1 /* 2 * (C) Copyright 2002 3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 #include <common.h> 9 10 /* Memory test 11 * 12 * General observations: 13 * o The recommended test sequence is to test the data lines: if they are 14 * broken, nothing else will work properly. Then test the address 15 * lines. Finally, test the cells in the memory now that the test 16 * program knows that the address and data lines work properly. 17 * This sequence also helps isolate and identify what is faulty. 18 * 19 * o For the address line test, it is a good idea to use the base 20 * address of the lowest memory location, which causes a '1' bit to 21 * walk through a field of zeros on the address lines and the highest 22 * memory location, which causes a '0' bit to walk through a field of 23 * '1's on the address line. 24 * 25 * o Floating buses can fool memory tests if the test routine writes 26 * a value and then reads it back immediately. The problem is, the 27 * write will charge the residual capacitance on the data bus so the 28 * bus retains its state briefely. When the test program reads the 29 * value back immediately, the capacitance of the bus can allow it 30 * to read back what was written, even though the memory circuitry 31 * is broken. To avoid this, the test program should write a test 32 * pattern to the target location, write a different pattern elsewhere 33 * to charge the residual capacitance in a differnt manner, then read 34 * the target location back. 35 * 36 * o Always read the target location EXACTLY ONCE and save it in a local 37 * variable. The problem with reading the target location more than 38 * once is that the second and subsequent reads may work properly, 39 * resulting in a failed test that tells the poor technician that 40 * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which 41 * doesn't help him one bit and causes puzzled phone calls. Been there, 42 * done that. 43 * 44 * Data line test: 45 * --------------- 46 * This tests data lines for shorts and opens by forcing adjacent data 47 * to opposite states. Because the data lines could be routed in an 48 * arbitrary manner the must ensure test patterns ensure that every case 49 * is tested. By using the following series of binary patterns every 50 * combination of adjacent bits is test regardless of routing. 51 * 52 * ...101010101010101010101010 53 * ...110011001100110011001100 54 * ...111100001111000011110000 55 * ...111111110000000011111111 56 * 57 * Carrying this out, gives us six hex patterns as follows: 58 * 59 * 0xaaaaaaaaaaaaaaaa 60 * 0xcccccccccccccccc 61 * 0xf0f0f0f0f0f0f0f0 62 * 0xff00ff00ff00ff00 63 * 0xffff0000ffff0000 64 * 0xffffffff00000000 65 * 66 * To test for short and opens to other signals on our boards, we 67 * simply test with the 1's complemnt of the paterns as well, resulting 68 * in twelve patterns total. 69 * 70 * After writing a test pattern. a special pattern 0x0123456789ABCDEF is 71 * written to a different address in case the data lines are floating. 72 * Thus, if a byte lane fails, you will see part of the special 73 * pattern in that byte lane when the test runs. For example, if the 74 * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa 75 * (for the 'a' test pattern). 76 * 77 * Address line test: 78 * ------------------ 79 * This function performs a test to verify that all the address lines 80 * hooked up to the RAM work properly. If there is an address line 81 * fault, it usually shows up as two different locations in the address 82 * map (related by the faulty address line) mapping to one physical 83 * memory storage location. The artifact that shows up is writing to 84 * the first location "changes" the second location. 85 * 86 * To test all address lines, we start with the given base address and 87 * xor the address with a '1' bit to flip one address line. For each 88 * test, we shift the '1' bit left to test the next address line. 89 * 90 * In the actual code, we start with address sizeof(ulong) since our 91 * test pattern we use is a ulong and thus, if we tried to test lower 92 * order address bits, it wouldn't work because our pattern would 93 * overwrite itself. 94 * 95 * Example for a 4 bit address space with the base at 0000: 96 * 0000 <- base 97 * 0001 <- test 1 98 * 0010 <- test 2 99 * 0100 <- test 3 100 * 1000 <- test 4 101 * Example for a 4 bit address space with the base at 0010: 102 * 0010 <- base 103 * 0011 <- test 1 104 * 0000 <- (below the base address, skipped) 105 * 0110 <- test 2 106 * 1010 <- test 3 107 * 108 * The test locations are successively tested to make sure that they are 109 * not "mirrored" onto the base address due to a faulty address line. 110 * Note that the base and each test location are related by one address 111 * line flipped. Note that the base address need not be all zeros. 112 * 113 * Memory tests 1-4: 114 * ----------------- 115 * These tests verify RAM using sequential writes and reads 116 * to/from RAM. There are several test cases that use different patterns to 117 * verify RAM. Each test case fills a region of RAM with one pattern and 118 * then reads the region back and compares its contents with the pattern. 119 * The following patterns are used: 120 * 121 * 1a) zero pattern (0x00000000) 122 * 1b) negative pattern (0xffffffff) 123 * 1c) checkerboard pattern (0x55555555) 124 * 1d) checkerboard pattern (0xaaaaaaaa) 125 * 2) bit-flip pattern ((1 << (offset % 32)) 126 * 3) address pattern (offset) 127 * 4) address pattern (~offset) 128 * 129 * Being run in normal mode, the test verifies only small 4Kb 130 * regions of RAM around each 1Mb boundary. For example, for 64Mb 131 * RAM the following areas are verified: 0x00000000-0x00000800, 132 * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800- 133 * 0x04000000. If the test is run in slow-test mode, it verifies 134 * the whole RAM. 135 */ 136 137 #include <post.h> 138 #include <watchdog.h> 139 140 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS) 141 142 DECLARE_GLOBAL_DATA_PTR; 143 144 /* 145 * Define INJECT_*_ERRORS for testing error detection in the presence of 146 * _good_ hardware. 147 */ 148 #undef INJECT_DATA_ERRORS 149 #undef INJECT_ADDRESS_ERRORS 150 151 #ifdef INJECT_DATA_ERRORS 152 #warning "Injecting data line errors for testing purposes" 153 #endif 154 155 #ifdef INJECT_ADDRESS_ERRORS 156 #warning "Injecting address line errors for testing purposes" 157 #endif 158 159 160 /* 161 * This function performs a double word move from the data at 162 * the source pointer to the location at the destination pointer. 163 * This is helpful for testing memory on processors which have a 64 bit 164 * wide data bus. 165 * 166 * On those PowerPC with FPU, use assembly and a floating point move: 167 * this does a 64 bit move. 168 * 169 * For other processors, let the compiler generate the best code it can. 170 */ 171 static void move64(const unsigned long long *src, unsigned long long *dest) 172 { 173 #if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X) 174 asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */ 175 "stfd 0, 0(4)" /* *dest = fpr0 */ 176 : : : "fr0" ); /* Clobbers fr0 */ 177 return; 178 #else 179 *dest = *src; 180 #endif 181 } 182 183 /* 184 * This is 64 bit wide test patterns. Note that they reside in ROM 185 * (which presumably works) and the tests write them to RAM which may 186 * not work. 187 * 188 * The "otherpattern" is written to drive the data bus to values other 189 * than the test pattern. This is for detecting floating bus lines. 190 * 191 */ 192 const static unsigned long long pattern[] = { 193 0xaaaaaaaaaaaaaaaaULL, 194 0xccccccccccccccccULL, 195 0xf0f0f0f0f0f0f0f0ULL, 196 0xff00ff00ff00ff00ULL, 197 0xffff0000ffff0000ULL, 198 0xffffffff00000000ULL, 199 0x00000000ffffffffULL, 200 0x0000ffff0000ffffULL, 201 0x00ff00ff00ff00ffULL, 202 0x0f0f0f0f0f0f0f0fULL, 203 0x3333333333333333ULL, 204 0x5555555555555555ULL 205 }; 206 const unsigned long long otherpattern = 0x0123456789abcdefULL; 207 208 209 static int memory_post_dataline(unsigned long long * pmem) 210 { 211 unsigned long long temp64 = 0; 212 int num_patterns = ARRAY_SIZE(pattern); 213 int i; 214 unsigned int hi, lo, pathi, patlo; 215 int ret = 0; 216 217 for ( i = 0; i < num_patterns; i++) { 218 move64(&(pattern[i]), pmem++); 219 /* 220 * Put a different pattern on the data lines: otherwise they 221 * may float long enough to read back what we wrote. 222 */ 223 move64(&otherpattern, pmem--); 224 move64(pmem, &temp64); 225 226 #ifdef INJECT_DATA_ERRORS 227 temp64 ^= 0x00008000; 228 #endif 229 230 if (temp64 != pattern[i]){ 231 pathi = (pattern[i]>>32) & 0xffffffff; 232 patlo = pattern[i] & 0xffffffff; 233 234 hi = (temp64>>32) & 0xffffffff; 235 lo = temp64 & 0xffffffff; 236 237 post_log("Memory (date line) error at %08x, " 238 "wrote %08x%08x, read %08x%08x !\n", 239 pmem, pathi, patlo, hi, lo); 240 ret = -1; 241 } 242 } 243 return ret; 244 } 245 246 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size) 247 { 248 ulong *target; 249 ulong *end; 250 ulong readback; 251 ulong xor; 252 int ret = 0; 253 254 end = (ulong *)((ulong)base + size); /* pointer arith! */ 255 xor = 0; 256 for(xor = sizeof(ulong); xor > 0; xor <<= 1) { 257 target = (ulong *)((ulong)testaddr ^ xor); 258 if((target >= base) && (target < end)) { 259 *testaddr = ~*target; 260 readback = *target; 261 262 #ifdef INJECT_ADDRESS_ERRORS 263 if(xor == 0x00008000) { 264 readback = *testaddr; 265 } 266 #endif 267 if(readback == *testaddr) { 268 post_log("Memory (address line) error at %08x<->%08x, " 269 "XOR value %08x !\n", 270 testaddr, target, xor); 271 ret = -1; 272 } 273 } 274 } 275 return ret; 276 } 277 278 static int memory_post_test1(unsigned long start, 279 unsigned long size, 280 unsigned long val) 281 { 282 unsigned long i; 283 ulong *mem = (ulong *) start; 284 ulong readback; 285 int ret = 0; 286 287 for (i = 0; i < size / sizeof (ulong); i++) { 288 mem[i] = val; 289 if (i % 1024 == 0) 290 WATCHDOG_RESET(); 291 } 292 293 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 294 readback = mem[i]; 295 if (readback != val) { 296 post_log("Memory error at %08x, " 297 "wrote %08x, read %08x !\n", 298 mem + i, val, readback); 299 300 ret = -1; 301 break; 302 } 303 if (i % 1024 == 0) 304 WATCHDOG_RESET(); 305 } 306 307 return ret; 308 } 309 310 static int memory_post_test2(unsigned long start, unsigned long size) 311 { 312 unsigned long i; 313 ulong *mem = (ulong *) start; 314 ulong readback; 315 int ret = 0; 316 317 for (i = 0; i < size / sizeof (ulong); i++) { 318 mem[i] = 1 << (i % 32); 319 if (i % 1024 == 0) 320 WATCHDOG_RESET(); 321 } 322 323 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 324 readback = mem[i]; 325 if (readback != (1 << (i % 32))) { 326 post_log("Memory error at %08x, " 327 "wrote %08x, read %08x !\n", 328 mem + i, 1 << (i % 32), readback); 329 330 ret = -1; 331 break; 332 } 333 if (i % 1024 == 0) 334 WATCHDOG_RESET(); 335 } 336 337 return ret; 338 } 339 340 static int memory_post_test3(unsigned long start, unsigned long size) 341 { 342 unsigned long i; 343 ulong *mem = (ulong *) start; 344 ulong readback; 345 int ret = 0; 346 347 for (i = 0; i < size / sizeof (ulong); i++) { 348 mem[i] = i; 349 if (i % 1024 == 0) 350 WATCHDOG_RESET(); 351 } 352 353 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 354 readback = mem[i]; 355 if (readback != i) { 356 post_log("Memory error at %08x, " 357 "wrote %08x, read %08x !\n", 358 mem + i, i, readback); 359 360 ret = -1; 361 break; 362 } 363 if (i % 1024 == 0) 364 WATCHDOG_RESET(); 365 } 366 367 return ret; 368 } 369 370 static int memory_post_test4(unsigned long start, unsigned long size) 371 { 372 unsigned long i; 373 ulong *mem = (ulong *) start; 374 ulong readback; 375 int ret = 0; 376 377 for (i = 0; i < size / sizeof (ulong); i++) { 378 mem[i] = ~i; 379 if (i % 1024 == 0) 380 WATCHDOG_RESET(); 381 } 382 383 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 384 readback = mem[i]; 385 if (readback != ~i) { 386 post_log("Memory error at %08x, " 387 "wrote %08x, read %08x !\n", 388 mem + i, ~i, readback); 389 390 ret = -1; 391 break; 392 } 393 if (i % 1024 == 0) 394 WATCHDOG_RESET(); 395 } 396 397 return ret; 398 } 399 400 static int memory_post_test_lines(unsigned long start, unsigned long size) 401 { 402 int ret = 0; 403 404 ret = memory_post_dataline((unsigned long long *)start); 405 WATCHDOG_RESET(); 406 if (!ret) 407 ret = memory_post_addrline((ulong *)start, (ulong *)start, 408 size); 409 WATCHDOG_RESET(); 410 if (!ret) 411 ret = memory_post_addrline((ulong *)(start+size-8), 412 (ulong *)start, size); 413 WATCHDOG_RESET(); 414 415 return ret; 416 } 417 418 static int memory_post_test_patterns(unsigned long start, unsigned long size) 419 { 420 int ret = 0; 421 422 ret = memory_post_test1(start, size, 0x00000000); 423 WATCHDOG_RESET(); 424 if (!ret) 425 ret = memory_post_test1(start, size, 0xffffffff); 426 WATCHDOG_RESET(); 427 if (!ret) 428 ret = memory_post_test1(start, size, 0x55555555); 429 WATCHDOG_RESET(); 430 if (!ret) 431 ret = memory_post_test1(start, size, 0xaaaaaaaa); 432 WATCHDOG_RESET(); 433 if (!ret) 434 ret = memory_post_test2(start, size); 435 WATCHDOG_RESET(); 436 if (!ret) 437 ret = memory_post_test3(start, size); 438 WATCHDOG_RESET(); 439 if (!ret) 440 ret = memory_post_test4(start, size); 441 WATCHDOG_RESET(); 442 443 return ret; 444 } 445 446 static int memory_post_test_regions(unsigned long start, unsigned long size) 447 { 448 unsigned long i; 449 int ret = 0; 450 451 for (i = 0; i < (size >> 20) && (!ret); i++) { 452 if (!ret) 453 ret = memory_post_test_patterns(start + (i << 20), 454 0x800); 455 if (!ret) 456 ret = memory_post_test_patterns(start + (i << 20) + 457 0xff800, 0x800); 458 } 459 460 return ret; 461 } 462 463 static int memory_post_tests(unsigned long start, unsigned long size) 464 { 465 int ret = 0; 466 467 ret = memory_post_test_lines(start, size); 468 if (!ret) 469 ret = memory_post_test_patterns(start, size); 470 471 return ret; 472 } 473 474 /* 475 * !! this is only valid, if you have contiguous memory banks !! 476 */ 477 __attribute__((weak)) 478 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 479 { 480 bd_t *bd = gd->bd; 481 482 *vstart = CONFIG_SYS_SDRAM_BASE; 483 *size = (gd->ram_size >= 256 << 20 ? 484 256 << 20 : gd->ram_size) - (1 << 20); 485 486 /* Limit area to be tested with the board info struct */ 487 if ((*vstart) + (*size) > (ulong)bd) 488 *size = (ulong)bd - *vstart; 489 490 return 0; 491 } 492 493 __attribute__((weak)) 494 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 495 { 496 return 1; 497 } 498 499 __attribute__((weak)) 500 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 501 { 502 return 0; 503 } 504 505 __attribute__((weak)) 506 void arch_memory_failure_handle(void) 507 { 508 return; 509 } 510 511 int memory_regions_post_test(int flags) 512 { 513 int ret = 0; 514 phys_addr_t phys_offset = 0; 515 u32 memsize, vstart; 516 517 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 518 519 ret = memory_post_test_lines(vstart, memsize); 520 if (!ret) 521 ret = memory_post_test_regions(vstart, memsize); 522 523 return ret; 524 } 525 526 int memory_post_test(int flags) 527 { 528 int ret = 0; 529 phys_addr_t phys_offset = 0; 530 u32 memsize, vstart; 531 532 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 533 534 do { 535 if (flags & POST_SLOWTEST) { 536 ret = memory_post_tests(vstart, memsize); 537 } else { /* POST_NORMAL */ 538 ret = memory_post_test_regions(vstart, memsize); 539 } 540 } while (!ret && 541 !arch_memory_test_advance(&vstart, &memsize, &phys_offset)); 542 543 arch_memory_test_cleanup(&vstart, &memsize, &phys_offset); 544 if (ret) 545 arch_memory_failure_handle(); 546 547 return ret; 548 } 549 550 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */ 551