xref: /openbmc/u-boot/post/drivers/memory.c (revision f670a154)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 
26 /* Memory test
27  *
28  * General observations:
29  * o The recommended test sequence is to test the data lines: if they are
30  *   broken, nothing else will work properly.  Then test the address
31  *   lines.  Finally, test the cells in the memory now that the test
32  *   program knows that the address and data lines work properly.
33  *   This sequence also helps isolate and identify what is faulty.
34  *
35  * o For the address line test, it is a good idea to use the base
36  *   address of the lowest memory location, which causes a '1' bit to
37  *   walk through a field of zeros on the address lines and the highest
38  *   memory location, which causes a '0' bit to walk through a field of
39  *   '1's on the address line.
40  *
41  * o Floating buses can fool memory tests if the test routine writes
42  *   a value and then reads it back immediately.  The problem is, the
43  *   write will charge the residual capacitance on the data bus so the
44  *   bus retains its state briefely.  When the test program reads the
45  *   value back immediately, the capacitance of the bus can allow it
46  *   to read back what was written, even though the memory circuitry
47  *   is broken.  To avoid this, the test program should write a test
48  *   pattern to the target location, write a different pattern elsewhere
49  *   to charge the residual capacitance in a differnt manner, then read
50  *   the target location back.
51  *
52  * o Always read the target location EXACTLY ONCE and save it in a local
53  *   variable.  The problem with reading the target location more than
54  *   once is that the second and subsequent reads may work properly,
55  *   resulting in a failed test that tells the poor technician that
56  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
57  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
58  *   done that.
59  *
60  * Data line test:
61  * ---------------
62  * This tests data lines for shorts and opens by forcing adjacent data
63  * to opposite states. Because the data lines could be routed in an
64  * arbitrary manner the must ensure test patterns ensure that every case
65  * is tested. By using the following series of binary patterns every
66  * combination of adjacent bits is test regardless of routing.
67  *
68  *     ...101010101010101010101010
69  *     ...110011001100110011001100
70  *     ...111100001111000011110000
71  *     ...111111110000000011111111
72  *
73  * Carrying this out, gives us six hex patterns as follows:
74  *
75  *     0xaaaaaaaaaaaaaaaa
76  *     0xcccccccccccccccc
77  *     0xf0f0f0f0f0f0f0f0
78  *     0xff00ff00ff00ff00
79  *     0xffff0000ffff0000
80  *     0xffffffff00000000
81  *
82  * To test for short and opens to other signals on our boards, we
83  * simply test with the 1's complemnt of the paterns as well, resulting
84  * in twelve patterns total.
85  *
86  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
87  * written to a different address in case the data lines are floating.
88  * Thus, if a byte lane fails, you will see part of the special
89  * pattern in that byte lane when the test runs.  For example, if the
90  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
91  * (for the 'a' test pattern).
92  *
93  * Address line test:
94  * ------------------
95  *  This function performs a test to verify that all the address lines
96  *  hooked up to the RAM work properly.  If there is an address line
97  *  fault, it usually shows up as two different locations in the address
98  *  map (related by the faulty address line) mapping to one physical
99  *  memory storage location.  The artifact that shows up is writing to
100  *  the first location "changes" the second location.
101  *
102  * To test all address lines, we start with the given base address and
103  * xor the address with a '1' bit to flip one address line.  For each
104  * test, we shift the '1' bit left to test the next address line.
105  *
106  * In the actual code, we start with address sizeof(ulong) since our
107  * test pattern we use is a ulong and thus, if we tried to test lower
108  * order address bits, it wouldn't work because our pattern would
109  * overwrite itself.
110  *
111  * Example for a 4 bit address space with the base at 0000:
112  *   0000 <- base
113  *   0001 <- test 1
114  *   0010 <- test 2
115  *   0100 <- test 3
116  *   1000 <- test 4
117  * Example for a 4 bit address space with the base at 0010:
118  *   0010 <- base
119  *   0011 <- test 1
120  *   0000 <- (below the base address, skipped)
121  *   0110 <- test 2
122  *   1010 <- test 3
123  *
124  * The test locations are successively tested to make sure that they are
125  * not "mirrored" onto the base address due to a faulty address line.
126  * Note that the base and each test location are related by one address
127  * line flipped.  Note that the base address need not be all zeros.
128  *
129  * Memory tests 1-4:
130  * -----------------
131  * These tests verify RAM using sequential writes and reads
132  * to/from RAM. There are several test cases that use different patterns to
133  * verify RAM. Each test case fills a region of RAM with one pattern and
134  * then reads the region back and compares its contents with the pattern.
135  * The following patterns are used:
136  *
137  *  1a) zero pattern (0x00000000)
138  *  1b) negative pattern (0xffffffff)
139  *  1c) checkerboard pattern (0x55555555)
140  *  1d) checkerboard pattern (0xaaaaaaaa)
141  *  2)  bit-flip pattern ((1 << (offset % 32))
142  *  3)  address pattern (offset)
143  *  4)  address pattern (~offset)
144  *
145  * Being run in normal mode, the test verifies only small 4Kb
146  * regions of RAM around each 1Mb boundary. For example, for 64Mb
147  * RAM the following areas are verified: 0x00000000-0x00000800,
148  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
149  * 0x04000000. If the test is run in slow-test mode, it verifies
150  * the whole RAM.
151  */
152 
153 #ifdef CONFIG_POST
154 
155 #include <post.h>
156 #include <watchdog.h>
157 
158 #if CONFIG_POST & CFG_POST_MEMORY
159 
160 DECLARE_GLOBAL_DATA_PTR;
161 
162 /*
163  * Define INJECT_*_ERRORS for testing error detection in the presence of
164  * _good_ hardware.
165  */
166 #undef  INJECT_DATA_ERRORS
167 #undef  INJECT_ADDRESS_ERRORS
168 
169 #ifdef INJECT_DATA_ERRORS
170 #warning "Injecting data line errors for testing purposes"
171 #endif
172 
173 #ifdef INJECT_ADDRESS_ERRORS
174 #warning "Injecting address line errors for testing purposes"
175 #endif
176 
177 
178 /*
179  * This function performs a double word move from the data at
180  * the source pointer to the location at the destination pointer.
181  * This is helpful for testing memory on processors which have a 64 bit
182  * wide data bus.
183  *
184  * On those PowerPC with FPU, use assembly and a floating point move:
185  * this does a 64 bit move.
186  *
187  * For other processors, let the compiler generate the best code it can.
188  */
189 static void move64(unsigned long long *src, unsigned long long *dest)
190 {
191 #if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X)
192 	asm ("lfd  0, 0(3)\n\t" /* fpr0	  =  *scr	*/
193 	 "stfd 0, 0(4)"		/* *dest  =  fpr0	*/
194 	 : : : "fr0" );		/* Clobbers fr0		*/
195     return;
196 #else
197 	*dest = *src;
198 #endif
199 }
200 
201 /*
202  * This is 64 bit wide test patterns.  Note that they reside in ROM
203  * (which presumably works) and the tests write them to RAM which may
204  * not work.
205  *
206  * The "otherpattern" is written to drive the data bus to values other
207  * than the test pattern.  This is for detecting floating bus lines.
208  *
209  */
210 const static unsigned long long pattern[] = {
211 	0xaaaaaaaaaaaaaaaaULL,
212 	0xccccccccccccccccULL,
213 	0xf0f0f0f0f0f0f0f0ULL,
214 	0xff00ff00ff00ff00ULL,
215 	0xffff0000ffff0000ULL,
216 	0xffffffff00000000ULL,
217 	0x00000000ffffffffULL,
218 	0x0000ffff0000ffffULL,
219 	0x00ff00ff00ff00ffULL,
220 	0x0f0f0f0f0f0f0f0fULL,
221 	0x3333333333333333ULL,
222 	0x5555555555555555ULL
223 };
224 const unsigned long long otherpattern = 0x0123456789abcdefULL;
225 
226 
227 static int memory_post_dataline(unsigned long long * pmem)
228 {
229 	unsigned long long temp64 = 0;
230 	int num_patterns = sizeof(pattern)/ sizeof(pattern[0]);
231 	int i;
232 	unsigned int hi, lo, pathi, patlo;
233 	int ret = 0;
234 
235 	for ( i = 0; i < num_patterns; i++) {
236 		move64((unsigned long long *)&(pattern[i]), pmem++);
237 		/*
238 		 * Put a different pattern on the data lines: otherwise they
239 		 * may float long enough to read back what we wrote.
240 		 */
241 		move64((unsigned long long *)&otherpattern, pmem--);
242 		move64(pmem, &temp64);
243 
244 #ifdef INJECT_DATA_ERRORS
245 		temp64 ^= 0x00008000;
246 #endif
247 
248 		if (temp64 != pattern[i]){
249 			pathi = (pattern[i]>>32) & 0xffffffff;
250 			patlo = pattern[i] & 0xffffffff;
251 
252 			hi = (temp64>>32) & 0xffffffff;
253 			lo = temp64 & 0xffffffff;
254 
255 			post_log ("Memory (date line) error at %08x, "
256 				  "wrote %08x%08x, read %08x%08x !\n",
257 					  pmem, pathi, patlo, hi, lo);
258 			ret = -1;
259 		}
260 	}
261 	return ret;
262 }
263 
264 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
265 {
266 	ulong *target;
267 	ulong *end;
268 	ulong readback;
269 	ulong xor;
270 	int   ret = 0;
271 
272 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
273 	xor = 0;
274 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
275 		target = (ulong *)((ulong)testaddr ^ xor);
276 		if((target >= base) && (target < end)) {
277 			*testaddr = ~*target;
278 			readback  = *target;
279 
280 #ifdef INJECT_ADDRESS_ERRORS
281 			if(xor == 0x00008000) {
282 				readback = *testaddr;
283 			}
284 #endif
285 			if(readback == *testaddr) {
286 				post_log ("Memory (address line) error at %08x<->%08x, "
287 				  	"XOR value %08x !\n",
288 					testaddr, target, xor);
289 				ret = -1;
290 			}
291 		}
292 	}
293 	return ret;
294 }
295 
296 static int memory_post_test1 (unsigned long start,
297 			      unsigned long size,
298 			      unsigned long val)
299 {
300 	unsigned long i;
301 	ulong *mem = (ulong *) start;
302 	ulong readback;
303 	int ret = 0;
304 
305 	for (i = 0; i < size / sizeof (ulong); i++) {
306 		mem[i] = val;
307 		if (i % 1024 == 0)
308 			WATCHDOG_RESET ();
309 	}
310 
311 	for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
312 		readback = mem[i];
313 		if (readback != val) {
314 			post_log ("Memory error at %08x, "
315 				  "wrote %08x, read %08x !\n",
316 					  mem + i, val, readback);
317 
318 			ret = -1;
319 			break;
320 		}
321 		if (i % 1024 == 0)
322 			WATCHDOG_RESET ();
323 	}
324 
325 	return ret;
326 }
327 
328 static int memory_post_test2 (unsigned long start, unsigned long size)
329 {
330 	unsigned long i;
331 	ulong *mem = (ulong *) start;
332 	ulong readback;
333 	int ret = 0;
334 
335 	for (i = 0; i < size / sizeof (ulong); i++) {
336 		mem[i] = 1 << (i % 32);
337 		if (i % 1024 == 0)
338 			WATCHDOG_RESET ();
339 	}
340 
341 	for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
342 		readback = mem[i];
343 		if (readback != (1 << (i % 32))) {
344 			post_log ("Memory error at %08x, "
345 				  "wrote %08x, read %08x !\n",
346 					  mem + i, 1 << (i % 32), readback);
347 
348 			ret = -1;
349 			break;
350 		}
351 		if (i % 1024 == 0)
352 			WATCHDOG_RESET ();
353 	}
354 
355 	return ret;
356 }
357 
358 static int memory_post_test3 (unsigned long start, unsigned long size)
359 {
360 	unsigned long i;
361 	ulong *mem = (ulong *) start;
362 	ulong readback;
363 	int ret = 0;
364 
365 	for (i = 0; i < size / sizeof (ulong); i++) {
366 		mem[i] = i;
367 		if (i % 1024 == 0)
368 			WATCHDOG_RESET ();
369 	}
370 
371 	for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
372 		readback = mem[i];
373 		if (readback != i) {
374 			post_log ("Memory error at %08x, "
375 				  "wrote %08x, read %08x !\n",
376 					  mem + i, i, readback);
377 
378 			ret = -1;
379 			break;
380 		}
381 		if (i % 1024 == 0)
382 			WATCHDOG_RESET ();
383 	}
384 
385 	return ret;
386 }
387 
388 static int memory_post_test4 (unsigned long start, unsigned long size)
389 {
390 	unsigned long i;
391 	ulong *mem = (ulong *) start;
392 	ulong readback;
393 	int ret = 0;
394 
395 	for (i = 0; i < size / sizeof (ulong); i++) {
396 		mem[i] = ~i;
397 		if (i % 1024 == 0)
398 			WATCHDOG_RESET ();
399 	}
400 
401 	for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) {
402 		readback = mem[i];
403 		if (readback != ~i) {
404 			post_log ("Memory error at %08x, "
405 				  "wrote %08x, read %08x !\n",
406 					  mem + i, ~i, readback);
407 
408 			ret = -1;
409 			break;
410 		}
411 		if (i % 1024 == 0)
412 			WATCHDOG_RESET ();
413 	}
414 
415 	return ret;
416 }
417 
418 static int memory_post_tests (unsigned long start, unsigned long size)
419 {
420 	int ret = 0;
421 
422 	if (ret == 0)
423 		ret = memory_post_dataline ((unsigned long long *)start);
424 	WATCHDOG_RESET ();
425 	if (ret == 0)
426 		ret = memory_post_addrline ((ulong *)start, (ulong *)start, size);
427 	WATCHDOG_RESET ();
428 	if (ret == 0)
429 		ret = memory_post_addrline ((ulong *)(start + size - 8),
430 					    (ulong *)start, size);
431 	WATCHDOG_RESET ();
432 	if (ret == 0)
433 		ret = memory_post_test1 (start, size, 0x00000000);
434 	WATCHDOG_RESET ();
435 	if (ret == 0)
436 		ret = memory_post_test1 (start, size, 0xffffffff);
437 	WATCHDOG_RESET ();
438 	if (ret == 0)
439 		ret = memory_post_test1 (start, size, 0x55555555);
440 	WATCHDOG_RESET ();
441 	if (ret == 0)
442 		ret = memory_post_test1 (start, size, 0xaaaaaaaa);
443 	WATCHDOG_RESET ();
444 	if (ret == 0)
445 		ret = memory_post_test2 (start, size);
446 	WATCHDOG_RESET ();
447 	if (ret == 0)
448 		ret = memory_post_test3 (start, size);
449 	WATCHDOG_RESET ();
450 	if (ret == 0)
451 		ret = memory_post_test4 (start, size);
452 	WATCHDOG_RESET ();
453 
454 	return ret;
455 }
456 
457 int memory_post_test (int flags)
458 {
459 	int ret = 0;
460 	bd_t *bd = gd->bd;
461 	unsigned long memsize = (bd->bi_memsize >= 256 << 20 ?
462 				 256 << 20 : bd->bi_memsize) - (1 << 20);
463 
464 
465 	if (flags & POST_SLOWTEST) {
466 		ret = memory_post_tests (CFG_SDRAM_BASE, memsize);
467 	} else {			/* POST_NORMAL */
468 
469 		unsigned long i;
470 
471 		for (i = 0; i < (memsize >> 20) && ret == 0; i++) {
472 			if (ret == 0)
473 				ret = memory_post_tests (i << 20, 0x800);
474 			if (ret == 0)
475 				ret = memory_post_tests ((i << 20) + 0xff800, 0x800);
476 		}
477 	}
478 
479 	return ret;
480 }
481 
482 #endif /* CONFIG_POST & CFG_POST_MEMORY */
483 #endif /* CONFIG_POST */
484