAM beginning at 1GiB */ 219 ret = test_bigblock(uts, 0x40000000); 220 if (ret) 221 return ret; 222 223 /* simulate 512 MiB RAM beginning at 1.5GiB */ 224 return test_bigblock(uts, 0xE0000000); 225 } 226 227 DM_TEST(lib_test_lmb_big, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 228 229 /* Simulate 512 MiB RAM, allocate a block without previous reservation */ 230 static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram, 231 const phys_addr_t alloc_size, const ulong align) 232 { 233 const phys_size_t ram_size = 0x20000000; 234 const phys_addr_t ram_end = ram + ram_size; 235 struct lmb lmb; 236 long ret; 237 phys_addr_t a, b; 238 const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) & 239 ~(align - 1); 240 241 /* check for overflow */ 242 ut_assert(ram_end == 0 || ram_end > ram); 243 244 lmb_init(&lmb); 245 246 ret = lmb_add(&lmb, ram, ram_size); 247 ut_asserteq(ret, 0); 248 ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); 249 250 /* allocate a block */ 251 a = lmb_alloc(&lmb, alloc_size, align); 252 ut_assert(a != 0); 253 ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, 254 alloc_size, 0, 0, 0, 0); 255 /* allocate another block */ 256 b = lmb_alloc(&lmb, alloc_size, align); 257 ut_assert(b != 0); 258 if (alloc_size == alloc_size_aligned) { 259 ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - 260 (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0, 261 0); 262 } else { 263 ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size - 264 (alloc_size_aligned * 2), alloc_size, ram + ram_size 265 - alloc_size_aligned, alloc_size, 0, 0); 266 } 267 /* and free them */ 268 ret = lmb_free(&lmb, b, alloc_size); 269 ut_asserteq(ret, 0); 270 ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, 271 alloc_size, 0, 0, 0, 0); 272 ret = lmb_free(&lmb, a, alloc_size); 273 ut_asserteq(ret, 0); 274 ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); 275 276 /* allocate a block with base*/ 277 b = lmb_alloc_base(&lmb, alloc_size, align, ram_end); 278 ut_assert(a == b); 279 ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, 280 alloc_size, 0, 0, 0, 0); 281 /* and free it */ 282 ret = lmb_free(&lmb, b, alloc_size); 283 ut_asserteq(ret, 0); 284 ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); 285 286 return 0; 287 } 288 289 static int lib_test_lmb_noreserved(struct unit_test_state *uts) 290 { 291 int ret; 292 293 /* simulate 512 MiB RAM beginning at 1GiB */ 294 ret = test_noreserved(uts, 0x40000000, 4, 1); 295 if (ret) 296 return ret; 297 298 /* simulate 512 MiB RAM beginning at 1.5GiB */ 299 return test_noreserved(uts, 0xE0000000, 4, 1); 300 } 301 302 DM_TEST(lib_test_lmb_noreserved, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 303 304 static int lib_test_lmb_unaligned_size(struct unit_test_state *uts) 305 { 306 int ret; 307 308 /* simulate 512 MiB RAM beginning at 1GiB */ 309 ret = test_noreserved(uts, 0x40000000, 5, 8); 310 if (ret) 311 return ret; 312 313 /* simulate 512 MiB RAM beginning at 1.5GiB */ 314 return test_noreserved(uts, 0xE0000000, 5, 8); 315 } 316 317 DM_TEST(lib_test_lmb_unaligned_size, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 318 /* 319 * Simulate a RAM that starts at 0 and allocate down to address 0, which must 320 * fail as '0' means failure for the lmb_alloc functions. 321 */ 322 static int lib_test_lmb_at_0(struct unit_test_state *uts) 323 { 324 const phys_addr_t ram = 0; 325 const phys_size_t ram_size = 0x20000000; 326 struct lmb lmb; 327 long ret; 328 phys_addr_t a, b; 329 330 lmb_init(&lmb); 331 332 ret = lmb_add(&lmb, ram, ram_size); 333 ut_asserteq(ret, 0); 334 335 /* allocate nearly everything */ 336 a = lmb_alloc(&lmb, ram_size - 4, 1); 337 ut_asserteq(a, ram + 4); 338 ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, 339 0, 0, 0, 0); 340 /* allocate the rest */ 341 /* This should fail as the allocated address would be 0 */ 342 b = lmb_alloc(&lmb, 4, 1); 343 ut_asserteq(b, 0); 344 /* check that this was an error by checking lmb */ 345 ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, 346 0, 0, 0, 0); 347 /* check that this was an error by freeing b */ 348 ret = lmb_free(&lmb, b, 4); 349 ut_asserteq(ret, -1); 350 ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, 351 0, 0, 0, 0); 352 353 ret = lmb_free(&lmb, a, ram_size - 4); 354 ut_asserteq(ret, 0); 355 ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); 356 357 return 0; 358 } 359 360 DM_TEST(lib_test_lmb_at_0, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 361 362 /* Check that calling lmb_reserve with overlapping regions fails. */ 363 static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts) 364 { 365 const phys_addr_t ram = 0x40000000; 366 const phys_size_t ram_size = 0x20000000; 367 struct lmb lmb; 368 long ret; 369 370 lmb_init(&lmb); 371 372 ret = lmb_add(&lmb, ram, ram_size); 373 ut_asserteq(ret, 0); 374 375 ret = lmb_reserve(&lmb, 0x40010000, 0x10000); 376 ut_asserteq(ret, 0); 377 ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 378 0, 0, 0, 0); 379 /* allocate overlapping region should fail */ 380 ret = lmb_reserve(&lmb, 0x40011000, 0x10000); 381 ut_asserteq(ret, -1); 382 ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 383 0, 0, 0, 0); 384 /* allocate 3nd region */ 385 ret = lmb_reserve(&lmb, 0x40030000, 0x10000); 386 ut_asserteq(ret, 0); 387 ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000, 388 0x40030000, 0x10000, 0, 0); 389 /* allocate 2nd region */ 390 ret = lmb_reserve(&lmb, 0x40020000, 0x10000); 391 ut_assert(ret >= 0); 392 ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000, 393 0, 0, 0, 0); 394 395 return 0; 396 } 397 398 DM_TEST(lib_test_lmb_overlapping_reserve, 399 DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 400 401 /* 402 * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between. 403 * Expect addresses outside the memory range to fail. 404 */ 405 static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram) 406 { 407 const phys_size_t ram_size = 0x20000000; 408 const phys_addr_t ram_end = ram + ram_size; 409 const phys_size_t alloc_addr_a = ram + 0x8000000; 410 const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; 411 const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; 412 struct lmb lmb; 413 long ret; 414 phys_addr_t a, b, c, d, e; 415 416 /* check for overflow */ 417 ut_assert(ram_end == 0 || ram_end > ram); 418 419 lmb_init(&lmb); 420 421 ret = lmb_add(&lmb, ram, ram_size); 422 ut_asserteq(ret, 0); 423 424 /* reserve 3 blocks */ 425 ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); 426 ut_asserteq(ret, 0); 427 ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); 428 ut_asserteq(ret, 0); 429 ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); 430 ut_asserteq(ret, 0); 431 ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, 432 alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); 433 434 /* allocate blocks */ 435 a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram); 436 ut_asserteq(a, ram); 437 ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000, 438 alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); 439 b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000, 440 alloc_addr_b - alloc_addr_a - 0x10000); 441 ut_asserteq(b, alloc_addr_a + 0x10000); 442 ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000, 443 alloc_addr_c, 0x10000, 0, 0); 444 c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000, 445 alloc_addr_c - alloc_addr_b - 0x10000); 446 ut_asserteq(c, alloc_addr_b + 0x10000); 447 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 448 0, 0, 0, 0); 449 d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 450 ram_end - alloc_addr_c - 0x10000); 451 ut_asserteq(d, alloc_addr_c + 0x10000); 452 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, 453 0, 0, 0, 0); 454 455 /* allocating anything else should fail */ 456 e = lmb_alloc(&lmb, 1, 1); 457 ut_asserteq(e, 0); 458 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, 459 0, 0, 0, 0); 460 461 ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000); 462 ut_asserteq(ret, 0); 463 464 /* allocate at 3 points in free range */ 465 466 d = lmb_alloc_addr(&lmb, ram_end - 4, 4); 467 ut_asserteq(d, ram_end - 4); 468 ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, 469 d, 4, 0, 0); 470 ret = lmb_free(&lmb, d, 4); 471 ut_asserteq(ret, 0); 472 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 473 0, 0, 0, 0); 474 475 d = lmb_alloc_addr(&lmb, ram_end - 128, 4); 476 ut_asserteq(d, ram_end - 128); 477 ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, 478 d, 4, 0, 0); 479 ret = lmb_free(&lmb, d, 4); 480 ut_asserteq(ret, 0); 481 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 482 0, 0, 0, 0); 483 484 d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4); 485 ut_asserteq(d, alloc_addr_c + 0x10000); 486 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004, 487 0, 0, 0, 0); 488 ret = lmb_free(&lmb, d, 4); 489 ut_asserteq(ret, 0); 490 ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 491 0, 0, 0, 0); 492 493 /* allocate at the bottom */ 494 ret = lmb_free(&lmb, a, alloc_addr_a - ram); 495 ut_asserteq(ret, 0); 496 ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000, 497 0, 0, 0, 0); 498 d = lmb_alloc_addr(&lmb, ram, 4); 499 ut_asserteq(d, ram); 500 ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4, 501 ram + 0x8000000, 0x10010000, 0, 0); 502 503 /* check that allocating outside memory fails */ 504 if (ram_end != 0) { 505 ret = lmb_alloc_addr(&lmb, ram_end, 1); 506 ut_asserteq(ret, 0); 507 } 508 if (ram != 0) { 509 ret = lmb_alloc_addr(&lmb, ram - 1, 1); 510 ut_asserteq(ret, 0); 511 } 512 513 return 0; 514 } 515 516 static int lib_test_lmb_alloc_addr(struct unit_test_state *uts) 517 { 518 int ret; 519 520 /* simulate 512 MiB RAM beginning at 1GiB */ 521 ret = test_alloc_addr(uts, 0x40000000); 522 if (ret) 523 return ret; 524 525 /* simulate 512 MiB RAM beginning at 1.5GiB */ 526 return test_alloc_addr(uts, 0xE0000000); 527 } 528 529 DM_TEST(lib_test_lmb_alloc_addr, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 530 531 /* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */ 532 static int test_get_unreserved_size(struct unit_test_state *uts, 533 const phys_addr_t ram) 534 { 535 const phys_size_t ram_size = 0x20000000; 536 const phys_addr_t ram_end = ram + ram_size; 537 const phys_size_t alloc_addr_a = ram + 0x8000000; 538 const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; 539 const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; 540 struct lmb lmb; 541 long ret; 542 phys_size_t s; 543 544 /* check for overflow */ 545 ut_assert(ram_end == 0 || ram_end > ram); 546 547 lmb_init(&lmb); 548 549 ret = lmb_add(&lmb, ram, ram_size); 550 ut_asserteq(ret, 0); 551 552 /* reserve 3 blocks */ 553 ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); 554 ut_asserteq(ret, 0); 555 ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); 556 ut_asserteq(ret, 0); 557 ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); 558 ut_asserteq(ret, 0); 559 ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, 560 alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); 561 562 /* check addresses in between blocks */ 563 s = lmb_get_unreserved_size(&lmb, ram); 564 ut_asserteq(s, alloc_addr_a - ram); 565 s = lmb_get_unreserved_size(&lmb, ram + 0x10000); 566 ut_asserteq(s, alloc_addr_a - ram - 0x10000); 567 s = lmb_get_unreserved_size(&lmb, alloc_addr_a - 4); 568 ut_asserteq(s, 4); 569 570 s = lmb_get_unreserved_size(&lmb, alloc_addr_a + 0x10000); 571 ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000); 572 s = lmb_get_unreserved_size(&lmb, alloc_addr_a + 0x20000); 573 ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000); 574 s = lmb_get_unreserved_size(&lmb, alloc_addr_b - 4); 575 ut_asserteq(s, 4); 576 577 s = lmb_get_unreserved_size(&lmb, alloc_addr_c + 0x10000); 578 ut_asserteq(s, ram_end - alloc_addr_c - 0x10000); 579 s = lmb_get_unreserved_size(&lmb, alloc_addr_c + 0x20000); 580 ut_asserteq(s, ram_end - alloc_addr_c - 0x20000); 581 s = lmb_get_unreserved_size(&lmb, ram_end - 4); 582 ut_asserteq(s, 4); 583 584 return 0; 585 } 586 587 static int lib_test_lmb_get_unreserved_size(struct unit_test_state *uts) 588 { 589 int ret; 590 591 /* simulate 512 MiB RAM beginning at 1GiB */ 592 ret = test_get_unreserved_size(uts, 0x40000000); 593 if (ret) 594 return ret; 595 596 /* simulate 512 MiB RAM beginning at 1.5GiB */ 597 return test_get_unreserved_size(uts, 0xE0000000); 598 } 599 600 DM_TEST(lib_test_lmb_get_unreserved_size, 601 DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); 602