xref: /openbmc/u-boot/test/dm/core.c (revision 9ee16897)
1 /*
2  * Tests for the core driver model code
3  *
4  * Copyright (c) 2013 Google, Inc
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/util.h>
17 #include <dm/test.h>
18 #include <dm/uclass-internal.h>
19 #include <test/ut.h>
20 
21 DECLARE_GLOBAL_DATA_PTR;
22 
23 enum {
24 	TEST_INTVAL1		= 0,
25 	TEST_INTVAL2		= 3,
26 	TEST_INTVAL3		= 6,
27 	TEST_INTVAL_MANUAL	= 101112,
28 	TEST_INTVAL_PRE_RELOC	= 7,
29 };
30 
31 static const struct dm_test_pdata test_pdata[] = {
32 	{ .ping_add		= TEST_INTVAL1, },
33 	{ .ping_add		= TEST_INTVAL2, },
34 	{ .ping_add		= TEST_INTVAL3, },
35 };
36 
37 static const struct dm_test_pdata test_pdata_manual = {
38 	.ping_add		= TEST_INTVAL_MANUAL,
39 };
40 
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 	.ping_add		= TEST_INTVAL_PRE_RELOC,
43 };
44 
45 U_BOOT_DEVICE(dm_test_info1) = {
46 	.name = "test_drv",
47 	.platdata = &test_pdata[0],
48 };
49 
50 U_BOOT_DEVICE(dm_test_info2) = {
51 	.name = "test_drv",
52 	.platdata = &test_pdata[1],
53 };
54 
55 U_BOOT_DEVICE(dm_test_info3) = {
56 	.name = "test_drv",
57 	.platdata = &test_pdata[2],
58 };
59 
60 static struct driver_info driver_info_manual = {
61 	.name = "test_manual_drv",
62 	.platdata = &test_pdata_manual,
63 };
64 
65 static struct driver_info driver_info_pre_reloc = {
66 	.name = "test_pre_reloc_drv",
67 	.platdata = &test_pdata_manual,
68 };
69 
70 void dm_leak_check_start(struct unit_test_state *uts)
71 {
72 	uts->start = mallinfo();
73 	if (!uts->start.uordblks)
74 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
75 }
76 
77 int dm_leak_check_end(struct unit_test_state *uts)
78 {
79 	struct mallinfo end;
80 	int id;
81 
82 	/* Don't delete the root class, since we started with that */
83 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
84 		struct uclass *uc;
85 
86 		uc = uclass_find(id);
87 		if (!uc)
88 			continue;
89 		ut_assertok(uclass_destroy(uc));
90 	}
91 
92 	end = mallinfo();
93 	ut_asserteq(uts->start.uordblks, end.uordblks);
94 
95 	return 0;
96 }
97 
98 /* Test that binding with platdata occurs correctly */
99 static int dm_test_autobind(struct unit_test_state *uts)
100 {
101 	struct dm_test_state *dms = uts->priv;
102 	struct udevice *dev;
103 
104 	/*
105 	 * We should have a single class (UCLASS_ROOT) and a single root
106 	 * device with no children.
107 	 */
108 	ut_assert(dms->root);
109 	ut_asserteq(1, list_count_items(&gd->uclass_root));
110 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
111 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
112 
113 	ut_assertok(dm_scan_platdata(false));
114 
115 	/* We should have our test class now at least, plus more children */
116 	ut_assert(1 < list_count_items(&gd->uclass_root));
117 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
118 
119 	/* Our 3 dm_test_infox children should be bound to the test uclass */
120 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
121 
122 	/* No devices should be probed */
123 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
124 		ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
125 
126 	/* Our test driver should have been bound 3 times */
127 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
128 
129 	return 0;
130 }
131 DM_TEST(dm_test_autobind, 0);
132 
133 /* Test that binding with uclass platdata allocation occurs correctly */
134 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
135 {
136 	struct dm_test_perdev_uc_pdata *uc_pdata;
137 	struct udevice *dev;
138 	struct uclass *uc;
139 
140 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
141 	ut_assert(uc);
142 
143 	/**
144 	 * Test if test uclass driver requires allocation for the uclass
145 	 * platform data and then check the dev->uclass_platdata pointer.
146 	 */
147 	ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
148 
149 	for (uclass_find_first_device(UCLASS_TEST, &dev);
150 	     dev;
151 	     uclass_find_next_device(&dev)) {
152 		ut_assert(dev);
153 
154 		uc_pdata = dev_get_uclass_platdata(dev);
155 		ut_assert(uc_pdata);
156 	}
157 
158 	return 0;
159 }
160 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
161 
162 /* Test that binding with uclass platdata setting occurs correctly */
163 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
164 {
165 	struct dm_test_perdev_uc_pdata *uc_pdata;
166 	struct udevice *dev;
167 
168 	/**
169 	 * In the test_postbind() method of test uclass driver, the uclass
170 	 * platform data should be set to three test int values - test it.
171 	 */
172 	for (uclass_find_first_device(UCLASS_TEST, &dev);
173 	     dev;
174 	     uclass_find_next_device(&dev)) {
175 		ut_assert(dev);
176 
177 		uc_pdata = dev_get_uclass_platdata(dev);
178 		ut_assert(uc_pdata);
179 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
180 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
181 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
182 	}
183 
184 	return 0;
185 }
186 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
187 
188 /* Test that autoprobe finds all the expected devices */
189 static int dm_test_autoprobe(struct unit_test_state *uts)
190 {
191 	struct dm_test_state *dms = uts->priv;
192 	int expected_base_add;
193 	struct udevice *dev;
194 	struct uclass *uc;
195 	int i;
196 
197 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
198 	ut_assert(uc);
199 
200 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
201 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
202 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
203 
204 	/* The root device should not be activated until needed */
205 	ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
206 
207 	/*
208 	 * We should be able to find the three test devices, and they should
209 	 * all be activated as they are used (lazy activation, required by
210 	 * U-Boot)
211 	 */
212 	for (i = 0; i < 3; i++) {
213 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
214 		ut_assert(dev);
215 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
216 			   "Driver %d/%s already activated", i, dev->name);
217 
218 		/* This should activate it */
219 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
220 		ut_assert(dev);
221 		ut_assert(dev->flags & DM_FLAG_ACTIVATED);
222 
223 		/* Activating a device should activate the root device */
224 		if (!i)
225 			ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
226 	}
227 
228 	/*
229 	 * Our 3 dm_test_info children should be passed to pre_probe and
230 	 * post_probe
231 	 */
232 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
233 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
234 
235 	/* Also we can check the per-device data */
236 	expected_base_add = 0;
237 	for (i = 0; i < 3; i++) {
238 		struct dm_test_uclass_perdev_priv *priv;
239 		struct dm_test_pdata *pdata;
240 
241 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
242 		ut_assert(dev);
243 
244 		priv = dev_get_uclass_priv(dev);
245 		ut_assert(priv);
246 		ut_asserteq(expected_base_add, priv->base_add);
247 
248 		pdata = dev->platdata;
249 		expected_base_add += pdata->ping_add;
250 	}
251 
252 	return 0;
253 }
254 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
255 
256 /* Check that we see the correct platdata in each device */
257 static int dm_test_platdata(struct unit_test_state *uts)
258 {
259 	const struct dm_test_pdata *pdata;
260 	struct udevice *dev;
261 	int i;
262 
263 	for (i = 0; i < 3; i++) {
264 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
265 		ut_assert(dev);
266 		pdata = dev->platdata;
267 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
268 	}
269 
270 	return 0;
271 }
272 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
273 
274 /* Test that we can bind, probe, remove, unbind a driver */
275 static int dm_test_lifecycle(struct unit_test_state *uts)
276 {
277 	struct dm_test_state *dms = uts->priv;
278 	int op_count[DM_TEST_OP_COUNT];
279 	struct udevice *dev, *test_dev;
280 	int pingret;
281 	int ret;
282 
283 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
284 
285 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
286 					&dev));
287 	ut_assert(dev);
288 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
289 			== op_count[DM_TEST_OP_BIND] + 1);
290 	ut_assert(!dev->priv);
291 
292 	/* Probe the device - it should fail allocating private data */
293 	dms->force_fail_alloc = 1;
294 	ret = device_probe(dev);
295 	ut_assert(ret == -ENOMEM);
296 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
297 			== op_count[DM_TEST_OP_PROBE] + 1);
298 	ut_assert(!dev->priv);
299 
300 	/* Try again without the alloc failure */
301 	dms->force_fail_alloc = 0;
302 	ut_assertok(device_probe(dev));
303 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
304 			== op_count[DM_TEST_OP_PROBE] + 2);
305 	ut_assert(dev->priv);
306 
307 	/* This should be device 3 in the uclass */
308 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
309 	ut_assert(dev == test_dev);
310 
311 	/* Try ping */
312 	ut_assertok(test_ping(dev, 100, &pingret));
313 	ut_assert(pingret == 102);
314 
315 	/* Now remove device 3 */
316 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
317 	ut_assertok(device_remove(dev));
318 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
319 
320 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
321 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
322 	ut_assertok(device_unbind(dev));
323 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
324 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
325 
326 	return 0;
327 }
328 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
329 
330 /* Test that we can bind/unbind and the lists update correctly */
331 static int dm_test_ordering(struct unit_test_state *uts)
332 {
333 	struct dm_test_state *dms = uts->priv;
334 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
335 	int pingret;
336 
337 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
338 					&dev));
339 	ut_assert(dev);
340 
341 	/* Bind two new devices (numbers 4 and 5) */
342 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
343 					&dev_penultimate));
344 	ut_assert(dev_penultimate);
345 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
346 					&dev_last));
347 	ut_assert(dev_last);
348 
349 	/* Now remove device 3 */
350 	ut_assertok(device_remove(dev));
351 	ut_assertok(device_unbind(dev));
352 
353 	/* The device numbering should have shifted down one */
354 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
355 	ut_assert(dev_penultimate == test_dev);
356 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
357 	ut_assert(dev_last == test_dev);
358 
359 	/* Add back the original device 3, now in position 5 */
360 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
361 					&dev));
362 	ut_assert(dev);
363 
364 	/* Try ping */
365 	ut_assertok(test_ping(dev, 100, &pingret));
366 	ut_assert(pingret == 102);
367 
368 	/* Remove 3 and 4 */
369 	ut_assertok(device_remove(dev_penultimate));
370 	ut_assertok(device_unbind(dev_penultimate));
371 	ut_assertok(device_remove(dev_last));
372 	ut_assertok(device_unbind(dev_last));
373 
374 	/* Our device should now be in position 3 */
375 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
376 	ut_assert(dev == test_dev);
377 
378 	/* Now remove device 3 */
379 	ut_assertok(device_remove(dev));
380 	ut_assertok(device_unbind(dev));
381 
382 	return 0;
383 }
384 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
385 
386 /* Check that we can perform operations on a device (do a ping) */
387 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
388 			uint32_t base, struct dm_test_priv *priv)
389 {
390 	int expected;
391 	int pingret;
392 
393 	/* Getting the child device should allocate platdata / priv */
394 	ut_assertok(testfdt_ping(dev, 10, &pingret));
395 	ut_assert(dev->priv);
396 	ut_assert(dev->platdata);
397 
398 	expected = 10 + base;
399 	ut_asserteq(expected, pingret);
400 
401 	/* Do another ping */
402 	ut_assertok(testfdt_ping(dev, 20, &pingret));
403 	expected = 20 + base;
404 	ut_asserteq(expected, pingret);
405 
406 	/* Now check the ping_total */
407 	priv = dev->priv;
408 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
409 		    priv->ping_total);
410 
411 	return 0;
412 }
413 
414 /* Check that we can perform operations on devices */
415 static int dm_test_operations(struct unit_test_state *uts)
416 {
417 	struct udevice *dev;
418 	int i;
419 
420 	/*
421 	 * Now check that the ping adds are what we expect. This is using the
422 	 * ping-add property in each node.
423 	 */
424 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
425 		uint32_t base;
426 
427 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
428 
429 		/*
430 		 * Get the 'reg' property, which tells us what the ping add
431 		 * should be. We don't use the platdata because we want
432 		 * to test the code that sets that up (testfdt_drv_probe()).
433 		 */
434 		base = test_pdata[i].ping_add;
435 		debug("dev=%d, base=%d\n", i, base);
436 
437 		ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
438 	}
439 
440 	return 0;
441 }
442 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
443 
444 /* Remove all drivers and check that things work */
445 static int dm_test_remove(struct unit_test_state *uts)
446 {
447 	struct udevice *dev;
448 	int i;
449 
450 	for (i = 0; i < 3; i++) {
451 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
452 		ut_assert(dev);
453 		ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
454 			   "Driver %d/%s not activated", i, dev->name);
455 		ut_assertok(device_remove(dev));
456 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
457 			   "Driver %d/%s should have deactivated", i,
458 			   dev->name);
459 		ut_assert(!dev->priv);
460 	}
461 
462 	return 0;
463 }
464 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
465 
466 /* Remove and recreate everything, check for memory leaks */
467 static int dm_test_leak(struct unit_test_state *uts)
468 {
469 	int i;
470 
471 	for (i = 0; i < 2; i++) {
472 		struct udevice *dev;
473 		int ret;
474 		int id;
475 
476 		dm_leak_check_start(uts);
477 
478 		ut_assertok(dm_scan_platdata(false));
479 		ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
480 
481 		/* Scanning the uclass is enough to probe all the devices */
482 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
483 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
484 			     dev;
485 			     ret = uclass_next_device(&dev))
486 				;
487 			ut_assertok(ret);
488 		}
489 
490 		ut_assertok(dm_leak_check_end(uts));
491 	}
492 
493 	return 0;
494 }
495 DM_TEST(dm_test_leak, 0);
496 
497 /* Test uclass init/destroy methods */
498 static int dm_test_uclass(struct unit_test_state *uts)
499 {
500 	struct uclass *uc;
501 
502 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
503 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
504 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
505 	ut_assert(uc->priv);
506 
507 	ut_assertok(uclass_destroy(uc));
508 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
509 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
510 
511 	return 0;
512 }
513 DM_TEST(dm_test_uclass, 0);
514 
515 /**
516  * create_children() - Create children of a parent node
517  *
518  * @dms:	Test system state
519  * @parent:	Parent device
520  * @count:	Number of children to create
521  * @key:	Key value to put in first child. Subsequence children
522  *		receive an incrementing value
523  * @child:	If not NULL, then the child device pointers are written into
524  *		this array.
525  * @return 0 if OK, -ve on error
526  */
527 static int create_children(struct unit_test_state *uts, struct udevice *parent,
528 			   int count, int key, struct udevice *child[])
529 {
530 	struct udevice *dev;
531 	int i;
532 
533 	for (i = 0; i < count; i++) {
534 		struct dm_test_pdata *pdata;
535 
536 		ut_assertok(device_bind_by_name(parent, false,
537 						&driver_info_manual, &dev));
538 		pdata = calloc(1, sizeof(*pdata));
539 		pdata->ping_add = key + i;
540 		dev->platdata = pdata;
541 		if (child)
542 			child[i] = dev;
543 	}
544 
545 	return 0;
546 }
547 
548 #define NODE_COUNT	10
549 
550 static int dm_test_children(struct unit_test_state *uts)
551 {
552 	struct dm_test_state *dms = uts->priv;
553 	struct udevice *top[NODE_COUNT];
554 	struct udevice *child[NODE_COUNT];
555 	struct udevice *grandchild[NODE_COUNT];
556 	struct udevice *dev;
557 	int total;
558 	int ret;
559 	int i;
560 
561 	/* We don't care about the numbering for this test */
562 	dms->skip_post_probe = 1;
563 
564 	ut_assert(NODE_COUNT > 5);
565 
566 	/* First create 10 top-level children */
567 	ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
568 
569 	/* Now a few have their own children */
570 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
571 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
572 
573 	/* And grandchildren */
574 	for (i = 0; i < NODE_COUNT; i++)
575 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
576 					    i == 2 ? grandchild : NULL));
577 
578 	/* Check total number of devices */
579 	total = NODE_COUNT * (3 + NODE_COUNT);
580 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
581 
582 	/* Try probing one of the grandchildren */
583 	ut_assertok(uclass_get_device(UCLASS_TEST,
584 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
585 	ut_asserteq_ptr(grandchild[0], dev);
586 
587 	/*
588 	 * This should have probed the child and top node also, for a total
589 	 * of 3 nodes.
590 	 */
591 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
592 
593 	/* Probe the other grandchildren */
594 	for (i = 1; i < NODE_COUNT; i++)
595 		ut_assertok(device_probe(grandchild[i]));
596 
597 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
598 
599 	/* Probe everything */
600 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
601 	     dev;
602 	     ret = uclass_next_device(&dev))
603 		;
604 	ut_assertok(ret);
605 
606 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
607 
608 	/* Remove a top-level child and check that the children are removed */
609 	ut_assertok(device_remove(top[2]));
610 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
611 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
612 
613 	/* Try one with grandchildren */
614 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
615 	ut_asserteq_ptr(dev, top[5]);
616 	ut_assertok(device_remove(dev));
617 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
618 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
619 
620 	/* Try the same with unbind */
621 	ut_assertok(device_unbind(top[2]));
622 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
623 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
624 
625 	/* Try one with grandchildren */
626 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
627 	ut_asserteq_ptr(dev, top[6]);
628 	ut_assertok(device_unbind(top[5]));
629 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
630 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
631 
632 	return 0;
633 }
634 DM_TEST(dm_test_children, 0);
635 
636 /* Test that pre-relocation devices work as expected */
637 static int dm_test_pre_reloc(struct unit_test_state *uts)
638 {
639 	struct dm_test_state *dms = uts->priv;
640 	struct udevice *dev;
641 
642 	/* The normal driver should refuse to bind before relocation */
643 	ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
644 						&driver_info_manual, &dev));
645 
646 	/* But this one is marked pre-reloc */
647 	ut_assertok(device_bind_by_name(dms->root, true,
648 					&driver_info_pre_reloc, &dev));
649 
650 	return 0;
651 }
652 DM_TEST(dm_test_pre_reloc, 0);
653 
654 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
655 {
656 	struct uclass *uc;
657 
658 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
659 
660 	gd->dm_root = NULL;
661 	gd->dm_root_f = NULL;
662 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
663 
664 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
665 
666 	return 0;
667 }
668 DM_TEST(dm_test_uclass_before_ready, 0);
669 
670 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
671 {
672 	struct udevice *dev;
673 	int ret;
674 
675 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
676 	     dev;
677 	     ret = uclass_find_next_device(&dev)) {
678 		ut_assert(!ret);
679 		ut_assert(dev);
680 	}
681 
682 	return 0;
683 }
684 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
685 
686 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
687 {
688 	struct udevice *finddev;
689 	struct udevice *testdev;
690 	int findret, ret;
691 
692 	/*
693 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
694 	 * use its name and try to find it by uclass_find_device_by_name().
695 	 * Then, on success check if:
696 	 * - current 'testdev' name is equal to the returned 'finddev' name
697 	 * - current 'testdev' pointer is equal to the returned 'finddev'
698 	 *
699 	 * We assume that, each uclass's device name is unique, so if not, then
700 	 * this will fail on checking condition: testdev == finddev, since the
701 	 * uclass_find_device_by_name(), returns the first device by given name.
702 	*/
703 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
704 	     testdev;
705 	     ret = uclass_find_next_device(&testdev)) {
706 		ut_assertok(ret);
707 		ut_assert(testdev);
708 
709 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
710 						     testdev->name,
711 						     &finddev);
712 
713 		ut_assertok(findret);
714 		ut_assert(testdev);
715 		ut_asserteq_str(testdev->name, finddev->name);
716 		ut_asserteq_ptr(testdev, finddev);
717 	}
718 
719 	return 0;
720 }
721 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
722 
723 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
724 {
725 	struct udevice *dev;
726 	int ret;
727 
728 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
729 	     dev;
730 	     ret = uclass_next_device(&dev)) {
731 		ut_assert(!ret);
732 		ut_assert(dev);
733 		ut_assert(device_active(dev));
734 	}
735 
736 	return 0;
737 }
738 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
739 
740 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
741 {
742 	struct udevice *finddev;
743 	struct udevice *testdev;
744 	int ret, findret;
745 
746 	/*
747 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
748 	 * use its name and try to get it by uclass_get_device_by_name().
749 	 * On success check if:
750 	 * - returned finddev' is active
751 	 * - current 'testdev' name is equal to the returned 'finddev' name
752 	 * - current 'testdev' pointer is equal to the returned 'finddev'
753 	 *
754 	 * We asserts that the 'testdev' is active on each loop entry, so we
755 	 * could be sure that the 'finddev' is activated too, but for sure
756 	 * we check it again.
757 	 *
758 	 * We assume that, each uclass's device name is unique, so if not, then
759 	 * this will fail on checking condition: testdev == finddev, since the
760 	 * uclass_get_device_by_name(), returns the first device by given name.
761 	*/
762 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
763 	     testdev;
764 	     ret = uclass_next_device(&testdev)) {
765 		ut_assertok(ret);
766 		ut_assert(testdev);
767 		ut_assert(device_active(testdev));
768 
769 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
770 						    testdev->name,
771 						    &finddev);
772 
773 		ut_assertok(findret);
774 		ut_assert(finddev);
775 		ut_assert(device_active(finddev));
776 		ut_asserteq_str(testdev->name, finddev->name);
777 		ut_asserteq_ptr(testdev, finddev);
778 	}
779 
780 	return 0;
781 }
782 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
783 
784 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
785 {
786 	struct udevice *dev;
787 
788 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
789 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
790 
791 	return 0;
792 }
793 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
794