1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <environment.h> 87 #include <errno.h> 88 #include <net.h> 89 #if defined(CONFIG_STATUS_LED) 90 #include <miiphy.h> 91 #include <status_led.h> 92 #endif 93 #include <watchdog.h> 94 #include <linux/compiler.h> 95 #include "arp.h" 96 #include "bootp.h" 97 #include "cdp.h" 98 #if defined(CONFIG_CMD_DNS) 99 #include "dns.h" 100 #endif 101 #include "link_local.h" 102 #include "nfs.h" 103 #include "ping.h" 104 #include "rarp.h" 105 #if defined(CONFIG_CMD_SNTP) 106 #include "sntp.h" 107 #endif 108 #include "tftp.h" 109 110 DECLARE_GLOBAL_DATA_PTR; 111 112 /** BOOTP EXTENTIONS **/ 113 114 /* Our subnet mask (0=unknown) */ 115 struct in_addr net_netmask; 116 /* Our gateways IP address */ 117 struct in_addr net_gateway; 118 /* Our DNS IP address */ 119 struct in_addr net_dns_server; 120 #if defined(CONFIG_BOOTP_DNS2) 121 /* Our 2nd DNS IP address */ 122 struct in_addr net_dns_server2; 123 #endif 124 125 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 126 struct in_addr net_mcast_addr; 127 #endif 128 129 /** END OF BOOTP EXTENTIONS **/ 130 131 /* Our ethernet address */ 132 u8 net_ethaddr[6]; 133 /* Boot server enet address */ 134 u8 net_server_ethaddr[6]; 135 /* Our IP addr (0 = unknown) */ 136 struct in_addr net_ip; 137 /* Server IP addr (0 = unknown) */ 138 struct in_addr net_server_ip; 139 /* Current receive packet */ 140 uchar *net_rx_packet; 141 /* Current rx packet length */ 142 int net_rx_packet_len; 143 /* IP packet ID */ 144 static unsigned net_ip_id; 145 /* Ethernet bcast address */ 146 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 147 const u8 net_null_ethaddr[6]; 148 #ifdef CONFIG_API 149 void (*push_packet)(void *, int len) = 0; 150 #endif 151 /* Network loop state */ 152 enum net_loop_state net_state; 153 /* Tried all network devices */ 154 int net_restart_wrap; 155 /* Network loop restarted */ 156 static int net_restarted; 157 /* At least one device configured */ 158 static int net_dev_exists; 159 160 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 161 /* default is without VLAN */ 162 ushort net_our_vlan = 0xFFFF; 163 /* ditto */ 164 ushort net_native_vlan = 0xFFFF; 165 166 /* Boot File name */ 167 char net_boot_file_name[128]; 168 /* The actual transferred size of the bootfile (in bytes) */ 169 u32 net_boot_file_size; 170 /* Boot file size in blocks as reported by the DHCP server */ 171 u32 net_boot_file_expected_size_in_blocks; 172 173 #if defined(CONFIG_CMD_SNTP) 174 /* NTP server IP address */ 175 struct in_addr net_ntp_server; 176 /* offset time from UTC */ 177 int net_ntp_time_offset; 178 #endif 179 180 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 181 /* Receive packets */ 182 uchar *net_rx_packets[PKTBUFSRX]; 183 /* Current UDP RX packet handler */ 184 static rxhand_f *udp_packet_handler; 185 /* Current ARP RX packet handler */ 186 static rxhand_f *arp_packet_handler; 187 #ifdef CONFIG_CMD_TFTPPUT 188 /* Current ICMP rx handler */ 189 static rxhand_icmp_f *packet_icmp_handler; 190 #endif 191 /* Current timeout handler */ 192 static thand_f *time_handler; 193 /* Time base value */ 194 static ulong time_start; 195 /* Current timeout value */ 196 static ulong time_delta; 197 /* THE transmit packet */ 198 uchar *net_tx_packet; 199 200 static int net_check_prereq(enum proto_t protocol); 201 202 static int net_try_count; 203 204 int __maybe_unused net_busy_flag; 205 206 /**********************************************************************/ 207 208 static int on_bootfile(const char *name, const char *value, enum env_op op, 209 int flags) 210 { 211 if (flags & H_PROGRAMMATIC) 212 return 0; 213 214 switch (op) { 215 case env_op_create: 216 case env_op_overwrite: 217 copy_filename(net_boot_file_name, value, 218 sizeof(net_boot_file_name)); 219 break; 220 default: 221 break; 222 } 223 224 return 0; 225 } 226 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 227 228 static int on_ipaddr(const char *name, const char *value, enum env_op op, 229 int flags) 230 { 231 if (flags & H_PROGRAMMATIC) 232 return 0; 233 234 net_ip = string_to_ip(value); 235 236 return 0; 237 } 238 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 239 240 static int on_gatewayip(const char *name, const char *value, enum env_op op, 241 int flags) 242 { 243 if (flags & H_PROGRAMMATIC) 244 return 0; 245 246 net_gateway = string_to_ip(value); 247 248 return 0; 249 } 250 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 251 252 static int on_netmask(const char *name, const char *value, enum env_op op, 253 int flags) 254 { 255 if (flags & H_PROGRAMMATIC) 256 return 0; 257 258 net_netmask = string_to_ip(value); 259 260 return 0; 261 } 262 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 263 264 static int on_serverip(const char *name, const char *value, enum env_op op, 265 int flags) 266 { 267 if (flags & H_PROGRAMMATIC) 268 return 0; 269 270 net_server_ip = string_to_ip(value); 271 272 return 0; 273 } 274 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 275 276 static int on_nvlan(const char *name, const char *value, enum env_op op, 277 int flags) 278 { 279 if (flags & H_PROGRAMMATIC) 280 return 0; 281 282 net_native_vlan = string_to_vlan(value); 283 284 return 0; 285 } 286 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 287 288 static int on_vlan(const char *name, const char *value, enum env_op op, 289 int flags) 290 { 291 if (flags & H_PROGRAMMATIC) 292 return 0; 293 294 net_our_vlan = string_to_vlan(value); 295 296 return 0; 297 } 298 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 299 300 #if defined(CONFIG_CMD_DNS) 301 static int on_dnsip(const char *name, const char *value, enum env_op op, 302 int flags) 303 { 304 if (flags & H_PROGRAMMATIC) 305 return 0; 306 307 net_dns_server = string_to_ip(value); 308 309 return 0; 310 } 311 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 312 #endif 313 314 /* 315 * Check if autoload is enabled. If so, use either NFS or TFTP to download 316 * the boot file. 317 */ 318 void net_auto_load(void) 319 { 320 #if defined(CONFIG_CMD_NFS) 321 const char *s = getenv("autoload"); 322 323 if (s != NULL && strcmp(s, "NFS") == 0) { 324 /* 325 * Use NFS to load the bootfile. 326 */ 327 nfs_start(); 328 return; 329 } 330 #endif 331 if (getenv_yesno("autoload") == 0) { 332 /* 333 * Just use BOOTP/RARP to configure system; 334 * Do not use TFTP to load the bootfile. 335 */ 336 net_set_state(NETLOOP_SUCCESS); 337 return; 338 } 339 tftp_start(TFTPGET); 340 } 341 342 static void net_init_loop(void) 343 { 344 if (eth_get_dev()) 345 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 346 347 return; 348 } 349 350 static void net_clear_handlers(void) 351 { 352 net_set_udp_handler(NULL); 353 net_set_arp_handler(NULL); 354 net_set_timeout_handler(0, NULL); 355 } 356 357 static void net_cleanup_loop(void) 358 { 359 net_clear_handlers(); 360 } 361 362 void net_init(void) 363 { 364 static int first_call = 1; 365 366 if (first_call) { 367 /* 368 * Setup packet buffers, aligned correctly. 369 */ 370 int i; 371 372 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 373 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 374 for (i = 0; i < PKTBUFSRX; i++) { 375 net_rx_packets[i] = net_tx_packet + 376 (i + 1) * PKTSIZE_ALIGN; 377 } 378 arp_init(); 379 net_clear_handlers(); 380 381 /* Only need to setup buffer pointers once. */ 382 first_call = 0; 383 } 384 385 net_init_loop(); 386 } 387 388 /**********************************************************************/ 389 /* 390 * Main network processing loop. 391 */ 392 393 int net_loop(enum proto_t protocol) 394 { 395 int ret = -EINVAL; 396 397 net_restarted = 0; 398 net_dev_exists = 0; 399 net_try_count = 1; 400 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 401 402 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 403 net_init(); 404 if (eth_is_on_demand_init() || protocol != NETCONS) { 405 eth_halt(); 406 eth_set_current(); 407 ret = eth_init(); 408 if (ret < 0) { 409 eth_halt(); 410 return ret; 411 } 412 } else { 413 eth_init_state_only(); 414 } 415 restart: 416 #ifdef CONFIG_USB_KEYBOARD 417 net_busy_flag = 0; 418 #endif 419 net_set_state(NETLOOP_CONTINUE); 420 421 /* 422 * Start the ball rolling with the given start function. From 423 * here on, this code is a state machine driven by received 424 * packets and timer events. 425 */ 426 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 427 net_init_loop(); 428 429 switch (net_check_prereq(protocol)) { 430 case 1: 431 /* network not configured */ 432 eth_halt(); 433 return -ENODEV; 434 435 case 2: 436 /* network device not configured */ 437 break; 438 439 case 0: 440 net_dev_exists = 1; 441 net_boot_file_size = 0; 442 switch (protocol) { 443 case TFTPGET: 444 #ifdef CONFIG_CMD_TFTPPUT 445 case TFTPPUT: 446 #endif 447 /* always use ARP to get server ethernet address */ 448 tftp_start(protocol); 449 break; 450 #ifdef CONFIG_CMD_TFTPSRV 451 case TFTPSRV: 452 tftp_start_server(); 453 break; 454 #endif 455 #if defined(CONFIG_CMD_DHCP) 456 case DHCP: 457 bootp_reset(); 458 net_ip.s_addr = 0; 459 dhcp_request(); /* Basically same as BOOTP */ 460 break; 461 #endif 462 463 case BOOTP: 464 bootp_reset(); 465 net_ip.s_addr = 0; 466 bootp_request(); 467 break; 468 469 #if defined(CONFIG_CMD_RARP) 470 case RARP: 471 rarp_try = 0; 472 net_ip.s_addr = 0; 473 rarp_request(); 474 break; 475 #endif 476 #if defined(CONFIG_CMD_PING) 477 case PING: 478 ping_start(); 479 break; 480 #endif 481 #if defined(CONFIG_CMD_NFS) 482 case NFS: 483 nfs_start(); 484 break; 485 #endif 486 #if defined(CONFIG_CMD_CDP) 487 case CDP: 488 cdp_start(); 489 break; 490 #endif 491 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 492 case NETCONS: 493 nc_start(); 494 break; 495 #endif 496 #if defined(CONFIG_CMD_SNTP) 497 case SNTP: 498 sntp_start(); 499 break; 500 #endif 501 #if defined(CONFIG_CMD_DNS) 502 case DNS: 503 dns_start(); 504 break; 505 #endif 506 #if defined(CONFIG_CMD_LINK_LOCAL) 507 case LINKLOCAL: 508 link_local_start(); 509 break; 510 #endif 511 default: 512 break; 513 } 514 515 break; 516 } 517 518 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 519 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 520 defined(CONFIG_STATUS_LED) && \ 521 defined(STATUS_LED_RED) 522 /* 523 * Echo the inverted link state to the fault LED. 524 */ 525 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 526 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 527 else 528 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 529 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 530 #endif /* CONFIG_MII, ... */ 531 #ifdef CONFIG_USB_KEYBOARD 532 net_busy_flag = 1; 533 #endif 534 535 /* 536 * Main packet reception loop. Loop receiving packets until 537 * someone sets `net_state' to a state that terminates. 538 */ 539 for (;;) { 540 WATCHDOG_RESET(); 541 #ifdef CONFIG_SHOW_ACTIVITY 542 show_activity(1); 543 #endif 544 /* 545 * Check the ethernet for a new packet. The ethernet 546 * receive routine will process it. 547 * Most drivers return the most recent packet size, but not 548 * errors that may have happened. 549 */ 550 eth_rx(); 551 552 /* 553 * Abort if ctrl-c was pressed. 554 */ 555 if (ctrlc()) { 556 /* cancel any ARP that may not have completed */ 557 net_arp_wait_packet_ip.s_addr = 0; 558 559 net_cleanup_loop(); 560 eth_halt(); 561 /* Invalidate the last protocol */ 562 eth_set_last_protocol(BOOTP); 563 564 puts("\nAbort\n"); 565 /* include a debug print as well incase the debug 566 messages are directed to stderr */ 567 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 568 goto done; 569 } 570 571 arp_timeout_check(); 572 573 /* 574 * Check for a timeout, and run the timeout handler 575 * if we have one. 576 */ 577 if (time_handler && 578 ((get_timer(0) - time_start) > time_delta)) { 579 thand_f *x; 580 581 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 582 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 583 defined(CONFIG_STATUS_LED) && \ 584 defined(STATUS_LED_RED) 585 /* 586 * Echo the inverted link state to the fault LED. 587 */ 588 if (miiphy_link(eth_get_dev()->name, 589 CONFIG_SYS_FAULT_MII_ADDR)) 590 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 591 else 592 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 593 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 594 #endif /* CONFIG_MII, ... */ 595 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 596 x = time_handler; 597 time_handler = (thand_f *)0; 598 (*x)(); 599 } 600 601 if (net_state == NETLOOP_FAIL) 602 ret = net_start_again(); 603 604 switch (net_state) { 605 case NETLOOP_RESTART: 606 net_restarted = 1; 607 goto restart; 608 609 case NETLOOP_SUCCESS: 610 net_cleanup_loop(); 611 if (net_boot_file_size > 0) { 612 printf("Bytes transferred = %d (%x hex)\n", 613 net_boot_file_size, net_boot_file_size); 614 setenv_hex("filesize", net_boot_file_size); 615 setenv_hex("fileaddr", load_addr); 616 } 617 if (protocol != NETCONS) 618 eth_halt(); 619 else 620 eth_halt_state_only(); 621 622 eth_set_last_protocol(protocol); 623 624 ret = net_boot_file_size; 625 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 626 goto done; 627 628 case NETLOOP_FAIL: 629 net_cleanup_loop(); 630 /* Invalidate the last protocol */ 631 eth_set_last_protocol(BOOTP); 632 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 633 goto done; 634 635 case NETLOOP_CONTINUE: 636 continue; 637 } 638 } 639 640 done: 641 #ifdef CONFIG_USB_KEYBOARD 642 net_busy_flag = 0; 643 #endif 644 #ifdef CONFIG_CMD_TFTPPUT 645 /* Clear out the handlers */ 646 net_set_udp_handler(NULL); 647 net_set_icmp_handler(NULL); 648 #endif 649 return ret; 650 } 651 652 /**********************************************************************/ 653 654 static void start_again_timeout_handler(void) 655 { 656 net_set_state(NETLOOP_RESTART); 657 } 658 659 int net_start_again(void) 660 { 661 char *nretry; 662 int retry_forever = 0; 663 unsigned long retrycnt = 0; 664 int ret; 665 666 nretry = getenv("netretry"); 667 if (nretry) { 668 if (!strcmp(nretry, "yes")) 669 retry_forever = 1; 670 else if (!strcmp(nretry, "no")) 671 retrycnt = 0; 672 else if (!strcmp(nretry, "once")) 673 retrycnt = 1; 674 else 675 retrycnt = simple_strtoul(nretry, NULL, 0); 676 } else { 677 retrycnt = 0; 678 retry_forever = 0; 679 } 680 681 if ((!retry_forever) && (net_try_count >= retrycnt)) { 682 eth_halt(); 683 net_set_state(NETLOOP_FAIL); 684 /* 685 * We don't provide a way for the protocol to return an error, 686 * but this is almost always the reason. 687 */ 688 return -ETIMEDOUT; 689 } 690 691 net_try_count++; 692 693 eth_halt(); 694 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 695 eth_try_another(!net_restarted); 696 #endif 697 ret = eth_init(); 698 if (net_restart_wrap) { 699 net_restart_wrap = 0; 700 if (net_dev_exists) { 701 net_set_timeout_handler(10000UL, 702 start_again_timeout_handler); 703 net_set_udp_handler(NULL); 704 } else { 705 net_set_state(NETLOOP_FAIL); 706 } 707 } else { 708 net_set_state(NETLOOP_RESTART); 709 } 710 return ret; 711 } 712 713 /**********************************************************************/ 714 /* 715 * Miscelaneous bits. 716 */ 717 718 static void dummy_handler(uchar *pkt, unsigned dport, 719 struct in_addr sip, unsigned sport, 720 unsigned len) 721 { 722 } 723 724 rxhand_f *net_get_udp_handler(void) 725 { 726 return udp_packet_handler; 727 } 728 729 void net_set_udp_handler(rxhand_f *f) 730 { 731 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 732 if (f == NULL) 733 udp_packet_handler = dummy_handler; 734 else 735 udp_packet_handler = f; 736 } 737 738 rxhand_f *net_get_arp_handler(void) 739 { 740 return arp_packet_handler; 741 } 742 743 void net_set_arp_handler(rxhand_f *f) 744 { 745 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 746 if (f == NULL) 747 arp_packet_handler = dummy_handler; 748 else 749 arp_packet_handler = f; 750 } 751 752 #ifdef CONFIG_CMD_TFTPPUT 753 void net_set_icmp_handler(rxhand_icmp_f *f) 754 { 755 packet_icmp_handler = f; 756 } 757 #endif 758 759 void net_set_timeout_handler(ulong iv, thand_f *f) 760 { 761 if (iv == 0) { 762 debug_cond(DEBUG_INT_STATE, 763 "--- net_loop timeout handler cancelled\n"); 764 time_handler = (thand_f *)0; 765 } else { 766 debug_cond(DEBUG_INT_STATE, 767 "--- net_loop timeout handler set (%p)\n", f); 768 time_handler = f; 769 time_start = get_timer(0); 770 time_delta = iv * CONFIG_SYS_HZ / 1000; 771 } 772 } 773 774 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 775 int payload_len) 776 { 777 uchar *pkt; 778 int eth_hdr_size; 779 int pkt_hdr_size; 780 781 /* make sure the net_tx_packet is initialized (net_init() was called) */ 782 assert(net_tx_packet != NULL); 783 if (net_tx_packet == NULL) 784 return -1; 785 786 /* convert to new style broadcast */ 787 if (dest.s_addr == 0) 788 dest.s_addr = 0xFFFFFFFF; 789 790 /* if broadcast, make the ether address a broadcast and don't do ARP */ 791 if (dest.s_addr == 0xFFFFFFFF) 792 ether = (uchar *)net_bcast_ethaddr; 793 794 pkt = (uchar *)net_tx_packet; 795 796 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 797 pkt += eth_hdr_size; 798 net_set_udp_header(pkt, dest, dport, sport, payload_len); 799 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 800 801 /* if MAC address was not discovered yet, do an ARP request */ 802 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 803 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 804 805 /* save the ip and eth addr for the packet to send after arp */ 806 net_arp_wait_packet_ip = dest; 807 arp_wait_packet_ethaddr = ether; 808 809 /* size of the waiting packet */ 810 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 811 812 /* and do the ARP request */ 813 arp_wait_try = 1; 814 arp_wait_timer_start = get_timer(0); 815 arp_request(); 816 return 1; /* waiting */ 817 } else { 818 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 819 &dest, ether); 820 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 821 return 0; /* transmitted */ 822 } 823 } 824 825 #ifdef CONFIG_IP_DEFRAG 826 /* 827 * This function collects fragments in a single packet, according 828 * to the algorithm in RFC815. It returns NULL or the pointer to 829 * a complete packet, in static storage 830 */ 831 #ifndef CONFIG_NET_MAXDEFRAG 832 #define CONFIG_NET_MAXDEFRAG 16384 833 #endif 834 /* 835 * MAXDEFRAG, above, is chosen in the config file and is real data 836 * so we need to add the NFS overhead, which is more than TFTP. 837 * To use sizeof in the internal unnamed structures, we need a real 838 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately). 839 * The compiler doesn't complain nor allocates the actual structure 840 */ 841 static struct rpc_t rpc_specimen; 842 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply)) 843 844 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 845 846 /* 847 * this is the packet being assembled, either data or frag control. 848 * Fragments go by 8 bytes, so this union must be 8 bytes long 849 */ 850 struct hole { 851 /* first_byte is address of this structure */ 852 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 853 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 854 u16 prev_hole; /* index of prev, 0 == none */ 855 u16 unused; 856 }; 857 858 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 859 { 860 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 861 static u16 first_hole, total_len; 862 struct hole *payload, *thisfrag, *h, *newh; 863 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 864 uchar *indata = (uchar *)ip; 865 int offset8, start, len, done = 0; 866 u16 ip_off = ntohs(ip->ip_off); 867 868 /* payload starts after IP header, this fragment is in there */ 869 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 870 offset8 = (ip_off & IP_OFFS); 871 thisfrag = payload + offset8; 872 start = offset8 * 8; 873 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 874 875 if (start + len > IP_MAXUDP) /* fragment extends too far */ 876 return NULL; 877 878 if (!total_len || localip->ip_id != ip->ip_id) { 879 /* new (or different) packet, reset structs */ 880 total_len = 0xffff; 881 payload[0].last_byte = ~0; 882 payload[0].next_hole = 0; 883 payload[0].prev_hole = 0; 884 first_hole = 0; 885 /* any IP header will work, copy the first we received */ 886 memcpy(localip, ip, IP_HDR_SIZE); 887 } 888 889 /* 890 * What follows is the reassembly algorithm. We use the payload 891 * array as a linked list of hole descriptors, as each hole starts 892 * at a multiple of 8 bytes. However, last byte can be whatever value, 893 * so it is represented as byte count, not as 8-byte blocks. 894 */ 895 896 h = payload + first_hole; 897 while (h->last_byte < start) { 898 if (!h->next_hole) { 899 /* no hole that far away */ 900 return NULL; 901 } 902 h = payload + h->next_hole; 903 } 904 905 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 906 if (offset8 + ((len + 7) / 8) <= h - payload) { 907 /* no overlap with holes (dup fragment?) */ 908 return NULL; 909 } 910 911 if (!(ip_off & IP_FLAGS_MFRAG)) { 912 /* no more fragmentss: truncate this (last) hole */ 913 total_len = start + len; 914 h->last_byte = start + len; 915 } 916 917 /* 918 * There is some overlap: fix the hole list. This code doesn't 919 * deal with a fragment that overlaps with two different holes 920 * (thus being a superset of a previously-received fragment). 921 */ 922 923 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 924 /* complete overlap with hole: remove hole */ 925 if (!h->prev_hole && !h->next_hole) { 926 /* last remaining hole */ 927 done = 1; 928 } else if (!h->prev_hole) { 929 /* first hole */ 930 first_hole = h->next_hole; 931 payload[h->next_hole].prev_hole = 0; 932 } else if (!h->next_hole) { 933 /* last hole */ 934 payload[h->prev_hole].next_hole = 0; 935 } else { 936 /* in the middle of the list */ 937 payload[h->next_hole].prev_hole = h->prev_hole; 938 payload[h->prev_hole].next_hole = h->next_hole; 939 } 940 941 } else if (h->last_byte <= start + len) { 942 /* overlaps with final part of the hole: shorten this hole */ 943 h->last_byte = start; 944 945 } else if (h >= thisfrag) { 946 /* overlaps with initial part of the hole: move this hole */ 947 newh = thisfrag + (len / 8); 948 *newh = *h; 949 h = newh; 950 if (h->next_hole) 951 payload[h->next_hole].prev_hole = (h - payload); 952 if (h->prev_hole) 953 payload[h->prev_hole].next_hole = (h - payload); 954 else 955 first_hole = (h - payload); 956 957 } else { 958 /* fragment sits in the middle: split the hole */ 959 newh = thisfrag + (len / 8); 960 *newh = *h; 961 h->last_byte = start; 962 h->next_hole = (newh - payload); 963 newh->prev_hole = (h - payload); 964 if (newh->next_hole) 965 payload[newh->next_hole].prev_hole = (newh - payload); 966 } 967 968 /* finally copy this fragment and possibly return whole packet */ 969 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 970 if (!done) 971 return NULL; 972 973 localip->ip_len = htons(total_len); 974 *lenp = total_len + IP_HDR_SIZE; 975 return localip; 976 } 977 978 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 979 int *lenp) 980 { 981 u16 ip_off = ntohs(ip->ip_off); 982 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 983 return ip; /* not a fragment */ 984 return __net_defragment(ip, lenp); 985 } 986 987 #else /* !CONFIG_IP_DEFRAG */ 988 989 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 990 int *lenp) 991 { 992 u16 ip_off = ntohs(ip->ip_off); 993 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 994 return ip; /* not a fragment */ 995 return NULL; 996 } 997 #endif 998 999 /** 1000 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1001 * drop others. 1002 * 1003 * @parma ip IP packet containing the ICMP 1004 */ 1005 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1006 struct in_addr src_ip, struct ethernet_hdr *et) 1007 { 1008 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1009 1010 switch (icmph->type) { 1011 case ICMP_REDIRECT: 1012 if (icmph->code != ICMP_REDIR_HOST) 1013 return; 1014 printf(" ICMP Host Redirect to %pI4 ", 1015 &icmph->un.gateway); 1016 break; 1017 default: 1018 #if defined(CONFIG_CMD_PING) 1019 ping_receive(et, ip, len); 1020 #endif 1021 #ifdef CONFIG_CMD_TFTPPUT 1022 if (packet_icmp_handler) 1023 packet_icmp_handler(icmph->type, icmph->code, 1024 ntohs(ip->udp_dst), src_ip, 1025 ntohs(ip->udp_src), icmph->un.data, 1026 ntohs(ip->udp_len)); 1027 #endif 1028 break; 1029 } 1030 } 1031 1032 void net_process_received_packet(uchar *in_packet, int len) 1033 { 1034 struct ethernet_hdr *et; 1035 struct ip_udp_hdr *ip; 1036 struct in_addr dst_ip; 1037 struct in_addr src_ip; 1038 int eth_proto; 1039 #if defined(CONFIG_CMD_CDP) 1040 int iscdp; 1041 #endif 1042 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1043 1044 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1045 1046 net_rx_packet = in_packet; 1047 net_rx_packet_len = len; 1048 et = (struct ethernet_hdr *)in_packet; 1049 1050 /* too small packet? */ 1051 if (len < ETHER_HDR_SIZE) 1052 return; 1053 1054 #ifdef CONFIG_API 1055 if (push_packet) { 1056 (*push_packet)(in_packet, len); 1057 return; 1058 } 1059 #endif 1060 1061 #if defined(CONFIG_CMD_CDP) 1062 /* keep track if packet is CDP */ 1063 iscdp = is_cdp_packet(et->et_dest); 1064 #endif 1065 1066 myvlanid = ntohs(net_our_vlan); 1067 if (myvlanid == (ushort)-1) 1068 myvlanid = VLAN_NONE; 1069 mynvlanid = ntohs(net_native_vlan); 1070 if (mynvlanid == (ushort)-1) 1071 mynvlanid = VLAN_NONE; 1072 1073 eth_proto = ntohs(et->et_protlen); 1074 1075 if (eth_proto < 1514) { 1076 struct e802_hdr *et802 = (struct e802_hdr *)et; 1077 /* 1078 * Got a 802.2 packet. Check the other protocol field. 1079 * XXX VLAN over 802.2+SNAP not implemented! 1080 */ 1081 eth_proto = ntohs(et802->et_prot); 1082 1083 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1084 len -= E802_HDR_SIZE; 1085 1086 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1087 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1088 len -= ETHER_HDR_SIZE; 1089 1090 } else { /* VLAN packet */ 1091 struct vlan_ethernet_hdr *vet = 1092 (struct vlan_ethernet_hdr *)et; 1093 1094 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1095 1096 /* too small packet? */ 1097 if (len < VLAN_ETHER_HDR_SIZE) 1098 return; 1099 1100 /* if no VLAN active */ 1101 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1102 #if defined(CONFIG_CMD_CDP) 1103 && iscdp == 0 1104 #endif 1105 ) 1106 return; 1107 1108 cti = ntohs(vet->vet_tag); 1109 vlanid = cti & VLAN_IDMASK; 1110 eth_proto = ntohs(vet->vet_type); 1111 1112 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1113 len -= VLAN_ETHER_HDR_SIZE; 1114 } 1115 1116 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1117 1118 #if defined(CONFIG_CMD_CDP) 1119 if (iscdp) { 1120 cdp_receive((uchar *)ip, len); 1121 return; 1122 } 1123 #endif 1124 1125 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1126 if (vlanid == VLAN_NONE) 1127 vlanid = (mynvlanid & VLAN_IDMASK); 1128 /* not matched? */ 1129 if (vlanid != (myvlanid & VLAN_IDMASK)) 1130 return; 1131 } 1132 1133 switch (eth_proto) { 1134 case PROT_ARP: 1135 arp_receive(et, ip, len); 1136 break; 1137 1138 #ifdef CONFIG_CMD_RARP 1139 case PROT_RARP: 1140 rarp_receive(ip, len); 1141 break; 1142 #endif 1143 case PROT_IP: 1144 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1145 /* Before we start poking the header, make sure it is there */ 1146 if (len < IP_UDP_HDR_SIZE) { 1147 debug("len bad %d < %lu\n", len, 1148 (ulong)IP_UDP_HDR_SIZE); 1149 return; 1150 } 1151 /* Check the packet length */ 1152 if (len < ntohs(ip->ip_len)) { 1153 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1154 return; 1155 } 1156 len = ntohs(ip->ip_len); 1157 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1158 len, ip->ip_hl_v & 0xff); 1159 1160 /* Can't deal with anything except IPv4 */ 1161 if ((ip->ip_hl_v & 0xf0) != 0x40) 1162 return; 1163 /* Can't deal with IP options (headers != 20 bytes) */ 1164 if ((ip->ip_hl_v & 0x0f) > 0x05) 1165 return; 1166 /* Check the Checksum of the header */ 1167 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1168 debug("checksum bad\n"); 1169 return; 1170 } 1171 /* If it is not for us, ignore it */ 1172 dst_ip = net_read_ip(&ip->ip_dst); 1173 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1174 dst_ip.s_addr != 0xFFFFFFFF) { 1175 #ifdef CONFIG_MCAST_TFTP 1176 if (net_mcast_addr != dst_ip) 1177 #endif 1178 return; 1179 } 1180 /* Read source IP address for later use */ 1181 src_ip = net_read_ip(&ip->ip_src); 1182 /* 1183 * The function returns the unchanged packet if it's not 1184 * a fragment, and either the complete packet or NULL if 1185 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1186 */ 1187 ip = net_defragment(ip, &len); 1188 if (!ip) 1189 return; 1190 /* 1191 * watch for ICMP host redirects 1192 * 1193 * There is no real handler code (yet). We just watch 1194 * for ICMP host redirect messages. In case anybody 1195 * sees these messages: please contact me 1196 * (wd@denx.de), or - even better - send me the 1197 * necessary fixes :-) 1198 * 1199 * Note: in all cases where I have seen this so far 1200 * it was a problem with the router configuration, 1201 * for instance when a router was configured in the 1202 * BOOTP reply, but the TFTP server was on the same 1203 * subnet. So this is probably a warning that your 1204 * configuration might be wrong. But I'm not really 1205 * sure if there aren't any other situations. 1206 * 1207 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1208 * we send a tftp packet to a dead connection, or when 1209 * there is no server at the other end. 1210 */ 1211 if (ip->ip_p == IPPROTO_ICMP) { 1212 receive_icmp(ip, len, src_ip, et); 1213 return; 1214 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1215 return; 1216 } 1217 1218 debug_cond(DEBUG_DEV_PKT, 1219 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1220 &dst_ip, &src_ip, len); 1221 1222 #ifdef CONFIG_UDP_CHECKSUM 1223 if (ip->udp_xsum != 0) { 1224 ulong xsum; 1225 ushort *sumptr; 1226 ushort sumlen; 1227 1228 xsum = ip->ip_p; 1229 xsum += (ntohs(ip->udp_len)); 1230 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1231 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1232 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1233 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1234 1235 sumlen = ntohs(ip->udp_len); 1236 sumptr = (ushort *)&(ip->udp_src); 1237 1238 while (sumlen > 1) { 1239 ushort sumdata; 1240 1241 sumdata = *sumptr++; 1242 xsum += ntohs(sumdata); 1243 sumlen -= 2; 1244 } 1245 if (sumlen > 0) { 1246 ushort sumdata; 1247 1248 sumdata = *(unsigned char *)sumptr; 1249 sumdata = (sumdata << 8) & 0xff00; 1250 xsum += sumdata; 1251 } 1252 while ((xsum >> 16) != 0) { 1253 xsum = (xsum & 0x0000ffff) + 1254 ((xsum >> 16) & 0x0000ffff); 1255 } 1256 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1257 printf(" UDP wrong checksum %08lx %08x\n", 1258 xsum, ntohs(ip->udp_xsum)); 1259 return; 1260 } 1261 } 1262 #endif 1263 1264 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1265 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1266 src_ip, 1267 ntohs(ip->udp_dst), 1268 ntohs(ip->udp_src), 1269 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1270 #endif 1271 /* 1272 * IP header OK. Pass the packet to the current handler. 1273 */ 1274 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1275 ntohs(ip->udp_dst), 1276 src_ip, 1277 ntohs(ip->udp_src), 1278 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1279 break; 1280 } 1281 } 1282 1283 /**********************************************************************/ 1284 1285 static int net_check_prereq(enum proto_t protocol) 1286 { 1287 switch (protocol) { 1288 /* Fall through */ 1289 #if defined(CONFIG_CMD_PING) 1290 case PING: 1291 if (net_ping_ip.s_addr == 0) { 1292 puts("*** ERROR: ping address not given\n"); 1293 return 1; 1294 } 1295 goto common; 1296 #endif 1297 #if defined(CONFIG_CMD_SNTP) 1298 case SNTP: 1299 if (net_ntp_server.s_addr == 0) { 1300 puts("*** ERROR: NTP server address not given\n"); 1301 return 1; 1302 } 1303 goto common; 1304 #endif 1305 #if defined(CONFIG_CMD_DNS) 1306 case DNS: 1307 if (net_dns_server.s_addr == 0) { 1308 puts("*** ERROR: DNS server address not given\n"); 1309 return 1; 1310 } 1311 goto common; 1312 #endif 1313 #if defined(CONFIG_CMD_NFS) 1314 case NFS: 1315 #endif 1316 /* Fall through */ 1317 case TFTPGET: 1318 case TFTPPUT: 1319 if (net_server_ip.s_addr == 0) { 1320 puts("*** ERROR: `serverip' not set\n"); 1321 return 1; 1322 } 1323 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1324 defined(CONFIG_CMD_DNS) 1325 common: 1326 #endif 1327 /* Fall through */ 1328 1329 case NETCONS: 1330 case TFTPSRV: 1331 if (net_ip.s_addr == 0) { 1332 puts("*** ERROR: `ipaddr' not set\n"); 1333 return 1; 1334 } 1335 /* Fall through */ 1336 1337 #ifdef CONFIG_CMD_RARP 1338 case RARP: 1339 #endif 1340 case BOOTP: 1341 case CDP: 1342 case DHCP: 1343 case LINKLOCAL: 1344 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1345 int num = eth_get_dev_index(); 1346 1347 switch (num) { 1348 case -1: 1349 puts("*** ERROR: No ethernet found.\n"); 1350 return 1; 1351 case 0: 1352 puts("*** ERROR: `ethaddr' not set\n"); 1353 break; 1354 default: 1355 printf("*** ERROR: `eth%daddr' not set\n", 1356 num); 1357 break; 1358 } 1359 1360 net_start_again(); 1361 return 2; 1362 } 1363 /* Fall through */ 1364 default: 1365 return 0; 1366 } 1367 return 0; /* OK */ 1368 } 1369 /**********************************************************************/ 1370 1371 int 1372 net_eth_hdr_size(void) 1373 { 1374 ushort myvlanid; 1375 1376 myvlanid = ntohs(net_our_vlan); 1377 if (myvlanid == (ushort)-1) 1378 myvlanid = VLAN_NONE; 1379 1380 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1381 VLAN_ETHER_HDR_SIZE; 1382 } 1383 1384 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1385 { 1386 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1387 ushort myvlanid; 1388 1389 myvlanid = ntohs(net_our_vlan); 1390 if (myvlanid == (ushort)-1) 1391 myvlanid = VLAN_NONE; 1392 1393 memcpy(et->et_dest, dest_ethaddr, 6); 1394 memcpy(et->et_src, net_ethaddr, 6); 1395 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1396 et->et_protlen = htons(prot); 1397 return ETHER_HDR_SIZE; 1398 } else { 1399 struct vlan_ethernet_hdr *vet = 1400 (struct vlan_ethernet_hdr *)xet; 1401 1402 vet->vet_vlan_type = htons(PROT_VLAN); 1403 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1404 vet->vet_type = htons(prot); 1405 return VLAN_ETHER_HDR_SIZE; 1406 } 1407 } 1408 1409 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1410 { 1411 ushort protlen; 1412 1413 memcpy(et->et_dest, addr, 6); 1414 memcpy(et->et_src, net_ethaddr, 6); 1415 protlen = ntohs(et->et_protlen); 1416 if (protlen == PROT_VLAN) { 1417 struct vlan_ethernet_hdr *vet = 1418 (struct vlan_ethernet_hdr *)et; 1419 vet->vet_type = htons(prot); 1420 return VLAN_ETHER_HDR_SIZE; 1421 } else if (protlen > 1514) { 1422 et->et_protlen = htons(prot); 1423 return ETHER_HDR_SIZE; 1424 } else { 1425 /* 802.2 + SNAP */ 1426 struct e802_hdr *et802 = (struct e802_hdr *)et; 1427 et802->et_prot = htons(prot); 1428 return E802_HDR_SIZE; 1429 } 1430 } 1431 1432 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1433 { 1434 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1435 1436 /* 1437 * Construct an IP header. 1438 */ 1439 /* IP_HDR_SIZE / 4 (not including UDP) */ 1440 ip->ip_hl_v = 0x45; 1441 ip->ip_tos = 0; 1442 ip->ip_len = htons(IP_HDR_SIZE); 1443 ip->ip_id = htons(net_ip_id++); 1444 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1445 ip->ip_ttl = 255; 1446 ip->ip_sum = 0; 1447 /* already in network byte order */ 1448 net_copy_ip((void *)&ip->ip_src, &source); 1449 /* already in network byte order */ 1450 net_copy_ip((void *)&ip->ip_dst, &dest); 1451 } 1452 1453 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1454 int len) 1455 { 1456 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1457 1458 /* 1459 * If the data is an odd number of bytes, zero the 1460 * byte after the last byte so that the checksum 1461 * will work. 1462 */ 1463 if (len & 1) 1464 pkt[IP_UDP_HDR_SIZE + len] = 0; 1465 1466 net_set_ip_header(pkt, dest, net_ip); 1467 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1468 ip->ip_p = IPPROTO_UDP; 1469 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1470 1471 ip->udp_src = htons(sport); 1472 ip->udp_dst = htons(dport); 1473 ip->udp_len = htons(UDP_HDR_SIZE + len); 1474 ip->udp_xsum = 0; 1475 } 1476 1477 void copy_filename(char *dst, const char *src, int size) 1478 { 1479 if (*src && (*src == '"')) { 1480 ++src; 1481 --size; 1482 } 1483 1484 while ((--size > 0) && *src && (*src != '"')) 1485 *dst++ = *src++; 1486 *dst = '\0'; 1487 } 1488 1489 #if defined(CONFIG_CMD_NFS) || \ 1490 defined(CONFIG_CMD_SNTP) || \ 1491 defined(CONFIG_CMD_DNS) 1492 /* 1493 * make port a little random (1024-17407) 1494 * This keeps the math somewhat trivial to compute, and seems to work with 1495 * all supported protocols/clients/servers 1496 */ 1497 unsigned int random_port(void) 1498 { 1499 return 1024 + (get_timer(0) % 0x4000); 1500 } 1501 #endif 1502 1503 void ip_to_string(struct in_addr x, char *s) 1504 { 1505 x.s_addr = ntohl(x.s_addr); 1506 sprintf(s, "%d.%d.%d.%d", 1507 (int) ((x.s_addr >> 24) & 0xff), 1508 (int) ((x.s_addr >> 16) & 0xff), 1509 (int) ((x.s_addr >> 8) & 0xff), 1510 (int) ((x.s_addr >> 0) & 0xff) 1511 ); 1512 } 1513 1514 void vlan_to_string(ushort x, char *s) 1515 { 1516 x = ntohs(x); 1517 1518 if (x == (ushort)-1) 1519 x = VLAN_NONE; 1520 1521 if (x == VLAN_NONE) 1522 strcpy(s, "none"); 1523 else 1524 sprintf(s, "%d", x & VLAN_IDMASK); 1525 } 1526 1527 ushort string_to_vlan(const char *s) 1528 { 1529 ushort id; 1530 1531 if (s == NULL) 1532 return htons(VLAN_NONE); 1533 1534 if (*s < '0' || *s > '9') 1535 id = VLAN_NONE; 1536 else 1537 id = (ushort)simple_strtoul(s, NULL, 10); 1538 1539 return htons(id); 1540 } 1541 1542 ushort getenv_vlan(char *var) 1543 { 1544 return string_to_vlan(getenv(var)); 1545 } 1546