xref: /openbmc/u-boot/post/drivers/memory.c (revision d7c11502)
1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 
10 /* Memory test
11  *
12  * General observations:
13  * o The recommended test sequence is to test the data lines: if they are
14  *   broken, nothing else will work properly.  Then test the address
15  *   lines.  Finally, test the cells in the memory now that the test
16  *   program knows that the address and data lines work properly.
17  *   This sequence also helps isolate and identify what is faulty.
18  *
19  * o For the address line test, it is a good idea to use the base
20  *   address of the lowest memory location, which causes a '1' bit to
21  *   walk through a field of zeros on the address lines and the highest
22  *   memory location, which causes a '0' bit to walk through a field of
23  *   '1's on the address line.
24  *
25  * o Floating buses can fool memory tests if the test routine writes
26  *   a value and then reads it back immediately.  The problem is, the
27  *   write will charge the residual capacitance on the data bus so the
28  *   bus retains its state briefely.  When the test program reads the
29  *   value back immediately, the capacitance of the bus can allow it
30  *   to read back what was written, even though the memory circuitry
31  *   is broken.  To avoid this, the test program should write a test
32  *   pattern to the target location, write a different pattern elsewhere
33  *   to charge the residual capacitance in a differnt manner, then read
34  *   the target location back.
35  *
36  * o Always read the target location EXACTLY ONCE and save it in a local
37  *   variable.  The problem with reading the target location more than
38  *   once is that the second and subsequent reads may work properly,
39  *   resulting in a failed test that tells the poor technician that
40  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
41  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
42  *   done that.
43  *
44  * Data line test:
45  * ---------------
46  * This tests data lines for shorts and opens by forcing adjacent data
47  * to opposite states. Because the data lines could be routed in an
48  * arbitrary manner the must ensure test patterns ensure that every case
49  * is tested. By using the following series of binary patterns every
50  * combination of adjacent bits is test regardless of routing.
51  *
52  *     ...101010101010101010101010
53  *     ...110011001100110011001100
54  *     ...111100001111000011110000
55  *     ...111111110000000011111111
56  *
57  * Carrying this out, gives us six hex patterns as follows:
58  *
59  *     0xaaaaaaaaaaaaaaaa
60  *     0xcccccccccccccccc
61  *     0xf0f0f0f0f0f0f0f0
62  *     0xff00ff00ff00ff00
63  *     0xffff0000ffff0000
64  *     0xffffffff00000000
65  *
66  * To test for short and opens to other signals on our boards, we
67  * simply test with the 1's complemnt of the paterns as well, resulting
68  * in twelve patterns total.
69  *
70  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
71  * written to a different address in case the data lines are floating.
72  * Thus, if a byte lane fails, you will see part of the special
73  * pattern in that byte lane when the test runs.  For example, if the
74  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
75  * (for the 'a' test pattern).
76  *
77  * Address line test:
78  * ------------------
79  *  This function performs a test to verify that all the address lines
80  *  hooked up to the RAM work properly.  If there is an address line
81  *  fault, it usually shows up as two different locations in the address
82  *  map (related by the faulty address line) mapping to one physical
83  *  memory storage location.  The artifact that shows up is writing to
84  *  the first location "changes" the second location.
85  *
86  * To test all address lines, we start with the given base address and
87  * xor the address with a '1' bit to flip one address line.  For each
88  * test, we shift the '1' bit left to test the next address line.
89  *
90  * In the actual code, we start with address sizeof(ulong) since our
91  * test pattern we use is a ulong and thus, if we tried to test lower
92  * order address bits, it wouldn't work because our pattern would
93  * overwrite itself.
94  *
95  * Example for a 4 bit address space with the base at 0000:
96  *   0000 <- base
97  *   0001 <- test 1
98  *   0010 <- test 2
99  *   0100 <- test 3
100  *   1000 <- test 4
101  * Example for a 4 bit address space with the base at 0010:
102  *   0010 <- base
103  *   0011 <- test 1
104  *   0000 <- (below the base address, skipped)
105  *   0110 <- test 2
106  *   1010 <- test 3
107  *
108  * The test locations are successively tested to make sure that they are
109  * not "mirrored" onto the base address due to a faulty address line.
110  * Note that the base and each test location are related by one address
111  * line flipped.  Note that the base address need not be all zeros.
112  *
113  * Memory tests 1-4:
114  * -----------------
115  * These tests verify RAM using sequential writes and reads
116  * to/from RAM. There are several test cases that use different patterns to
117  * verify RAM. Each test case fills a region of RAM with one pattern and
118  * then reads the region back and compares its contents with the pattern.
119  * The following patterns are used:
120  *
121  *  1a) zero pattern (0x00000000)
122  *  1b) negative pattern (0xffffffff)
123  *  1c) checkerboard pattern (0x55555555)
124  *  1d) checkerboard pattern (0xaaaaaaaa)
125  *  2)  bit-flip pattern ((1 << (offset % 32))
126  *  3)  address pattern (offset)
127  *  4)  address pattern (~offset)
128  *
129  * Being run in normal mode, the test verifies only small 4Kb
130  * regions of RAM around each 1Mb boundary. For example, for 64Mb
131  * RAM the following areas are verified: 0x00000000-0x00000800,
132  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
133  * 0x04000000. If the test is run in slow-test mode, it verifies
134  * the whole RAM.
135  */
136 
137 #include <post.h>
138 #include <watchdog.h>
139 
140 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)
141 
142 DECLARE_GLOBAL_DATA_PTR;
143 
144 /*
145  * Define INJECT_*_ERRORS for testing error detection in the presence of
146  * _good_ hardware.
147  */
148 #undef  INJECT_DATA_ERRORS
149 #undef  INJECT_ADDRESS_ERRORS
150 
151 #ifdef INJECT_DATA_ERRORS
152 #warning "Injecting data line errors for testing purposes"
153 #endif
154 
155 #ifdef INJECT_ADDRESS_ERRORS
156 #warning "Injecting address line errors for testing purposes"
157 #endif
158 
159 
160 /*
161  * This function performs a double word move from the data at
162  * the source pointer to the location at the destination pointer.
163  * This is helpful for testing memory on processors which have a 64 bit
164  * wide data bus.
165  *
166  * On those PowerPC with FPU, use assembly and a floating point move:
167  * this does a 64 bit move.
168  *
169  * For other processors, let the compiler generate the best code it can.
170  */
171 static void move64(const unsigned long long *src, unsigned long long *dest)
172 {
173 	*dest = *src;
174 }
175 
176 /*
177  * This is 64 bit wide test patterns.  Note that they reside in ROM
178  * (which presumably works) and the tests write them to RAM which may
179  * not work.
180  *
181  * The "otherpattern" is written to drive the data bus to values other
182  * than the test pattern.  This is for detecting floating bus lines.
183  *
184  */
185 const static unsigned long long pattern[] = {
186 	0xaaaaaaaaaaaaaaaaULL,
187 	0xccccccccccccccccULL,
188 	0xf0f0f0f0f0f0f0f0ULL,
189 	0xff00ff00ff00ff00ULL,
190 	0xffff0000ffff0000ULL,
191 	0xffffffff00000000ULL,
192 	0x00000000ffffffffULL,
193 	0x0000ffff0000ffffULL,
194 	0x00ff00ff00ff00ffULL,
195 	0x0f0f0f0f0f0f0f0fULL,
196 	0x3333333333333333ULL,
197 	0x5555555555555555ULL
198 };
199 const unsigned long long otherpattern = 0x0123456789abcdefULL;
200 
201 
202 static int memory_post_dataline(unsigned long long * pmem)
203 {
204 	unsigned long long temp64 = 0;
205 	int num_patterns = ARRAY_SIZE(pattern);
206 	int i;
207 	unsigned int hi, lo, pathi, patlo;
208 	int ret = 0;
209 
210 	for ( i = 0; i < num_patterns; i++) {
211 		move64(&(pattern[i]), pmem++);
212 		/*
213 		 * Put a different pattern on the data lines: otherwise they
214 		 * may float long enough to read back what we wrote.
215 		 */
216 		move64(&otherpattern, pmem--);
217 		move64(pmem, &temp64);
218 
219 #ifdef INJECT_DATA_ERRORS
220 		temp64 ^= 0x00008000;
221 #endif
222 
223 		if (temp64 != pattern[i]){
224 			pathi = (pattern[i]>>32) & 0xffffffff;
225 			patlo = pattern[i] & 0xffffffff;
226 
227 			hi = (temp64>>32) & 0xffffffff;
228 			lo = temp64 & 0xffffffff;
229 
230 			post_log("Memory (data line) error at %08x, "
231 				  "wrote %08x%08x, read %08x%08x !\n",
232 					  pmem, pathi, patlo, hi, lo);
233 			ret = -1;
234 		}
235 	}
236 	return ret;
237 }
238 
239 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
240 {
241 	ulong *target;
242 	ulong *end;
243 	ulong readback;
244 	ulong xor;
245 	int   ret = 0;
246 
247 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
248 	xor = 0;
249 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
250 		target = (ulong *)((ulong)testaddr ^ xor);
251 		if((target >= base) && (target < end)) {
252 			*testaddr = ~*target;
253 			readback  = *target;
254 
255 #ifdef INJECT_ADDRESS_ERRORS
256 			if(xor == 0x00008000) {
257 				readback = *testaddr;
258 			}
259 #endif
260 			if(readback == *testaddr) {
261 				post_log("Memory (address line) error at %08x<->%08x, "
262 					"XOR value %08x !\n",
263 					testaddr, target, xor);
264 				ret = -1;
265 			}
266 		}
267 	}
268 	return ret;
269 }
270 
271 static int memory_post_test1(unsigned long start,
272 			      unsigned long size,
273 			      unsigned long val)
274 {
275 	unsigned long i;
276 	ulong *mem = (ulong *) start;
277 	ulong readback;
278 	int ret = 0;
279 
280 	for (i = 0; i < size / sizeof (ulong); i++) {
281 		mem[i] = val;
282 		if (i % 1024 == 0)
283 			WATCHDOG_RESET();
284 	}
285 
286 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
287 		readback = mem[i];
288 		if (readback != val) {
289 			post_log("Memory error at %08x, "
290 				  "wrote %08x, read %08x !\n",
291 					  mem + i, val, readback);
292 
293 			ret = -1;
294 			break;
295 		}
296 		if (i % 1024 == 0)
297 			WATCHDOG_RESET();
298 	}
299 
300 	return ret;
301 }
302 
303 static int memory_post_test2(unsigned long start, unsigned long size)
304 {
305 	unsigned long i;
306 	ulong *mem = (ulong *) start;
307 	ulong readback;
308 	int ret = 0;
309 
310 	for (i = 0; i < size / sizeof (ulong); i++) {
311 		mem[i] = 1 << (i % 32);
312 		if (i % 1024 == 0)
313 			WATCHDOG_RESET();
314 	}
315 
316 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
317 		readback = mem[i];
318 		if (readback != (1 << (i % 32))) {
319 			post_log("Memory error at %08x, "
320 				  "wrote %08x, read %08x !\n",
321 					  mem + i, 1 << (i % 32), readback);
322 
323 			ret = -1;
324 			break;
325 		}
326 		if (i % 1024 == 0)
327 			WATCHDOG_RESET();
328 	}
329 
330 	return ret;
331 }
332 
333 static int memory_post_test3(unsigned long start, unsigned long size)
334 {
335 	unsigned long i;
336 	ulong *mem = (ulong *) start;
337 	ulong readback;
338 	int ret = 0;
339 
340 	for (i = 0; i < size / sizeof (ulong); i++) {
341 		mem[i] = i;
342 		if (i % 1024 == 0)
343 			WATCHDOG_RESET();
344 	}
345 
346 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
347 		readback = mem[i];
348 		if (readback != i) {
349 			post_log("Memory error at %08x, "
350 				  "wrote %08x, read %08x !\n",
351 					  mem + i, i, readback);
352 
353 			ret = -1;
354 			break;
355 		}
356 		if (i % 1024 == 0)
357 			WATCHDOG_RESET();
358 	}
359 
360 	return ret;
361 }
362 
363 static int memory_post_test4(unsigned long start, unsigned long size)
364 {
365 	unsigned long i;
366 	ulong *mem = (ulong *) start;
367 	ulong readback;
368 	int ret = 0;
369 
370 	for (i = 0; i < size / sizeof (ulong); i++) {
371 		mem[i] = ~i;
372 		if (i % 1024 == 0)
373 			WATCHDOG_RESET();
374 	}
375 
376 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
377 		readback = mem[i];
378 		if (readback != ~i) {
379 			post_log("Memory error at %08x, "
380 				  "wrote %08x, read %08x !\n",
381 					  mem + i, ~i, readback);
382 
383 			ret = -1;
384 			break;
385 		}
386 		if (i % 1024 == 0)
387 			WATCHDOG_RESET();
388 	}
389 
390 	return ret;
391 }
392 
393 static int memory_post_test_lines(unsigned long start, unsigned long size)
394 {
395 	int ret = 0;
396 
397 	ret = memory_post_dataline((unsigned long long *)start);
398 	WATCHDOG_RESET();
399 	if (!ret)
400 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
401 				size);
402 	WATCHDOG_RESET();
403 	if (!ret)
404 		ret = memory_post_addrline((ulong *)(start+size-8),
405 				(ulong *)start, size);
406 	WATCHDOG_RESET();
407 
408 	return ret;
409 }
410 
411 static int memory_post_test_patterns(unsigned long start, unsigned long size)
412 {
413 	int ret = 0;
414 
415 	ret = memory_post_test1(start, size, 0x00000000);
416 	WATCHDOG_RESET();
417 	if (!ret)
418 		ret = memory_post_test1(start, size, 0xffffffff);
419 	WATCHDOG_RESET();
420 	if (!ret)
421 		ret = memory_post_test1(start, size, 0x55555555);
422 	WATCHDOG_RESET();
423 	if (!ret)
424 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
425 	WATCHDOG_RESET();
426 	if (!ret)
427 		ret = memory_post_test2(start, size);
428 	WATCHDOG_RESET();
429 	if (!ret)
430 		ret = memory_post_test3(start, size);
431 	WATCHDOG_RESET();
432 	if (!ret)
433 		ret = memory_post_test4(start, size);
434 	WATCHDOG_RESET();
435 
436 	return ret;
437 }
438 
439 static int memory_post_test_regions(unsigned long start, unsigned long size)
440 {
441 	unsigned long i;
442 	int ret = 0;
443 
444 	for (i = 0; i < (size >> 20) && (!ret); i++) {
445 		if (!ret)
446 			ret = memory_post_test_patterns(start + (i << 20),
447 				0x800);
448 		if (!ret)
449 			ret = memory_post_test_patterns(start + (i << 20) +
450 				0xff800, 0x800);
451 	}
452 
453 	return ret;
454 }
455 
456 static int memory_post_tests(unsigned long start, unsigned long size)
457 {
458 	int ret = 0;
459 
460 	ret = memory_post_test_lines(start, size);
461 	if (!ret)
462 		ret = memory_post_test_patterns(start, size);
463 
464 	return ret;
465 }
466 
467 /*
468  * !! this is only valid, if you have contiguous memory banks !!
469  */
470 __attribute__((weak))
471 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
472 {
473 	bd_t *bd = gd->bd;
474 
475 	*vstart = CONFIG_SYS_SDRAM_BASE;
476 	*size = (gd->ram_size >= 256 << 20 ?
477 			256 << 20 : gd->ram_size) - (1 << 20);
478 
479 	/* Limit area to be tested with the board info struct */
480 	if ((*vstart) + (*size) > (ulong)bd)
481 		*size = (ulong)bd - *vstart;
482 
483 	return 0;
484 }
485 
486 __attribute__((weak))
487 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
488 {
489 	return 1;
490 }
491 
492 __attribute__((weak))
493 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
494 {
495 	return 0;
496 }
497 
498 __attribute__((weak))
499 void arch_memory_failure_handle(void)
500 {
501 	return;
502 }
503 
504 int memory_regions_post_test(int flags)
505 {
506 	int ret = 0;
507 	phys_addr_t phys_offset = 0;
508 	u32 memsize, vstart;
509 
510 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
511 
512 	ret = memory_post_test_lines(vstart, memsize);
513 	if (!ret)
514 		ret = memory_post_test_regions(vstart, memsize);
515 
516 	return ret;
517 }
518 
519 int memory_post_test(int flags)
520 {
521 	int ret = 0;
522 	phys_addr_t phys_offset = 0;
523 	u32 memsize, vstart;
524 
525 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
526 
527 	do {
528 		if (flags & POST_SLOWTEST) {
529 			ret = memory_post_tests(vstart, memsize);
530 		} else {			/* POST_NORMAL */
531 			ret = memory_post_test_regions(vstart, memsize);
532 		}
533 	} while (!ret &&
534 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
535 
536 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
537 	if (ret)
538 		arch_memory_failure_handle();
539 
540 	return ret;
541 }
542 
543 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */
544