xref: /openbmc/u-boot/test/dm/core.c (revision 9925f1dbc38c0ef7220c6fca5968c708b8e48764)
1 /*
2  * Tests for the core driver model code
3  *
4  * Copyright (c) 2013 Google, Inc
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/util.h>
17 #include <dm/test.h>
18 #include <dm/uclass-internal.h>
19 #include <test/ut.h>
20 
21 DECLARE_GLOBAL_DATA_PTR;
22 
23 enum {
24 	TEST_INTVAL1		= 0,
25 	TEST_INTVAL2		= 3,
26 	TEST_INTVAL3		= 6,
27 	TEST_INTVAL_MANUAL	= 101112,
28 	TEST_INTVAL_PRE_RELOC	= 7,
29 };
30 
31 static const struct dm_test_pdata test_pdata[] = {
32 	{ .ping_add		= TEST_INTVAL1, },
33 	{ .ping_add		= TEST_INTVAL2, },
34 	{ .ping_add		= TEST_INTVAL3, },
35 };
36 
37 static const struct dm_test_pdata test_pdata_manual = {
38 	.ping_add		= TEST_INTVAL_MANUAL,
39 };
40 
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 	.ping_add		= TEST_INTVAL_PRE_RELOC,
43 };
44 
45 U_BOOT_DEVICE(dm_test_info1) = {
46 	.name = "test_drv",
47 	.platdata = &test_pdata[0],
48 };
49 
50 U_BOOT_DEVICE(dm_test_info2) = {
51 	.name = "test_drv",
52 	.platdata = &test_pdata[1],
53 };
54 
55 U_BOOT_DEVICE(dm_test_info3) = {
56 	.name = "test_drv",
57 	.platdata = &test_pdata[2],
58 };
59 
60 static struct driver_info driver_info_manual = {
61 	.name = "test_manual_drv",
62 	.platdata = &test_pdata_manual,
63 };
64 
65 static struct driver_info driver_info_pre_reloc = {
66 	.name = "test_pre_reloc_drv",
67 	.platdata = &test_pdata_pre_reloc,
68 };
69 
70 static struct driver_info driver_info_act_dma = {
71 	.name = "test_act_dma_drv",
72 };
73 
74 void dm_leak_check_start(struct unit_test_state *uts)
75 {
76 	uts->start = mallinfo();
77 	if (!uts->start.uordblks)
78 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
79 }
80 
81 int dm_leak_check_end(struct unit_test_state *uts)
82 {
83 	struct mallinfo end;
84 	int id, diff;
85 
86 	/* Don't delete the root class, since we started with that */
87 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
88 		struct uclass *uc;
89 
90 		uc = uclass_find(id);
91 		if (!uc)
92 			continue;
93 		ut_assertok(uclass_destroy(uc));
94 	}
95 
96 	end = mallinfo();
97 	diff = end.uordblks - uts->start.uordblks;
98 	if (diff > 0)
99 		printf("Leak: lost %#xd bytes\n", diff);
100 	else if (diff < 0)
101 		printf("Leak: gained %#xd bytes\n", -diff);
102 	ut_asserteq(uts->start.uordblks, end.uordblks);
103 
104 	return 0;
105 }
106 
107 /* Test that binding with platdata occurs correctly */
108 static int dm_test_autobind(struct unit_test_state *uts)
109 {
110 	struct dm_test_state *dms = uts->priv;
111 	struct udevice *dev;
112 
113 	/*
114 	 * We should have a single class (UCLASS_ROOT) and a single root
115 	 * device with no children.
116 	 */
117 	ut_assert(dms->root);
118 	ut_asserteq(1, list_count_items(&gd->uclass_root));
119 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
120 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
121 
122 	ut_assertok(dm_scan_platdata(false));
123 
124 	/* We should have our test class now at least, plus more children */
125 	ut_assert(1 < list_count_items(&gd->uclass_root));
126 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
127 
128 	/* Our 3 dm_test_infox children should be bound to the test uclass */
129 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
130 
131 	/* No devices should be probed */
132 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
133 		ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
134 
135 	/* Our test driver should have been bound 3 times */
136 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
137 
138 	return 0;
139 }
140 DM_TEST(dm_test_autobind, 0);
141 
142 /* Test that binding with uclass platdata allocation occurs correctly */
143 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
144 {
145 	struct dm_test_perdev_uc_pdata *uc_pdata;
146 	struct udevice *dev;
147 	struct uclass *uc;
148 
149 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
150 	ut_assert(uc);
151 
152 	/**
153 	 * Test if test uclass driver requires allocation for the uclass
154 	 * platform data and then check the dev->uclass_platdata pointer.
155 	 */
156 	ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
157 
158 	for (uclass_find_first_device(UCLASS_TEST, &dev);
159 	     dev;
160 	     uclass_find_next_device(&dev)) {
161 		ut_assert(dev);
162 
163 		uc_pdata = dev_get_uclass_platdata(dev);
164 		ut_assert(uc_pdata);
165 	}
166 
167 	return 0;
168 }
169 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
170 
171 /* Test that binding with uclass platdata setting occurs correctly */
172 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
173 {
174 	struct dm_test_perdev_uc_pdata *uc_pdata;
175 	struct udevice *dev;
176 
177 	/**
178 	 * In the test_postbind() method of test uclass driver, the uclass
179 	 * platform data should be set to three test int values - test it.
180 	 */
181 	for (uclass_find_first_device(UCLASS_TEST, &dev);
182 	     dev;
183 	     uclass_find_next_device(&dev)) {
184 		ut_assert(dev);
185 
186 		uc_pdata = dev_get_uclass_platdata(dev);
187 		ut_assert(uc_pdata);
188 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
189 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
190 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
191 	}
192 
193 	return 0;
194 }
195 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
196 
197 /* Test that autoprobe finds all the expected devices */
198 static int dm_test_autoprobe(struct unit_test_state *uts)
199 {
200 	struct dm_test_state *dms = uts->priv;
201 	int expected_base_add;
202 	struct udevice *dev;
203 	struct uclass *uc;
204 	int i;
205 
206 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
207 	ut_assert(uc);
208 
209 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
210 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
211 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
212 
213 	/* The root device should not be activated until needed */
214 	ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
215 
216 	/*
217 	 * We should be able to find the three test devices, and they should
218 	 * all be activated as they are used (lazy activation, required by
219 	 * U-Boot)
220 	 */
221 	for (i = 0; i < 3; i++) {
222 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
223 		ut_assert(dev);
224 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
225 			   "Driver %d/%s already activated", i, dev->name);
226 
227 		/* This should activate it */
228 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
229 		ut_assert(dev);
230 		ut_assert(dev->flags & DM_FLAG_ACTIVATED);
231 
232 		/* Activating a device should activate the root device */
233 		if (!i)
234 			ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
235 	}
236 
237 	/*
238 	 * Our 3 dm_test_info children should be passed to pre_probe and
239 	 * post_probe
240 	 */
241 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
242 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
243 
244 	/* Also we can check the per-device data */
245 	expected_base_add = 0;
246 	for (i = 0; i < 3; i++) {
247 		struct dm_test_uclass_perdev_priv *priv;
248 		struct dm_test_pdata *pdata;
249 
250 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
251 		ut_assert(dev);
252 
253 		priv = dev_get_uclass_priv(dev);
254 		ut_assert(priv);
255 		ut_asserteq(expected_base_add, priv->base_add);
256 
257 		pdata = dev->platdata;
258 		expected_base_add += pdata->ping_add;
259 	}
260 
261 	return 0;
262 }
263 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
264 
265 /* Check that we see the correct platdata in each device */
266 static int dm_test_platdata(struct unit_test_state *uts)
267 {
268 	const struct dm_test_pdata *pdata;
269 	struct udevice *dev;
270 	int i;
271 
272 	for (i = 0; i < 3; i++) {
273 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
274 		ut_assert(dev);
275 		pdata = dev->platdata;
276 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
277 	}
278 
279 	return 0;
280 }
281 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
282 
283 /* Test that we can bind, probe, remove, unbind a driver */
284 static int dm_test_lifecycle(struct unit_test_state *uts)
285 {
286 	struct dm_test_state *dms = uts->priv;
287 	int op_count[DM_TEST_OP_COUNT];
288 	struct udevice *dev, *test_dev;
289 	int pingret;
290 	int ret;
291 
292 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
293 
294 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
295 					&dev));
296 	ut_assert(dev);
297 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
298 			== op_count[DM_TEST_OP_BIND] + 1);
299 	ut_assert(!dev->priv);
300 
301 	/* Probe the device - it should fail allocating private data */
302 	dms->force_fail_alloc = 1;
303 	ret = device_probe(dev);
304 	ut_assert(ret == -ENOMEM);
305 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
306 			== op_count[DM_TEST_OP_PROBE] + 1);
307 	ut_assert(!dev->priv);
308 
309 	/* Try again without the alloc failure */
310 	dms->force_fail_alloc = 0;
311 	ut_assertok(device_probe(dev));
312 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
313 			== op_count[DM_TEST_OP_PROBE] + 2);
314 	ut_assert(dev->priv);
315 
316 	/* This should be device 3 in the uclass */
317 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
318 	ut_assert(dev == test_dev);
319 
320 	/* Try ping */
321 	ut_assertok(test_ping(dev, 100, &pingret));
322 	ut_assert(pingret == 102);
323 
324 	/* Now remove device 3 */
325 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
326 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
327 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
328 
329 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
330 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
331 	ut_assertok(device_unbind(dev));
332 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
333 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
334 
335 	return 0;
336 }
337 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
338 
339 /* Test that we can bind/unbind and the lists update correctly */
340 static int dm_test_ordering(struct unit_test_state *uts)
341 {
342 	struct dm_test_state *dms = uts->priv;
343 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
344 	int pingret;
345 
346 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
347 					&dev));
348 	ut_assert(dev);
349 
350 	/* Bind two new devices (numbers 4 and 5) */
351 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
352 					&dev_penultimate));
353 	ut_assert(dev_penultimate);
354 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
355 					&dev_last));
356 	ut_assert(dev_last);
357 
358 	/* Now remove device 3 */
359 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
360 	ut_assertok(device_unbind(dev));
361 
362 	/* The device numbering should have shifted down one */
363 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
364 	ut_assert(dev_penultimate == test_dev);
365 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
366 	ut_assert(dev_last == test_dev);
367 
368 	/* Add back the original device 3, now in position 5 */
369 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
370 					&dev));
371 	ut_assert(dev);
372 
373 	/* Try ping */
374 	ut_assertok(test_ping(dev, 100, &pingret));
375 	ut_assert(pingret == 102);
376 
377 	/* Remove 3 and 4 */
378 	ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
379 	ut_assertok(device_unbind(dev_penultimate));
380 	ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
381 	ut_assertok(device_unbind(dev_last));
382 
383 	/* Our device should now be in position 3 */
384 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
385 	ut_assert(dev == test_dev);
386 
387 	/* Now remove device 3 */
388 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
389 	ut_assertok(device_unbind(dev));
390 
391 	return 0;
392 }
393 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
394 
395 /* Check that we can perform operations on a device (do a ping) */
396 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
397 			uint32_t base, struct dm_test_priv *priv)
398 {
399 	int expected;
400 	int pingret;
401 
402 	/* Getting the child device should allocate platdata / priv */
403 	ut_assertok(testfdt_ping(dev, 10, &pingret));
404 	ut_assert(dev->priv);
405 	ut_assert(dev->platdata);
406 
407 	expected = 10 + base;
408 	ut_asserteq(expected, pingret);
409 
410 	/* Do another ping */
411 	ut_assertok(testfdt_ping(dev, 20, &pingret));
412 	expected = 20 + base;
413 	ut_asserteq(expected, pingret);
414 
415 	/* Now check the ping_total */
416 	priv = dev->priv;
417 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
418 		    priv->ping_total);
419 
420 	return 0;
421 }
422 
423 /* Check that we can perform operations on devices */
424 static int dm_test_operations(struct unit_test_state *uts)
425 {
426 	struct udevice *dev;
427 	int i;
428 
429 	/*
430 	 * Now check that the ping adds are what we expect. This is using the
431 	 * ping-add property in each node.
432 	 */
433 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
434 		uint32_t base;
435 
436 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
437 
438 		/*
439 		 * Get the 'reg' property, which tells us what the ping add
440 		 * should be. We don't use the platdata because we want
441 		 * to test the code that sets that up (testfdt_drv_probe()).
442 		 */
443 		base = test_pdata[i].ping_add;
444 		debug("dev=%d, base=%d\n", i, base);
445 
446 		ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
447 	}
448 
449 	return 0;
450 }
451 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
452 
453 /* Remove all drivers and check that things work */
454 static int dm_test_remove(struct unit_test_state *uts)
455 {
456 	struct udevice *dev;
457 	int i;
458 
459 	for (i = 0; i < 3; i++) {
460 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
461 		ut_assert(dev);
462 		ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
463 			   "Driver %d/%s not activated", i, dev->name);
464 		ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
465 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
466 			   "Driver %d/%s should have deactivated", i,
467 			   dev->name);
468 		ut_assert(!dev->priv);
469 	}
470 
471 	return 0;
472 }
473 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
474 
475 /* Remove and recreate everything, check for memory leaks */
476 static int dm_test_leak(struct unit_test_state *uts)
477 {
478 	int i;
479 
480 	for (i = 0; i < 2; i++) {
481 		struct udevice *dev;
482 		int ret;
483 		int id;
484 
485 		dm_leak_check_start(uts);
486 
487 		ut_assertok(dm_scan_platdata(false));
488 		ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
489 
490 		/* Scanning the uclass is enough to probe all the devices */
491 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
492 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
493 			     dev;
494 			     ret = uclass_next_device(&dev))
495 				;
496 			ut_assertok(ret);
497 		}
498 
499 		ut_assertok(dm_leak_check_end(uts));
500 	}
501 
502 	return 0;
503 }
504 DM_TEST(dm_test_leak, 0);
505 
506 /* Test uclass init/destroy methods */
507 static int dm_test_uclass(struct unit_test_state *uts)
508 {
509 	struct uclass *uc;
510 
511 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
512 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
513 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
514 	ut_assert(uc->priv);
515 
516 	ut_assertok(uclass_destroy(uc));
517 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
518 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
519 
520 	return 0;
521 }
522 DM_TEST(dm_test_uclass, 0);
523 
524 /**
525  * create_children() - Create children of a parent node
526  *
527  * @dms:	Test system state
528  * @parent:	Parent device
529  * @count:	Number of children to create
530  * @key:	Key value to put in first child. Subsequence children
531  *		receive an incrementing value
532  * @child:	If not NULL, then the child device pointers are written into
533  *		this array.
534  * @return 0 if OK, -ve on error
535  */
536 static int create_children(struct unit_test_state *uts, struct udevice *parent,
537 			   int count, int key, struct udevice *child[])
538 {
539 	struct udevice *dev;
540 	int i;
541 
542 	for (i = 0; i < count; i++) {
543 		struct dm_test_pdata *pdata;
544 
545 		ut_assertok(device_bind_by_name(parent, false,
546 						&driver_info_manual, &dev));
547 		pdata = calloc(1, sizeof(*pdata));
548 		pdata->ping_add = key + i;
549 		dev->platdata = pdata;
550 		if (child)
551 			child[i] = dev;
552 	}
553 
554 	return 0;
555 }
556 
557 #define NODE_COUNT	10
558 
559 static int dm_test_children(struct unit_test_state *uts)
560 {
561 	struct dm_test_state *dms = uts->priv;
562 	struct udevice *top[NODE_COUNT];
563 	struct udevice *child[NODE_COUNT];
564 	struct udevice *grandchild[NODE_COUNT];
565 	struct udevice *dev;
566 	int total;
567 	int ret;
568 	int i;
569 
570 	/* We don't care about the numbering for this test */
571 	dms->skip_post_probe = 1;
572 
573 	ut_assert(NODE_COUNT > 5);
574 
575 	/* First create 10 top-level children */
576 	ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
577 
578 	/* Now a few have their own children */
579 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
580 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
581 
582 	/* And grandchildren */
583 	for (i = 0; i < NODE_COUNT; i++)
584 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
585 					    i == 2 ? grandchild : NULL));
586 
587 	/* Check total number of devices */
588 	total = NODE_COUNT * (3 + NODE_COUNT);
589 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
590 
591 	/* Try probing one of the grandchildren */
592 	ut_assertok(uclass_get_device(UCLASS_TEST,
593 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
594 	ut_asserteq_ptr(grandchild[0], dev);
595 
596 	/*
597 	 * This should have probed the child and top node also, for a total
598 	 * of 3 nodes.
599 	 */
600 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
601 
602 	/* Probe the other grandchildren */
603 	for (i = 1; i < NODE_COUNT; i++)
604 		ut_assertok(device_probe(grandchild[i]));
605 
606 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
607 
608 	/* Probe everything */
609 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
610 	     dev;
611 	     ret = uclass_next_device(&dev))
612 		;
613 	ut_assertok(ret);
614 
615 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
616 
617 	/* Remove a top-level child and check that the children are removed */
618 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
619 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
620 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
621 
622 	/* Try one with grandchildren */
623 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
624 	ut_asserteq_ptr(dev, top[5]);
625 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
626 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
627 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
628 
629 	/* Try the same with unbind */
630 	ut_assertok(device_unbind(top[2]));
631 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
632 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
633 
634 	/* Try one with grandchildren */
635 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
636 	ut_asserteq_ptr(dev, top[6]);
637 	ut_assertok(device_unbind(top[5]));
638 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
639 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
640 
641 	return 0;
642 }
643 DM_TEST(dm_test_children, 0);
644 
645 /* Test that pre-relocation devices work as expected */
646 static int dm_test_pre_reloc(struct unit_test_state *uts)
647 {
648 	struct dm_test_state *dms = uts->priv;
649 	struct udevice *dev;
650 
651 	/* The normal driver should refuse to bind before relocation */
652 	ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
653 						&driver_info_manual, &dev));
654 
655 	/* But this one is marked pre-reloc */
656 	ut_assertok(device_bind_by_name(dms->root, true,
657 					&driver_info_pre_reloc, &dev));
658 
659 	return 0;
660 }
661 DM_TEST(dm_test_pre_reloc, 0);
662 
663 /*
664  * Test that removal of devices, either via the "normal" device_remove()
665  * API or via the device driver selective flag works as expected
666  */
667 static int dm_test_remove_active_dma(struct unit_test_state *uts)
668 {
669 	struct dm_test_state *dms = uts->priv;
670 	struct udevice *dev;
671 
672 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
673 					&dev));
674 	ut_assert(dev);
675 
676 	/* Probe the device */
677 	ut_assertok(device_probe(dev));
678 
679 	/* Test if device is active right now */
680 	ut_asserteq(true, device_active(dev));
681 
682 	/* Remove the device via selective remove flag */
683 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
684 
685 	/* Test if device is inactive right now */
686 	ut_asserteq(false, device_active(dev));
687 
688 	/* Probe the device again */
689 	ut_assertok(device_probe(dev));
690 
691 	/* Test if device is active right now */
692 	ut_asserteq(true, device_active(dev));
693 
694 	/* Remove the device via "normal" remove API */
695 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
696 
697 	/* Test if device is inactive right now */
698 	ut_asserteq(false, device_active(dev));
699 
700 	/*
701 	 * Test if a device without the active DMA flags is not removed upon
702 	 * the active DMA remove call
703 	 */
704 	ut_assertok(device_unbind(dev));
705 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
706 					&dev));
707 	ut_assert(dev);
708 
709 	/* Probe the device */
710 	ut_assertok(device_probe(dev));
711 
712 	/* Test if device is active right now */
713 	ut_asserteq(true, device_active(dev));
714 
715 	/* Remove the device via selective remove flag */
716 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
717 
718 	/* Test if device is still active right now */
719 	ut_asserteq(true, device_active(dev));
720 
721 	return 0;
722 }
723 DM_TEST(dm_test_remove_active_dma, 0);
724 
725 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
726 {
727 	struct uclass *uc;
728 
729 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
730 
731 	gd->dm_root = NULL;
732 	gd->dm_root_f = NULL;
733 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
734 
735 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
736 
737 	return 0;
738 }
739 DM_TEST(dm_test_uclass_before_ready, 0);
740 
741 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
742 {
743 	struct udevice *dev;
744 	int ret;
745 
746 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
747 	     dev;
748 	     ret = uclass_find_next_device(&dev)) {
749 		ut_assert(!ret);
750 		ut_assert(dev);
751 	}
752 
753 	return 0;
754 }
755 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
756 
757 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
758 {
759 	struct udevice *finddev;
760 	struct udevice *testdev;
761 	int findret, ret;
762 
763 	/*
764 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
765 	 * use its name and try to find it by uclass_find_device_by_name().
766 	 * Then, on success check if:
767 	 * - current 'testdev' name is equal to the returned 'finddev' name
768 	 * - current 'testdev' pointer is equal to the returned 'finddev'
769 	 *
770 	 * We assume that, each uclass's device name is unique, so if not, then
771 	 * this will fail on checking condition: testdev == finddev, since the
772 	 * uclass_find_device_by_name(), returns the first device by given name.
773 	*/
774 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
775 	     testdev;
776 	     ret = uclass_find_next_device(&testdev)) {
777 		ut_assertok(ret);
778 		ut_assert(testdev);
779 
780 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
781 						     testdev->name,
782 						     &finddev);
783 
784 		ut_assertok(findret);
785 		ut_assert(testdev);
786 		ut_asserteq_str(testdev->name, finddev->name);
787 		ut_asserteq_ptr(testdev, finddev);
788 	}
789 
790 	return 0;
791 }
792 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
793 
794 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
795 {
796 	struct udevice *dev;
797 	int ret;
798 
799 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
800 	     dev;
801 	     ret = uclass_next_device(&dev)) {
802 		ut_assert(!ret);
803 		ut_assert(dev);
804 		ut_assert(device_active(dev));
805 	}
806 
807 	return 0;
808 }
809 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
810 
811 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
812 {
813 	struct udevice *finddev;
814 	struct udevice *testdev;
815 	int ret, findret;
816 
817 	/*
818 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
819 	 * use its name and try to get it by uclass_get_device_by_name().
820 	 * On success check if:
821 	 * - returned finddev' is active
822 	 * - current 'testdev' name is equal to the returned 'finddev' name
823 	 * - current 'testdev' pointer is equal to the returned 'finddev'
824 	 *
825 	 * We asserts that the 'testdev' is active on each loop entry, so we
826 	 * could be sure that the 'finddev' is activated too, but for sure
827 	 * we check it again.
828 	 *
829 	 * We assume that, each uclass's device name is unique, so if not, then
830 	 * this will fail on checking condition: testdev == finddev, since the
831 	 * uclass_get_device_by_name(), returns the first device by given name.
832 	*/
833 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
834 	     testdev;
835 	     ret = uclass_next_device(&testdev)) {
836 		ut_assertok(ret);
837 		ut_assert(testdev);
838 		ut_assert(device_active(testdev));
839 
840 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
841 						    testdev->name,
842 						    &finddev);
843 
844 		ut_assertok(findret);
845 		ut_assert(finddev);
846 		ut_assert(device_active(finddev));
847 		ut_asserteq_str(testdev->name, finddev->name);
848 		ut_asserteq_ptr(testdev, finddev);
849 	}
850 
851 	return 0;
852 }
853 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
854 
855 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
856 {
857 	struct udevice *dev;
858 
859 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
860 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
861 
862 	return 0;
863 }
864 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
865 
866 static int dm_test_uclass_names(struct unit_test_state *uts)
867 {
868 	ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
869 	ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
870 
871 	return 0;
872 }
873 DM_TEST(dm_test_uclass_names, DM_TESTF_SCAN_PDATA);
874