xref: /openbmc/u-boot/test/dm/test-fdt.c (revision 95963679)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2013 Google, Inc
4  */
5 
6 #include <common.h>
7 #include <dm.h>
8 #include <errno.h>
9 #include <fdtdec.h>
10 #include <malloc.h>
11 #include <asm/io.h>
12 #include <dm/test.h>
13 #include <dm/root.h>
14 #include <dm/device-internal.h>
15 #include <dm/uclass-internal.h>
16 #include <dm/util.h>
17 #include <test/ut.h>
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 static int testfdt_drv_ping(struct udevice *dev, int pingval, int *pingret)
22 {
23 	const struct dm_test_pdata *pdata = dev->platdata;
24 	struct dm_test_priv *priv = dev_get_priv(dev);
25 
26 	*pingret = pingval + pdata->ping_add;
27 	priv->ping_total += *pingret;
28 
29 	return 0;
30 }
31 
32 static const struct test_ops test_ops = {
33 	.ping = testfdt_drv_ping,
34 };
35 
36 static int testfdt_ofdata_to_platdata(struct udevice *dev)
37 {
38 	struct dm_test_pdata *pdata = dev_get_platdata(dev);
39 
40 	pdata->ping_add = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
41 					"ping-add", -1);
42 	pdata->base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
43 				      "ping-expect");
44 
45 	return 0;
46 }
47 
48 static int testfdt_drv_probe(struct udevice *dev)
49 {
50 	struct dm_test_priv *priv = dev_get_priv(dev);
51 
52 	priv->ping_total += DM_TEST_START_TOTAL;
53 
54 	/*
55 	 * If this device is on a bus, the uclass_flag will be set before
56 	 * calling this function. This is used by
57 	 * dm_test_bus_child_pre_probe_uclass().
58 	 */
59 	priv->uclass_total += priv->uclass_flag;
60 
61 	return 0;
62 }
63 
64 static const struct udevice_id testfdt_ids[] = {
65 	{
66 		.compatible = "denx,u-boot-fdt-test",
67 		.data = DM_TEST_TYPE_FIRST },
68 	{
69 		.compatible = "google,another-fdt-test",
70 		.data = DM_TEST_TYPE_SECOND },
71 	{ }
72 };
73 
74 U_BOOT_DRIVER(testfdt_drv) = {
75 	.name	= "testfdt_drv",
76 	.of_match	= testfdt_ids,
77 	.id	= UCLASS_TEST_FDT,
78 	.ofdata_to_platdata = testfdt_ofdata_to_platdata,
79 	.probe	= testfdt_drv_probe,
80 	.ops	= &test_ops,
81 	.priv_auto_alloc_size = sizeof(struct dm_test_priv),
82 	.platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
83 };
84 
85 /* From here is the testfdt uclass code */
86 int testfdt_ping(struct udevice *dev, int pingval, int *pingret)
87 {
88 	const struct test_ops *ops = device_get_ops(dev);
89 
90 	if (!ops->ping)
91 		return -ENOSYS;
92 
93 	return ops->ping(dev, pingval, pingret);
94 }
95 
96 UCLASS_DRIVER(testfdt) = {
97 	.name		= "testfdt",
98 	.id		= UCLASS_TEST_FDT,
99 	.flags		= DM_UC_FLAG_SEQ_ALIAS,
100 };
101 
102 struct dm_testprobe_pdata {
103 	int probe_err;
104 };
105 
106 static int testprobe_drv_probe(struct udevice *dev)
107 {
108 	struct dm_testprobe_pdata *pdata = dev_get_platdata(dev);
109 
110 	return pdata->probe_err;
111 }
112 
113 static const struct udevice_id testprobe_ids[] = {
114 	{ .compatible = "denx,u-boot-probe-test" },
115 	{ }
116 };
117 
118 U_BOOT_DRIVER(testprobe_drv) = {
119 	.name	= "testprobe_drv",
120 	.of_match	= testprobe_ids,
121 	.id	= UCLASS_TEST_PROBE,
122 	.probe	= testprobe_drv_probe,
123 	.platdata_auto_alloc_size	= sizeof(struct dm_testprobe_pdata),
124 };
125 
126 UCLASS_DRIVER(testprobe) = {
127 	.name		= "testprobe",
128 	.id		= UCLASS_TEST_PROBE,
129 	.flags		= DM_UC_FLAG_SEQ_ALIAS,
130 };
131 
132 int dm_check_devices(struct unit_test_state *uts, int num_devices)
133 {
134 	struct udevice *dev;
135 	int ret;
136 	int i;
137 
138 	/*
139 	 * Now check that the ping adds are what we expect. This is using the
140 	 * ping-add property in each node.
141 	 */
142 	for (i = 0; i < num_devices; i++) {
143 		uint32_t base;
144 
145 		ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
146 		ut_assert(!ret);
147 
148 		/*
149 		 * Get the 'ping-expect' property, which tells us what the
150 		 * ping add should be. We don't use the platdata because we
151 		 * want to test the code that sets that up
152 		 * (testfdt_drv_probe()).
153 		 */
154 		base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
155 				       "ping-expect");
156 		debug("dev=%d, base=%d: %s\n", i, base,
157 		      fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
158 
159 		ut_assert(!dm_check_operations(uts, dev, base,
160 					       dev_get_priv(dev)));
161 	}
162 
163 	return 0;
164 }
165 
166 /* Test that FDT-based binding works correctly */
167 static int dm_test_fdt(struct unit_test_state *uts)
168 {
169 	const int num_devices = 7;
170 	struct udevice *dev;
171 	struct uclass *uc;
172 	int ret;
173 	int i;
174 
175 	ret = dm_scan_fdt(gd->fdt_blob, false);
176 	ut_assert(!ret);
177 
178 	ret = uclass_get(UCLASS_TEST_FDT, &uc);
179 	ut_assert(!ret);
180 
181 	/* These are num_devices compatible root-level device tree nodes */
182 	ut_asserteq(num_devices, list_count_items(&uc->dev_head));
183 
184 	/* Each should have platform data but no private data */
185 	for (i = 0; i < num_devices; i++) {
186 		ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
187 		ut_assert(!ret);
188 		ut_assert(!dev_get_priv(dev));
189 		ut_assert(dev->platdata);
190 	}
191 
192 	ut_assertok(dm_check_devices(uts, num_devices));
193 
194 	return 0;
195 }
196 DM_TEST(dm_test_fdt, 0);
197 
198 static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
199 {
200 	struct uclass *uc;
201 	int ret;
202 
203 	ret = dm_scan_fdt(gd->fdt_blob, true);
204 	ut_assert(!ret);
205 
206 	ret = uclass_get(UCLASS_TEST_FDT, &uc);
207 	ut_assert(!ret);
208 
209 	/* These is only one pre-reloc device */
210 	ut_asserteq(1, list_count_items(&uc->dev_head));
211 
212 	return 0;
213 }
214 DM_TEST(dm_test_fdt_pre_reloc, 0);
215 
216 /* Test that sequence numbers are allocated properly */
217 static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
218 {
219 	struct udevice *dev;
220 
221 	/* A few basic santiy tests */
222 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, true, &dev));
223 	ut_asserteq_str("b-test", dev->name);
224 
225 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, true, &dev));
226 	ut_asserteq_str("a-test", dev->name);
227 
228 	ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 5,
229 						       true, &dev));
230 	ut_asserteq_ptr(NULL, dev);
231 
232 	/* Test aliases */
233 	ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
234 	ut_asserteq_str("e-test", dev->name);
235 
236 	ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
237 						       true, &dev));
238 
239 	/*
240 	 * Note that c-test nodes are not probed since it is not a top-level
241 	 * node
242 	 */
243 	ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
244 	ut_asserteq_str("b-test", dev->name);
245 
246 	/*
247 	 * d-test wants sequence number 3 also, but it can't have it because
248 	 * b-test gets it first.
249 	 */
250 	ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
251 	ut_asserteq_str("d-test", dev->name);
252 
253 	/* d-test actually gets 0 */
254 	ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 0, &dev));
255 	ut_asserteq_str("d-test", dev->name);
256 
257 	/* initially no one wants seq 1 */
258 	ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_TEST_FDT, 1,
259 						      &dev));
260 	ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev));
261 	ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 4, &dev));
262 
263 	/* But now that it is probed, we can find it */
264 	ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev));
265 	ut_asserteq_str("f-test", dev->name);
266 
267 	return 0;
268 }
269 DM_TEST(dm_test_fdt_uclass_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
270 
271 /* Test that we can find a device by device tree offset */
272 static int dm_test_fdt_offset(struct unit_test_state *uts)
273 {
274 	const void *blob = gd->fdt_blob;
275 	struct udevice *dev;
276 	int node;
277 
278 	node = fdt_path_offset(blob, "/e-test");
279 	ut_assert(node > 0);
280 	ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
281 						   &dev));
282 	ut_asserteq_str("e-test", dev->name);
283 
284 	/* This node should not be bound */
285 	node = fdt_path_offset(blob, "/junk");
286 	ut_assert(node > 0);
287 	ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
288 							    node, &dev));
289 
290 	/* This is not a top level node so should not be probed */
291 	node = fdt_path_offset(blob, "/some-bus/c-test@5");
292 	ut_assert(node > 0);
293 	ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
294 							    node, &dev));
295 
296 	return 0;
297 }
298 DM_TEST(dm_test_fdt_offset,
299 	DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
300 
301 /**
302  * Test various error conditions with uclass_first_device() and
303  * uclass_next_device()
304  */
305 static int dm_test_first_next_device(struct unit_test_state *uts)
306 {
307 	struct dm_testprobe_pdata *pdata;
308 	struct udevice *dev, *parent = NULL;
309 	int count;
310 	int ret;
311 
312 	/* There should be 4 devices */
313 	for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
314 	     dev;
315 	     ret = uclass_next_device(&dev)) {
316 		count++;
317 		parent = dev_get_parent(dev);
318 		}
319 	ut_assertok(ret);
320 	ut_asserteq(4, count);
321 
322 	/* Remove them and try again, with an error on the second one */
323 	ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
324 	pdata = dev_get_platdata(dev);
325 	pdata->probe_err = -ENOMEM;
326 	device_remove(parent, DM_REMOVE_NORMAL);
327 	ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
328 	ut_asserteq(-ENOMEM, uclass_next_device(&dev));
329 	ut_asserteq_ptr(dev, NULL);
330 
331 	/* Now an error on the first one */
332 	ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
333 	pdata = dev_get_platdata(dev);
334 	pdata->probe_err = -ENOENT;
335 	device_remove(parent, DM_REMOVE_NORMAL);
336 	ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
337 
338 	return 0;
339 }
340 DM_TEST(dm_test_first_next_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
341 
342 /**
343  * check_devices() - Check return values and pointers
344  *
345  * This runs through a full sequence of uclass_first_device_check()...
346  * uclass_next_device_check() checking that the return values and devices
347  * are correct.
348  *
349  * @uts: Test state
350  * @devlist: List of expected devices
351  * @mask: Indicates which devices should return an error. Device n should
352  *	  return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
353  *	  bit n is clear.
354  */
355 static int check_devices(struct unit_test_state *uts,
356 			 struct udevice *devlist[], int mask)
357 {
358 	int expected_ret;
359 	struct udevice *dev;
360 	int i;
361 
362 	expected_ret = (mask & 1) ? -ENOENT : 0;
363 	mask >>= 1;
364 	ut_asserteq(expected_ret,
365 		    uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
366 	for (i = 0; i < 4; i++) {
367 		ut_asserteq_ptr(devlist[i], dev);
368 		expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
369 		mask >>= 1;
370 		ut_asserteq(expected_ret, uclass_next_device_check(&dev));
371 	}
372 	ut_asserteq_ptr(NULL, dev);
373 
374 	return 0;
375 }
376 
377 /* Test uclass_first_device_check() and uclass_next_device_check() */
378 static int dm_test_first_next_ok_device(struct unit_test_state *uts)
379 {
380 	struct dm_testprobe_pdata *pdata;
381 	struct udevice *dev, *parent = NULL, *devlist[4];
382 	int count;
383 	int ret;
384 
385 	/* There should be 4 devices */
386 	count = 0;
387 	for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
388 	     dev;
389 	     ret = uclass_next_device_check(&dev)) {
390 		ut_assertok(ret);
391 		devlist[count++] = dev;
392 		parent = dev_get_parent(dev);
393 		}
394 	ut_asserteq(4, count);
395 	ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
396 	ut_assertok(check_devices(uts, devlist, 0));
397 
398 	/* Remove them and try again, with an error on the second one */
399 	pdata = dev_get_platdata(devlist[1]);
400 	pdata->probe_err = -ENOENT - 1;
401 	device_remove(parent, DM_REMOVE_NORMAL);
402 	ut_assertok(check_devices(uts, devlist, 1 << 1));
403 
404 	/* Now an error on the first one */
405 	pdata = dev_get_platdata(devlist[0]);
406 	pdata->probe_err = -ENOENT - 0;
407 	device_remove(parent, DM_REMOVE_NORMAL);
408 	ut_assertok(check_devices(uts, devlist, 3 << 0));
409 
410 	/* Now errors on all */
411 	pdata = dev_get_platdata(devlist[2]);
412 	pdata->probe_err = -ENOENT - 2;
413 	pdata = dev_get_platdata(devlist[3]);
414 	pdata->probe_err = -ENOENT - 3;
415 	device_remove(parent, DM_REMOVE_NORMAL);
416 	ut_assertok(check_devices(uts, devlist, 0xf << 0));
417 
418 	return 0;
419 }
420 DM_TEST(dm_test_first_next_ok_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
421 
422 static const struct udevice_id fdt_dummy_ids[] = {
423 	{ .compatible = "denx,u-boot-fdt-dummy", },
424 	{ }
425 };
426 
427 UCLASS_DRIVER(fdt_dummy) = {
428 	.name		= "fdt-dummy",
429 	.id		= UCLASS_TEST_DUMMY,
430 	.flags		= DM_UC_FLAG_SEQ_ALIAS,
431 };
432 
433 U_BOOT_DRIVER(fdt_dummy_drv) = {
434 	.name	= "fdt_dummy_drv",
435 	.of_match	= fdt_dummy_ids,
436 	.id	= UCLASS_TEST_DUMMY,
437 };
438 
439 static int dm_test_fdt_translation(struct unit_test_state *uts)
440 {
441 	struct udevice *dev;
442 
443 	/* Some simple translations */
444 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
445 	ut_asserteq_str("dev@0,0", dev->name);
446 	ut_asserteq(0x8000, dev_read_addr(dev));
447 
448 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev));
449 	ut_asserteq_str("dev@1,100", dev->name);
450 	ut_asserteq(0x9000, dev_read_addr(dev));
451 
452 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, true, &dev));
453 	ut_asserteq_str("dev@2,200", dev->name);
454 	ut_asserteq(0xA000, dev_read_addr(dev));
455 
456 	/* No translation for busses with #size-cells == 0 */
457 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, true, &dev));
458 	ut_asserteq_str("dev@42", dev->name);
459 	ut_asserteq(0x42, dev_read_addr(dev));
460 
461 	return 0;
462 }
463 DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
464 
465 /* Test devfdt_remap_addr_index() */
466 static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
467 {
468 	struct udevice *dev;
469 	fdt_addr_t addr;
470 	void *paddr;
471 
472 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
473 
474 	addr = devfdt_get_addr(dev);
475 	ut_asserteq(0x8000, addr);
476 
477 	paddr = map_physmem(addr, 0, MAP_NOCACHE);
478 	ut_assertnonnull(paddr);
479 	ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
480 
481 	return 0;
482 }
483 DM_TEST(dm_test_fdt_remap_addr_flat,
484 	DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
485 
486 /* Test dev_remap_addr_index() */
487 static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
488 {
489 	struct udevice *dev;
490 	fdt_addr_t addr;
491 	void *paddr;
492 
493 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
494 
495 	addr = dev_read_addr(dev);
496 	ut_asserteq(0x8000, addr);
497 
498 	paddr = map_physmem(addr, 0, MAP_NOCACHE);
499 	ut_assertnonnull(paddr);
500 	ut_asserteq_ptr(paddr, dev_remap_addr(dev));
501 
502 	return 0;
503 }
504 DM_TEST(dm_test_fdt_remap_addr_live,
505 	DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
506