1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2002 4 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 5 */ 6 7 #include <common.h> 8 9 /* Memory test 10 * 11 * General observations: 12 * o The recommended test sequence is to test the data lines: if they are 13 * broken, nothing else will work properly. Then test the address 14 * lines. Finally, test the cells in the memory now that the test 15 * program knows that the address and data lines work properly. 16 * This sequence also helps isolate and identify what is faulty. 17 * 18 * o For the address line test, it is a good idea to use the base 19 * address of the lowest memory location, which causes a '1' bit to 20 * walk through a field of zeros on the address lines and the highest 21 * memory location, which causes a '0' bit to walk through a field of 22 * '1's on the address line. 23 * 24 * o Floating buses can fool memory tests if the test routine writes 25 * a value and then reads it back immediately. The problem is, the 26 * write will charge the residual capacitance on the data bus so the 27 * bus retains its state briefely. When the test program reads the 28 * value back immediately, the capacitance of the bus can allow it 29 * to read back what was written, even though the memory circuitry 30 * is broken. To avoid this, the test program should write a test 31 * pattern to the target location, write a different pattern elsewhere 32 * to charge the residual capacitance in a differnt manner, then read 33 * the target location back. 34 * 35 * o Always read the target location EXACTLY ONCE and save it in a local 36 * variable. The problem with reading the target location more than 37 * once is that the second and subsequent reads may work properly, 38 * resulting in a failed test that tells the poor technician that 39 * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which 40 * doesn't help him one bit and causes puzzled phone calls. Been there, 41 * done that. 42 * 43 * Data line test: 44 * --------------- 45 * This tests data lines for shorts and opens by forcing adjacent data 46 * to opposite states. Because the data lines could be routed in an 47 * arbitrary manner the must ensure test patterns ensure that every case 48 * is tested. By using the following series of binary patterns every 49 * combination of adjacent bits is test regardless of routing. 50 * 51 * ...101010101010101010101010 52 * ...110011001100110011001100 53 * ...111100001111000011110000 54 * ...111111110000000011111111 55 * 56 * Carrying this out, gives us six hex patterns as follows: 57 * 58 * 0xaaaaaaaaaaaaaaaa 59 * 0xcccccccccccccccc 60 * 0xf0f0f0f0f0f0f0f0 61 * 0xff00ff00ff00ff00 62 * 0xffff0000ffff0000 63 * 0xffffffff00000000 64 * 65 * To test for short and opens to other signals on our boards, we 66 * simply test with the 1's complemnt of the paterns as well, resulting 67 * in twelve patterns total. 68 * 69 * After writing a test pattern. a special pattern 0x0123456789ABCDEF is 70 * written to a different address in case the data lines are floating. 71 * Thus, if a byte lane fails, you will see part of the special 72 * pattern in that byte lane when the test runs. For example, if the 73 * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa 74 * (for the 'a' test pattern). 75 * 76 * Address line test: 77 * ------------------ 78 * This function performs a test to verify that all the address lines 79 * hooked up to the RAM work properly. If there is an address line 80 * fault, it usually shows up as two different locations in the address 81 * map (related by the faulty address line) mapping to one physical 82 * memory storage location. The artifact that shows up is writing to 83 * the first location "changes" the second location. 84 * 85 * To test all address lines, we start with the given base address and 86 * xor the address with a '1' bit to flip one address line. For each 87 * test, we shift the '1' bit left to test the next address line. 88 * 89 * In the actual code, we start with address sizeof(ulong) since our 90 * test pattern we use is a ulong and thus, if we tried to test lower 91 * order address bits, it wouldn't work because our pattern would 92 * overwrite itself. 93 * 94 * Example for a 4 bit address space with the base at 0000: 95 * 0000 <- base 96 * 0001 <- test 1 97 * 0010 <- test 2 98 * 0100 <- test 3 99 * 1000 <- test 4 100 * Example for a 4 bit address space with the base at 0010: 101 * 0010 <- base 102 * 0011 <- test 1 103 * 0000 <- (below the base address, skipped) 104 * 0110 <- test 2 105 * 1010 <- test 3 106 * 107 * The test locations are successively tested to make sure that they are 108 * not "mirrored" onto the base address due to a faulty address line. 109 * Note that the base and each test location are related by one address 110 * line flipped. Note that the base address need not be all zeros. 111 * 112 * Memory tests 1-4: 113 * ----------------- 114 * These tests verify RAM using sequential writes and reads 115 * to/from RAM. There are several test cases that use different patterns to 116 * verify RAM. Each test case fills a region of RAM with one pattern and 117 * then reads the region back and compares its contents with the pattern. 118 * The following patterns are used: 119 * 120 * 1a) zero pattern (0x00000000) 121 * 1b) negative pattern (0xffffffff) 122 * 1c) checkerboard pattern (0x55555555) 123 * 1d) checkerboard pattern (0xaaaaaaaa) 124 * 2) bit-flip pattern ((1 << (offset % 32)) 125 * 3) address pattern (offset) 126 * 4) address pattern (~offset) 127 * 128 * Being run in normal mode, the test verifies only small 4Kb 129 * regions of RAM around each 1Mb boundary. For example, for 64Mb 130 * RAM the following areas are verified: 0x00000000-0x00000800, 131 * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800- 132 * 0x04000000. If the test is run in slow-test mode, it verifies 133 * the whole RAM. 134 */ 135 136 #include <post.h> 137 #include <watchdog.h> 138 139 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS) 140 141 DECLARE_GLOBAL_DATA_PTR; 142 143 /* 144 * Define INJECT_*_ERRORS for testing error detection in the presence of 145 * _good_ hardware. 146 */ 147 #undef INJECT_DATA_ERRORS 148 #undef INJECT_ADDRESS_ERRORS 149 150 #ifdef INJECT_DATA_ERRORS 151 #warning "Injecting data line errors for testing purposes" 152 #endif 153 154 #ifdef INJECT_ADDRESS_ERRORS 155 #warning "Injecting address line errors for testing purposes" 156 #endif 157 158 159 /* 160 * This function performs a double word move from the data at 161 * the source pointer to the location at the destination pointer. 162 * This is helpful for testing memory on processors which have a 64 bit 163 * wide data bus. 164 * 165 * On those PowerPC with FPU, use assembly and a floating point move: 166 * this does a 64 bit move. 167 * 168 * For other processors, let the compiler generate the best code it can. 169 */ 170 static void move64(const unsigned long long *src, unsigned long long *dest) 171 { 172 *dest = *src; 173 } 174 175 /* 176 * This is 64 bit wide test patterns. Note that they reside in ROM 177 * (which presumably works) and the tests write them to RAM which may 178 * not work. 179 * 180 * The "otherpattern" is written to drive the data bus to values other 181 * than the test pattern. This is for detecting floating bus lines. 182 * 183 */ 184 const static unsigned long long pattern[] = { 185 0xaaaaaaaaaaaaaaaaULL, 186 0xccccccccccccccccULL, 187 0xf0f0f0f0f0f0f0f0ULL, 188 0xff00ff00ff00ff00ULL, 189 0xffff0000ffff0000ULL, 190 0xffffffff00000000ULL, 191 0x00000000ffffffffULL, 192 0x0000ffff0000ffffULL, 193 0x00ff00ff00ff00ffULL, 194 0x0f0f0f0f0f0f0f0fULL, 195 0x3333333333333333ULL, 196 0x5555555555555555ULL 197 }; 198 const unsigned long long otherpattern = 0x0123456789abcdefULL; 199 200 201 static int memory_post_dataline(unsigned long long * pmem) 202 { 203 unsigned long long temp64 = 0; 204 int num_patterns = ARRAY_SIZE(pattern); 205 int i; 206 unsigned int hi, lo, pathi, patlo; 207 int ret = 0; 208 209 for ( i = 0; i < num_patterns; i++) { 210 move64(&(pattern[i]), pmem++); 211 /* 212 * Put a different pattern on the data lines: otherwise they 213 * may float long enough to read back what we wrote. 214 */ 215 move64(&otherpattern, pmem--); 216 move64(pmem, &temp64); 217 218 #ifdef INJECT_DATA_ERRORS 219 temp64 ^= 0x00008000; 220 #endif 221 222 if (temp64 != pattern[i]){ 223 pathi = (pattern[i]>>32) & 0xffffffff; 224 patlo = pattern[i] & 0xffffffff; 225 226 hi = (temp64>>32) & 0xffffffff; 227 lo = temp64 & 0xffffffff; 228 229 post_log("Memory (data line) error at %08x, " 230 "wrote %08x%08x, read %08x%08x !\n", 231 pmem, pathi, patlo, hi, lo); 232 ret = -1; 233 } 234 } 235 return ret; 236 } 237 238 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size) 239 { 240 ulong *target; 241 ulong *end; 242 ulong readback; 243 ulong xor; 244 int ret = 0; 245 246 end = (ulong *)((ulong)base + size); /* pointer arith! */ 247 xor = 0; 248 for(xor = sizeof(ulong); xor > 0; xor <<= 1) { 249 target = (ulong *)((ulong)testaddr ^ xor); 250 if((target >= base) && (target < end)) { 251 *testaddr = ~*target; 252 readback = *target; 253 254 #ifdef INJECT_ADDRESS_ERRORS 255 if(xor == 0x00008000) { 256 readback = *testaddr; 257 } 258 #endif 259 if(readback == *testaddr) { 260 post_log("Memory (address line) error at %08x<->%08x, " 261 "XOR value %08x !\n", 262 testaddr, target, xor); 263 ret = -1; 264 } 265 } 266 } 267 return ret; 268 } 269 270 static int memory_post_test1(unsigned long start, 271 unsigned long size, 272 unsigned long val) 273 { 274 unsigned long i; 275 ulong *mem = (ulong *) start; 276 ulong readback; 277 int ret = 0; 278 279 for (i = 0; i < size / sizeof (ulong); i++) { 280 mem[i] = val; 281 if (i % 1024 == 0) 282 WATCHDOG_RESET(); 283 } 284 285 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 286 readback = mem[i]; 287 if (readback != val) { 288 post_log("Memory error at %08x, " 289 "wrote %08x, read %08x !\n", 290 mem + i, val, readback); 291 292 ret = -1; 293 break; 294 } 295 if (i % 1024 == 0) 296 WATCHDOG_RESET(); 297 } 298 299 return ret; 300 } 301 302 static int memory_post_test2(unsigned long start, unsigned long size) 303 { 304 unsigned long i; 305 ulong *mem = (ulong *) start; 306 ulong readback; 307 int ret = 0; 308 309 for (i = 0; i < size / sizeof (ulong); i++) { 310 mem[i] = 1 << (i % 32); 311 if (i % 1024 == 0) 312 WATCHDOG_RESET(); 313 } 314 315 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 316 readback = mem[i]; 317 if (readback != (1 << (i % 32))) { 318 post_log("Memory error at %08x, " 319 "wrote %08x, read %08x !\n", 320 mem + i, 1 << (i % 32), readback); 321 322 ret = -1; 323 break; 324 } 325 if (i % 1024 == 0) 326 WATCHDOG_RESET(); 327 } 328 329 return ret; 330 } 331 332 static int memory_post_test3(unsigned long start, unsigned long size) 333 { 334 unsigned long i; 335 ulong *mem = (ulong *) start; 336 ulong readback; 337 int ret = 0; 338 339 for (i = 0; i < size / sizeof (ulong); i++) { 340 mem[i] = i; 341 if (i % 1024 == 0) 342 WATCHDOG_RESET(); 343 } 344 345 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 346 readback = mem[i]; 347 if (readback != i) { 348 post_log("Memory error at %08x, " 349 "wrote %08x, read %08x !\n", 350 mem + i, i, readback); 351 352 ret = -1; 353 break; 354 } 355 if (i % 1024 == 0) 356 WATCHDOG_RESET(); 357 } 358 359 return ret; 360 } 361 362 static int memory_post_test4(unsigned long start, unsigned long size) 363 { 364 unsigned long i; 365 ulong *mem = (ulong *) start; 366 ulong readback; 367 int ret = 0; 368 369 for (i = 0; i < size / sizeof (ulong); i++) { 370 mem[i] = ~i; 371 if (i % 1024 == 0) 372 WATCHDOG_RESET(); 373 } 374 375 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 376 readback = mem[i]; 377 if (readback != ~i) { 378 post_log("Memory error at %08x, " 379 "wrote %08x, read %08x !\n", 380 mem + i, ~i, readback); 381 382 ret = -1; 383 break; 384 } 385 if (i % 1024 == 0) 386 WATCHDOG_RESET(); 387 } 388 389 return ret; 390 } 391 392 static int memory_post_test_lines(unsigned long start, unsigned long size) 393 { 394 int ret = 0; 395 396 ret = memory_post_dataline((unsigned long long *)start); 397 WATCHDOG_RESET(); 398 if (!ret) 399 ret = memory_post_addrline((ulong *)start, (ulong *)start, 400 size); 401 WATCHDOG_RESET(); 402 if (!ret) 403 ret = memory_post_addrline((ulong *)(start+size-8), 404 (ulong *)start, size); 405 WATCHDOG_RESET(); 406 407 return ret; 408 } 409 410 static int memory_post_test_patterns(unsigned long start, unsigned long size) 411 { 412 int ret = 0; 413 414 ret = memory_post_test1(start, size, 0x00000000); 415 WATCHDOG_RESET(); 416 if (!ret) 417 ret = memory_post_test1(start, size, 0xffffffff); 418 WATCHDOG_RESET(); 419 if (!ret) 420 ret = memory_post_test1(start, size, 0x55555555); 421 WATCHDOG_RESET(); 422 if (!ret) 423 ret = memory_post_test1(start, size, 0xaaaaaaaa); 424 WATCHDOG_RESET(); 425 if (!ret) 426 ret = memory_post_test2(start, size); 427 WATCHDOG_RESET(); 428 if (!ret) 429 ret = memory_post_test3(start, size); 430 WATCHDOG_RESET(); 431 if (!ret) 432 ret = memory_post_test4(start, size); 433 WATCHDOG_RESET(); 434 435 return ret; 436 } 437 438 static int memory_post_test_regions(unsigned long start, unsigned long size) 439 { 440 unsigned long i; 441 int ret = 0; 442 443 for (i = 0; i < (size >> 20) && (!ret); i++) { 444 if (!ret) 445 ret = memory_post_test_patterns(start + (i << 20), 446 0x800); 447 if (!ret) 448 ret = memory_post_test_patterns(start + (i << 20) + 449 0xff800, 0x800); 450 } 451 452 return ret; 453 } 454 455 static int memory_post_tests(unsigned long start, unsigned long size) 456 { 457 int ret = 0; 458 459 ret = memory_post_test_lines(start, size); 460 if (!ret) 461 ret = memory_post_test_patterns(start, size); 462 463 return ret; 464 } 465 466 /* 467 * !! this is only valid, if you have contiguous memory banks !! 468 */ 469 __attribute__((weak)) 470 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 471 { 472 bd_t *bd = gd->bd; 473 474 *vstart = CONFIG_SYS_SDRAM_BASE; 475 *size = (gd->ram_size >= 256 << 20 ? 476 256 << 20 : gd->ram_size) - (1 << 20); 477 478 /* Limit area to be tested with the board info struct */ 479 if ((*vstart) + (*size) > (ulong)bd) 480 *size = (ulong)bd - *vstart; 481 482 return 0; 483 } 484 485 __attribute__((weak)) 486 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 487 { 488 return 1; 489 } 490 491 __attribute__((weak)) 492 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 493 { 494 return 0; 495 } 496 497 __attribute__((weak)) 498 void arch_memory_failure_handle(void) 499 { 500 return; 501 } 502 503 int memory_regions_post_test(int flags) 504 { 505 int ret = 0; 506 phys_addr_t phys_offset = 0; 507 u32 memsize, vstart; 508 509 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 510 511 ret = memory_post_test_lines(vstart, memsize); 512 if (!ret) 513 ret = memory_post_test_regions(vstart, memsize); 514 515 return ret; 516 } 517 518 int memory_post_test(int flags) 519 { 520 int ret = 0; 521 phys_addr_t phys_offset = 0; 522 u32 memsize, vstart; 523 524 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 525 526 do { 527 if (flags & POST_SLOWTEST) { 528 ret = memory_post_tests(vstart, memsize); 529 } else { /* POST_NORMAL */ 530 ret = memory_post_test_regions(vstart, memsize); 531 } 532 } while (!ret && 533 !arch_memory_test_advance(&vstart, &memsize, &phys_offset)); 534 535 arch_memory_test_cleanup(&vstart, &memsize, &phys_offset); 536 if (ret) 537 arch_memory_failure_handle(); 538 539 return ret; 540 } 541 542 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */ 543