1 /* 2 * Tests for the core driver model code 3 * 4 * Copyright (c) 2013 Google, Inc 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 #include <common.h> 10 #include <errno.h> 11 #include <dm.h> 12 #include <fdtdec.h> 13 #include <malloc.h> 14 #include <dm/device-internal.h> 15 #include <dm/root.h> 16 #include <dm/util.h> 17 #include <dm/test.h> 18 #include <dm/uclass-internal.h> 19 #include <test/ut.h> 20 21 DECLARE_GLOBAL_DATA_PTR; 22 23 enum { 24 TEST_INTVAL1 = 0, 25 TEST_INTVAL2 = 3, 26 TEST_INTVAL3 = 6, 27 TEST_INTVAL_MANUAL = 101112, 28 TEST_INTVAL_PRE_RELOC = 7, 29 }; 30 31 static const struct dm_test_pdata test_pdata[] = { 32 { .ping_add = TEST_INTVAL1, }, 33 { .ping_add = TEST_INTVAL2, }, 34 { .ping_add = TEST_INTVAL3, }, 35 }; 36 37 static const struct dm_test_pdata test_pdata_manual = { 38 .ping_add = TEST_INTVAL_MANUAL, 39 }; 40 41 static const struct dm_test_pdata test_pdata_pre_reloc = { 42 .ping_add = TEST_INTVAL_PRE_RELOC, 43 }; 44 45 U_BOOT_DEVICE(dm_test_info1) = { 46 .name = "test_drv", 47 .platdata = &test_pdata[0], 48 }; 49 50 U_BOOT_DEVICE(dm_test_info2) = { 51 .name = "test_drv", 52 .platdata = &test_pdata[1], 53 }; 54 55 U_BOOT_DEVICE(dm_test_info3) = { 56 .name = "test_drv", 57 .platdata = &test_pdata[2], 58 }; 59 60 static struct driver_info driver_info_manual = { 61 .name = "test_manual_drv", 62 .platdata = &test_pdata_manual, 63 }; 64 65 static struct driver_info driver_info_pre_reloc = { 66 .name = "test_pre_reloc_drv", 67 .platdata = &test_pdata_manual, 68 }; 69 70 void dm_leak_check_start(struct unit_test_state *uts) 71 { 72 uts->start = mallinfo(); 73 if (!uts->start.uordblks) 74 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n"); 75 } 76 77 int dm_leak_check_end(struct unit_test_state *uts) 78 { 79 struct mallinfo end; 80 int id; 81 82 /* Don't delete the root class, since we started with that */ 83 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) { 84 struct uclass *uc; 85 86 uc = uclass_find(id); 87 if (!uc) 88 continue; 89 ut_assertok(uclass_destroy(uc)); 90 } 91 92 end = mallinfo(); 93 ut_asserteq(uts->start.uordblks, end.uordblks); 94 95 return 0; 96 } 97 98 /* Test that binding with platdata occurs correctly */ 99 static int dm_test_autobind(struct unit_test_state *uts) 100 { 101 struct dm_test_state *dms = uts->priv; 102 struct udevice *dev; 103 104 /* 105 * We should have a single class (UCLASS_ROOT) and a single root 106 * device with no children. 107 */ 108 ut_assert(dms->root); 109 ut_asserteq(1, list_count_items(&gd->uclass_root)); 110 ut_asserteq(0, list_count_items(&gd->dm_root->child_head)); 111 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); 112 113 ut_assertok(dm_scan_platdata(false)); 114 115 /* We should have our test class now at least, plus more children */ 116 ut_assert(1 < list_count_items(&gd->uclass_root)); 117 ut_assert(0 < list_count_items(&gd->dm_root->child_head)); 118 119 /* Our 3 dm_test_infox children should be bound to the test uclass */ 120 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); 121 122 /* No devices should be probed */ 123 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node) 124 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED)); 125 126 /* Our test driver should have been bound 3 times */ 127 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3); 128 129 return 0; 130 } 131 DM_TEST(dm_test_autobind, 0); 132 133 /* Test that binding with uclass platdata allocation occurs correctly */ 134 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts) 135 { 136 struct dm_test_perdev_uc_pdata *uc_pdata; 137 struct udevice *dev; 138 struct uclass *uc; 139 140 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 141 ut_assert(uc); 142 143 /** 144 * Test if test uclass driver requires allocation for the uclass 145 * platform data and then check the dev->uclass_platdata pointer. 146 */ 147 ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size); 148 149 for (uclass_find_first_device(UCLASS_TEST, &dev); 150 dev; 151 uclass_find_next_device(&dev)) { 152 ut_assert(dev); 153 154 uc_pdata = dev_get_uclass_platdata(dev); 155 ut_assert(uc_pdata); 156 } 157 158 return 0; 159 } 160 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA); 161 162 /* Test that binding with uclass platdata setting occurs correctly */ 163 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts) 164 { 165 struct dm_test_perdev_uc_pdata *uc_pdata; 166 struct udevice *dev; 167 168 /** 169 * In the test_postbind() method of test uclass driver, the uclass 170 * platform data should be set to three test int values - test it. 171 */ 172 for (uclass_find_first_device(UCLASS_TEST, &dev); 173 dev; 174 uclass_find_next_device(&dev)) { 175 ut_assert(dev); 176 177 uc_pdata = dev_get_uclass_platdata(dev); 178 ut_assert(uc_pdata); 179 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1); 180 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2); 181 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3); 182 } 183 184 return 0; 185 } 186 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA); 187 188 /* Test that autoprobe finds all the expected devices */ 189 static int dm_test_autoprobe(struct unit_test_state *uts) 190 { 191 struct dm_test_state *dms = uts->priv; 192 int expected_base_add; 193 struct udevice *dev; 194 struct uclass *uc; 195 int i; 196 197 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 198 ut_assert(uc); 199 200 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); 201 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); 202 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); 203 204 /* The root device should not be activated until needed */ 205 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED); 206 207 /* 208 * We should be able to find the three test devices, and they should 209 * all be activated as they are used (lazy activation, required by 210 * U-Boot) 211 */ 212 for (i = 0; i < 3; i++) { 213 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 214 ut_assert(dev); 215 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED), 216 "Driver %d/%s already activated", i, dev->name); 217 218 /* This should activate it */ 219 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); 220 ut_assert(dev); 221 ut_assert(dev->flags & DM_FLAG_ACTIVATED); 222 223 /* Activating a device should activate the root device */ 224 if (!i) 225 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED); 226 } 227 228 /* 229 * Our 3 dm_test_info children should be passed to pre_probe and 230 * post_probe 231 */ 232 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); 233 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); 234 235 /* Also we can check the per-device data */ 236 expected_base_add = 0; 237 for (i = 0; i < 3; i++) { 238 struct dm_test_uclass_perdev_priv *priv; 239 struct dm_test_pdata *pdata; 240 241 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 242 ut_assert(dev); 243 244 priv = dev_get_uclass_priv(dev); 245 ut_assert(priv); 246 ut_asserteq(expected_base_add, priv->base_add); 247 248 pdata = dev->platdata; 249 expected_base_add += pdata->ping_add; 250 } 251 252 return 0; 253 } 254 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA); 255 256 /* Check that we see the correct platdata in each device */ 257 static int dm_test_platdata(struct unit_test_state *uts) 258 { 259 const struct dm_test_pdata *pdata; 260 struct udevice *dev; 261 int i; 262 263 for (i = 0; i < 3; i++) { 264 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 265 ut_assert(dev); 266 pdata = dev->platdata; 267 ut_assert(pdata->ping_add == test_pdata[i].ping_add); 268 } 269 270 return 0; 271 } 272 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA); 273 274 /* Test that we can bind, probe, remove, unbind a driver */ 275 static int dm_test_lifecycle(struct unit_test_state *uts) 276 { 277 struct dm_test_state *dms = uts->priv; 278 int op_count[DM_TEST_OP_COUNT]; 279 struct udevice *dev, *test_dev; 280 int pingret; 281 int ret; 282 283 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count)); 284 285 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 286 &dev)); 287 ut_assert(dev); 288 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] 289 == op_count[DM_TEST_OP_BIND] + 1); 290 ut_assert(!dev->priv); 291 292 /* Probe the device - it should fail allocating private data */ 293 dms->force_fail_alloc = 1; 294 ret = device_probe(dev); 295 ut_assert(ret == -ENOMEM); 296 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] 297 == op_count[DM_TEST_OP_PROBE] + 1); 298 ut_assert(!dev->priv); 299 300 /* Try again without the alloc failure */ 301 dms->force_fail_alloc = 0; 302 ut_assertok(device_probe(dev)); 303 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] 304 == op_count[DM_TEST_OP_PROBE] + 2); 305 ut_assert(dev->priv); 306 307 /* This should be device 3 in the uclass */ 308 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); 309 ut_assert(dev == test_dev); 310 311 /* Try ping */ 312 ut_assertok(test_ping(dev, 100, &pingret)); 313 ut_assert(pingret == 102); 314 315 /* Now remove device 3 */ 316 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); 317 ut_assertok(device_remove(dev)); 318 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); 319 320 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 321 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); 322 ut_assertok(device_unbind(dev)); 323 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 324 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); 325 326 return 0; 327 } 328 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST); 329 330 /* Test that we can bind/unbind and the lists update correctly */ 331 static int dm_test_ordering(struct unit_test_state *uts) 332 { 333 struct dm_test_state *dms = uts->priv; 334 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev; 335 int pingret; 336 337 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 338 &dev)); 339 ut_assert(dev); 340 341 /* Bind two new devices (numbers 4 and 5) */ 342 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 343 &dev_penultimate)); 344 ut_assert(dev_penultimate); 345 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 346 &dev_last)); 347 ut_assert(dev_last); 348 349 /* Now remove device 3 */ 350 ut_assertok(device_remove(dev)); 351 ut_assertok(device_unbind(dev)); 352 353 /* The device numbering should have shifted down one */ 354 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); 355 ut_assert(dev_penultimate == test_dev); 356 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev)); 357 ut_assert(dev_last == test_dev); 358 359 /* Add back the original device 3, now in position 5 */ 360 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 361 &dev)); 362 ut_assert(dev); 363 364 /* Try ping */ 365 ut_assertok(test_ping(dev, 100, &pingret)); 366 ut_assert(pingret == 102); 367 368 /* Remove 3 and 4 */ 369 ut_assertok(device_remove(dev_penultimate)); 370 ut_assertok(device_unbind(dev_penultimate)); 371 ut_assertok(device_remove(dev_last)); 372 ut_assertok(device_unbind(dev_last)); 373 374 /* Our device should now be in position 3 */ 375 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); 376 ut_assert(dev == test_dev); 377 378 /* Now remove device 3 */ 379 ut_assertok(device_remove(dev)); 380 ut_assertok(device_unbind(dev)); 381 382 return 0; 383 } 384 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA); 385 386 /* Check that we can perform operations on a device (do a ping) */ 387 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev, 388 uint32_t base, struct dm_test_priv *priv) 389 { 390 int expected; 391 int pingret; 392 393 /* Getting the child device should allocate platdata / priv */ 394 ut_assertok(testfdt_ping(dev, 10, &pingret)); 395 ut_assert(dev->priv); 396 ut_assert(dev->platdata); 397 398 expected = 10 + base; 399 ut_asserteq(expected, pingret); 400 401 /* Do another ping */ 402 ut_assertok(testfdt_ping(dev, 20, &pingret)); 403 expected = 20 + base; 404 ut_asserteq(expected, pingret); 405 406 /* Now check the ping_total */ 407 priv = dev->priv; 408 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2, 409 priv->ping_total); 410 411 return 0; 412 } 413 414 /* Check that we can perform operations on devices */ 415 static int dm_test_operations(struct unit_test_state *uts) 416 { 417 struct udevice *dev; 418 int i; 419 420 /* 421 * Now check that the ping adds are what we expect. This is using the 422 * ping-add property in each node. 423 */ 424 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) { 425 uint32_t base; 426 427 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); 428 429 /* 430 * Get the 'reg' property, which tells us what the ping add 431 * should be. We don't use the platdata because we want 432 * to test the code that sets that up (testfdt_drv_probe()). 433 */ 434 base = test_pdata[i].ping_add; 435 debug("dev=%d, base=%d\n", i, base); 436 437 ut_assert(!dm_check_operations(uts, dev, base, dev->priv)); 438 } 439 440 return 0; 441 } 442 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA); 443 444 /* Remove all drivers and check that things work */ 445 static int dm_test_remove(struct unit_test_state *uts) 446 { 447 struct udevice *dev; 448 int i; 449 450 for (i = 0; i < 3; i++) { 451 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 452 ut_assert(dev); 453 ut_assertf(dev->flags & DM_FLAG_ACTIVATED, 454 "Driver %d/%s not activated", i, dev->name); 455 ut_assertok(device_remove(dev)); 456 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED), 457 "Driver %d/%s should have deactivated", i, 458 dev->name); 459 ut_assert(!dev->priv); 460 } 461 462 return 0; 463 } 464 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST); 465 466 /* Remove and recreate everything, check for memory leaks */ 467 static int dm_test_leak(struct unit_test_state *uts) 468 { 469 int i; 470 471 for (i = 0; i < 2; i++) { 472 struct udevice *dev; 473 int ret; 474 int id; 475 476 dm_leak_check_start(uts); 477 478 ut_assertok(dm_scan_platdata(false)); 479 ut_assertok(dm_scan_fdt(gd->fdt_blob, false)); 480 481 /* Scanning the uclass is enough to probe all the devices */ 482 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) { 483 for (ret = uclass_first_device(UCLASS_TEST, &dev); 484 dev; 485 ret = uclass_next_device(&dev)) 486 ; 487 ut_assertok(ret); 488 } 489 490 ut_assertok(dm_leak_check_end(uts)); 491 } 492 493 return 0; 494 } 495 DM_TEST(dm_test_leak, 0); 496 497 /* Test uclass init/destroy methods */ 498 static int dm_test_uclass(struct unit_test_state *uts) 499 { 500 struct uclass *uc; 501 502 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 503 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); 504 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); 505 ut_assert(uc->priv); 506 507 ut_assertok(uclass_destroy(uc)); 508 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); 509 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); 510 511 return 0; 512 } 513 DM_TEST(dm_test_uclass, 0); 514 515 /** 516 * create_children() - Create children of a parent node 517 * 518 * @dms: Test system state 519 * @parent: Parent device 520 * @count: Number of children to create 521 * @key: Key value to put in first child. Subsequence children 522 * receive an incrementing value 523 * @child: If not NULL, then the child device pointers are written into 524 * this array. 525 * @return 0 if OK, -ve on error 526 */ 527 static int create_children(struct unit_test_state *uts, struct udevice *parent, 528 int count, int key, struct udevice *child[]) 529 { 530 struct udevice *dev; 531 int i; 532 533 for (i = 0; i < count; i++) { 534 struct dm_test_pdata *pdata; 535 536 ut_assertok(device_bind_by_name(parent, false, 537 &driver_info_manual, &dev)); 538 pdata = calloc(1, sizeof(*pdata)); 539 pdata->ping_add = key + i; 540 dev->platdata = pdata; 541 if (child) 542 child[i] = dev; 543 } 544 545 return 0; 546 } 547 548 #define NODE_COUNT 10 549 550 static int dm_test_children(struct unit_test_state *uts) 551 { 552 struct dm_test_state *dms = uts->priv; 553 struct udevice *top[NODE_COUNT]; 554 struct udevice *child[NODE_COUNT]; 555 struct udevice *grandchild[NODE_COUNT]; 556 struct udevice *dev; 557 int total; 558 int ret; 559 int i; 560 561 /* We don't care about the numbering for this test */ 562 dms->skip_post_probe = 1; 563 564 ut_assert(NODE_COUNT > 5); 565 566 /* First create 10 top-level children */ 567 ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top)); 568 569 /* Now a few have their own children */ 570 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL)); 571 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child)); 572 573 /* And grandchildren */ 574 for (i = 0; i < NODE_COUNT; i++) 575 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i, 576 i == 2 ? grandchild : NULL)); 577 578 /* Check total number of devices */ 579 total = NODE_COUNT * (3 + NODE_COUNT); 580 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); 581 582 /* Try probing one of the grandchildren */ 583 ut_assertok(uclass_get_device(UCLASS_TEST, 584 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev)); 585 ut_asserteq_ptr(grandchild[0], dev); 586 587 /* 588 * This should have probed the child and top node also, for a total 589 * of 3 nodes. 590 */ 591 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]); 592 593 /* Probe the other grandchildren */ 594 for (i = 1; i < NODE_COUNT; i++) 595 ut_assertok(device_probe(grandchild[i])); 596 597 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]); 598 599 /* Probe everything */ 600 for (ret = uclass_first_device(UCLASS_TEST, &dev); 601 dev; 602 ret = uclass_next_device(&dev)) 603 ; 604 ut_assertok(ret); 605 606 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]); 607 608 /* Remove a top-level child and check that the children are removed */ 609 ut_assertok(device_remove(top[2])); 610 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]); 611 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0; 612 613 /* Try one with grandchildren */ 614 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); 615 ut_asserteq_ptr(dev, top[5]); 616 ut_assertok(device_remove(dev)); 617 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), 618 dm_testdrv_op_count[DM_TEST_OP_REMOVE]); 619 620 /* Try the same with unbind */ 621 ut_assertok(device_unbind(top[2])); 622 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 623 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0; 624 625 /* Try one with grandchildren */ 626 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); 627 ut_asserteq_ptr(dev, top[6]); 628 ut_assertok(device_unbind(top[5])); 629 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), 630 dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 631 632 return 0; 633 } 634 DM_TEST(dm_test_children, 0); 635 636 /* Test that pre-relocation devices work as expected */ 637 static int dm_test_pre_reloc(struct unit_test_state *uts) 638 { 639 struct dm_test_state *dms = uts->priv; 640 struct udevice *dev; 641 642 /* The normal driver should refuse to bind before relocation */ 643 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true, 644 &driver_info_manual, &dev)); 645 646 /* But this one is marked pre-reloc */ 647 ut_assertok(device_bind_by_name(dms->root, true, 648 &driver_info_pre_reloc, &dev)); 649 650 return 0; 651 } 652 DM_TEST(dm_test_pre_reloc, 0); 653 654 static int dm_test_uclass_before_ready(struct unit_test_state *uts) 655 { 656 struct uclass *uc; 657 658 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 659 660 gd->dm_root = NULL; 661 gd->dm_root_f = NULL; 662 memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root)); 663 664 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST)); 665 666 return 0; 667 } 668 DM_TEST(dm_test_uclass_before_ready, 0); 669 670 static int dm_test_uclass_devices_find(struct unit_test_state *uts) 671 { 672 struct udevice *dev; 673 int ret; 674 675 for (ret = uclass_find_first_device(UCLASS_TEST, &dev); 676 dev; 677 ret = uclass_find_next_device(&dev)) { 678 ut_assert(!ret); 679 ut_assert(dev); 680 } 681 682 return 0; 683 } 684 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA); 685 686 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts) 687 { 688 struct udevice *finddev; 689 struct udevice *testdev; 690 int findret, ret; 691 692 /* 693 * For each test device found in fdt like: "a-test", "b-test", etc., 694 * use its name and try to find it by uclass_find_device_by_name(). 695 * Then, on success check if: 696 * - current 'testdev' name is equal to the returned 'finddev' name 697 * - current 'testdev' pointer is equal to the returned 'finddev' 698 * 699 * We assume that, each uclass's device name is unique, so if not, then 700 * this will fail on checking condition: testdev == finddev, since the 701 * uclass_find_device_by_name(), returns the first device by given name. 702 */ 703 for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev); 704 testdev; 705 ret = uclass_find_next_device(&testdev)) { 706 ut_assertok(ret); 707 ut_assert(testdev); 708 709 findret = uclass_find_device_by_name(UCLASS_TEST_FDT, 710 testdev->name, 711 &finddev); 712 713 ut_assertok(findret); 714 ut_assert(testdev); 715 ut_asserteq_str(testdev->name, finddev->name); 716 ut_asserteq_ptr(testdev, finddev); 717 } 718 719 return 0; 720 } 721 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT); 722 723 static int dm_test_uclass_devices_get(struct unit_test_state *uts) 724 { 725 struct udevice *dev; 726 int ret; 727 728 for (ret = uclass_first_device(UCLASS_TEST, &dev); 729 dev; 730 ret = uclass_next_device(&dev)) { 731 ut_assert(!ret); 732 ut_assert(dev); 733 ut_assert(device_active(dev)); 734 } 735 736 return 0; 737 } 738 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA); 739 740 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts) 741 { 742 struct udevice *finddev; 743 struct udevice *testdev; 744 int ret, findret; 745 746 /* 747 * For each test device found in fdt like: "a-test", "b-test", etc., 748 * use its name and try to get it by uclass_get_device_by_name(). 749 * On success check if: 750 * - returned finddev' is active 751 * - current 'testdev' name is equal to the returned 'finddev' name 752 * - current 'testdev' pointer is equal to the returned 'finddev' 753 * 754 * We asserts that the 'testdev' is active on each loop entry, so we 755 * could be sure that the 'finddev' is activated too, but for sure 756 * we check it again. 757 * 758 * We assume that, each uclass's device name is unique, so if not, then 759 * this will fail on checking condition: testdev == finddev, since the 760 * uclass_get_device_by_name(), returns the first device by given name. 761 */ 762 for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev); 763 testdev; 764 ret = uclass_next_device(&testdev)) { 765 ut_assertok(ret); 766 ut_assert(testdev); 767 ut_assert(device_active(testdev)); 768 769 findret = uclass_get_device_by_name(UCLASS_TEST_FDT, 770 testdev->name, 771 &finddev); 772 773 ut_assertok(findret); 774 ut_assert(finddev); 775 ut_assert(device_active(finddev)); 776 ut_asserteq_str(testdev->name, finddev->name); 777 ut_asserteq_ptr(testdev, finddev); 778 } 779 780 return 0; 781 } 782 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT); 783 784 static int dm_test_device_get_uclass_id(struct unit_test_state *uts) 785 { 786 struct udevice *dev; 787 788 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev)); 789 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev)); 790 791 return 0; 792 } 793 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA); 794