xref: /openbmc/u-boot/test/dm/core.c (revision cbd2fba1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Tests for the core driver model code
4  *
5  * Copyright (c) 2013 Google, Inc
6  */
7 
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <malloc.h>
13 #include <dm/device-internal.h>
14 #include <dm/root.h>
15 #include <dm/util.h>
16 #include <dm/test.h>
17 #include <dm/uclass-internal.h>
18 #include <test/ut.h>
19 
20 DECLARE_GLOBAL_DATA_PTR;
21 
22 enum {
23 	TEST_INTVAL1		= 0,
24 	TEST_INTVAL2		= 3,
25 	TEST_INTVAL3		= 6,
26 	TEST_INTVAL_MANUAL	= 101112,
27 	TEST_INTVAL_PRE_RELOC	= 7,
28 };
29 
30 static const struct dm_test_pdata test_pdata[] = {
31 	{ .ping_add		= TEST_INTVAL1, },
32 	{ .ping_add		= TEST_INTVAL2, },
33 	{ .ping_add		= TEST_INTVAL3, },
34 };
35 
36 static const struct dm_test_pdata test_pdata_manual = {
37 	.ping_add		= TEST_INTVAL_MANUAL,
38 };
39 
40 static const struct dm_test_pdata test_pdata_pre_reloc = {
41 	.ping_add		= TEST_INTVAL_PRE_RELOC,
42 };
43 
44 U_BOOT_DEVICE(dm_test_info1) = {
45 	.name = "test_drv",
46 	.platdata = &test_pdata[0],
47 };
48 
49 U_BOOT_DEVICE(dm_test_info2) = {
50 	.name = "test_drv",
51 	.platdata = &test_pdata[1],
52 };
53 
54 U_BOOT_DEVICE(dm_test_info3) = {
55 	.name = "test_drv",
56 	.platdata = &test_pdata[2],
57 };
58 
59 static struct driver_info driver_info_manual = {
60 	.name = "test_manual_drv",
61 	.platdata = &test_pdata_manual,
62 };
63 
64 static struct driver_info driver_info_pre_reloc = {
65 	.name = "test_pre_reloc_drv",
66 	.platdata = &test_pdata_pre_reloc,
67 };
68 
69 static struct driver_info driver_info_act_dma = {
70 	.name = "test_act_dma_drv",
71 };
72 
73 void dm_leak_check_start(struct unit_test_state *uts)
74 {
75 	uts->start = mallinfo();
76 	if (!uts->start.uordblks)
77 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
78 }
79 
80 int dm_leak_check_end(struct unit_test_state *uts)
81 {
82 	struct mallinfo end;
83 	int id, diff;
84 
85 	/* Don't delete the root class, since we started with that */
86 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
87 		struct uclass *uc;
88 
89 		uc = uclass_find(id);
90 		if (!uc)
91 			continue;
92 		ut_assertok(uclass_destroy(uc));
93 	}
94 
95 	end = mallinfo();
96 	diff = end.uordblks - uts->start.uordblks;
97 	if (diff > 0)
98 		printf("Leak: lost %#xd bytes\n", diff);
99 	else if (diff < 0)
100 		printf("Leak: gained %#xd bytes\n", -diff);
101 	ut_asserteq(uts->start.uordblks, end.uordblks);
102 
103 	return 0;
104 }
105 
106 /* Test that binding with platdata occurs correctly */
107 static int dm_test_autobind(struct unit_test_state *uts)
108 {
109 	struct dm_test_state *dms = uts->priv;
110 	struct udevice *dev;
111 
112 	/*
113 	 * We should have a single class (UCLASS_ROOT) and a single root
114 	 * device with no children.
115 	 */
116 	ut_assert(dms->root);
117 	ut_asserteq(1, list_count_items(&gd->uclass_root));
118 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
119 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
120 
121 	ut_assertok(dm_scan_platdata(false));
122 
123 	/* We should have our test class now at least, plus more children */
124 	ut_assert(1 < list_count_items(&gd->uclass_root));
125 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
126 
127 	/* Our 3 dm_test_infox children should be bound to the test uclass */
128 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
129 
130 	/* No devices should be probed */
131 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
132 		ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
133 
134 	/* Our test driver should have been bound 3 times */
135 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
136 
137 	return 0;
138 }
139 DM_TEST(dm_test_autobind, 0);
140 
141 /* Test that binding with uclass platdata allocation occurs correctly */
142 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
143 {
144 	struct dm_test_perdev_uc_pdata *uc_pdata;
145 	struct udevice *dev;
146 	struct uclass *uc;
147 
148 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
149 	ut_assert(uc);
150 
151 	/**
152 	 * Test if test uclass driver requires allocation for the uclass
153 	 * platform data and then check the dev->uclass_platdata pointer.
154 	 */
155 	ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
156 
157 	for (uclass_find_first_device(UCLASS_TEST, &dev);
158 	     dev;
159 	     uclass_find_next_device(&dev)) {
160 		ut_assert(dev);
161 
162 		uc_pdata = dev_get_uclass_platdata(dev);
163 		ut_assert(uc_pdata);
164 	}
165 
166 	return 0;
167 }
168 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
169 
170 /* Test that binding with uclass platdata setting occurs correctly */
171 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
172 {
173 	struct dm_test_perdev_uc_pdata *uc_pdata;
174 	struct udevice *dev;
175 
176 	/**
177 	 * In the test_postbind() method of test uclass driver, the uclass
178 	 * platform data should be set to three test int values - test it.
179 	 */
180 	for (uclass_find_first_device(UCLASS_TEST, &dev);
181 	     dev;
182 	     uclass_find_next_device(&dev)) {
183 		ut_assert(dev);
184 
185 		uc_pdata = dev_get_uclass_platdata(dev);
186 		ut_assert(uc_pdata);
187 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
188 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
189 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
190 	}
191 
192 	return 0;
193 }
194 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
195 
196 /* Test that autoprobe finds all the expected devices */
197 static int dm_test_autoprobe(struct unit_test_state *uts)
198 {
199 	struct dm_test_state *dms = uts->priv;
200 	int expected_base_add;
201 	struct udevice *dev;
202 	struct uclass *uc;
203 	int i;
204 
205 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
206 	ut_assert(uc);
207 
208 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
209 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
210 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
211 
212 	/* The root device should not be activated until needed */
213 	ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
214 
215 	/*
216 	 * We should be able to find the three test devices, and they should
217 	 * all be activated as they are used (lazy activation, required by
218 	 * U-Boot)
219 	 */
220 	for (i = 0; i < 3; i++) {
221 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
222 		ut_assert(dev);
223 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
224 			   "Driver %d/%s already activated", i, dev->name);
225 
226 		/* This should activate it */
227 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
228 		ut_assert(dev);
229 		ut_assert(dev->flags & DM_FLAG_ACTIVATED);
230 
231 		/* Activating a device should activate the root device */
232 		if (!i)
233 			ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
234 	}
235 
236 	/*
237 	 * Our 3 dm_test_info children should be passed to pre_probe and
238 	 * post_probe
239 	 */
240 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
241 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
242 
243 	/* Also we can check the per-device data */
244 	expected_base_add = 0;
245 	for (i = 0; i < 3; i++) {
246 		struct dm_test_uclass_perdev_priv *priv;
247 		struct dm_test_pdata *pdata;
248 
249 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
250 		ut_assert(dev);
251 
252 		priv = dev_get_uclass_priv(dev);
253 		ut_assert(priv);
254 		ut_asserteq(expected_base_add, priv->base_add);
255 
256 		pdata = dev->platdata;
257 		expected_base_add += pdata->ping_add;
258 	}
259 
260 	return 0;
261 }
262 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
263 
264 /* Check that we see the correct platdata in each device */
265 static int dm_test_platdata(struct unit_test_state *uts)
266 {
267 	const struct dm_test_pdata *pdata;
268 	struct udevice *dev;
269 	int i;
270 
271 	for (i = 0; i < 3; i++) {
272 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
273 		ut_assert(dev);
274 		pdata = dev->platdata;
275 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
276 	}
277 
278 	return 0;
279 }
280 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
281 
282 /* Test that we can bind, probe, remove, unbind a driver */
283 static int dm_test_lifecycle(struct unit_test_state *uts)
284 {
285 	struct dm_test_state *dms = uts->priv;
286 	int op_count[DM_TEST_OP_COUNT];
287 	struct udevice *dev, *test_dev;
288 	int pingret;
289 	int ret;
290 
291 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
292 
293 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
294 					&dev));
295 	ut_assert(dev);
296 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
297 			== op_count[DM_TEST_OP_BIND] + 1);
298 	ut_assert(!dev->priv);
299 
300 	/* Probe the device - it should fail allocating private data */
301 	dms->force_fail_alloc = 1;
302 	ret = device_probe(dev);
303 	ut_assert(ret == -ENOMEM);
304 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
305 			== op_count[DM_TEST_OP_PROBE] + 1);
306 	ut_assert(!dev->priv);
307 
308 	/* Try again without the alloc failure */
309 	dms->force_fail_alloc = 0;
310 	ut_assertok(device_probe(dev));
311 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
312 			== op_count[DM_TEST_OP_PROBE] + 2);
313 	ut_assert(dev->priv);
314 
315 	/* This should be device 3 in the uclass */
316 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
317 	ut_assert(dev == test_dev);
318 
319 	/* Try ping */
320 	ut_assertok(test_ping(dev, 100, &pingret));
321 	ut_assert(pingret == 102);
322 
323 	/* Now remove device 3 */
324 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
325 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
326 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
327 
328 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
329 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
330 	ut_assertok(device_unbind(dev));
331 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
332 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
333 
334 	return 0;
335 }
336 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
337 
338 /* Test that we can bind/unbind and the lists update correctly */
339 static int dm_test_ordering(struct unit_test_state *uts)
340 {
341 	struct dm_test_state *dms = uts->priv;
342 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
343 	int pingret;
344 
345 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
346 					&dev));
347 	ut_assert(dev);
348 
349 	/* Bind two new devices (numbers 4 and 5) */
350 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
351 					&dev_penultimate));
352 	ut_assert(dev_penultimate);
353 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
354 					&dev_last));
355 	ut_assert(dev_last);
356 
357 	/* Now remove device 3 */
358 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
359 	ut_assertok(device_unbind(dev));
360 
361 	/* The device numbering should have shifted down one */
362 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
363 	ut_assert(dev_penultimate == test_dev);
364 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
365 	ut_assert(dev_last == test_dev);
366 
367 	/* Add back the original device 3, now in position 5 */
368 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
369 					&dev));
370 	ut_assert(dev);
371 
372 	/* Try ping */
373 	ut_assertok(test_ping(dev, 100, &pingret));
374 	ut_assert(pingret == 102);
375 
376 	/* Remove 3 and 4 */
377 	ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
378 	ut_assertok(device_unbind(dev_penultimate));
379 	ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
380 	ut_assertok(device_unbind(dev_last));
381 
382 	/* Our device should now be in position 3 */
383 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
384 	ut_assert(dev == test_dev);
385 
386 	/* Now remove device 3 */
387 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
388 	ut_assertok(device_unbind(dev));
389 
390 	return 0;
391 }
392 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
393 
394 /* Check that we can perform operations on a device (do a ping) */
395 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
396 			uint32_t base, struct dm_test_priv *priv)
397 {
398 	int expected;
399 	int pingret;
400 
401 	/* Getting the child device should allocate platdata / priv */
402 	ut_assertok(testfdt_ping(dev, 10, &pingret));
403 	ut_assert(dev->priv);
404 	ut_assert(dev->platdata);
405 
406 	expected = 10 + base;
407 	ut_asserteq(expected, pingret);
408 
409 	/* Do another ping */
410 	ut_assertok(testfdt_ping(dev, 20, &pingret));
411 	expected = 20 + base;
412 	ut_asserteq(expected, pingret);
413 
414 	/* Now check the ping_total */
415 	priv = dev->priv;
416 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
417 		    priv->ping_total);
418 
419 	return 0;
420 }
421 
422 /* Check that we can perform operations on devices */
423 static int dm_test_operations(struct unit_test_state *uts)
424 {
425 	struct udevice *dev;
426 	int i;
427 
428 	/*
429 	 * Now check that the ping adds are what we expect. This is using the
430 	 * ping-add property in each node.
431 	 */
432 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
433 		uint32_t base;
434 
435 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
436 
437 		/*
438 		 * Get the 'reg' property, which tells us what the ping add
439 		 * should be. We don't use the platdata because we want
440 		 * to test the code that sets that up (testfdt_drv_probe()).
441 		 */
442 		base = test_pdata[i].ping_add;
443 		debug("dev=%d, base=%d\n", i, base);
444 
445 		ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
446 	}
447 
448 	return 0;
449 }
450 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
451 
452 /* Remove all drivers and check that things work */
453 static int dm_test_remove(struct unit_test_state *uts)
454 {
455 	struct udevice *dev;
456 	int i;
457 
458 	for (i = 0; i < 3; i++) {
459 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
460 		ut_assert(dev);
461 		ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
462 			   "Driver %d/%s not activated", i, dev->name);
463 		ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
464 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
465 			   "Driver %d/%s should have deactivated", i,
466 			   dev->name);
467 		ut_assert(!dev->priv);
468 	}
469 
470 	return 0;
471 }
472 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
473 
474 /* Remove and recreate everything, check for memory leaks */
475 static int dm_test_leak(struct unit_test_state *uts)
476 {
477 	int i;
478 
479 	for (i = 0; i < 2; i++) {
480 		struct udevice *dev;
481 		int ret;
482 		int id;
483 
484 		dm_leak_check_start(uts);
485 
486 		ut_assertok(dm_scan_platdata(false));
487 		ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
488 
489 		/* Scanning the uclass is enough to probe all the devices */
490 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
491 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
492 			     dev;
493 			     ret = uclass_next_device(&dev))
494 				;
495 			ut_assertok(ret);
496 		}
497 
498 		ut_assertok(dm_leak_check_end(uts));
499 	}
500 
501 	return 0;
502 }
503 DM_TEST(dm_test_leak, 0);
504 
505 /* Test uclass init/destroy methods */
506 static int dm_test_uclass(struct unit_test_state *uts)
507 {
508 	struct uclass *uc;
509 
510 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
511 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
512 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
513 	ut_assert(uc->priv);
514 
515 	ut_assertok(uclass_destroy(uc));
516 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
517 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
518 
519 	return 0;
520 }
521 DM_TEST(dm_test_uclass, 0);
522 
523 /**
524  * create_children() - Create children of a parent node
525  *
526  * @dms:	Test system state
527  * @parent:	Parent device
528  * @count:	Number of children to create
529  * @key:	Key value to put in first child. Subsequence children
530  *		receive an incrementing value
531  * @child:	If not NULL, then the child device pointers are written into
532  *		this array.
533  * @return 0 if OK, -ve on error
534  */
535 static int create_children(struct unit_test_state *uts, struct udevice *parent,
536 			   int count, int key, struct udevice *child[])
537 {
538 	struct udevice *dev;
539 	int i;
540 
541 	for (i = 0; i < count; i++) {
542 		struct dm_test_pdata *pdata;
543 
544 		ut_assertok(device_bind_by_name(parent, false,
545 						&driver_info_manual, &dev));
546 		pdata = calloc(1, sizeof(*pdata));
547 		pdata->ping_add = key + i;
548 		dev->platdata = pdata;
549 		if (child)
550 			child[i] = dev;
551 	}
552 
553 	return 0;
554 }
555 
556 #define NODE_COUNT	10
557 
558 static int dm_test_children(struct unit_test_state *uts)
559 {
560 	struct dm_test_state *dms = uts->priv;
561 	struct udevice *top[NODE_COUNT];
562 	struct udevice *child[NODE_COUNT];
563 	struct udevice *grandchild[NODE_COUNT];
564 	struct udevice *dev;
565 	int total;
566 	int ret;
567 	int i;
568 
569 	/* We don't care about the numbering for this test */
570 	dms->skip_post_probe = 1;
571 
572 	ut_assert(NODE_COUNT > 5);
573 
574 	/* First create 10 top-level children */
575 	ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
576 
577 	/* Now a few have their own children */
578 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
579 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
580 
581 	/* And grandchildren */
582 	for (i = 0; i < NODE_COUNT; i++)
583 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
584 					    i == 2 ? grandchild : NULL));
585 
586 	/* Check total number of devices */
587 	total = NODE_COUNT * (3 + NODE_COUNT);
588 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
589 
590 	/* Try probing one of the grandchildren */
591 	ut_assertok(uclass_get_device(UCLASS_TEST,
592 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
593 	ut_asserteq_ptr(grandchild[0], dev);
594 
595 	/*
596 	 * This should have probed the child and top node also, for a total
597 	 * of 3 nodes.
598 	 */
599 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
600 
601 	/* Probe the other grandchildren */
602 	for (i = 1; i < NODE_COUNT; i++)
603 		ut_assertok(device_probe(grandchild[i]));
604 
605 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
606 
607 	/* Probe everything */
608 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
609 	     dev;
610 	     ret = uclass_next_device(&dev))
611 		;
612 	ut_assertok(ret);
613 
614 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
615 
616 	/* Remove a top-level child and check that the children are removed */
617 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
618 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
619 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
620 
621 	/* Try one with grandchildren */
622 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
623 	ut_asserteq_ptr(dev, top[5]);
624 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
625 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
626 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
627 
628 	/* Try the same with unbind */
629 	ut_assertok(device_unbind(top[2]));
630 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
631 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
632 
633 	/* Try one with grandchildren */
634 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
635 	ut_asserteq_ptr(dev, top[6]);
636 	ut_assertok(device_unbind(top[5]));
637 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
638 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
639 
640 	return 0;
641 }
642 DM_TEST(dm_test_children, 0);
643 
644 /* Test that pre-relocation devices work as expected */
645 static int dm_test_pre_reloc(struct unit_test_state *uts)
646 {
647 	struct dm_test_state *dms = uts->priv;
648 	struct udevice *dev;
649 
650 	/* The normal driver should refuse to bind before relocation */
651 	ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
652 						&driver_info_manual, &dev));
653 
654 	/* But this one is marked pre-reloc */
655 	ut_assertok(device_bind_by_name(dms->root, true,
656 					&driver_info_pre_reloc, &dev));
657 
658 	return 0;
659 }
660 DM_TEST(dm_test_pre_reloc, 0);
661 
662 /*
663  * Test that removal of devices, either via the "normal" device_remove()
664  * API or via the device driver selective flag works as expected
665  */
666 static int dm_test_remove_active_dma(struct unit_test_state *uts)
667 {
668 	struct dm_test_state *dms = uts->priv;
669 	struct udevice *dev;
670 
671 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
672 					&dev));
673 	ut_assert(dev);
674 
675 	/* Probe the device */
676 	ut_assertok(device_probe(dev));
677 
678 	/* Test if device is active right now */
679 	ut_asserteq(true, device_active(dev));
680 
681 	/* Remove the device via selective remove flag */
682 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
683 
684 	/* Test if device is inactive right now */
685 	ut_asserteq(false, device_active(dev));
686 
687 	/* Probe the device again */
688 	ut_assertok(device_probe(dev));
689 
690 	/* Test if device is active right now */
691 	ut_asserteq(true, device_active(dev));
692 
693 	/* Remove the device via "normal" remove API */
694 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
695 
696 	/* Test if device is inactive right now */
697 	ut_asserteq(false, device_active(dev));
698 
699 	/*
700 	 * Test if a device without the active DMA flags is not removed upon
701 	 * the active DMA remove call
702 	 */
703 	ut_assertok(device_unbind(dev));
704 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
705 					&dev));
706 	ut_assert(dev);
707 
708 	/* Probe the device */
709 	ut_assertok(device_probe(dev));
710 
711 	/* Test if device is active right now */
712 	ut_asserteq(true, device_active(dev));
713 
714 	/* Remove the device via selective remove flag */
715 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
716 
717 	/* Test if device is still active right now */
718 	ut_asserteq(true, device_active(dev));
719 
720 	return 0;
721 }
722 DM_TEST(dm_test_remove_active_dma, 0);
723 
724 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
725 {
726 	struct uclass *uc;
727 
728 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
729 
730 	gd->dm_root = NULL;
731 	gd->dm_root_f = NULL;
732 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
733 
734 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
735 
736 	return 0;
737 }
738 DM_TEST(dm_test_uclass_before_ready, 0);
739 
740 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
741 {
742 	struct udevice *dev;
743 	int ret;
744 
745 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
746 	     dev;
747 	     ret = uclass_find_next_device(&dev)) {
748 		ut_assert(!ret);
749 		ut_assert(dev);
750 	}
751 
752 	return 0;
753 }
754 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
755 
756 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
757 {
758 	struct udevice *finddev;
759 	struct udevice *testdev;
760 	int findret, ret;
761 
762 	/*
763 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
764 	 * use its name and try to find it by uclass_find_device_by_name().
765 	 * Then, on success check if:
766 	 * - current 'testdev' name is equal to the returned 'finddev' name
767 	 * - current 'testdev' pointer is equal to the returned 'finddev'
768 	 *
769 	 * We assume that, each uclass's device name is unique, so if not, then
770 	 * this will fail on checking condition: testdev == finddev, since the
771 	 * uclass_find_device_by_name(), returns the first device by given name.
772 	*/
773 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
774 	     testdev;
775 	     ret = uclass_find_next_device(&testdev)) {
776 		ut_assertok(ret);
777 		ut_assert(testdev);
778 
779 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
780 						     testdev->name,
781 						     &finddev);
782 
783 		ut_assertok(findret);
784 		ut_assert(testdev);
785 		ut_asserteq_str(testdev->name, finddev->name);
786 		ut_asserteq_ptr(testdev, finddev);
787 	}
788 
789 	return 0;
790 }
791 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
792 
793 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
794 {
795 	struct udevice *dev;
796 	int ret;
797 
798 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
799 	     dev;
800 	     ret = uclass_next_device(&dev)) {
801 		ut_assert(!ret);
802 		ut_assert(dev);
803 		ut_assert(device_active(dev));
804 	}
805 
806 	return 0;
807 }
808 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
809 
810 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
811 {
812 	struct udevice *finddev;
813 	struct udevice *testdev;
814 	int ret, findret;
815 
816 	/*
817 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
818 	 * use its name and try to get it by uclass_get_device_by_name().
819 	 * On success check if:
820 	 * - returned finddev' is active
821 	 * - current 'testdev' name is equal to the returned 'finddev' name
822 	 * - current 'testdev' pointer is equal to the returned 'finddev'
823 	 *
824 	 * We asserts that the 'testdev' is active on each loop entry, so we
825 	 * could be sure that the 'finddev' is activated too, but for sure
826 	 * we check it again.
827 	 *
828 	 * We assume that, each uclass's device name is unique, so if not, then
829 	 * this will fail on checking condition: testdev == finddev, since the
830 	 * uclass_get_device_by_name(), returns the first device by given name.
831 	*/
832 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
833 	     testdev;
834 	     ret = uclass_next_device(&testdev)) {
835 		ut_assertok(ret);
836 		ut_assert(testdev);
837 		ut_assert(device_active(testdev));
838 
839 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
840 						    testdev->name,
841 						    &finddev);
842 
843 		ut_assertok(findret);
844 		ut_assert(finddev);
845 		ut_assert(device_active(finddev));
846 		ut_asserteq_str(testdev->name, finddev->name);
847 		ut_asserteq_ptr(testdev, finddev);
848 	}
849 
850 	return 0;
851 }
852 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
853 
854 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
855 {
856 	struct udevice *dev;
857 
858 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
859 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
860 
861 	return 0;
862 }
863 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
864 
865 static int dm_test_uclass_names(struct unit_test_state *uts)
866 {
867 	ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
868 	ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
869 
870 	return 0;
871 }
872 DM_TEST(dm_test_uclass_names, DM_TESTF_SCAN_PDATA);
873 
874 static int dm_test_inactive_child(struct unit_test_state *uts)
875 {
876 	struct dm_test_state *dms = uts->priv;
877 	struct udevice *parent, *dev1, *dev2;
878 
879 	/* Skip the behaviour in test_post_probe() */
880 	dms->skip_post_probe = 1;
881 
882 	ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
883 
884 	/*
885 	 * Create a child but do not activate it. Calling the function again
886 	 * should return the same child.
887 	 */
888 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
889 							UCLASS_TEST, &dev1));
890 	ut_assertok(device_bind_ofnode(parent, DM_GET_DRIVER(test_drv),
891 				       "test_child", 0, ofnode_null(), &dev1));
892 
893 	ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
894 						     &dev2));
895 	ut_asserteq_ptr(dev1, dev2);
896 
897 	ut_assertok(device_probe(dev1));
898 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
899 							UCLASS_TEST, &dev2));
900 
901 	return 0;
902 }
903 DM_TEST(dm_test_inactive_child, DM_TESTF_SCAN_PDATA);
904