xref: /openbmc/u-boot/test/dm/core.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * Tests for the core driver model code
3  *
4  * Copyright (c) 2013 Google, Inc
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/util.h>
17 #include <dm/test.h>
18 #include <dm/uclass-internal.h>
19 #include <test/ut.h>
20 
21 DECLARE_GLOBAL_DATA_PTR;
22 
23 enum {
24 	TEST_INTVAL1		= 0,
25 	TEST_INTVAL2		= 3,
26 	TEST_INTVAL3		= 6,
27 	TEST_INTVAL_MANUAL	= 101112,
28 	TEST_INTVAL_PRE_RELOC	= 7,
29 };
30 
31 static const struct dm_test_pdata test_pdata[] = {
32 	{ .ping_add		= TEST_INTVAL1, },
33 	{ .ping_add		= TEST_INTVAL2, },
34 	{ .ping_add		= TEST_INTVAL3, },
35 };
36 
37 static const struct dm_test_pdata test_pdata_manual = {
38 	.ping_add		= TEST_INTVAL_MANUAL,
39 };
40 
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 	.ping_add		= TEST_INTVAL_PRE_RELOC,
43 };
44 
45 U_BOOT_DEVICE(dm_test_info1) = {
46 	.name = "test_drv",
47 	.platdata = &test_pdata[0],
48 };
49 
50 U_BOOT_DEVICE(dm_test_info2) = {
51 	.name = "test_drv",
52 	.platdata = &test_pdata[1],
53 };
54 
55 U_BOOT_DEVICE(dm_test_info3) = {
56 	.name = "test_drv",
57 	.platdata = &test_pdata[2],
58 };
59 
60 static struct driver_info driver_info_manual = {
61 	.name = "test_manual_drv",
62 	.platdata = &test_pdata_manual,
63 };
64 
65 static struct driver_info driver_info_pre_reloc = {
66 	.name = "test_pre_reloc_drv",
67 	.platdata = &test_pdata_manual,
68 };
69 
70 void dm_leak_check_start(struct unit_test_state *uts)
71 {
72 	uts->start = mallinfo();
73 	if (!uts->start.uordblks)
74 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
75 }
76 
77 int dm_leak_check_end(struct unit_test_state *uts)
78 {
79 	struct mallinfo end;
80 	int id, diff;
81 
82 	/* Don't delete the root class, since we started with that */
83 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
84 		struct uclass *uc;
85 
86 		uc = uclass_find(id);
87 		if (!uc)
88 			continue;
89 		ut_assertok(uclass_destroy(uc));
90 	}
91 
92 	end = mallinfo();
93 	diff = end.uordblks - uts->start.uordblks;
94 	if (diff > 0)
95 		printf("Leak: lost %#xd bytes\n", diff);
96 	else if (diff < 0)
97 		printf("Leak: gained %#xd bytes\n", -diff);
98 	ut_asserteq(uts->start.uordblks, end.uordblks);
99 
100 	return 0;
101 }
102 
103 /* Test that binding with platdata occurs correctly */
104 static int dm_test_autobind(struct unit_test_state *uts)
105 {
106 	struct dm_test_state *dms = uts->priv;
107 	struct udevice *dev;
108 
109 	/*
110 	 * We should have a single class (UCLASS_ROOT) and a single root
111 	 * device with no children.
112 	 */
113 	ut_assert(dms->root);
114 	ut_asserteq(1, list_count_items(&gd->uclass_root));
115 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
116 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
117 
118 	ut_assertok(dm_scan_platdata(false));
119 
120 	/* We should have our test class now at least, plus more children */
121 	ut_assert(1 < list_count_items(&gd->uclass_root));
122 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
123 
124 	/* Our 3 dm_test_infox children should be bound to the test uclass */
125 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
126 
127 	/* No devices should be probed */
128 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
129 		ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
130 
131 	/* Our test driver should have been bound 3 times */
132 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
133 
134 	return 0;
135 }
136 DM_TEST(dm_test_autobind, 0);
137 
138 /* Test that binding with uclass platdata allocation occurs correctly */
139 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
140 {
141 	struct dm_test_perdev_uc_pdata *uc_pdata;
142 	struct udevice *dev;
143 	struct uclass *uc;
144 
145 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
146 	ut_assert(uc);
147 
148 	/**
149 	 * Test if test uclass driver requires allocation for the uclass
150 	 * platform data and then check the dev->uclass_platdata pointer.
151 	 */
152 	ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
153 
154 	for (uclass_find_first_device(UCLASS_TEST, &dev);
155 	     dev;
156 	     uclass_find_next_device(&dev)) {
157 		ut_assert(dev);
158 
159 		uc_pdata = dev_get_uclass_platdata(dev);
160 		ut_assert(uc_pdata);
161 	}
162 
163 	return 0;
164 }
165 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
166 
167 /* Test that binding with uclass platdata setting occurs correctly */
168 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
169 {
170 	struct dm_test_perdev_uc_pdata *uc_pdata;
171 	struct udevice *dev;
172 
173 	/**
174 	 * In the test_postbind() method of test uclass driver, the uclass
175 	 * platform data should be set to three test int values - test it.
176 	 */
177 	for (uclass_find_first_device(UCLASS_TEST, &dev);
178 	     dev;
179 	     uclass_find_next_device(&dev)) {
180 		ut_assert(dev);
181 
182 		uc_pdata = dev_get_uclass_platdata(dev);
183 		ut_assert(uc_pdata);
184 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
185 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
186 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
187 	}
188 
189 	return 0;
190 }
191 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
192 
193 /* Test that autoprobe finds all the expected devices */
194 static int dm_test_autoprobe(struct unit_test_state *uts)
195 {
196 	struct dm_test_state *dms = uts->priv;
197 	int expected_base_add;
198 	struct udevice *dev;
199 	struct uclass *uc;
200 	int i;
201 
202 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
203 	ut_assert(uc);
204 
205 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
206 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
207 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
208 
209 	/* The root device should not be activated until needed */
210 	ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
211 
212 	/*
213 	 * We should be able to find the three test devices, and they should
214 	 * all be activated as they are used (lazy activation, required by
215 	 * U-Boot)
216 	 */
217 	for (i = 0; i < 3; i++) {
218 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
219 		ut_assert(dev);
220 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
221 			   "Driver %d/%s already activated", i, dev->name);
222 
223 		/* This should activate it */
224 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
225 		ut_assert(dev);
226 		ut_assert(dev->flags & DM_FLAG_ACTIVATED);
227 
228 		/* Activating a device should activate the root device */
229 		if (!i)
230 			ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
231 	}
232 
233 	/*
234 	 * Our 3 dm_test_info children should be passed to pre_probe and
235 	 * post_probe
236 	 */
237 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
238 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
239 
240 	/* Also we can check the per-device data */
241 	expected_base_add = 0;
242 	for (i = 0; i < 3; i++) {
243 		struct dm_test_uclass_perdev_priv *priv;
244 		struct dm_test_pdata *pdata;
245 
246 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
247 		ut_assert(dev);
248 
249 		priv = dev_get_uclass_priv(dev);
250 		ut_assert(priv);
251 		ut_asserteq(expected_base_add, priv->base_add);
252 
253 		pdata = dev->platdata;
254 		expected_base_add += pdata->ping_add;
255 	}
256 
257 	return 0;
258 }
259 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
260 
261 /* Check that we see the correct platdata in each device */
262 static int dm_test_platdata(struct unit_test_state *uts)
263 {
264 	const struct dm_test_pdata *pdata;
265 	struct udevice *dev;
266 	int i;
267 
268 	for (i = 0; i < 3; i++) {
269 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
270 		ut_assert(dev);
271 		pdata = dev->platdata;
272 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
273 	}
274 
275 	return 0;
276 }
277 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
278 
279 /* Test that we can bind, probe, remove, unbind a driver */
280 static int dm_test_lifecycle(struct unit_test_state *uts)
281 {
282 	struct dm_test_state *dms = uts->priv;
283 	int op_count[DM_TEST_OP_COUNT];
284 	struct udevice *dev, *test_dev;
285 	int pingret;
286 	int ret;
287 
288 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
289 
290 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
291 					&dev));
292 	ut_assert(dev);
293 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
294 			== op_count[DM_TEST_OP_BIND] + 1);
295 	ut_assert(!dev->priv);
296 
297 	/* Probe the device - it should fail allocating private data */
298 	dms->force_fail_alloc = 1;
299 	ret = device_probe(dev);
300 	ut_assert(ret == -ENOMEM);
301 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
302 			== op_count[DM_TEST_OP_PROBE] + 1);
303 	ut_assert(!dev->priv);
304 
305 	/* Try again without the alloc failure */
306 	dms->force_fail_alloc = 0;
307 	ut_assertok(device_probe(dev));
308 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
309 			== op_count[DM_TEST_OP_PROBE] + 2);
310 	ut_assert(dev->priv);
311 
312 	/* This should be device 3 in the uclass */
313 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
314 	ut_assert(dev == test_dev);
315 
316 	/* Try ping */
317 	ut_assertok(test_ping(dev, 100, &pingret));
318 	ut_assert(pingret == 102);
319 
320 	/* Now remove device 3 */
321 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
322 	ut_assertok(device_remove(dev));
323 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
324 
325 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
326 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
327 	ut_assertok(device_unbind(dev));
328 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
329 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
330 
331 	return 0;
332 }
333 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
334 
335 /* Test that we can bind/unbind and the lists update correctly */
336 static int dm_test_ordering(struct unit_test_state *uts)
337 {
338 	struct dm_test_state *dms = uts->priv;
339 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
340 	int pingret;
341 
342 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
343 					&dev));
344 	ut_assert(dev);
345 
346 	/* Bind two new devices (numbers 4 and 5) */
347 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
348 					&dev_penultimate));
349 	ut_assert(dev_penultimate);
350 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
351 					&dev_last));
352 	ut_assert(dev_last);
353 
354 	/* Now remove device 3 */
355 	ut_assertok(device_remove(dev));
356 	ut_assertok(device_unbind(dev));
357 
358 	/* The device numbering should have shifted down one */
359 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
360 	ut_assert(dev_penultimate == test_dev);
361 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
362 	ut_assert(dev_last == test_dev);
363 
364 	/* Add back the original device 3, now in position 5 */
365 	ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
366 					&dev));
367 	ut_assert(dev);
368 
369 	/* Try ping */
370 	ut_assertok(test_ping(dev, 100, &pingret));
371 	ut_assert(pingret == 102);
372 
373 	/* Remove 3 and 4 */
374 	ut_assertok(device_remove(dev_penultimate));
375 	ut_assertok(device_unbind(dev_penultimate));
376 	ut_assertok(device_remove(dev_last));
377 	ut_assertok(device_unbind(dev_last));
378 
379 	/* Our device should now be in position 3 */
380 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
381 	ut_assert(dev == test_dev);
382 
383 	/* Now remove device 3 */
384 	ut_assertok(device_remove(dev));
385 	ut_assertok(device_unbind(dev));
386 
387 	return 0;
388 }
389 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
390 
391 /* Check that we can perform operations on a device (do a ping) */
392 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
393 			uint32_t base, struct dm_test_priv *priv)
394 {
395 	int expected;
396 	int pingret;
397 
398 	/* Getting the child device should allocate platdata / priv */
399 	ut_assertok(testfdt_ping(dev, 10, &pingret));
400 	ut_assert(dev->priv);
401 	ut_assert(dev->platdata);
402 
403 	expected = 10 + base;
404 	ut_asserteq(expected, pingret);
405 
406 	/* Do another ping */
407 	ut_assertok(testfdt_ping(dev, 20, &pingret));
408 	expected = 20 + base;
409 	ut_asserteq(expected, pingret);
410 
411 	/* Now check the ping_total */
412 	priv = dev->priv;
413 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
414 		    priv->ping_total);
415 
416 	return 0;
417 }
418 
419 /* Check that we can perform operations on devices */
420 static int dm_test_operations(struct unit_test_state *uts)
421 {
422 	struct udevice *dev;
423 	int i;
424 
425 	/*
426 	 * Now check that the ping adds are what we expect. This is using the
427 	 * ping-add property in each node.
428 	 */
429 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
430 		uint32_t base;
431 
432 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
433 
434 		/*
435 		 * Get the 'reg' property, which tells us what the ping add
436 		 * should be. We don't use the platdata because we want
437 		 * to test the code that sets that up (testfdt_drv_probe()).
438 		 */
439 		base = test_pdata[i].ping_add;
440 		debug("dev=%d, base=%d\n", i, base);
441 
442 		ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
443 	}
444 
445 	return 0;
446 }
447 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
448 
449 /* Remove all drivers and check that things work */
450 static int dm_test_remove(struct unit_test_state *uts)
451 {
452 	struct udevice *dev;
453 	int i;
454 
455 	for (i = 0; i < 3; i++) {
456 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
457 		ut_assert(dev);
458 		ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
459 			   "Driver %d/%s not activated", i, dev->name);
460 		ut_assertok(device_remove(dev));
461 		ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
462 			   "Driver %d/%s should have deactivated", i,
463 			   dev->name);
464 		ut_assert(!dev->priv);
465 	}
466 
467 	return 0;
468 }
469 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
470 
471 /* Remove and recreate everything, check for memory leaks */
472 static int dm_test_leak(struct unit_test_state *uts)
473 {
474 	int i;
475 
476 	for (i = 0; i < 2; i++) {
477 		struct udevice *dev;
478 		int ret;
479 		int id;
480 
481 		dm_leak_check_start(uts);
482 
483 		ut_assertok(dm_scan_platdata(false));
484 		ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
485 
486 		/* Scanning the uclass is enough to probe all the devices */
487 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
488 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
489 			     dev;
490 			     ret = uclass_next_device(&dev))
491 				;
492 			ut_assertok(ret);
493 		}
494 
495 		ut_assertok(dm_leak_check_end(uts));
496 	}
497 
498 	return 0;
499 }
500 DM_TEST(dm_test_leak, 0);
501 
502 /* Test uclass init/destroy methods */
503 static int dm_test_uclass(struct unit_test_state *uts)
504 {
505 	struct uclass *uc;
506 
507 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
508 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
509 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
510 	ut_assert(uc->priv);
511 
512 	ut_assertok(uclass_destroy(uc));
513 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
514 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
515 
516 	return 0;
517 }
518 DM_TEST(dm_test_uclass, 0);
519 
520 /**
521  * create_children() - Create children of a parent node
522  *
523  * @dms:	Test system state
524  * @parent:	Parent device
525  * @count:	Number of children to create
526  * @key:	Key value to put in first child. Subsequence children
527  *		receive an incrementing value
528  * @child:	If not NULL, then the child device pointers are written into
529  *		this array.
530  * @return 0 if OK, -ve on error
531  */
532 static int create_children(struct unit_test_state *uts, struct udevice *parent,
533 			   int count, int key, struct udevice *child[])
534 {
535 	struct udevice *dev;
536 	int i;
537 
538 	for (i = 0; i < count; i++) {
539 		struct dm_test_pdata *pdata;
540 
541 		ut_assertok(device_bind_by_name(parent, false,
542 						&driver_info_manual, &dev));
543 		pdata = calloc(1, sizeof(*pdata));
544 		pdata->ping_add = key + i;
545 		dev->platdata = pdata;
546 		if (child)
547 			child[i] = dev;
548 	}
549 
550 	return 0;
551 }
552 
553 #define NODE_COUNT	10
554 
555 static int dm_test_children(struct unit_test_state *uts)
556 {
557 	struct dm_test_state *dms = uts->priv;
558 	struct udevice *top[NODE_COUNT];
559 	struct udevice *child[NODE_COUNT];
560 	struct udevice *grandchild[NODE_COUNT];
561 	struct udevice *dev;
562 	int total;
563 	int ret;
564 	int i;
565 
566 	/* We don't care about the numbering for this test */
567 	dms->skip_post_probe = 1;
568 
569 	ut_assert(NODE_COUNT > 5);
570 
571 	/* First create 10 top-level children */
572 	ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
573 
574 	/* Now a few have their own children */
575 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
576 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
577 
578 	/* And grandchildren */
579 	for (i = 0; i < NODE_COUNT; i++)
580 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
581 					    i == 2 ? grandchild : NULL));
582 
583 	/* Check total number of devices */
584 	total = NODE_COUNT * (3 + NODE_COUNT);
585 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
586 
587 	/* Try probing one of the grandchildren */
588 	ut_assertok(uclass_get_device(UCLASS_TEST,
589 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
590 	ut_asserteq_ptr(grandchild[0], dev);
591 
592 	/*
593 	 * This should have probed the child and top node also, for a total
594 	 * of 3 nodes.
595 	 */
596 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
597 
598 	/* Probe the other grandchildren */
599 	for (i = 1; i < NODE_COUNT; i++)
600 		ut_assertok(device_probe(grandchild[i]));
601 
602 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
603 
604 	/* Probe everything */
605 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
606 	     dev;
607 	     ret = uclass_next_device(&dev))
608 		;
609 	ut_assertok(ret);
610 
611 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
612 
613 	/* Remove a top-level child and check that the children are removed */
614 	ut_assertok(device_remove(top[2]));
615 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
616 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
617 
618 	/* Try one with grandchildren */
619 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
620 	ut_asserteq_ptr(dev, top[5]);
621 	ut_assertok(device_remove(dev));
622 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
623 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
624 
625 	/* Try the same with unbind */
626 	ut_assertok(device_unbind(top[2]));
627 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
628 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
629 
630 	/* Try one with grandchildren */
631 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
632 	ut_asserteq_ptr(dev, top[6]);
633 	ut_assertok(device_unbind(top[5]));
634 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
635 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
636 
637 	return 0;
638 }
639 DM_TEST(dm_test_children, 0);
640 
641 /* Test that pre-relocation devices work as expected */
642 static int dm_test_pre_reloc(struct unit_test_state *uts)
643 {
644 	struct dm_test_state *dms = uts->priv;
645 	struct udevice *dev;
646 
647 	/* The normal driver should refuse to bind before relocation */
648 	ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
649 						&driver_info_manual, &dev));
650 
651 	/* But this one is marked pre-reloc */
652 	ut_assertok(device_bind_by_name(dms->root, true,
653 					&driver_info_pre_reloc, &dev));
654 
655 	return 0;
656 }
657 DM_TEST(dm_test_pre_reloc, 0);
658 
659 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
660 {
661 	struct uclass *uc;
662 
663 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
664 
665 	gd->dm_root = NULL;
666 	gd->dm_root_f = NULL;
667 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
668 
669 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
670 
671 	return 0;
672 }
673 DM_TEST(dm_test_uclass_before_ready, 0);
674 
675 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
676 {
677 	struct udevice *dev;
678 	int ret;
679 
680 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
681 	     dev;
682 	     ret = uclass_find_next_device(&dev)) {
683 		ut_assert(!ret);
684 		ut_assert(dev);
685 	}
686 
687 	return 0;
688 }
689 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
690 
691 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
692 {
693 	struct udevice *finddev;
694 	struct udevice *testdev;
695 	int findret, ret;
696 
697 	/*
698 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
699 	 * use its name and try to find it by uclass_find_device_by_name().
700 	 * Then, on success check if:
701 	 * - current 'testdev' name is equal to the returned 'finddev' name
702 	 * - current 'testdev' pointer is equal to the returned 'finddev'
703 	 *
704 	 * We assume that, each uclass's device name is unique, so if not, then
705 	 * this will fail on checking condition: testdev == finddev, since the
706 	 * uclass_find_device_by_name(), returns the first device by given name.
707 	*/
708 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
709 	     testdev;
710 	     ret = uclass_find_next_device(&testdev)) {
711 		ut_assertok(ret);
712 		ut_assert(testdev);
713 
714 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
715 						     testdev->name,
716 						     &finddev);
717 
718 		ut_assertok(findret);
719 		ut_assert(testdev);
720 		ut_asserteq_str(testdev->name, finddev->name);
721 		ut_asserteq_ptr(testdev, finddev);
722 	}
723 
724 	return 0;
725 }
726 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
727 
728 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
729 {
730 	struct udevice *dev;
731 	int ret;
732 
733 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
734 	     dev;
735 	     ret = uclass_next_device(&dev)) {
736 		ut_assert(!ret);
737 		ut_assert(dev);
738 		ut_assert(device_active(dev));
739 	}
740 
741 	return 0;
742 }
743 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
744 
745 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
746 {
747 	struct udevice *finddev;
748 	struct udevice *testdev;
749 	int ret, findret;
750 
751 	/*
752 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
753 	 * use its name and try to get it by uclass_get_device_by_name().
754 	 * On success check if:
755 	 * - returned finddev' is active
756 	 * - current 'testdev' name is equal to the returned 'finddev' name
757 	 * - current 'testdev' pointer is equal to the returned 'finddev'
758 	 *
759 	 * We asserts that the 'testdev' is active on each loop entry, so we
760 	 * could be sure that the 'finddev' is activated too, but for sure
761 	 * we check it again.
762 	 *
763 	 * We assume that, each uclass's device name is unique, so if not, then
764 	 * this will fail on checking condition: testdev == finddev, since the
765 	 * uclass_get_device_by_name(), returns the first device by given name.
766 	*/
767 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
768 	     testdev;
769 	     ret = uclass_next_device(&testdev)) {
770 		ut_assertok(ret);
771 		ut_assert(testdev);
772 		ut_assert(device_active(testdev));
773 
774 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
775 						    testdev->name,
776 						    &finddev);
777 
778 		ut_assertok(findret);
779 		ut_assert(finddev);
780 		ut_assert(device_active(finddev));
781 		ut_asserteq_str(testdev->name, finddev->name);
782 		ut_asserteq_ptr(testdev, finddev);
783 	}
784 
785 	return 0;
786 }
787 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
788 
789 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
790 {
791 	struct udevice *dev;
792 
793 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
794 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
795 
796 	return 0;
797 }
798 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
799