1 /* 2 * (C) Copyright 2002 3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 4 * 5 * See file CREDITS for list of people who contributed to this 6 * project. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * MA 02111-1307 USA 22 */ 23 24 #include <common.h> 25 26 /* Memory test 27 * 28 * General observations: 29 * o The recommended test sequence is to test the data lines: if they are 30 * broken, nothing else will work properly. Then test the address 31 * lines. Finally, test the cells in the memory now that the test 32 * program knows that the address and data lines work properly. 33 * This sequence also helps isolate and identify what is faulty. 34 * 35 * o For the address line test, it is a good idea to use the base 36 * address of the lowest memory location, which causes a '1' bit to 37 * walk through a field of zeros on the address lines and the highest 38 * memory location, which causes a '0' bit to walk through a field of 39 * '1's on the address line. 40 * 41 * o Floating buses can fool memory tests if the test routine writes 42 * a value and then reads it back immediately. The problem is, the 43 * write will charge the residual capacitance on the data bus so the 44 * bus retains its state briefely. When the test program reads the 45 * value back immediately, the capacitance of the bus can allow it 46 * to read back what was written, even though the memory circuitry 47 * is broken. To avoid this, the test program should write a test 48 * pattern to the target location, write a different pattern elsewhere 49 * to charge the residual capacitance in a differnt manner, then read 50 * the target location back. 51 * 52 * o Always read the target location EXACTLY ONCE and save it in a local 53 * variable. The problem with reading the target location more than 54 * once is that the second and subsequent reads may work properly, 55 * resulting in a failed test that tells the poor technician that 56 * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which 57 * doesn't help him one bit and causes puzzled phone calls. Been there, 58 * done that. 59 * 60 * Data line test: 61 * --------------- 62 * This tests data lines for shorts and opens by forcing adjacent data 63 * to opposite states. Because the data lines could be routed in an 64 * arbitrary manner the must ensure test patterns ensure that every case 65 * is tested. By using the following series of binary patterns every 66 * combination of adjacent bits is test regardless of routing. 67 * 68 * ...101010101010101010101010 69 * ...110011001100110011001100 70 * ...111100001111000011110000 71 * ...111111110000000011111111 72 * 73 * Carrying this out, gives us six hex patterns as follows: 74 * 75 * 0xaaaaaaaaaaaaaaaa 76 * 0xcccccccccccccccc 77 * 0xf0f0f0f0f0f0f0f0 78 * 0xff00ff00ff00ff00 79 * 0xffff0000ffff0000 80 * 0xffffffff00000000 81 * 82 * To test for short and opens to other signals on our boards, we 83 * simply test with the 1's complemnt of the paterns as well, resulting 84 * in twelve patterns total. 85 * 86 * After writing a test pattern. a special pattern 0x0123456789ABCDEF is 87 * written to a different address in case the data lines are floating. 88 * Thus, if a byte lane fails, you will see part of the special 89 * pattern in that byte lane when the test runs. For example, if the 90 * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa 91 * (for the 'a' test pattern). 92 * 93 * Address line test: 94 * ------------------ 95 * This function performs a test to verify that all the address lines 96 * hooked up to the RAM work properly. If there is an address line 97 * fault, it usually shows up as two different locations in the address 98 * map (related by the faulty address line) mapping to one physical 99 * memory storage location. The artifact that shows up is writing to 100 * the first location "changes" the second location. 101 * 102 * To test all address lines, we start with the given base address and 103 * xor the address with a '1' bit to flip one address line. For each 104 * test, we shift the '1' bit left to test the next address line. 105 * 106 * In the actual code, we start with address sizeof(ulong) since our 107 * test pattern we use is a ulong and thus, if we tried to test lower 108 * order address bits, it wouldn't work because our pattern would 109 * overwrite itself. 110 * 111 * Example for a 4 bit address space with the base at 0000: 112 * 0000 <- base 113 * 0001 <- test 1 114 * 0010 <- test 2 115 * 0100 <- test 3 116 * 1000 <- test 4 117 * Example for a 4 bit address space with the base at 0010: 118 * 0010 <- base 119 * 0011 <- test 1 120 * 0000 <- (below the base address, skipped) 121 * 0110 <- test 2 122 * 1010 <- test 3 123 * 124 * The test locations are successively tested to make sure that they are 125 * not "mirrored" onto the base address due to a faulty address line. 126 * Note that the base and each test location are related by one address 127 * line flipped. Note that the base address need not be all zeros. 128 * 129 * Memory tests 1-4: 130 * ----------------- 131 * These tests verify RAM using sequential writes and reads 132 * to/from RAM. There are several test cases that use different patterns to 133 * verify RAM. Each test case fills a region of RAM with one pattern and 134 * then reads the region back and compares its contents with the pattern. 135 * The following patterns are used: 136 * 137 * 1a) zero pattern (0x00000000) 138 * 1b) negative pattern (0xffffffff) 139 * 1c) checkerboard pattern (0x55555555) 140 * 1d) checkerboard pattern (0xaaaaaaaa) 141 * 2) bit-flip pattern ((1 << (offset % 32)) 142 * 3) address pattern (offset) 143 * 4) address pattern (~offset) 144 * 145 * Being run in normal mode, the test verifies only small 4Kb 146 * regions of RAM around each 1Mb boundary. For example, for 64Mb 147 * RAM the following areas are verified: 0x00000000-0x00000800, 148 * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800- 149 * 0x04000000. If the test is run in slow-test mode, it verifies 150 * the whole RAM. 151 */ 152 153 #include <post.h> 154 #include <watchdog.h> 155 156 #if CONFIG_POST & CONFIG_SYS_POST_MEMORY 157 158 DECLARE_GLOBAL_DATA_PTR; 159 160 /* 161 * Define INJECT_*_ERRORS for testing error detection in the presence of 162 * _good_ hardware. 163 */ 164 #undef INJECT_DATA_ERRORS 165 #undef INJECT_ADDRESS_ERRORS 166 167 #ifdef INJECT_DATA_ERRORS 168 #warning "Injecting data line errors for testing purposes" 169 #endif 170 171 #ifdef INJECT_ADDRESS_ERRORS 172 #warning "Injecting address line errors for testing purposes" 173 #endif 174 175 176 /* 177 * This function performs a double word move from the data at 178 * the source pointer to the location at the destination pointer. 179 * This is helpful for testing memory on processors which have a 64 bit 180 * wide data bus. 181 * 182 * On those PowerPC with FPU, use assembly and a floating point move: 183 * this does a 64 bit move. 184 * 185 * For other processors, let the compiler generate the best code it can. 186 */ 187 static void move64(const unsigned long long *src, unsigned long long *dest) 188 { 189 #if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X) 190 asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */ 191 "stfd 0, 0(4)" /* *dest = fpr0 */ 192 : : : "fr0" ); /* Clobbers fr0 */ 193 return; 194 #else 195 *dest = *src; 196 #endif 197 } 198 199 /* 200 * This is 64 bit wide test patterns. Note that they reside in ROM 201 * (which presumably works) and the tests write them to RAM which may 202 * not work. 203 * 204 * The "otherpattern" is written to drive the data bus to values other 205 * than the test pattern. This is for detecting floating bus lines. 206 * 207 */ 208 const static unsigned long long pattern[] = { 209 0xaaaaaaaaaaaaaaaaULL, 210 0xccccccccccccccccULL, 211 0xf0f0f0f0f0f0f0f0ULL, 212 0xff00ff00ff00ff00ULL, 213 0xffff0000ffff0000ULL, 214 0xffffffff00000000ULL, 215 0x00000000ffffffffULL, 216 0x0000ffff0000ffffULL, 217 0x00ff00ff00ff00ffULL, 218 0x0f0f0f0f0f0f0f0fULL, 219 0x3333333333333333ULL, 220 0x5555555555555555ULL 221 }; 222 const unsigned long long otherpattern = 0x0123456789abcdefULL; 223 224 225 static int memory_post_dataline(unsigned long long * pmem) 226 { 227 unsigned long long temp64 = 0; 228 int num_patterns = sizeof(pattern)/ sizeof(pattern[0]); 229 int i; 230 unsigned int hi, lo, pathi, patlo; 231 int ret = 0; 232 233 for ( i = 0; i < num_patterns; i++) { 234 move64(&(pattern[i]), pmem++); 235 /* 236 * Put a different pattern on the data lines: otherwise they 237 * may float long enough to read back what we wrote. 238 */ 239 move64(&otherpattern, pmem--); 240 move64(pmem, &temp64); 241 242 #ifdef INJECT_DATA_ERRORS 243 temp64 ^= 0x00008000; 244 #endif 245 246 if (temp64 != pattern[i]){ 247 pathi = (pattern[i]>>32) & 0xffffffff; 248 patlo = pattern[i] & 0xffffffff; 249 250 hi = (temp64>>32) & 0xffffffff; 251 lo = temp64 & 0xffffffff; 252 253 post_log ("Memory (date line) error at %08x, " 254 "wrote %08x%08x, read %08x%08x !\n", 255 pmem, pathi, patlo, hi, lo); 256 ret = -1; 257 } 258 } 259 return ret; 260 } 261 262 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size) 263 { 264 ulong *target; 265 ulong *end; 266 ulong readback; 267 ulong xor; 268 int ret = 0; 269 270 end = (ulong *)((ulong)base + size); /* pointer arith! */ 271 xor = 0; 272 for(xor = sizeof(ulong); xor > 0; xor <<= 1) { 273 target = (ulong *)((ulong)testaddr ^ xor); 274 if((target >= base) && (target < end)) { 275 *testaddr = ~*target; 276 readback = *target; 277 278 #ifdef INJECT_ADDRESS_ERRORS 279 if(xor == 0x00008000) { 280 readback = *testaddr; 281 } 282 #endif 283 if(readback == *testaddr) { 284 post_log ("Memory (address line) error at %08x<->%08x, " 285 "XOR value %08x !\n", 286 testaddr, target, xor); 287 ret = -1; 288 } 289 } 290 } 291 return ret; 292 } 293 294 static int memory_post_test1 (unsigned long start, 295 unsigned long size, 296 unsigned long val) 297 { 298 unsigned long i; 299 ulong *mem = (ulong *) start; 300 ulong readback; 301 int ret = 0; 302 303 for (i = 0; i < size / sizeof (ulong); i++) { 304 mem[i] = val; 305 if (i % 1024 == 0) 306 WATCHDOG_RESET (); 307 } 308 309 for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { 310 readback = mem[i]; 311 if (readback != val) { 312 post_log ("Memory error at %08x, " 313 "wrote %08x, read %08x !\n", 314 mem + i, val, readback); 315 316 ret = -1; 317 break; 318 } 319 if (i % 1024 == 0) 320 WATCHDOG_RESET (); 321 } 322 323 return ret; 324 } 325 326 static int memory_post_test2 (unsigned long start, unsigned long size) 327 { 328 unsigned long i; 329 ulong *mem = (ulong *) start; 330 ulong readback; 331 int ret = 0; 332 333 for (i = 0; i < size / sizeof (ulong); i++) { 334 mem[i] = 1 << (i % 32); 335 if (i % 1024 == 0) 336 WATCHDOG_RESET (); 337 } 338 339 for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { 340 readback = mem[i]; 341 if (readback != (1 << (i % 32))) { 342 post_log ("Memory error at %08x, " 343 "wrote %08x, read %08x !\n", 344 mem + i, 1 << (i % 32), readback); 345 346 ret = -1; 347 break; 348 } 349 if (i % 1024 == 0) 350 WATCHDOG_RESET (); 351 } 352 353 return ret; 354 } 355 356 static int memory_post_test3 (unsigned long start, unsigned long size) 357 { 358 unsigned long i; 359 ulong *mem = (ulong *) start; 360 ulong readback; 361 int ret = 0; 362 363 for (i = 0; i < size / sizeof (ulong); i++) { 364 mem[i] = i; 365 if (i % 1024 == 0) 366 WATCHDOG_RESET (); 367 } 368 369 for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { 370 readback = mem[i]; 371 if (readback != i) { 372 post_log ("Memory error at %08x, " 373 "wrote %08x, read %08x !\n", 374 mem + i, i, readback); 375 376 ret = -1; 377 break; 378 } 379 if (i % 1024 == 0) 380 WATCHDOG_RESET (); 381 } 382 383 return ret; 384 } 385 386 static int memory_post_test4 (unsigned long start, unsigned long size) 387 { 388 unsigned long i; 389 ulong *mem = (ulong *) start; 390 ulong readback; 391 int ret = 0; 392 393 for (i = 0; i < size / sizeof (ulong); i++) { 394 mem[i] = ~i; 395 if (i % 1024 == 0) 396 WATCHDOG_RESET (); 397 } 398 399 for (i = 0; i < size / sizeof (ulong) && ret == 0; i++) { 400 readback = mem[i]; 401 if (readback != ~i) { 402 post_log ("Memory error at %08x, " 403 "wrote %08x, read %08x !\n", 404 mem + i, ~i, readback); 405 406 ret = -1; 407 break; 408 } 409 if (i % 1024 == 0) 410 WATCHDOG_RESET (); 411 } 412 413 return ret; 414 } 415 416 static int memory_post_tests (unsigned long start, unsigned long size) 417 { 418 int ret = 0; 419 420 if (ret == 0) 421 ret = memory_post_dataline ((unsigned long long *)start); 422 WATCHDOG_RESET (); 423 if (ret == 0) 424 ret = memory_post_addrline ((ulong *)start, (ulong *)start, size); 425 WATCHDOG_RESET (); 426 if (ret == 0) 427 ret = memory_post_addrline ((ulong *)(start + size - 8), 428 (ulong *)start, size); 429 WATCHDOG_RESET (); 430 if (ret == 0) 431 ret = memory_post_test1 (start, size, 0x00000000); 432 WATCHDOG_RESET (); 433 if (ret == 0) 434 ret = memory_post_test1 (start, size, 0xffffffff); 435 WATCHDOG_RESET (); 436 if (ret == 0) 437 ret = memory_post_test1 (start, size, 0x55555555); 438 WATCHDOG_RESET (); 439 if (ret == 0) 440 ret = memory_post_test1 (start, size, 0xaaaaaaaa); 441 WATCHDOG_RESET (); 442 if (ret == 0) 443 ret = memory_post_test2 (start, size); 444 WATCHDOG_RESET (); 445 if (ret == 0) 446 ret = memory_post_test3 (start, size); 447 WATCHDOG_RESET (); 448 if (ret == 0) 449 ret = memory_post_test4 (start, size); 450 WATCHDOG_RESET (); 451 452 return ret; 453 } 454 455 __attribute__((weak)) 456 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 457 { 458 bd_t *bd = gd->bd; 459 *vstart = CONFIG_SYS_SDRAM_BASE; 460 *size = (bd->bi_memsize >= 256 << 20 ? 461 256 << 20 : bd->bi_memsize) - (1 << 20); 462 463 /* Limit area to be tested with the board info struct */ 464 if ((*vstart) + (*size) > (ulong)bd) 465 *size = (ulong)bd - *vstart; 466 467 return 0; 468 } 469 470 __attribute__((weak)) 471 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 472 { 473 return 1; 474 } 475 476 __attribute__((weak)) 477 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 478 { 479 return 0; 480 } 481 482 __attribute__((weak)) 483 void arch_memory_failure_handle(void) 484 { 485 return; 486 } 487 488 int memory_post_test(int flags) 489 { 490 int ret = 0; 491 phys_addr_t phys_offset = 0; 492 u32 memsize, vstart; 493 494 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 495 496 do { 497 if (flags & POST_SLOWTEST) { 498 ret = memory_post_tests(vstart, memsize); 499 } else { /* POST_NORMAL */ 500 unsigned long i; 501 for (i = 0; i < (memsize >> 20) && ret == 0; i++) { 502 if (ret == 0) 503 ret = memory_post_tests(i << 20, 0x800); 504 if (ret == 0) 505 ret = memory_post_tests( 506 (i << 20) + 0xff800, 0x800); 507 } 508 } 509 } while (!ret && 510 !arch_memory_test_advance(&vstart, &memsize, &phys_offset)); 511 512 arch_memory_test_cleanup(&vstart, &memsize, &phys_offset); 513 if (ret) 514 arch_memory_failure_handle(); 515 516 return ret; 517 } 518 519 #endif /* CONFIG_POST & CONFIG_SYS_POST_MEMORY */ 520