1 /* 2 * Tests for the core driver model code 3 * 4 * Copyright (c) 2013 Google, Inc 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 #include <common.h> 10 #include <errno.h> 11 #include <dm.h> 12 #include <fdtdec.h> 13 #include <malloc.h> 14 #include <dm/device-internal.h> 15 #include <dm/root.h> 16 #include <dm/ut.h> 17 #include <dm/util.h> 18 #include <dm/test.h> 19 #include <dm/uclass-internal.h> 20 21 DECLARE_GLOBAL_DATA_PTR; 22 23 enum { 24 TEST_INTVAL1 = 0, 25 TEST_INTVAL2 = 3, 26 TEST_INTVAL3 = 6, 27 TEST_INTVAL_MANUAL = 101112, 28 TEST_INTVAL_PRE_RELOC = 7, 29 }; 30 31 static const struct dm_test_pdata test_pdata[] = { 32 { .ping_add = TEST_INTVAL1, }, 33 { .ping_add = TEST_INTVAL2, }, 34 { .ping_add = TEST_INTVAL3, }, 35 }; 36 37 static const struct dm_test_pdata test_pdata_manual = { 38 .ping_add = TEST_INTVAL_MANUAL, 39 }; 40 41 static const struct dm_test_pdata test_pdata_pre_reloc = { 42 .ping_add = TEST_INTVAL_PRE_RELOC, 43 }; 44 45 U_BOOT_DEVICE(dm_test_info1) = { 46 .name = "test_drv", 47 .platdata = &test_pdata[0], 48 }; 49 50 U_BOOT_DEVICE(dm_test_info2) = { 51 .name = "test_drv", 52 .platdata = &test_pdata[1], 53 }; 54 55 U_BOOT_DEVICE(dm_test_info3) = { 56 .name = "test_drv", 57 .platdata = &test_pdata[2], 58 }; 59 60 static struct driver_info driver_info_manual = { 61 .name = "test_manual_drv", 62 .platdata = &test_pdata_manual, 63 }; 64 65 static struct driver_info driver_info_pre_reloc = { 66 .name = "test_pre_reloc_drv", 67 .platdata = &test_pdata_manual, 68 }; 69 70 void dm_leak_check_start(struct dm_test_state *dms) 71 { 72 dms->start = mallinfo(); 73 if (!dms->start.uordblks) 74 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n"); 75 } 76 77 int dm_leak_check_end(struct dm_test_state *dms) 78 { 79 struct mallinfo end; 80 int id; 81 82 /* Don't delete the root class, since we started with that */ 83 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) { 84 struct uclass *uc; 85 86 uc = uclass_find(id); 87 if (!uc) 88 continue; 89 ut_assertok(uclass_destroy(uc)); 90 } 91 92 end = mallinfo(); 93 ut_asserteq(dms->start.uordblks, end.uordblks); 94 95 return 0; 96 } 97 98 /* Test that binding with platdata occurs correctly */ 99 static int dm_test_autobind(struct dm_test_state *dms) 100 { 101 struct udevice *dev; 102 103 /* 104 * We should have a single class (UCLASS_ROOT) and a single root 105 * device with no children. 106 */ 107 ut_assert(dms->root); 108 ut_asserteq(1, list_count_items(&gd->uclass_root)); 109 ut_asserteq(0, list_count_items(&gd->dm_root->child_head)); 110 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); 111 112 ut_assertok(dm_scan_platdata(false)); 113 114 /* We should have our test class now at least, plus more children */ 115 ut_assert(1 < list_count_items(&gd->uclass_root)); 116 ut_assert(0 < list_count_items(&gd->dm_root->child_head)); 117 118 /* Our 3 dm_test_infox children should be bound to the test uclass */ 119 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); 120 121 /* No devices should be probed */ 122 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node) 123 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED)); 124 125 /* Our test driver should have been bound 3 times */ 126 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3); 127 128 return 0; 129 } 130 DM_TEST(dm_test_autobind, 0); 131 132 /* Test that binding with uclass platdata allocation occurs correctly */ 133 static int dm_test_autobind_uclass_pdata_alloc(struct dm_test_state *dms) 134 { 135 struct dm_test_perdev_uc_pdata *uc_pdata; 136 struct udevice *dev; 137 struct uclass *uc; 138 139 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 140 ut_assert(uc); 141 142 /** 143 * Test if test uclass driver requires allocation for the uclass 144 * platform data and then check the dev->uclass_platdata pointer. 145 */ 146 ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size); 147 148 for (uclass_find_first_device(UCLASS_TEST, &dev); 149 dev; 150 uclass_find_next_device(&dev)) { 151 ut_assert(dev); 152 153 uc_pdata = dev_get_uclass_platdata(dev); 154 ut_assert(uc_pdata); 155 } 156 157 return 0; 158 } 159 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA); 160 161 /* Test that binding with uclass platdata setting occurs correctly */ 162 static int dm_test_autobind_uclass_pdata_valid(struct dm_test_state *dms) 163 { 164 struct dm_test_perdev_uc_pdata *uc_pdata; 165 struct udevice *dev; 166 167 /** 168 * In the test_postbind() method of test uclass driver, the uclass 169 * platform data should be set to three test int values - test it. 170 */ 171 for (uclass_find_first_device(UCLASS_TEST, &dev); 172 dev; 173 uclass_find_next_device(&dev)) { 174 ut_assert(dev); 175 176 uc_pdata = dev_get_uclass_platdata(dev); 177 ut_assert(uc_pdata); 178 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1); 179 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2); 180 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3); 181 } 182 183 return 0; 184 } 185 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA); 186 187 /* Test that autoprobe finds all the expected devices */ 188 static int dm_test_autoprobe(struct dm_test_state *dms) 189 { 190 int expected_base_add; 191 struct udevice *dev; 192 struct uclass *uc; 193 int i; 194 195 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 196 ut_assert(uc); 197 198 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); 199 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); 200 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); 201 202 /* The root device should not be activated until needed */ 203 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED); 204 205 /* 206 * We should be able to find the three test devices, and they should 207 * all be activated as they are used (lazy activation, required by 208 * U-Boot) 209 */ 210 for (i = 0; i < 3; i++) { 211 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 212 ut_assert(dev); 213 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED), 214 "Driver %d/%s already activated", i, dev->name); 215 216 /* This should activate it */ 217 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); 218 ut_assert(dev); 219 ut_assert(dev->flags & DM_FLAG_ACTIVATED); 220 221 /* Activating a device should activate the root device */ 222 if (!i) 223 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED); 224 } 225 226 /* 227 * Our 3 dm_test_info children should be passed to pre_probe and 228 * post_probe 229 */ 230 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); 231 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); 232 233 /* Also we can check the per-device data */ 234 expected_base_add = 0; 235 for (i = 0; i < 3; i++) { 236 struct dm_test_uclass_perdev_priv *priv; 237 struct dm_test_pdata *pdata; 238 239 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 240 ut_assert(dev); 241 242 priv = dev_get_uclass_priv(dev); 243 ut_assert(priv); 244 ut_asserteq(expected_base_add, priv->base_add); 245 246 pdata = dev->platdata; 247 expected_base_add += pdata->ping_add; 248 } 249 250 return 0; 251 } 252 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA); 253 254 /* Check that we see the correct platdata in each device */ 255 static int dm_test_platdata(struct dm_test_state *dms) 256 { 257 const struct dm_test_pdata *pdata; 258 struct udevice *dev; 259 int i; 260 261 for (i = 0; i < 3; i++) { 262 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 263 ut_assert(dev); 264 pdata = dev->platdata; 265 ut_assert(pdata->ping_add == test_pdata[i].ping_add); 266 } 267 268 return 0; 269 } 270 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA); 271 272 /* Test that we can bind, probe, remove, unbind a driver */ 273 static int dm_test_lifecycle(struct dm_test_state *dms) 274 { 275 int op_count[DM_TEST_OP_COUNT]; 276 struct udevice *dev, *test_dev; 277 int pingret; 278 int ret; 279 280 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count)); 281 282 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 283 &dev)); 284 ut_assert(dev); 285 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] 286 == op_count[DM_TEST_OP_BIND] + 1); 287 ut_assert(!dev->priv); 288 289 /* Probe the device - it should fail allocating private data */ 290 dms->force_fail_alloc = 1; 291 ret = device_probe(dev); 292 ut_assert(ret == -ENOMEM); 293 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] 294 == op_count[DM_TEST_OP_PROBE] + 1); 295 ut_assert(!dev->priv); 296 297 /* Try again without the alloc failure */ 298 dms->force_fail_alloc = 0; 299 ut_assertok(device_probe(dev)); 300 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] 301 == op_count[DM_TEST_OP_PROBE] + 2); 302 ut_assert(dev->priv); 303 304 /* This should be device 3 in the uclass */ 305 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); 306 ut_assert(dev == test_dev); 307 308 /* Try ping */ 309 ut_assertok(test_ping(dev, 100, &pingret)); 310 ut_assert(pingret == 102); 311 312 /* Now remove device 3 */ 313 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); 314 ut_assertok(device_remove(dev)); 315 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); 316 317 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 318 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); 319 ut_assertok(device_unbind(dev)); 320 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 321 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); 322 323 return 0; 324 } 325 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST); 326 327 /* Test that we can bind/unbind and the lists update correctly */ 328 static int dm_test_ordering(struct dm_test_state *dms) 329 { 330 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev; 331 int pingret; 332 333 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 334 &dev)); 335 ut_assert(dev); 336 337 /* Bind two new devices (numbers 4 and 5) */ 338 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 339 &dev_penultimate)); 340 ut_assert(dev_penultimate); 341 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 342 &dev_last)); 343 ut_assert(dev_last); 344 345 /* Now remove device 3 */ 346 ut_assertok(device_remove(dev)); 347 ut_assertok(device_unbind(dev)); 348 349 /* The device numbering should have shifted down one */ 350 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); 351 ut_assert(dev_penultimate == test_dev); 352 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev)); 353 ut_assert(dev_last == test_dev); 354 355 /* Add back the original device 3, now in position 5 */ 356 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, 357 &dev)); 358 ut_assert(dev); 359 360 /* Try ping */ 361 ut_assertok(test_ping(dev, 100, &pingret)); 362 ut_assert(pingret == 102); 363 364 /* Remove 3 and 4 */ 365 ut_assertok(device_remove(dev_penultimate)); 366 ut_assertok(device_unbind(dev_penultimate)); 367 ut_assertok(device_remove(dev_last)); 368 ut_assertok(device_unbind(dev_last)); 369 370 /* Our device should now be in position 3 */ 371 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); 372 ut_assert(dev == test_dev); 373 374 /* Now remove device 3 */ 375 ut_assertok(device_remove(dev)); 376 ut_assertok(device_unbind(dev)); 377 378 return 0; 379 } 380 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA); 381 382 /* Check that we can perform operations on a device (do a ping) */ 383 int dm_check_operations(struct dm_test_state *dms, struct udevice *dev, 384 uint32_t base, struct dm_test_priv *priv) 385 { 386 int expected; 387 int pingret; 388 389 /* Getting the child device should allocate platdata / priv */ 390 ut_assertok(testfdt_ping(dev, 10, &pingret)); 391 ut_assert(dev->priv); 392 ut_assert(dev->platdata); 393 394 expected = 10 + base; 395 ut_asserteq(expected, pingret); 396 397 /* Do another ping */ 398 ut_assertok(testfdt_ping(dev, 20, &pingret)); 399 expected = 20 + base; 400 ut_asserteq(expected, pingret); 401 402 /* Now check the ping_total */ 403 priv = dev->priv; 404 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2, 405 priv->ping_total); 406 407 return 0; 408 } 409 410 /* Check that we can perform operations on devices */ 411 static int dm_test_operations(struct dm_test_state *dms) 412 { 413 struct udevice *dev; 414 int i; 415 416 /* 417 * Now check that the ping adds are what we expect. This is using the 418 * ping-add property in each node. 419 */ 420 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) { 421 uint32_t base; 422 423 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); 424 425 /* 426 * Get the 'reg' property, which tells us what the ping add 427 * should be. We don't use the platdata because we want 428 * to test the code that sets that up (testfdt_drv_probe()). 429 */ 430 base = test_pdata[i].ping_add; 431 debug("dev=%d, base=%d\n", i, base); 432 433 ut_assert(!dm_check_operations(dms, dev, base, dev->priv)); 434 } 435 436 return 0; 437 } 438 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA); 439 440 /* Remove all drivers and check that things work */ 441 static int dm_test_remove(struct dm_test_state *dms) 442 { 443 struct udevice *dev; 444 int i; 445 446 for (i = 0; i < 3; i++) { 447 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); 448 ut_assert(dev); 449 ut_assertf(dev->flags & DM_FLAG_ACTIVATED, 450 "Driver %d/%s not activated", i, dev->name); 451 ut_assertok(device_remove(dev)); 452 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED), 453 "Driver %d/%s should have deactivated", i, 454 dev->name); 455 ut_assert(!dev->priv); 456 } 457 458 return 0; 459 } 460 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST); 461 462 /* Remove and recreate everything, check for memory leaks */ 463 static int dm_test_leak(struct dm_test_state *dms) 464 { 465 int i; 466 467 for (i = 0; i < 2; i++) { 468 struct udevice *dev; 469 int ret; 470 int id; 471 472 dm_leak_check_start(dms); 473 474 ut_assertok(dm_scan_platdata(false)); 475 ut_assertok(dm_scan_fdt(gd->fdt_blob, false)); 476 477 /* Scanning the uclass is enough to probe all the devices */ 478 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) { 479 for (ret = uclass_first_device(UCLASS_TEST, &dev); 480 dev; 481 ret = uclass_next_device(&dev)) 482 ; 483 ut_assertok(ret); 484 } 485 486 ut_assertok(dm_leak_check_end(dms)); 487 } 488 489 return 0; 490 } 491 DM_TEST(dm_test_leak, 0); 492 493 /* Test uclass init/destroy methods */ 494 static int dm_test_uclass(struct dm_test_state *dms) 495 { 496 struct uclass *uc; 497 498 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 499 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); 500 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); 501 ut_assert(uc->priv); 502 503 ut_assertok(uclass_destroy(uc)); 504 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); 505 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); 506 507 return 0; 508 } 509 DM_TEST(dm_test_uclass, 0); 510 511 /** 512 * create_children() - Create children of a parent node 513 * 514 * @dms: Test system state 515 * @parent: Parent device 516 * @count: Number of children to create 517 * @key: Key value to put in first child. Subsequence children 518 * receive an incrementing value 519 * @child: If not NULL, then the child device pointers are written into 520 * this array. 521 * @return 0 if OK, -ve on error 522 */ 523 static int create_children(struct dm_test_state *dms, struct udevice *parent, 524 int count, int key, struct udevice *child[]) 525 { 526 struct udevice *dev; 527 int i; 528 529 for (i = 0; i < count; i++) { 530 struct dm_test_pdata *pdata; 531 532 ut_assertok(device_bind_by_name(parent, false, 533 &driver_info_manual, &dev)); 534 pdata = calloc(1, sizeof(*pdata)); 535 pdata->ping_add = key + i; 536 dev->platdata = pdata; 537 if (child) 538 child[i] = dev; 539 } 540 541 return 0; 542 } 543 544 #define NODE_COUNT 10 545 546 static int dm_test_children(struct dm_test_state *dms) 547 { 548 struct udevice *top[NODE_COUNT]; 549 struct udevice *child[NODE_COUNT]; 550 struct udevice *grandchild[NODE_COUNT]; 551 struct udevice *dev; 552 int total; 553 int ret; 554 int i; 555 556 /* We don't care about the numbering for this test */ 557 dms->skip_post_probe = 1; 558 559 ut_assert(NODE_COUNT > 5); 560 561 /* First create 10 top-level children */ 562 ut_assertok(create_children(dms, dms->root, NODE_COUNT, 0, top)); 563 564 /* Now a few have their own children */ 565 ut_assertok(create_children(dms, top[2], NODE_COUNT, 2, NULL)); 566 ut_assertok(create_children(dms, top[5], NODE_COUNT, 5, child)); 567 568 /* And grandchildren */ 569 for (i = 0; i < NODE_COUNT; i++) 570 ut_assertok(create_children(dms, child[i], NODE_COUNT, 50 * i, 571 i == 2 ? grandchild : NULL)); 572 573 /* Check total number of devices */ 574 total = NODE_COUNT * (3 + NODE_COUNT); 575 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); 576 577 /* Try probing one of the grandchildren */ 578 ut_assertok(uclass_get_device(UCLASS_TEST, 579 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev)); 580 ut_asserteq_ptr(grandchild[0], dev); 581 582 /* 583 * This should have probed the child and top node also, for a total 584 * of 3 nodes. 585 */ 586 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]); 587 588 /* Probe the other grandchildren */ 589 for (i = 1; i < NODE_COUNT; i++) 590 ut_assertok(device_probe(grandchild[i])); 591 592 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]); 593 594 /* Probe everything */ 595 for (ret = uclass_first_device(UCLASS_TEST, &dev); 596 dev; 597 ret = uclass_next_device(&dev)) 598 ; 599 ut_assertok(ret); 600 601 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]); 602 603 /* Remove a top-level child and check that the children are removed */ 604 ut_assertok(device_remove(top[2])); 605 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]); 606 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0; 607 608 /* Try one with grandchildren */ 609 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); 610 ut_asserteq_ptr(dev, top[5]); 611 ut_assertok(device_remove(dev)); 612 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), 613 dm_testdrv_op_count[DM_TEST_OP_REMOVE]); 614 615 /* Try the same with unbind */ 616 ut_assertok(device_unbind(top[2])); 617 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 618 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0; 619 620 /* Try one with grandchildren */ 621 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); 622 ut_asserteq_ptr(dev, top[6]); 623 ut_assertok(device_unbind(top[5])); 624 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), 625 dm_testdrv_op_count[DM_TEST_OP_UNBIND]); 626 627 return 0; 628 } 629 DM_TEST(dm_test_children, 0); 630 631 /* Test that pre-relocation devices work as expected */ 632 static int dm_test_pre_reloc(struct dm_test_state *dms) 633 { 634 struct udevice *dev; 635 636 /* The normal driver should refuse to bind before relocation */ 637 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true, 638 &driver_info_manual, &dev)); 639 640 /* But this one is marked pre-reloc */ 641 ut_assertok(device_bind_by_name(dms->root, true, 642 &driver_info_pre_reloc, &dev)); 643 644 return 0; 645 } 646 DM_TEST(dm_test_pre_reloc, 0); 647 648 static int dm_test_uclass_before_ready(struct dm_test_state *dms) 649 { 650 struct uclass *uc; 651 652 ut_assertok(uclass_get(UCLASS_TEST, &uc)); 653 654 gd->dm_root = NULL; 655 gd->dm_root_f = NULL; 656 memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root)); 657 658 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST)); 659 660 return 0; 661 } 662 DM_TEST(dm_test_uclass_before_ready, 0); 663 664 static int dm_test_uclass_devices_find(struct dm_test_state *dms) 665 { 666 struct udevice *dev; 667 int ret; 668 669 for (ret = uclass_find_first_device(UCLASS_TEST, &dev); 670 dev; 671 ret = uclass_find_next_device(&dev)) { 672 ut_assert(!ret); 673 ut_assert(dev); 674 } 675 676 return 0; 677 } 678 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA); 679 680 static int dm_test_uclass_devices_find_by_name(struct dm_test_state *dms) 681 { 682 struct udevice *finddev; 683 struct udevice *testdev; 684 int findret, ret; 685 686 /* 687 * For each test device found in fdt like: "a-test", "b-test", etc., 688 * use its name and try to find it by uclass_find_device_by_name(). 689 * Then, on success check if: 690 * - current 'testdev' name is equal to the returned 'finddev' name 691 * - current 'testdev' pointer is equal to the returned 'finddev' 692 * 693 * We assume that, each uclass's device name is unique, so if not, then 694 * this will fail on checking condition: testdev == finddev, since the 695 * uclass_find_device_by_name(), returns the first device by given name. 696 */ 697 for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev); 698 testdev; 699 ret = uclass_find_next_device(&testdev)) { 700 ut_assertok(ret); 701 ut_assert(testdev); 702 703 findret = uclass_find_device_by_name(UCLASS_TEST_FDT, 704 testdev->name, 705 &finddev); 706 707 ut_assertok(findret); 708 ut_assert(testdev); 709 ut_asserteq_str(testdev->name, finddev->name); 710 ut_asserteq_ptr(testdev, finddev); 711 } 712 713 return 0; 714 } 715 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT); 716 717 static int dm_test_uclass_devices_get(struct dm_test_state *dms) 718 { 719 struct udevice *dev; 720 int ret; 721 722 for (ret = uclass_first_device(UCLASS_TEST, &dev); 723 dev; 724 ret = uclass_next_device(&dev)) { 725 ut_assert(!ret); 726 ut_assert(dev); 727 ut_assert(device_active(dev)); 728 } 729 730 return 0; 731 } 732 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA); 733 734 static int dm_test_uclass_devices_get_by_name(struct dm_test_state *dms) 735 { 736 struct udevice *finddev; 737 struct udevice *testdev; 738 int ret, findret; 739 740 /* 741 * For each test device found in fdt like: "a-test", "b-test", etc., 742 * use its name and try to get it by uclass_get_device_by_name(). 743 * On success check if: 744 * - returned finddev' is active 745 * - current 'testdev' name is equal to the returned 'finddev' name 746 * - current 'testdev' pointer is equal to the returned 'finddev' 747 * 748 * We asserts that the 'testdev' is active on each loop entry, so we 749 * could be sure that the 'finddev' is activated too, but for sure 750 * we check it again. 751 * 752 * We assume that, each uclass's device name is unique, so if not, then 753 * this will fail on checking condition: testdev == finddev, since the 754 * uclass_get_device_by_name(), returns the first device by given name. 755 */ 756 for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev); 757 testdev; 758 ret = uclass_next_device(&testdev)) { 759 ut_assertok(ret); 760 ut_assert(testdev); 761 ut_assert(device_active(testdev)); 762 763 findret = uclass_get_device_by_name(UCLASS_TEST_FDT, 764 testdev->name, 765 &finddev); 766 767 ut_assertok(findret); 768 ut_assert(finddev); 769 ut_assert(device_active(finddev)); 770 ut_asserteq_str(testdev->name, finddev->name); 771 ut_asserteq_ptr(testdev, finddev); 772 } 773 774 return 0; 775 } 776 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT); 777 778 static int dm_test_device_get_uclass_id(struct dm_test_state *dms) 779 { 780 struct udevice *dev; 781 782 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev)); 783 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev)); 784 785 return 0; 786 } 787 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA); 788