xref: /openbmc/u-boot/post/lib_powerpc/fpu/darwin-ldouble.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * Borrowed from GCC 4.2.2 (which still was GPL v2+)
3  */
4 /* 128-bit long double support routines for Darwin.
5    Copyright (C) 1993, 2003, 2004, 2005, 2006, 2007
6    Free Software Foundation, Inc.
7 
8 This file is part of GCC.
9 
10  * SPDX-License-Identifier:	GPL-2.0+
11  */
12 
13 /*
14  * Implementations of floating-point long double basic arithmetic
15  * functions called by the IBM C compiler when generating code for
16  * PowerPC platforms.  In particular, the following functions are
17  * implemented: __gcc_qadd, __gcc_qsub, __gcc_qmul, and __gcc_qdiv.
18  * Double-double algorithms are based on the paper "Doubled-Precision
19  * IEEE Standard 754 Floating-Point Arithmetic" by W. Kahan, February 26,
20  * 1987.  An alternative published reference is "Software for
21  * Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
22  * ACM TOMS vol 7 no 3, September 1981, pages 272-283.
23  */
24 
25 /*
26  * Each long double is made up of two IEEE doubles.  The value of the
27  * long double is the sum of the values of the two parts.  The most
28  * significant part is required to be the value of the long double
29  * rounded to the nearest double, as specified by IEEE.  For Inf
30  * values, the least significant part is required to be one of +0.0 or
31  * -0.0.  No other requirements are made; so, for example, 1.0 may be
32  * represented as (1.0, +0.0) or (1.0, -0.0), and the low part of a
33  * NaN is don't-care.
34  *
35  * This code currently assumes big-endian.
36  */
37 
38 #define fabs(x) __builtin_fabs(x)
39 #define isless(x, y) __builtin_isless(x, y)
40 #define inf() __builtin_inf()
41 #define unlikely(x) __builtin_expect((x), 0)
42 #define nonfinite(a) unlikely(!isless(fabs(a), inf()))
43 
44 typedef union {
45 	long double ldval;
46 	double dval[2];
47 } longDblUnion;
48 
49 /* Add two 'long double' values and return the result.	*/
50 long double __gcc_qadd(double a, double aa, double c, double cc)
51 {
52 	longDblUnion x;
53 	double z, q, zz, xh;
54 
55 	z = a + c;
56 
57 	if (nonfinite(z)) {
58 		z = cc + aa + c + a;
59 		if (nonfinite(z))
60 			return z;
61 		x.dval[0] = z;	/* Will always be DBL_MAX.  */
62 		zz = aa + cc;
63 		if (fabs(a) > fabs(c))
64 			x.dval[1] = a - z + c + zz;
65 		else
66 			x.dval[1] = c - z + a + zz;
67 	} else {
68 		q = a - z;
69 		zz = q + c + (a - (q + z)) + aa + cc;
70 
71 		/* Keep -0 result.  */
72 		if (zz == 0.0)
73 			return z;
74 
75 		xh = z + zz;
76 		if (nonfinite(xh))
77 			return xh;
78 
79 		x.dval[0] = xh;
80 		x.dval[1] = z - xh + zz;
81 	}
82 	return x.ldval;
83 }
84 
85 long double __gcc_qsub(double a, double b, double c, double d)
86 {
87 	return __gcc_qadd(a, b, -c, -d);
88 }
89 
90 long double __gcc_qmul(double a, double b, double c, double d)
91 {
92 	longDblUnion z;
93 	double t, tau, u, v, w;
94 
95 	t = a * c;		/* Highest order double term.  */
96 
97 	if (unlikely(t == 0)	/* Preserve -0.  */
98 	    || nonfinite(t))
99 		return t;
100 
101 	/* Sum terms of two highest orders. */
102 
103 	/* Use fused multiply-add to get low part of a * c.  */
104 #ifndef __NO_FPRS__
105 	asm("fmsub %0,%1,%2,%3" : "=f"(tau) : "f"(a), "f"(c), "f"(t));
106 #else
107 	tau = fmsub(a, c, t);
108 #endif
109 	v = a * d;
110 	w = b * c;
111 	tau += v + w;		/* Add in other second-order terms.  */
112 	u = t + tau;
113 
114 	/* Construct long double result.  */
115 	if (nonfinite(u))
116 		return u;
117 	z.dval[0] = u;
118 	z.dval[1] = (t - u) + tau;
119 	return z.ldval;
120 }
121