xref: /openbmc/u-boot/post/drivers/memory.c (revision e2a53458)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 
26 /* Memory test
27  *
28  * General observations:
29  * o The recommended test sequence is to test the data lines: if they are
30  *   broken, nothing else will work properly.  Then test the address
31  *   lines.  Finally, test the cells in the memory now that the test
32  *   program knows that the address and data lines work properly.
33  *   This sequence also helps isolate and identify what is faulty.
34  *
35  * o For the address line test, it is a good idea to use the base
36  *   address of the lowest memory location, which causes a '1' bit to
37  *   walk through a field of zeros on the address lines and the highest
38  *   memory location, which causes a '0' bit to walk through a field of
39  *   '1's on the address line.
40  *
41  * o Floating buses can fool memory tests if the test routine writes
42  *   a value and then reads it back immediately.  The problem is, the
43  *   write will charge the residual capacitance on the data bus so the
44  *   bus retains its state briefely.  When the test program reads the
45  *   value back immediately, the capacitance of the bus can allow it
46  *   to read back what was written, even though the memory circuitry
47  *   is broken.  To avoid this, the test program should write a test
48  *   pattern to the target location, write a different pattern elsewhere
49  *   to charge the residual capacitance in a differnt manner, then read
50  *   the target location back.
51  *
52  * o Always read the target location EXACTLY ONCE and save it in a local
53  *   variable.  The problem with reading the target location more than
54  *   once is that the second and subsequent reads may work properly,
55  *   resulting in a failed test that tells the poor technician that
56  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
57  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
58  *   done that.
59  *
60  * Data line test:
61  * ---------------
62  * This tests data lines for shorts and opens by forcing adjacent data
63  * to opposite states. Because the data lines could be routed in an
64  * arbitrary manner the must ensure test patterns ensure that every case
65  * is tested. By using the following series of binary patterns every
66  * combination of adjacent bits is test regardless of routing.
67  *
68  *     ...101010101010101010101010
69  *     ...110011001100110011001100
70  *     ...111100001111000011110000
71  *     ...111111110000000011111111
72  *
73  * Carrying this out, gives us six hex patterns as follows:
74  *
75  *     0xaaaaaaaaaaaaaaaa
76  *     0xcccccccccccccccc
77  *     0xf0f0f0f0f0f0f0f0
78  *     0xff00ff00ff00ff00
79  *     0xffff0000ffff0000
80  *     0xffffffff00000000
81  *
82  * To test for short and opens to other signals on our boards, we
83  * simply test with the 1's complemnt of the paterns as well, resulting
84  * in twelve patterns total.
85  *
86  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
87  * written to a different address in case the data lines are floating.
88  * Thus, if a byte lane fails, you will see part of the special
89  * pattern in that byte lane when the test runs.  For example, if the
90  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
91  * (for the 'a' test pattern).
92  *
93  * Address line test:
94  * ------------------
95  *  This function performs a test to verify that all the address lines
96  *  hooked up to the RAM work properly.  If there is an address line
97  *  fault, it usually shows up as two different locations in the address
98  *  map (related by the faulty address line) mapping to one physical
99  *  memory storage location.  The artifact that shows up is writing to
100  *  the first location "changes" the second location.
101  *
102  * To test all address lines, we start with the given base address and
103  * xor the address with a '1' bit to flip one address line.  For each
104  * test, we shift the '1' bit left to test the next address line.
105  *
106  * In the actual code, we start with address sizeof(ulong) since our
107  * test pattern we use is a ulong and thus, if we tried to test lower
108  * order address bits, it wouldn't work because our pattern would
109  * overwrite itself.
110  *
111  * Example for a 4 bit address space with the base at 0000:
112  *   0000 <- base
113  *   0001 <- test 1
114  *   0010 <- test 2
115  *   0100 <- test 3
116  *   1000 <- test 4
117  * Example for a 4 bit address space with the base at 0010:
118  *   0010 <- base
119  *   0011 <- test 1
120  *   0000 <- (below the base address, skipped)
121  *   0110 <- test 2
122  *   1010 <- test 3
123  *
124  * The test locations are successively tested to make sure that they are
125  * not "mirrored" onto the base address due to a faulty address line.
126  * Note that the base and each test location are related by one address
127  * line flipped.  Note that the base address need not be all zeros.
128  *
129  * Memory tests 1-4:
130  * -----------------
131  * These tests verify RAM using sequential writes and reads
132  * to/from RAM. There are several test cases that use different patterns to
133  * verify RAM. Each test case fills a region of RAM with one pattern and
134  * then reads the region back and compares its contents with the pattern.
135  * The following patterns are used:
136  *
137  *  1a) zero pattern (0x00000000)
138  *  1b) negative pattern (0xffffffff)
139  *  1c) checkerboard pattern (0x55555555)
140  *  1d) checkerboard pattern (0xaaaaaaaa)
141  *  2)  bit-flip pattern ((1 << (offset % 32))
142  *  3)  address pattern (offset)
143  *  4)  address pattern (~offset)
144  *
145  * Being run in normal mode, the test verifies only small 4Kb
146  * regions of RAM around each 1Mb boundary. For example, for 64Mb
147  * RAM the following areas are verified: 0x00000000-0x00000800,
148  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
149  * 0x04000000. If the test is run in slow-test mode, it verifies
150  * the whole RAM.
151  */
152 
153 #include <post.h>
154 #include <watchdog.h>
155 
156 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
157 
158 DECLARE_GLOBAL_DATA_PTR;
159 
160 /*
161  * Define INJECT_*_ERRORS for testing error detection in the presence of
162  * _good_ hardware.
163  */
164 #undef  INJECT_DATA_ERRORS
165 #undef  INJECT_ADDRESS_ERRORS
166 
167 #ifdef INJECT_DATA_ERRORS
168 #warning "Injecting data line errors for testing purposes"
169 #endif
170 
171 #ifdef INJECT_ADDRESS_ERRORS
172 #warning "Injecting address line errors for testing purposes"
173 #endif
174 
175 
176 /*
177  * This function performs a double word move from the data at
178  * the source pointer to the location at the destination pointer.
179  * This is helpful for testing memory on processors which have a 64 bit
180  * wide data bus.
181  *
182  * On those PowerPC with FPU, use assembly and a floating point move:
183  * this does a 64 bit move.
184  *
185  * For other processors, let the compiler generate the best code it can.
186  */
187 static void move64(const unsigned long long *src, unsigned long long *dest)
188 {
189 #if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X)
190 	asm ("lfd  0, 0(3)\n\t" /* fpr0	  =  *scr	*/
191 	 "stfd 0, 0(4)"		/* *dest  =  fpr0	*/
192 	 : : : "fr0" );		/* Clobbers fr0		*/
193     return;
194 #else
195 	*dest = *src;
196 #endif
197 }
198 
199 /*
200  * This is 64 bit wide test patterns.  Note that they reside in ROM
201  * (which presumably works) and the tests write them to RAM which may
202  * not work.
203  *
204  * The "otherpattern" is written to drive the data bus to values other
205  * than the test pattern.  This is for detecting floating bus lines.
206  *
207  */
208 const static unsigned long long pattern[] = {
209 	0xaaaaaaaaaaaaaaaaULL,
210 	0xccccccccccccccccULL,
211 	0xf0f0f0f0f0f0f0f0ULL,
212 	0xff00ff00ff00ff00ULL,
213 	0xffff0000ffff0000ULL,
214 	0xffffffff00000000ULL,
215 	0x00000000ffffffffULL,
216 	0x0000ffff0000ffffULL,
217 	0x00ff00ff00ff00ffULL,
218 	0x0f0f0f0f0f0f0f0fULL,
219 	0x3333333333333333ULL,
220 	0x5555555555555555ULL
221 };
222 const unsigned long long otherpattern = 0x0123456789abcdefULL;
223 
224 
225 static int memory_post_dataline(unsigned long long * pmem)
226 {
227 	unsigned long long temp64 = 0;
228 	int num_patterns = ARRAY_SIZE(pattern);
229 	int i;
230 	unsigned int hi, lo, pathi, patlo;
231 	int ret = 0;
232 
233 	for ( i = 0; i < num_patterns; i++) {
234 		move64(&(pattern[i]), pmem++);
235 		/*
236 		 * Put a different pattern on the data lines: otherwise they
237 		 * may float long enough to read back what we wrote.
238 		 */
239 		move64(&otherpattern, pmem--);
240 		move64(pmem, &temp64);
241 
242 #ifdef INJECT_DATA_ERRORS
243 		temp64 ^= 0x00008000;
244 #endif
245 
246 		if (temp64 != pattern[i]){
247 			pathi = (pattern[i]>>32) & 0xffffffff;
248 			patlo = pattern[i] & 0xffffffff;
249 
250 			hi = (temp64>>32) & 0xffffffff;
251 			lo = temp64 & 0xffffffff;
252 
253 			post_log("Memory (date line) error at %08x, "
254 				  "wrote %08x%08x, read %08x%08x !\n",
255 					  pmem, pathi, patlo, hi, lo);
256 			ret = -1;
257 		}
258 	}
259 	return ret;
260 }
261 
262 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
263 {
264 	ulong *target;
265 	ulong *end;
266 	ulong readback;
267 	ulong xor;
268 	int   ret = 0;
269 
270 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
271 	xor = 0;
272 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
273 		target = (ulong *)((ulong)testaddr ^ xor);
274 		if((target >= base) && (target < end)) {
275 			*testaddr = ~*target;
276 			readback  = *target;
277 
278 #ifdef INJECT_ADDRESS_ERRORS
279 			if(xor == 0x00008000) {
280 				readback = *testaddr;
281 			}
282 #endif
283 			if(readback == *testaddr) {
284 				post_log("Memory (address line) error at %08x<->%08x, "
285 					"XOR value %08x !\n",
286 					testaddr, target, xor);
287 				ret = -1;
288 			}
289 		}
290 	}
291 	return ret;
292 }
293 
294 static int memory_post_test1(unsigned long start,
295 			      unsigned long size,
296 			      unsigned long val)
297 {
298 	unsigned long i;
299 	ulong *mem = (ulong *) start;
300 	ulong readback;
301 	int ret = 0;
302 
303 	for (i = 0; i < size / sizeof (ulong); i++) {
304 		mem[i] = val;
305 		if (i % 1024 == 0)
306 			WATCHDOG_RESET();
307 	}
308 
309 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
310 		readback = mem[i];
311 		if (readback != val) {
312 			post_log("Memory error at %08x, "
313 				  "wrote %08x, read %08x !\n",
314 					  mem + i, val, readback);
315 
316 			ret = -1;
317 			break;
318 		}
319 		if (i % 1024 == 0)
320 			WATCHDOG_RESET();
321 	}
322 
323 	return ret;
324 }
325 
326 static int memory_post_test2(unsigned long start, unsigned long size)
327 {
328 	unsigned long i;
329 	ulong *mem = (ulong *) start;
330 	ulong readback;
331 	int ret = 0;
332 
333 	for (i = 0; i < size / sizeof (ulong); i++) {
334 		mem[i] = 1 << (i % 32);
335 		if (i % 1024 == 0)
336 			WATCHDOG_RESET();
337 	}
338 
339 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
340 		readback = mem[i];
341 		if (readback != (1 << (i % 32))) {
342 			post_log("Memory error at %08x, "
343 				  "wrote %08x, read %08x !\n",
344 					  mem + i, 1 << (i % 32), readback);
345 
346 			ret = -1;
347 			break;
348 		}
349 		if (i % 1024 == 0)
350 			WATCHDOG_RESET();
351 	}
352 
353 	return ret;
354 }
355 
356 static int memory_post_test3(unsigned long start, unsigned long size)
357 {
358 	unsigned long i;
359 	ulong *mem = (ulong *) start;
360 	ulong readback;
361 	int ret = 0;
362 
363 	for (i = 0; i < size / sizeof (ulong); i++) {
364 		mem[i] = i;
365 		if (i % 1024 == 0)
366 			WATCHDOG_RESET();
367 	}
368 
369 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
370 		readback = mem[i];
371 		if (readback != i) {
372 			post_log("Memory error at %08x, "
373 				  "wrote %08x, read %08x !\n",
374 					  mem + i, i, readback);
375 
376 			ret = -1;
377 			break;
378 		}
379 		if (i % 1024 == 0)
380 			WATCHDOG_RESET();
381 	}
382 
383 	return ret;
384 }
385 
386 static int memory_post_test4(unsigned long start, unsigned long size)
387 {
388 	unsigned long i;
389 	ulong *mem = (ulong *) start;
390 	ulong readback;
391 	int ret = 0;
392 
393 	for (i = 0; i < size / sizeof (ulong); i++) {
394 		mem[i] = ~i;
395 		if (i % 1024 == 0)
396 			WATCHDOG_RESET();
397 	}
398 
399 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
400 		readback = mem[i];
401 		if (readback != ~i) {
402 			post_log("Memory error at %08x, "
403 				  "wrote %08x, read %08x !\n",
404 					  mem + i, ~i, readback);
405 
406 			ret = -1;
407 			break;
408 		}
409 		if (i % 1024 == 0)
410 			WATCHDOG_RESET();
411 	}
412 
413 	return ret;
414 }
415 
416 static int memory_post_test_lines(unsigned long start, unsigned long size)
417 {
418 	int ret = 0;
419 
420 	ret = memory_post_dataline((unsigned long long *)start);
421 	WATCHDOG_RESET();
422 	if (!ret)
423 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
424 				size);
425 	WATCHDOG_RESET();
426 	if (!ret)
427 		ret = memory_post_addrline((ulong *)(start+size-8),
428 				(ulong *)start, size);
429 	WATCHDOG_RESET();
430 
431 	return ret;
432 }
433 
434 static int memory_post_test_patterns(unsigned long start, unsigned long size)
435 {
436 	int ret = 0;
437 
438 	ret = memory_post_test1(start, size, 0x00000000);
439 	WATCHDOG_RESET();
440 	if (!ret)
441 		ret = memory_post_test1(start, size, 0xffffffff);
442 	WATCHDOG_RESET();
443 	if (!ret)
444 		ret = memory_post_test1(start, size, 0x55555555);
445 	WATCHDOG_RESET();
446 	if (!ret)
447 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
448 	WATCHDOG_RESET();
449 	if (!ret)
450 		ret = memory_post_test2(start, size);
451 	WATCHDOG_RESET();
452 	if (!ret)
453 		ret = memory_post_test3(start, size);
454 	WATCHDOG_RESET();
455 	if (!ret)
456 		ret = memory_post_test4(start, size);
457 	WATCHDOG_RESET();
458 
459 	return ret;
460 }
461 
462 static int memory_post_test_regions(unsigned long start, unsigned long size)
463 {
464 	unsigned long i;
465 	int ret = 0;
466 
467 	for (i = 0; i < (size >> 20) && (!ret); i++) {
468 		if (!ret)
469 			ret = memory_post_test_patterns(i << 20, 0x800);
470 		if (!ret)
471 			ret = memory_post_test_patterns((i << 20) + 0xff800,
472 				0x800);
473 	}
474 
475 	return ret;
476 }
477 
478 static int memory_post_tests(unsigned long start, unsigned long size)
479 {
480 	int ret = 0;
481 
482 	ret = memory_post_test_lines(start, size);
483 	if (!ret)
484 		ret = memory_post_test_patterns(start, size);
485 
486 	return ret;
487 }
488 
489 /*
490  * !! this is only valid, if you have contiguous memory banks !!
491  */
492 __attribute__((weak))
493 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
494 {
495 	bd_t *bd = gd->bd;
496 
497 	*vstart = CONFIG_SYS_SDRAM_BASE;
498 	*size = (gd->ram_size >= 256 << 20 ?
499 			256 << 20 : gd->ram_size) - (1 << 20);
500 
501 	/* Limit area to be tested with the board info struct */
502 	if ((*vstart) + (*size) > (ulong)bd)
503 		*size = (ulong)bd - *vstart;
504 
505 	return 0;
506 }
507 
508 __attribute__((weak))
509 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
510 {
511 	return 1;
512 }
513 
514 __attribute__((weak))
515 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
516 {
517 	return 0;
518 }
519 
520 __attribute__((weak))
521 void arch_memory_failure_handle(void)
522 {
523 	return;
524 }
525 
526 int memory_regions_post_test(int flags)
527 {
528 	int ret = 0;
529 	phys_addr_t phys_offset = 0;
530 	u32 memsize, vstart;
531 
532 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
533 
534 	ret = memory_post_test_lines(vstart, memsize);
535 	if (!ret)
536 		ret = memory_post_test_regions(vstart, memsize);
537 
538 	return ret;
539 }
540 
541 int memory_post_test(int flags)
542 {
543 	int ret = 0;
544 	phys_addr_t phys_offset = 0;
545 	u32 memsize, vstart;
546 
547 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
548 
549 	do {
550 		if (flags & POST_SLOWTEST) {
551 			ret = memory_post_tests(vstart, memsize);
552 		} else {			/* POST_NORMAL */
553 			ret = memory_post_test_regions(vstart, memsize);
554 		}
555 	} while (!ret &&
556 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
557 
558 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
559 	if (ret)
560 		arch_memory_failure_handle();
561 
562 	return ret;
563 }
564 
565 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
566