1 /* 2 * (C) Copyright 2002 3 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 #include <common.h> 9 10 /* Memory test 11 * 12 * General observations: 13 * o The recommended test sequence is to test the data lines: if they are 14 * broken, nothing else will work properly. Then test the address 15 * lines. Finally, test the cells in the memory now that the test 16 * program knows that the address and data lines work properly. 17 * This sequence also helps isolate and identify what is faulty. 18 * 19 * o For the address line test, it is a good idea to use the base 20 * address of the lowest memory location, which causes a '1' bit to 21 * walk through a field of zeros on the address lines and the highest 22 * memory location, which causes a '0' bit to walk through a field of 23 * '1's on the address line. 24 * 25 * o Floating buses can fool memory tests if the test routine writes 26 * a value and then reads it back immediately. The problem is, the 27 * write will charge the residual capacitance on the data bus so the 28 * bus retains its state briefely. When the test program reads the 29 * value back immediately, the capacitance of the bus can allow it 30 * to read back what was written, even though the memory circuitry 31 * is broken. To avoid this, the test program should write a test 32 * pattern to the target location, write a different pattern elsewhere 33 * to charge the residual capacitance in a differnt manner, then read 34 * the target location back. 35 * 36 * o Always read the target location EXACTLY ONCE and save it in a local 37 * variable. The problem with reading the target location more than 38 * once is that the second and subsequent reads may work properly, 39 * resulting in a failed test that tells the poor technician that 40 * "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which 41 * doesn't help him one bit and causes puzzled phone calls. Been there, 42 * done that. 43 * 44 * Data line test: 45 * --------------- 46 * This tests data lines for shorts and opens by forcing adjacent data 47 * to opposite states. Because the data lines could be routed in an 48 * arbitrary manner the must ensure test patterns ensure that every case 49 * is tested. By using the following series of binary patterns every 50 * combination of adjacent bits is test regardless of routing. 51 * 52 * ...101010101010101010101010 53 * ...110011001100110011001100 54 * ...111100001111000011110000 55 * ...111111110000000011111111 56 * 57 * Carrying this out, gives us six hex patterns as follows: 58 * 59 * 0xaaaaaaaaaaaaaaaa 60 * 0xcccccccccccccccc 61 * 0xf0f0f0f0f0f0f0f0 62 * 0xff00ff00ff00ff00 63 * 0xffff0000ffff0000 64 * 0xffffffff00000000 65 * 66 * To test for short and opens to other signals on our boards, we 67 * simply test with the 1's complemnt of the paterns as well, resulting 68 * in twelve patterns total. 69 * 70 * After writing a test pattern. a special pattern 0x0123456789ABCDEF is 71 * written to a different address in case the data lines are floating. 72 * Thus, if a byte lane fails, you will see part of the special 73 * pattern in that byte lane when the test runs. For example, if the 74 * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa 75 * (for the 'a' test pattern). 76 * 77 * Address line test: 78 * ------------------ 79 * This function performs a test to verify that all the address lines 80 * hooked up to the RAM work properly. If there is an address line 81 * fault, it usually shows up as two different locations in the address 82 * map (related by the faulty address line) mapping to one physical 83 * memory storage location. The artifact that shows up is writing to 84 * the first location "changes" the second location. 85 * 86 * To test all address lines, we start with the given base address and 87 * xor the address with a '1' bit to flip one address line. For each 88 * test, we shift the '1' bit left to test the next address line. 89 * 90 * In the actual code, we start with address sizeof(ulong) since our 91 * test pattern we use is a ulong and thus, if we tried to test lower 92 * order address bits, it wouldn't work because our pattern would 93 * overwrite itself. 94 * 95 * Example for a 4 bit address space with the base at 0000: 96 * 0000 <- base 97 * 0001 <- test 1 98 * 0010 <- test 2 99 * 0100 <- test 3 100 * 1000 <- test 4 101 * Example for a 4 bit address space with the base at 0010: 102 * 0010 <- base 103 * 0011 <- test 1 104 * 0000 <- (below the base address, skipped) 105 * 0110 <- test 2 106 * 1010 <- test 3 107 * 108 * The test locations are successively tested to make sure that they are 109 * not "mirrored" onto the base address due to a faulty address line. 110 * Note that the base and each test location are related by one address 111 * line flipped. Note that the base address need not be all zeros. 112 * 113 * Memory tests 1-4: 114 * ----------------- 115 * These tests verify RAM using sequential writes and reads 116 * to/from RAM. There are several test cases that use different patterns to 117 * verify RAM. Each test case fills a region of RAM with one pattern and 118 * then reads the region back and compares its contents with the pattern. 119 * The following patterns are used: 120 * 121 * 1a) zero pattern (0x00000000) 122 * 1b) negative pattern (0xffffffff) 123 * 1c) checkerboard pattern (0x55555555) 124 * 1d) checkerboard pattern (0xaaaaaaaa) 125 * 2) bit-flip pattern ((1 << (offset % 32)) 126 * 3) address pattern (offset) 127 * 4) address pattern (~offset) 128 * 129 * Being run in normal mode, the test verifies only small 4Kb 130 * regions of RAM around each 1Mb boundary. For example, for 64Mb 131 * RAM the following areas are verified: 0x00000000-0x00000800, 132 * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800- 133 * 0x04000000. If the test is run in slow-test mode, it verifies 134 * the whole RAM. 135 */ 136 137 #include <post.h> 138 #include <watchdog.h> 139 140 #if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS) 141 142 DECLARE_GLOBAL_DATA_PTR; 143 144 /* 145 * Define INJECT_*_ERRORS for testing error detection in the presence of 146 * _good_ hardware. 147 */ 148 #undef INJECT_DATA_ERRORS 149 #undef INJECT_ADDRESS_ERRORS 150 151 #ifdef INJECT_DATA_ERRORS 152 #warning "Injecting data line errors for testing purposes" 153 #endif 154 155 #ifdef INJECT_ADDRESS_ERRORS 156 #warning "Injecting address line errors for testing purposes" 157 #endif 158 159 160 /* 161 * This function performs a double word move from the data at 162 * the source pointer to the location at the destination pointer. 163 * This is helpful for testing memory on processors which have a 64 bit 164 * wide data bus. 165 * 166 * On those PowerPC with FPU, use assembly and a floating point move: 167 * this does a 64 bit move. 168 * 169 * For other processors, let the compiler generate the best code it can. 170 */ 171 static void move64(const unsigned long long *src, unsigned long long *dest) 172 { 173 *dest = *src; 174 } 175 176 /* 177 * This is 64 bit wide test patterns. Note that they reside in ROM 178 * (which presumably works) and the tests write them to RAM which may 179 * not work. 180 * 181 * The "otherpattern" is written to drive the data bus to values other 182 * than the test pattern. This is for detecting floating bus lines. 183 * 184 */ 185 const static unsigned long long pattern[] = { 186 0xaaaaaaaaaaaaaaaaULL, 187 0xccccccccccccccccULL, 188 0xf0f0f0f0f0f0f0f0ULL, 189 0xff00ff00ff00ff00ULL, 190 0xffff0000ffff0000ULL, 191 0xffffffff00000000ULL, 192 0x00000000ffffffffULL, 193 0x0000ffff0000ffffULL, 194 0x00ff00ff00ff00ffULL, 195 0x0f0f0f0f0f0f0f0fULL, 196 0x3333333333333333ULL, 197 0x5555555555555555ULL 198 }; 199 const unsigned long long otherpattern = 0x0123456789abcdefULL; 200 201 202 static int memory_post_dataline(unsigned long long * pmem) 203 { 204 unsigned long long temp64 = 0; 205 int num_patterns = ARRAY_SIZE(pattern); 206 int i; 207 unsigned int hi, lo, pathi, patlo; 208 int ret = 0; 209 210 for ( i = 0; i < num_patterns; i++) { 211 move64(&(pattern[i]), pmem++); 212 /* 213 * Put a different pattern on the data lines: otherwise they 214 * may float long enough to read back what we wrote. 215 */ 216 move64(&otherpattern, pmem--); 217 move64(pmem, &temp64); 218 219 #ifdef INJECT_DATA_ERRORS 220 temp64 ^= 0x00008000; 221 #endif 222 223 if (temp64 != pattern[i]){ 224 pathi = (pattern[i]>>32) & 0xffffffff; 225 patlo = pattern[i] & 0xffffffff; 226 227 hi = (temp64>>32) & 0xffffffff; 228 lo = temp64 & 0xffffffff; 229 230 post_log("Memory (data line) error at %08x, " 231 "wrote %08x%08x, read %08x%08x !\n", 232 pmem, pathi, patlo, hi, lo); 233 ret = -1; 234 } 235 } 236 return ret; 237 } 238 239 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size) 240 { 241 ulong *target; 242 ulong *end; 243 ulong readback; 244 ulong xor; 245 int ret = 0; 246 247 end = (ulong *)((ulong)base + size); /* pointer arith! */ 248 xor = 0; 249 for(xor = sizeof(ulong); xor > 0; xor <<= 1) { 250 target = (ulong *)((ulong)testaddr ^ xor); 251 if((target >= base) && (target < end)) { 252 *testaddr = ~*target; 253 readback = *target; 254 255 #ifdef INJECT_ADDRESS_ERRORS 256 if(xor == 0x00008000) { 257 readback = *testaddr; 258 } 259 #endif 260 if(readback == *testaddr) { 261 post_log("Memory (address line) error at %08x<->%08x, " 262 "XOR value %08x !\n", 263 testaddr, target, xor); 264 ret = -1; 265 } 266 } 267 } 268 return ret; 269 } 270 271 static int memory_post_test1(unsigned long start, 272 unsigned long size, 273 unsigned long val) 274 { 275 unsigned long i; 276 ulong *mem = (ulong *) start; 277 ulong readback; 278 int ret = 0; 279 280 for (i = 0; i < size / sizeof (ulong); i++) { 281 mem[i] = val; 282 if (i % 1024 == 0) 283 WATCHDOG_RESET(); 284 } 285 286 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 287 readback = mem[i]; 288 if (readback != val) { 289 post_log("Memory error at %08x, " 290 "wrote %08x, read %08x !\n", 291 mem + i, val, readback); 292 293 ret = -1; 294 break; 295 } 296 if (i % 1024 == 0) 297 WATCHDOG_RESET(); 298 } 299 300 return ret; 301 } 302 303 static int memory_post_test2(unsigned long start, unsigned long size) 304 { 305 unsigned long i; 306 ulong *mem = (ulong *) start; 307 ulong readback; 308 int ret = 0; 309 310 for (i = 0; i < size / sizeof (ulong); i++) { 311 mem[i] = 1 << (i % 32); 312 if (i % 1024 == 0) 313 WATCHDOG_RESET(); 314 } 315 316 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 317 readback = mem[i]; 318 if (readback != (1 << (i % 32))) { 319 post_log("Memory error at %08x, " 320 "wrote %08x, read %08x !\n", 321 mem + i, 1 << (i % 32), readback); 322 323 ret = -1; 324 break; 325 } 326 if (i % 1024 == 0) 327 WATCHDOG_RESET(); 328 } 329 330 return ret; 331 } 332 333 static int memory_post_test3(unsigned long start, unsigned long size) 334 { 335 unsigned long i; 336 ulong *mem = (ulong *) start; 337 ulong readback; 338 int ret = 0; 339 340 for (i = 0; i < size / sizeof (ulong); i++) { 341 mem[i] = i; 342 if (i % 1024 == 0) 343 WATCHDOG_RESET(); 344 } 345 346 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 347 readback = mem[i]; 348 if (readback != i) { 349 post_log("Memory error at %08x, " 350 "wrote %08x, read %08x !\n", 351 mem + i, i, readback); 352 353 ret = -1; 354 break; 355 } 356 if (i % 1024 == 0) 357 WATCHDOG_RESET(); 358 } 359 360 return ret; 361 } 362 363 static int memory_post_test4(unsigned long start, unsigned long size) 364 { 365 unsigned long i; 366 ulong *mem = (ulong *) start; 367 ulong readback; 368 int ret = 0; 369 370 for (i = 0; i < size / sizeof (ulong); i++) { 371 mem[i] = ~i; 372 if (i % 1024 == 0) 373 WATCHDOG_RESET(); 374 } 375 376 for (i = 0; i < size / sizeof (ulong) && !ret; i++) { 377 readback = mem[i]; 378 if (readback != ~i) { 379 post_log("Memory error at %08x, " 380 "wrote %08x, read %08x !\n", 381 mem + i, ~i, readback); 382 383 ret = -1; 384 break; 385 } 386 if (i % 1024 == 0) 387 WATCHDOG_RESET(); 388 } 389 390 return ret; 391 } 392 393 static int memory_post_test_lines(unsigned long start, unsigned long size) 394 { 395 int ret = 0; 396 397 ret = memory_post_dataline((unsigned long long *)start); 398 WATCHDOG_RESET(); 399 if (!ret) 400 ret = memory_post_addrline((ulong *)start, (ulong *)start, 401 size); 402 WATCHDOG_RESET(); 403 if (!ret) 404 ret = memory_post_addrline((ulong *)(start+size-8), 405 (ulong *)start, size); 406 WATCHDOG_RESET(); 407 408 return ret; 409 } 410 411 static int memory_post_test_patterns(unsigned long start, unsigned long size) 412 { 413 int ret = 0; 414 415 ret = memory_post_test1(start, size, 0x00000000); 416 WATCHDOG_RESET(); 417 if (!ret) 418 ret = memory_post_test1(start, size, 0xffffffff); 419 WATCHDOG_RESET(); 420 if (!ret) 421 ret = memory_post_test1(start, size, 0x55555555); 422 WATCHDOG_RESET(); 423 if (!ret) 424 ret = memory_post_test1(start, size, 0xaaaaaaaa); 425 WATCHDOG_RESET(); 426 if (!ret) 427 ret = memory_post_test2(start, size); 428 WATCHDOG_RESET(); 429 if (!ret) 430 ret = memory_post_test3(start, size); 431 WATCHDOG_RESET(); 432 if (!ret) 433 ret = memory_post_test4(start, size); 434 WATCHDOG_RESET(); 435 436 return ret; 437 } 438 439 static int memory_post_test_regions(unsigned long start, unsigned long size) 440 { 441 unsigned long i; 442 int ret = 0; 443 444 for (i = 0; i < (size >> 20) && (!ret); i++) { 445 if (!ret) 446 ret = memory_post_test_patterns(start + (i << 20), 447 0x800); 448 if (!ret) 449 ret = memory_post_test_patterns(start + (i << 20) + 450 0xff800, 0x800); 451 } 452 453 return ret; 454 } 455 456 static int memory_post_tests(unsigned long start, unsigned long size) 457 { 458 int ret = 0; 459 460 ret = memory_post_test_lines(start, size); 461 if (!ret) 462 ret = memory_post_test_patterns(start, size); 463 464 return ret; 465 } 466 467 /* 468 * !! this is only valid, if you have contiguous memory banks !! 469 */ 470 __attribute__((weak)) 471 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 472 { 473 bd_t *bd = gd->bd; 474 475 *vstart = CONFIG_SYS_SDRAM_BASE; 476 *size = (gd->ram_size >= 256 << 20 ? 477 256 << 20 : gd->ram_size) - (1 << 20); 478 479 /* Limit area to be tested with the board info struct */ 480 if ((*vstart) + (*size) > (ulong)bd) 481 *size = (ulong)bd - *vstart; 482 483 return 0; 484 } 485 486 __attribute__((weak)) 487 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 488 { 489 return 1; 490 } 491 492 __attribute__((weak)) 493 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset) 494 { 495 return 0; 496 } 497 498 __attribute__((weak)) 499 void arch_memory_failure_handle(void) 500 { 501 return; 502 } 503 504 int memory_regions_post_test(int flags) 505 { 506 int ret = 0; 507 phys_addr_t phys_offset = 0; 508 u32 memsize, vstart; 509 510 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 511 512 ret = memory_post_test_lines(vstart, memsize); 513 if (!ret) 514 ret = memory_post_test_regions(vstart, memsize); 515 516 return ret; 517 } 518 519 int memory_post_test(int flags) 520 { 521 int ret = 0; 522 phys_addr_t phys_offset = 0; 523 u32 memsize, vstart; 524 525 arch_memory_test_prepare(&vstart, &memsize, &phys_offset); 526 527 do { 528 if (flags & POST_SLOWTEST) { 529 ret = memory_post_tests(vstart, memsize); 530 } else { /* POST_NORMAL */ 531 ret = memory_post_test_regions(vstart, memsize); 532 } 533 } while (!ret && 534 !arch_memory_test_advance(&vstart, &memsize, &phys_offset)); 535 536 arch_memory_test_cleanup(&vstart, &memsize, &phys_offset); 537 if (ret) 538 arch_memory_failure_handle(); 539 540 return ret; 541 } 542 543 #endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */ 544