xref: /openbmc/u-boot/post/drivers/memory.c (revision fcf2fba4)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 
10 /* Memory test
11  *
12  * General observations:
13  * o The recommended test sequence is to test the data lines: if they are
14  *   broken, nothing else will work properly.  Then test the address
15  *   lines.  Finally, test the cells in the memory now that the test
16  *   program knows that the address and data lines work properly.
17  *   This sequence also helps isolate and identify what is faulty.
18  *
19  * o For the address line test, it is a good idea to use the base
20  *   address of the lowest memory location, which causes a '1' bit to
21  *   walk through a field of zeros on the address lines and the highest
22  *   memory location, which causes a '0' bit to walk through a field of
23  *   '1's on the address line.
24  *
25  * o Floating buses can fool memory tests if the test routine writes
26  *   a value and then reads it back immediately.  The problem is, the
27  *   write will charge the residual capacitance on the data bus so the
28  *   bus retains its state briefely.  When the test program reads the
29  *   value back immediately, the capacitance of the bus can allow it
30  *   to read back what was written, even though the memory circuitry
31  *   is broken.  To avoid this, the test program should write a test
32  *   pattern to the target location, write a different pattern elsewhere
33  *   to charge the residual capacitance in a differnt manner, then read
34  *   the target location back.
35  *
36  * o Always read the target location EXACTLY ONCE and save it in a local
37  *   variable.  The problem with reading the target location more than
38  *   once is that the second and subsequent reads may work properly,
39  *   resulting in a failed test that tells the poor technician that
40  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
41  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
42  *   done that.
43  *
44  * Data line test:
45  * ---------------
46  * This tests data lines for shorts and opens by forcing adjacent data
47  * to opposite states. Because the data lines could be routed in an
48  * arbitrary manner the must ensure test patterns ensure that every case
49  * is tested. By using the following series of binary patterns every
50  * combination of adjacent bits is test regardless of routing.
51  *
52  *     ...101010101010101010101010
53  *     ...110011001100110011001100
54  *     ...111100001111000011110000
55  *     ...111111110000000011111111
56  *
57  * Carrying this out, gives us six hex patterns as follows:
58  *
59  *     0xaaaaaaaaaaaaaaaa
60  *     0xcccccccccccccccc
61  *     0xf0f0f0f0f0f0f0f0
62  *     0xff00ff00ff00ff00
63  *     0xffff0000ffff0000
64  *     0xffffffff00000000
65  *
66  * To test for short and opens to other signals on our boards, we
67  * simply test with the 1's complemnt of the paterns as well, resulting
68  * in twelve patterns total.
69  *
70  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
71  * written to a different address in case the data lines are floating.
72  * Thus, if a byte lane fails, you will see part of the special
73  * pattern in that byte lane when the test runs.  For example, if the
74  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
75  * (for the 'a' test pattern).
76  *
77  * Address line test:
78  * ------------------
79  *  This function performs a test to verify that all the address lines
80  *  hooked up to the RAM work properly.  If there is an address line
81  *  fault, it usually shows up as two different locations in the address
82  *  map (related by the faulty address line) mapping to one physical
83  *  memory storage location.  The artifact that shows up is writing to
84  *  the first location "changes" the second location.
85  *
86  * To test all address lines, we start with the given base address and
87  * xor the address with a '1' bit to flip one address line.  For each
88  * test, we shift the '1' bit left to test the next address line.
89  *
90  * In the actual code, we start with address sizeof(ulong) since our
91  * test pattern we use is a ulong and thus, if we tried to test lower
92  * order address bits, it wouldn't work because our pattern would
93  * overwrite itself.
94  *
95  * Example for a 4 bit address space with the base at 0000:
96  *   0000 <- base
97  *   0001 <- test 1
98  *   0010 <- test 2
99  *   0100 <- test 3
100  *   1000 <- test 4
101  * Example for a 4 bit address space with the base at 0010:
102  *   0010 <- base
103  *   0011 <- test 1
104  *   0000 <- (below the base address, skipped)
105  *   0110 <- test 2
106  *   1010 <- test 3
107  *
108  * The test locations are successively tested to make sure that they are
109  * not "mirrored" onto the base address due to a faulty address line.
110  * Note that the base and each test location are related by one address
111  * line flipped.  Note that the base address need not be all zeros.
112  *
113  * Memory tests 1-4:
114  * -----------------
115  * These tests verify RAM using sequential writes and reads
116  * to/from RAM. There are several test cases that use different patterns to
117  * verify RAM. Each test case fills a region of RAM with one pattern and
118  * then reads the region back and compares its contents with the pattern.
119  * The following patterns are used:
120  *
121  *  1a) zero pattern (0x00000000)
122  *  1b) negative pattern (0xffffffff)
123  *  1c) checkerboard pattern (0x55555555)
124  *  1d) checkerboard pattern (0xaaaaaaaa)
125  *  2)  bit-flip pattern ((1 << (offset % 32))
126  *  3)  address pattern (offset)
127  *  4)  address pattern (~offset)
128  *
129  * Being run in normal mode, the test verifies only small 4Kb
130  * regions of RAM around each 1Mb boundary. For example, for 64Mb
131  * RAM the following areas are verified: 0x00000000-0x00000800,
132  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
133  * 0x04000000. If the test is run in slow-test mode, it verifies
134  * the whole RAM.
135  */
136 
137 #include <post.h>
138 #include <watchdog.h>
139 
140 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
141 
142 DECLARE_GLOBAL_DATA_PTR;
143 
144 /*
145  * Define INJECT_*_ERRORS for testing error detection in the presence of
146  * _good_ hardware.
147  */
148 #undef  INJECT_DATA_ERRORS
149 #undef  INJECT_ADDRESS_ERRORS
150 
151 #ifdef INJECT_DATA_ERRORS
152 #warning "Injecting data line errors for testing purposes"
153 #endif
154 
155 #ifdef INJECT_ADDRESS_ERRORS
156 #warning "Injecting address line errors for testing purposes"
157 #endif
158 
159 
160 /*
161  * This function performs a double word move from the data at
162  * the source pointer to the location at the destination pointer.
163  * This is helpful for testing memory on processors which have a 64 bit
164  * wide data bus.
165  *
166  * On those PowerPC with FPU, use assembly and a floating point move:
167  * this does a 64 bit move.
168  *
169  * For other processors, let the compiler generate the best code it can.
170  */
171 static void move64(const unsigned long long *src, unsigned long long *dest)
172 {
173 #if defined(CONFIG_MPC8260)
174 	asm ("lfd  0, 0(3)\n\t" /* fpr0	  =  *scr	*/
175 	 "stfd 0, 0(4)"		/* *dest  =  fpr0	*/
176 	 : : : "fr0" );		/* Clobbers fr0		*/
177     return;
178 #else
179 	*dest = *src;
180 #endif
181 }
182 
183 /*
184  * This is 64 bit wide test patterns.  Note that they reside in ROM
185  * (which presumably works) and the tests write them to RAM which may
186  * not work.
187  *
188  * The "otherpattern" is written to drive the data bus to values other
189  * than the test pattern.  This is for detecting floating bus lines.
190  *
191  */
192 const static unsigned long long pattern[] = {
193 	0xaaaaaaaaaaaaaaaaULL,
194 	0xccccccccccccccccULL,
195 	0xf0f0f0f0f0f0f0f0ULL,
196 	0xff00ff00ff00ff00ULL,
197 	0xffff0000ffff0000ULL,
198 	0xffffffff00000000ULL,
199 	0x00000000ffffffffULL,
200 	0x0000ffff0000ffffULL,
201 	0x00ff00ff00ff00ffULL,
202 	0x0f0f0f0f0f0f0f0fULL,
203 	0x3333333333333333ULL,
204 	0x5555555555555555ULL
205 };
206 const unsigned long long otherpattern = 0x0123456789abcdefULL;
207 
208 
209 static int memory_post_dataline(unsigned long long * pmem)
210 {
211 	unsigned long long temp64 = 0;
212 	int num_patterns = ARRAY_SIZE(pattern);
213 	int i;
214 	unsigned int hi, lo, pathi, patlo;
215 	int ret = 0;
216 
217 	for ( i = 0; i < num_patterns; i++) {
218 		move64(&(pattern[i]), pmem++);
219 		/*
220 		 * Put a different pattern on the data lines: otherwise they
221 		 * may float long enough to read back what we wrote.
222 		 */
223 		move64(&otherpattern, pmem--);
224 		move64(pmem, &temp64);
225 
226 #ifdef INJECT_DATA_ERRORS
227 		temp64 ^= 0x00008000;
228 #endif
229 
230 		if (temp64 != pattern[i]){
231 			pathi = (pattern[i]>>32) & 0xffffffff;
232 			patlo = pattern[i] & 0xffffffff;
233 
234 			hi = (temp64>>32) & 0xffffffff;
235 			lo = temp64 & 0xffffffff;
236 
237 			post_log("Memory (data line) error at %08x, "
238 				  "wrote %08x%08x, read %08x%08x !\n",
239 					  pmem, pathi, patlo, hi, lo);
240 			ret = -1;
241 		}
242 	}
243 	return ret;
244 }
245 
246 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
247 {
248 	ulong *target;
249 	ulong *end;
250 	ulong readback;
251 	ulong xor;
252 	int   ret = 0;
253 
254 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
255 	xor = 0;
256 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
257 		target = (ulong *)((ulong)testaddr ^ xor);
258 		if((target >= base) && (target < end)) {
259 			*testaddr = ~*target;
260 			readback  = *target;
261 
262 #ifdef INJECT_ADDRESS_ERRORS
263 			if(xor == 0x00008000) {
264 				readback = *testaddr;
265 			}
266 #endif
267 			if(readback == *testaddr) {
268 				post_log("Memory (address line) error at %08x<->%08x, "
269 					"XOR value %08x !\n",
270 					testaddr, target, xor);
271 				ret = -1;
272 			}
273 		}
274 	}
275 	return ret;
276 }
277 
278 static int memory_post_test1(unsigned long start,
279 			      unsigned long size,
280 			      unsigned long val)
281 {
282 	unsigned long i;
283 	ulong *mem = (ulong *) start;
284 	ulong readback;
285 	int ret = 0;
286 
287 	for (i = 0; i < size / sizeof (ulong); i++) {
288 		mem[i] = val;
289 		if (i % 1024 == 0)
290 			WATCHDOG_RESET();
291 	}
292 
293 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
294 		readback = mem[i];
295 		if (readback != val) {
296 			post_log("Memory error at %08x, "
297 				  "wrote %08x, read %08x !\n",
298 					  mem + i, val, readback);
299 
300 			ret = -1;
301 			break;
302 		}
303 		if (i % 1024 == 0)
304 			WATCHDOG_RESET();
305 	}
306 
307 	return ret;
308 }
309 
310 static int memory_post_test2(unsigned long start, unsigned long size)
311 {
312 	unsigned long i;
313 	ulong *mem = (ulong *) start;
314 	ulong readback;
315 	int ret = 0;
316 
317 	for (i = 0; i < size / sizeof (ulong); i++) {
318 		mem[i] = 1 << (i % 32);
319 		if (i % 1024 == 0)
320 			WATCHDOG_RESET();
321 	}
322 
323 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
324 		readback = mem[i];
325 		if (readback != (1 << (i % 32))) {
326 			post_log("Memory error at %08x, "
327 				  "wrote %08x, read %08x !\n",
328 					  mem + i, 1 << (i % 32), readback);
329 
330 			ret = -1;
331 			break;
332 		}
333 		if (i % 1024 == 0)
334 			WATCHDOG_RESET();
335 	}
336 
337 	return ret;
338 }
339 
340 static int memory_post_test3(unsigned long start, unsigned long size)
341 {
342 	unsigned long i;
343 	ulong *mem = (ulong *) start;
344 	ulong readback;
345 	int ret = 0;
346 
347 	for (i = 0; i < size / sizeof (ulong); i++) {
348 		mem[i] = i;
349 		if (i % 1024 == 0)
350 			WATCHDOG_RESET();
351 	}
352 
353 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
354 		readback = mem[i];
355 		if (readback != i) {
356 			post_log("Memory error at %08x, "
357 				  "wrote %08x, read %08x !\n",
358 					  mem + i, i, readback);
359 
360 			ret = -1;
361 			break;
362 		}
363 		if (i % 1024 == 0)
364 			WATCHDOG_RESET();
365 	}
366 
367 	return ret;
368 }
369 
370 static int memory_post_test4(unsigned long start, unsigned long size)
371 {
372 	unsigned long i;
373 	ulong *mem = (ulong *) start;
374 	ulong readback;
375 	int ret = 0;
376 
377 	for (i = 0; i < size / sizeof (ulong); i++) {
378 		mem[i] = ~i;
379 		if (i % 1024 == 0)
380 			WATCHDOG_RESET();
381 	}
382 
383 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
384 		readback = mem[i];
385 		if (readback != ~i) {
386 			post_log("Memory error at %08x, "
387 				  "wrote %08x, read %08x !\n",
388 					  mem + i, ~i, readback);
389 
390 			ret = -1;
391 			break;
392 		}
393 		if (i % 1024 == 0)
394 			WATCHDOG_RESET();
395 	}
396 
397 	return ret;
398 }
399 
400 static int memory_post_test_lines(unsigned long start, unsigned long size)
401 {
402 	int ret = 0;
403 
404 	ret = memory_post_dataline((unsigned long long *)start);
405 	WATCHDOG_RESET();
406 	if (!ret)
407 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
408 				size);
409 	WATCHDOG_RESET();
410 	if (!ret)
411 		ret = memory_post_addrline((ulong *)(start+size-8),
412 				(ulong *)start, size);
413 	WATCHDOG_RESET();
414 
415 	return ret;
416 }
417 
418 static int memory_post_test_patterns(unsigned long start, unsigned long size)
419 {
420 	int ret = 0;
421 
422 	ret = memory_post_test1(start, size, 0x00000000);
423 	WATCHDOG_RESET();
424 	if (!ret)
425 		ret = memory_post_test1(start, size, 0xffffffff);
426 	WATCHDOG_RESET();
427 	if (!ret)
428 		ret = memory_post_test1(start, size, 0x55555555);
429 	WATCHDOG_RESET();
430 	if (!ret)
431 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
432 	WATCHDOG_RESET();
433 	if (!ret)
434 		ret = memory_post_test2(start, size);
435 	WATCHDOG_RESET();
436 	if (!ret)
437 		ret = memory_post_test3(start, size);
438 	WATCHDOG_RESET();
439 	if (!ret)
440 		ret = memory_post_test4(start, size);
441 	WATCHDOG_RESET();
442 
443 	return ret;
444 }
445 
446 static int memory_post_test_regions(unsigned long start, unsigned long size)
447 {
448 	unsigned long i;
449 	int ret = 0;
450 
451 	for (i = 0; i < (size >> 20) && (!ret); i++) {
452 		if (!ret)
453 			ret = memory_post_test_patterns(start + (i << 20),
454 				0x800);
455 		if (!ret)
456 			ret = memory_post_test_patterns(start + (i << 20) +
457 				0xff800, 0x800);
458 	}
459 
460 	return ret;
461 }
462 
463 static int memory_post_tests(unsigned long start, unsigned long size)
464 {
465 	int ret = 0;
466 
467 	ret = memory_post_test_lines(start, size);
468 	if (!ret)
469 		ret = memory_post_test_patterns(start, size);
470 
471 	return ret;
472 }
473 
474 /*
475  * !! this is only valid, if you have contiguous memory banks !!
476  */
477 __attribute__((weak))
478 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
479 {
480 	bd_t *bd = gd->bd;
481 
482 	*vstart = CONFIG_SYS_SDRAM_BASE;
483 	*size = (gd->ram_size >= 256 << 20 ?
484 			256 << 20 : gd->ram_size) - (1 << 20);
485 
486 	/* Limit area to be tested with the board info struct */
487 	if ((*vstart) + (*size) > (ulong)bd)
488 		*size = (ulong)bd - *vstart;
489 
490 	return 0;
491 }
492 
493 __attribute__((weak))
494 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
495 {
496 	return 1;
497 }
498 
499 __attribute__((weak))
500 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
501 {
502 	return 0;
503 }
504 
505 __attribute__((weak))
506 void arch_memory_failure_handle(void)
507 {
508 	return;
509 }
510 
511 int memory_regions_post_test(int flags)
512 {
513 	int ret = 0;
514 	phys_addr_t phys_offset = 0;
515 	u32 memsize, vstart;
516 
517 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
518 
519 	ret = memory_post_test_lines(vstart, memsize);
520 	if (!ret)
521 		ret = memory_post_test_regions(vstart, memsize);
522 
523 	return ret;
524 }
525 
526 int memory_post_test(int flags)
527 {
528 	int ret = 0;
529 	phys_addr_t phys_offset = 0;
530 	u32 memsize, vstart;
531 
532 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
533 
534 	do {
535 		if (flags & POST_SLOWTEST) {
536 			ret = memory_post_tests(vstart, memsize);
537 		} else {			/* POST_NORMAL */
538 			ret = memory_post_test_regions(vstart, memsize);
539 		}
540 	} while (!ret &&
541 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
542 
543 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
544 	if (ret)
545 		arch_memory_failure_handle();
546 
547 	return ret;
548 }
549 
550 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
551