1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <environment.h> 87 #include <errno.h> 88 #include <net.h> 89 #if defined(CONFIG_STATUS_LED) 90 #include <miiphy.h> 91 #include <status_led.h> 92 #endif 93 #include <watchdog.h> 94 #include <linux/compiler.h> 95 #include "arp.h" 96 #include "bootp.h" 97 #include "cdp.h" 98 #if defined(CONFIG_CMD_DNS) 99 #include "dns.h" 100 #endif 101 #include "link_local.h" 102 #include "nfs.h" 103 #include "ping.h" 104 #include "rarp.h" 105 #if defined(CONFIG_CMD_SNTP) 106 #include "sntp.h" 107 #endif 108 #include "tftp.h" 109 110 DECLARE_GLOBAL_DATA_PTR; 111 112 /** BOOTP EXTENTIONS **/ 113 114 /* Our subnet mask (0=unknown) */ 115 struct in_addr net_netmask; 116 /* Our gateways IP address */ 117 struct in_addr net_gateway; 118 /* Our DNS IP address */ 119 struct in_addr net_dns_server; 120 #if defined(CONFIG_BOOTP_DNS2) 121 /* Our 2nd DNS IP address */ 122 struct in_addr net_dns_server2; 123 #endif 124 125 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 126 struct in_addr net_mcast_addr; 127 #endif 128 129 /** END OF BOOTP EXTENTIONS **/ 130 131 /* Our ethernet address */ 132 u8 net_ethaddr[6]; 133 /* Boot server enet address */ 134 u8 net_server_ethaddr[6]; 135 /* Our IP addr (0 = unknown) */ 136 struct in_addr net_ip; 137 /* Server IP addr (0 = unknown) */ 138 struct in_addr net_server_ip; 139 /* Current receive packet */ 140 uchar *net_rx_packet; 141 /* Current rx packet length */ 142 int net_rx_packet_len; 143 /* IP packet ID */ 144 static unsigned net_ip_id; 145 /* Ethernet bcast address */ 146 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 147 const u8 net_null_ethaddr[6]; 148 #ifdef CONFIG_API 149 void (*push_packet)(void *, int len) = 0; 150 #endif 151 /* Network loop state */ 152 enum net_loop_state net_state; 153 /* Tried all network devices */ 154 int net_restart_wrap; 155 /* Network loop restarted */ 156 static int net_restarted; 157 /* At least one device configured */ 158 static int net_dev_exists; 159 160 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 161 /* default is without VLAN */ 162 ushort net_our_vlan = 0xFFFF; 163 /* ditto */ 164 ushort net_native_vlan = 0xFFFF; 165 166 /* Boot File name */ 167 char net_boot_file_name[128]; 168 /* The actual transferred size of the bootfile (in bytes) */ 169 u32 net_boot_file_size; 170 /* Boot file size in blocks as reported by the DHCP server */ 171 u32 net_boot_file_expected_size_in_blocks; 172 173 #if defined(CONFIG_CMD_SNTP) 174 /* NTP server IP address */ 175 struct in_addr net_ntp_server; 176 /* offset time from UTC */ 177 int net_ntp_time_offset; 178 #endif 179 180 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 181 /* Receive packets */ 182 uchar *net_rx_packets[PKTBUFSRX]; 183 /* Current UDP RX packet handler */ 184 static rxhand_f *udp_packet_handler; 185 /* Current ARP RX packet handler */ 186 static rxhand_f *arp_packet_handler; 187 #ifdef CONFIG_CMD_TFTPPUT 188 /* Current ICMP rx handler */ 189 static rxhand_icmp_f *packet_icmp_handler; 190 #endif 191 /* Current timeout handler */ 192 static thand_f *time_handler; 193 /* Time base value */ 194 static ulong time_start; 195 /* Current timeout value */ 196 static ulong time_delta; 197 /* THE transmit packet */ 198 uchar *net_tx_packet; 199 200 static int net_check_prereq(enum proto_t protocol); 201 202 static int net_try_count; 203 204 int __maybe_unused net_busy_flag; 205 206 /**********************************************************************/ 207 208 static int on_bootfile(const char *name, const char *value, enum env_op op, 209 int flags) 210 { 211 switch (op) { 212 case env_op_create: 213 case env_op_overwrite: 214 copy_filename(net_boot_file_name, value, 215 sizeof(net_boot_file_name)); 216 break; 217 default: 218 break; 219 } 220 221 return 0; 222 } 223 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 224 225 /* 226 * Check if autoload is enabled. If so, use either NFS or TFTP to download 227 * the boot file. 228 */ 229 void net_auto_load(void) 230 { 231 #if defined(CONFIG_CMD_NFS) 232 const char *s = getenv("autoload"); 233 234 if (s != NULL && strcmp(s, "NFS") == 0) { 235 /* 236 * Use NFS to load the bootfile. 237 */ 238 nfs_start(); 239 return; 240 } 241 #endif 242 if (getenv_yesno("autoload") == 0) { 243 /* 244 * Just use BOOTP/RARP to configure system; 245 * Do not use TFTP to load the bootfile. 246 */ 247 net_set_state(NETLOOP_SUCCESS); 248 return; 249 } 250 tftp_start(TFTPGET); 251 } 252 253 static void net_init_loop(void) 254 { 255 static int env_changed_id; 256 int env_id = get_env_id(); 257 258 /* update only when the environment has changed */ 259 if (env_changed_id != env_id) { 260 net_ip = getenv_ip("ipaddr"); 261 net_gateway = getenv_ip("gatewayip"); 262 net_netmask = getenv_ip("netmask"); 263 net_server_ip = getenv_ip("serverip"); 264 net_native_vlan = getenv_vlan("nvlan"); 265 net_our_vlan = getenv_vlan("vlan"); 266 #if defined(CONFIG_CMD_DNS) 267 net_dns_server = getenv_ip("dnsip"); 268 #endif 269 env_changed_id = env_id; 270 } 271 if (eth_get_dev()) 272 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 273 274 return; 275 } 276 277 static void net_clear_handlers(void) 278 { 279 net_set_udp_handler(NULL); 280 net_set_arp_handler(NULL); 281 net_set_timeout_handler(0, NULL); 282 } 283 284 static void net_cleanup_loop(void) 285 { 286 net_clear_handlers(); 287 } 288 289 void net_init(void) 290 { 291 static int first_call = 1; 292 293 if (first_call) { 294 /* 295 * Setup packet buffers, aligned correctly. 296 */ 297 int i; 298 299 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 300 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 301 for (i = 0; i < PKTBUFSRX; i++) { 302 net_rx_packets[i] = net_tx_packet + 303 (i + 1) * PKTSIZE_ALIGN; 304 } 305 arp_init(); 306 net_clear_handlers(); 307 308 /* Only need to setup buffer pointers once. */ 309 first_call = 0; 310 } 311 312 net_init_loop(); 313 } 314 315 /**********************************************************************/ 316 /* 317 * Main network processing loop. 318 */ 319 320 int net_loop(enum proto_t protocol) 321 { 322 int ret = -EINVAL; 323 324 net_restarted = 0; 325 net_dev_exists = 0; 326 net_try_count = 1; 327 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 328 329 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 330 net_init(); 331 if (eth_is_on_demand_init() || protocol != NETCONS) { 332 eth_halt(); 333 eth_set_current(); 334 ret = eth_init(); 335 if (ret < 0) { 336 eth_halt(); 337 return ret; 338 } 339 } else { 340 eth_init_state_only(); 341 } 342 restart: 343 #ifdef CONFIG_USB_KEYBOARD 344 net_busy_flag = 0; 345 #endif 346 net_set_state(NETLOOP_CONTINUE); 347 348 /* 349 * Start the ball rolling with the given start function. From 350 * here on, this code is a state machine driven by received 351 * packets and timer events. 352 */ 353 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 354 net_init_loop(); 355 356 switch (net_check_prereq(protocol)) { 357 case 1: 358 /* network not configured */ 359 eth_halt(); 360 return -ENODEV; 361 362 case 2: 363 /* network device not configured */ 364 break; 365 366 case 0: 367 net_dev_exists = 1; 368 net_boot_file_size = 0; 369 switch (protocol) { 370 case TFTPGET: 371 #ifdef CONFIG_CMD_TFTPPUT 372 case TFTPPUT: 373 #endif 374 /* always use ARP to get server ethernet address */ 375 tftp_start(protocol); 376 break; 377 #ifdef CONFIG_CMD_TFTPSRV 378 case TFTPSRV: 379 tftp_start_server(); 380 break; 381 #endif 382 #if defined(CONFIG_CMD_DHCP) 383 case DHCP: 384 bootp_reset(); 385 net_ip.s_addr = 0; 386 dhcp_request(); /* Basically same as BOOTP */ 387 break; 388 #endif 389 390 case BOOTP: 391 bootp_reset(); 392 net_ip.s_addr = 0; 393 bootp_request(); 394 break; 395 396 #if defined(CONFIG_CMD_RARP) 397 case RARP: 398 rarp_try = 0; 399 net_ip.s_addr = 0; 400 rarp_request(); 401 break; 402 #endif 403 #if defined(CONFIG_CMD_PING) 404 case PING: 405 ping_start(); 406 break; 407 #endif 408 #if defined(CONFIG_CMD_NFS) 409 case NFS: 410 nfs_start(); 411 break; 412 #endif 413 #if defined(CONFIG_CMD_CDP) 414 case CDP: 415 cdp_start(); 416 break; 417 #endif 418 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 419 case NETCONS: 420 nc_start(); 421 break; 422 #endif 423 #if defined(CONFIG_CMD_SNTP) 424 case SNTP: 425 sntp_start(); 426 break; 427 #endif 428 #if defined(CONFIG_CMD_DNS) 429 case DNS: 430 dns_start(); 431 break; 432 #endif 433 #if defined(CONFIG_CMD_LINK_LOCAL) 434 case LINKLOCAL: 435 link_local_start(); 436 break; 437 #endif 438 default: 439 break; 440 } 441 442 break; 443 } 444 445 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 446 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 447 defined(CONFIG_STATUS_LED) && \ 448 defined(STATUS_LED_RED) 449 /* 450 * Echo the inverted link state to the fault LED. 451 */ 452 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 453 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 454 else 455 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 456 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 457 #endif /* CONFIG_MII, ... */ 458 #ifdef CONFIG_USB_KEYBOARD 459 net_busy_flag = 1; 460 #endif 461 462 /* 463 * Main packet reception loop. Loop receiving packets until 464 * someone sets `net_state' to a state that terminates. 465 */ 466 for (;;) { 467 WATCHDOG_RESET(); 468 #ifdef CONFIG_SHOW_ACTIVITY 469 show_activity(1); 470 #endif 471 /* 472 * Check the ethernet for a new packet. The ethernet 473 * receive routine will process it. 474 * Most drivers return the most recent packet size, but not 475 * errors that may have happened. 476 */ 477 eth_rx(); 478 479 /* 480 * Abort if ctrl-c was pressed. 481 */ 482 if (ctrlc()) { 483 /* cancel any ARP that may not have completed */ 484 net_arp_wait_packet_ip.s_addr = 0; 485 486 net_cleanup_loop(); 487 eth_halt(); 488 /* Invalidate the last protocol */ 489 eth_set_last_protocol(BOOTP); 490 491 puts("\nAbort\n"); 492 /* include a debug print as well incase the debug 493 messages are directed to stderr */ 494 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 495 goto done; 496 } 497 498 arp_timeout_check(); 499 500 /* 501 * Check for a timeout, and run the timeout handler 502 * if we have one. 503 */ 504 if (time_handler && 505 ((get_timer(0) - time_start) > time_delta)) { 506 thand_f *x; 507 508 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 509 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 510 defined(CONFIG_STATUS_LED) && \ 511 defined(STATUS_LED_RED) 512 /* 513 * Echo the inverted link state to the fault LED. 514 */ 515 if (miiphy_link(eth_get_dev()->name, 516 CONFIG_SYS_FAULT_MII_ADDR)) 517 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 518 else 519 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 520 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 521 #endif /* CONFIG_MII, ... */ 522 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 523 x = time_handler; 524 time_handler = (thand_f *)0; 525 (*x)(); 526 } 527 528 if (net_state == NETLOOP_FAIL) 529 ret = net_start_again(); 530 531 switch (net_state) { 532 case NETLOOP_RESTART: 533 net_restarted = 1; 534 goto restart; 535 536 case NETLOOP_SUCCESS: 537 net_cleanup_loop(); 538 if (net_boot_file_size > 0) { 539 printf("Bytes transferred = %d (%x hex)\n", 540 net_boot_file_size, net_boot_file_size); 541 setenv_hex("filesize", net_boot_file_size); 542 setenv_hex("fileaddr", load_addr); 543 } 544 if (protocol != NETCONS) 545 eth_halt(); 546 else 547 eth_halt_state_only(); 548 549 eth_set_last_protocol(protocol); 550 551 ret = net_boot_file_size; 552 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 553 goto done; 554 555 case NETLOOP_FAIL: 556 net_cleanup_loop(); 557 /* Invalidate the last protocol */ 558 eth_set_last_protocol(BOOTP); 559 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 560 goto done; 561 562 case NETLOOP_CONTINUE: 563 continue; 564 } 565 } 566 567 done: 568 #ifdef CONFIG_USB_KEYBOARD 569 net_busy_flag = 0; 570 #endif 571 #ifdef CONFIG_CMD_TFTPPUT 572 /* Clear out the handlers */ 573 net_set_udp_handler(NULL); 574 net_set_icmp_handler(NULL); 575 #endif 576 return ret; 577 } 578 579 /**********************************************************************/ 580 581 static void start_again_timeout_handler(void) 582 { 583 net_set_state(NETLOOP_RESTART); 584 } 585 586 int net_start_again(void) 587 { 588 char *nretry; 589 int retry_forever = 0; 590 unsigned long retrycnt = 0; 591 int ret; 592 593 nretry = getenv("netretry"); 594 if (nretry) { 595 if (!strcmp(nretry, "yes")) 596 retry_forever = 1; 597 else if (!strcmp(nretry, "no")) 598 retrycnt = 0; 599 else if (!strcmp(nretry, "once")) 600 retrycnt = 1; 601 else 602 retrycnt = simple_strtoul(nretry, NULL, 0); 603 } else { 604 retrycnt = 0; 605 retry_forever = 0; 606 } 607 608 if ((!retry_forever) && (net_try_count >= retrycnt)) { 609 eth_halt(); 610 net_set_state(NETLOOP_FAIL); 611 /* 612 * We don't provide a way for the protocol to return an error, 613 * but this is almost always the reason. 614 */ 615 return -ETIMEDOUT; 616 } 617 618 net_try_count++; 619 620 eth_halt(); 621 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 622 eth_try_another(!net_restarted); 623 #endif 624 ret = eth_init(); 625 if (net_restart_wrap) { 626 net_restart_wrap = 0; 627 if (net_dev_exists) { 628 net_set_timeout_handler(10000UL, 629 start_again_timeout_handler); 630 net_set_udp_handler(NULL); 631 } else { 632 net_set_state(NETLOOP_FAIL); 633 } 634 } else { 635 net_set_state(NETLOOP_RESTART); 636 } 637 return ret; 638 } 639 640 /**********************************************************************/ 641 /* 642 * Miscelaneous bits. 643 */ 644 645 static void dummy_handler(uchar *pkt, unsigned dport, 646 struct in_addr sip, unsigned sport, 647 unsigned len) 648 { 649 } 650 651 rxhand_f *net_get_udp_handler(void) 652 { 653 return udp_packet_handler; 654 } 655 656 void net_set_udp_handler(rxhand_f *f) 657 { 658 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 659 if (f == NULL) 660 udp_packet_handler = dummy_handler; 661 else 662 udp_packet_handler = f; 663 } 664 665 rxhand_f *net_get_arp_handler(void) 666 { 667 return arp_packet_handler; 668 } 669 670 void net_set_arp_handler(rxhand_f *f) 671 { 672 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 673 if (f == NULL) 674 arp_packet_handler = dummy_handler; 675 else 676 arp_packet_handler = f; 677 } 678 679 #ifdef CONFIG_CMD_TFTPPUT 680 void net_set_icmp_handler(rxhand_icmp_f *f) 681 { 682 packet_icmp_handler = f; 683 } 684 #endif 685 686 void net_set_timeout_handler(ulong iv, thand_f *f) 687 { 688 if (iv == 0) { 689 debug_cond(DEBUG_INT_STATE, 690 "--- net_loop timeout handler cancelled\n"); 691 time_handler = (thand_f *)0; 692 } else { 693 debug_cond(DEBUG_INT_STATE, 694 "--- net_loop timeout handler set (%p)\n", f); 695 time_handler = f; 696 time_start = get_timer(0); 697 time_delta = iv * CONFIG_SYS_HZ / 1000; 698 } 699 } 700 701 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 702 int payload_len) 703 { 704 uchar *pkt; 705 int eth_hdr_size; 706 int pkt_hdr_size; 707 708 /* make sure the net_tx_packet is initialized (net_init() was called) */ 709 assert(net_tx_packet != NULL); 710 if (net_tx_packet == NULL) 711 return -1; 712 713 /* convert to new style broadcast */ 714 if (dest.s_addr == 0) 715 dest.s_addr = 0xFFFFFFFF; 716 717 /* if broadcast, make the ether address a broadcast and don't do ARP */ 718 if (dest.s_addr == 0xFFFFFFFF) 719 ether = (uchar *)net_bcast_ethaddr; 720 721 pkt = (uchar *)net_tx_packet; 722 723 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 724 pkt += eth_hdr_size; 725 net_set_udp_header(pkt, dest, dport, sport, payload_len); 726 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 727 728 /* if MAC address was not discovered yet, do an ARP request */ 729 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 730 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 731 732 /* save the ip and eth addr for the packet to send after arp */ 733 net_arp_wait_packet_ip = dest; 734 arp_wait_packet_ethaddr = ether; 735 736 /* size of the waiting packet */ 737 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 738 739 /* and do the ARP request */ 740 arp_wait_try = 1; 741 arp_wait_timer_start = get_timer(0); 742 arp_request(); 743 return 1; /* waiting */ 744 } else { 745 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 746 &dest, ether); 747 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 748 return 0; /* transmitted */ 749 } 750 } 751 752 #ifdef CONFIG_IP_DEFRAG 753 /* 754 * This function collects fragments in a single packet, according 755 * to the algorithm in RFC815. It returns NULL or the pointer to 756 * a complete packet, in static storage 757 */ 758 #ifndef CONFIG_NET_MAXDEFRAG 759 #define CONFIG_NET_MAXDEFRAG 16384 760 #endif 761 /* 762 * MAXDEFRAG, above, is chosen in the config file and is real data 763 * so we need to add the NFS overhead, which is more than TFTP. 764 * To use sizeof in the internal unnamed structures, we need a real 765 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately). 766 * The compiler doesn't complain nor allocates the actual structure 767 */ 768 static struct rpc_t rpc_specimen; 769 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply)) 770 771 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 772 773 /* 774 * this is the packet being assembled, either data or frag control. 775 * Fragments go by 8 bytes, so this union must be 8 bytes long 776 */ 777 struct hole { 778 /* first_byte is address of this structure */ 779 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 780 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 781 u16 prev_hole; /* index of prev, 0 == none */ 782 u16 unused; 783 }; 784 785 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 786 { 787 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 788 static u16 first_hole, total_len; 789 struct hole *payload, *thisfrag, *h, *newh; 790 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 791 uchar *indata = (uchar *)ip; 792 int offset8, start, len, done = 0; 793 u16 ip_off = ntohs(ip->ip_off); 794 795 /* payload starts after IP header, this fragment is in there */ 796 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 797 offset8 = (ip_off & IP_OFFS); 798 thisfrag = payload + offset8; 799 start = offset8 * 8; 800 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 801 802 if (start + len > IP_MAXUDP) /* fragment extends too far */ 803 return NULL; 804 805 if (!total_len || localip->ip_id != ip->ip_id) { 806 /* new (or different) packet, reset structs */ 807 total_len = 0xffff; 808 payload[0].last_byte = ~0; 809 payload[0].next_hole = 0; 810 payload[0].prev_hole = 0; 811 first_hole = 0; 812 /* any IP header will work, copy the first we received */ 813 memcpy(localip, ip, IP_HDR_SIZE); 814 } 815 816 /* 817 * What follows is the reassembly algorithm. We use the payload 818 * array as a linked list of hole descriptors, as each hole starts 819 * at a multiple of 8 bytes. However, last byte can be whatever value, 820 * so it is represented as byte count, not as 8-byte blocks. 821 */ 822 823 h = payload + first_hole; 824 while (h->last_byte < start) { 825 if (!h->next_hole) { 826 /* no hole that far away */ 827 return NULL; 828 } 829 h = payload + h->next_hole; 830 } 831 832 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 833 if (offset8 + ((len + 7) / 8) <= h - payload) { 834 /* no overlap with holes (dup fragment?) */ 835 return NULL; 836 } 837 838 if (!(ip_off & IP_FLAGS_MFRAG)) { 839 /* no more fragmentss: truncate this (last) hole */ 840 total_len = start + len; 841 h->last_byte = start + len; 842 } 843 844 /* 845 * There is some overlap: fix the hole list. This code doesn't 846 * deal with a fragment that overlaps with two different holes 847 * (thus being a superset of a previously-received fragment). 848 */ 849 850 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 851 /* complete overlap with hole: remove hole */ 852 if (!h->prev_hole && !h->next_hole) { 853 /* last remaining hole */ 854 done = 1; 855 } else if (!h->prev_hole) { 856 /* first hole */ 857 first_hole = h->next_hole; 858 payload[h->next_hole].prev_hole = 0; 859 } else if (!h->next_hole) { 860 /* last hole */ 861 payload[h->prev_hole].next_hole = 0; 862 } else { 863 /* in the middle of the list */ 864 payload[h->next_hole].prev_hole = h->prev_hole; 865 payload[h->prev_hole].next_hole = h->next_hole; 866 } 867 868 } else if (h->last_byte <= start + len) { 869 /* overlaps with final part of the hole: shorten this hole */ 870 h->last_byte = start; 871 872 } else if (h >= thisfrag) { 873 /* overlaps with initial part of the hole: move this hole */ 874 newh = thisfrag + (len / 8); 875 *newh = *h; 876 h = newh; 877 if (h->next_hole) 878 payload[h->next_hole].prev_hole = (h - payload); 879 if (h->prev_hole) 880 payload[h->prev_hole].next_hole = (h - payload); 881 else 882 first_hole = (h - payload); 883 884 } else { 885 /* fragment sits in the middle: split the hole */ 886 newh = thisfrag + (len / 8); 887 *newh = *h; 888 h->last_byte = start; 889 h->next_hole = (newh - payload); 890 newh->prev_hole = (h - payload); 891 if (newh->next_hole) 892 payload[newh->next_hole].prev_hole = (newh - payload); 893 } 894 895 /* finally copy this fragment and possibly return whole packet */ 896 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 897 if (!done) 898 return NULL; 899 900 localip->ip_len = htons(total_len); 901 *lenp = total_len + IP_HDR_SIZE; 902 return localip; 903 } 904 905 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 906 int *lenp) 907 { 908 u16 ip_off = ntohs(ip->ip_off); 909 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 910 return ip; /* not a fragment */ 911 return __net_defragment(ip, lenp); 912 } 913 914 #else /* !CONFIG_IP_DEFRAG */ 915 916 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 917 int *lenp) 918 { 919 u16 ip_off = ntohs(ip->ip_off); 920 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 921 return ip; /* not a fragment */ 922 return NULL; 923 } 924 #endif 925 926 /** 927 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 928 * drop others. 929 * 930 * @parma ip IP packet containing the ICMP 931 */ 932 static void receive_icmp(struct ip_udp_hdr *ip, int len, 933 struct in_addr src_ip, struct ethernet_hdr *et) 934 { 935 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 936 937 switch (icmph->type) { 938 case ICMP_REDIRECT: 939 if (icmph->code != ICMP_REDIR_HOST) 940 return; 941 printf(" ICMP Host Redirect to %pI4 ", 942 &icmph->un.gateway); 943 break; 944 default: 945 #if defined(CONFIG_CMD_PING) 946 ping_receive(et, ip, len); 947 #endif 948 #ifdef CONFIG_CMD_TFTPPUT 949 if (packet_icmp_handler) 950 packet_icmp_handler(icmph->type, icmph->code, 951 ntohs(ip->udp_dst), src_ip, 952 ntohs(ip->udp_src), icmph->un.data, 953 ntohs(ip->udp_len)); 954 #endif 955 break; 956 } 957 } 958 959 void net_process_received_packet(uchar *in_packet, int len) 960 { 961 struct ethernet_hdr *et; 962 struct ip_udp_hdr *ip; 963 struct in_addr dst_ip; 964 struct in_addr src_ip; 965 int eth_proto; 966 #if defined(CONFIG_CMD_CDP) 967 int iscdp; 968 #endif 969 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 970 971 debug_cond(DEBUG_NET_PKT, "packet received\n"); 972 973 net_rx_packet = in_packet; 974 net_rx_packet_len = len; 975 et = (struct ethernet_hdr *)in_packet; 976 977 /* too small packet? */ 978 if (len < ETHER_HDR_SIZE) 979 return; 980 981 #ifdef CONFIG_API 982 if (push_packet) { 983 (*push_packet)(in_packet, len); 984 return; 985 } 986 #endif 987 988 #if defined(CONFIG_CMD_CDP) 989 /* keep track if packet is CDP */ 990 iscdp = is_cdp_packet(et->et_dest); 991 #endif 992 993 myvlanid = ntohs(net_our_vlan); 994 if (myvlanid == (ushort)-1) 995 myvlanid = VLAN_NONE; 996 mynvlanid = ntohs(net_native_vlan); 997 if (mynvlanid == (ushort)-1) 998 mynvlanid = VLAN_NONE; 999 1000 eth_proto = ntohs(et->et_protlen); 1001 1002 if (eth_proto < 1514) { 1003 struct e802_hdr *et802 = (struct e802_hdr *)et; 1004 /* 1005 * Got a 802.2 packet. Check the other protocol field. 1006 * XXX VLAN over 802.2+SNAP not implemented! 1007 */ 1008 eth_proto = ntohs(et802->et_prot); 1009 1010 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1011 len -= E802_HDR_SIZE; 1012 1013 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1014 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1015 len -= ETHER_HDR_SIZE; 1016 1017 } else { /* VLAN packet */ 1018 struct vlan_ethernet_hdr *vet = 1019 (struct vlan_ethernet_hdr *)et; 1020 1021 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1022 1023 /* too small packet? */ 1024 if (len < VLAN_ETHER_HDR_SIZE) 1025 return; 1026 1027 /* if no VLAN active */ 1028 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1029 #if defined(CONFIG_CMD_CDP) 1030 && iscdp == 0 1031 #endif 1032 ) 1033 return; 1034 1035 cti = ntohs(vet->vet_tag); 1036 vlanid = cti & VLAN_IDMASK; 1037 eth_proto = ntohs(vet->vet_type); 1038 1039 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1040 len -= VLAN_ETHER_HDR_SIZE; 1041 } 1042 1043 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1044 1045 #if defined(CONFIG_CMD_CDP) 1046 if (iscdp) { 1047 cdp_receive((uchar *)ip, len); 1048 return; 1049 } 1050 #endif 1051 1052 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1053 if (vlanid == VLAN_NONE) 1054 vlanid = (mynvlanid & VLAN_IDMASK); 1055 /* not matched? */ 1056 if (vlanid != (myvlanid & VLAN_IDMASK)) 1057 return; 1058 } 1059 1060 switch (eth_proto) { 1061 case PROT_ARP: 1062 arp_receive(et, ip, len); 1063 break; 1064 1065 #ifdef CONFIG_CMD_RARP 1066 case PROT_RARP: 1067 rarp_receive(ip, len); 1068 break; 1069 #endif 1070 case PROT_IP: 1071 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1072 /* Before we start poking the header, make sure it is there */ 1073 if (len < IP_UDP_HDR_SIZE) { 1074 debug("len bad %d < %lu\n", len, 1075 (ulong)IP_UDP_HDR_SIZE); 1076 return; 1077 } 1078 /* Check the packet length */ 1079 if (len < ntohs(ip->ip_len)) { 1080 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1081 return; 1082 } 1083 len = ntohs(ip->ip_len); 1084 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1085 len, ip->ip_hl_v & 0xff); 1086 1087 /* Can't deal with anything except IPv4 */ 1088 if ((ip->ip_hl_v & 0xf0) != 0x40) 1089 return; 1090 /* Can't deal with IP options (headers != 20 bytes) */ 1091 if ((ip->ip_hl_v & 0x0f) > 0x05) 1092 return; 1093 /* Check the Checksum of the header */ 1094 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1095 debug("checksum bad\n"); 1096 return; 1097 } 1098 /* If it is not for us, ignore it */ 1099 dst_ip = net_read_ip(&ip->ip_dst); 1100 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1101 dst_ip.s_addr != 0xFFFFFFFF) { 1102 #ifdef CONFIG_MCAST_TFTP 1103 if (net_mcast_addr != dst_ip) 1104 #endif 1105 return; 1106 } 1107 /* Read source IP address for later use */ 1108 src_ip = net_read_ip(&ip->ip_src); 1109 /* 1110 * The function returns the unchanged packet if it's not 1111 * a fragment, and either the complete packet or NULL if 1112 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1113 */ 1114 ip = net_defragment(ip, &len); 1115 if (!ip) 1116 return; 1117 /* 1118 * watch for ICMP host redirects 1119 * 1120 * There is no real handler code (yet). We just watch 1121 * for ICMP host redirect messages. In case anybody 1122 * sees these messages: please contact me 1123 * (wd@denx.de), or - even better - send me the 1124 * necessary fixes :-) 1125 * 1126 * Note: in all cases where I have seen this so far 1127 * it was a problem with the router configuration, 1128 * for instance when a router was configured in the 1129 * BOOTP reply, but the TFTP server was on the same 1130 * subnet. So this is probably a warning that your 1131 * configuration might be wrong. But I'm not really 1132 * sure if there aren't any other situations. 1133 * 1134 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1135 * we send a tftp packet to a dead connection, or when 1136 * there is no server at the other end. 1137 */ 1138 if (ip->ip_p == IPPROTO_ICMP) { 1139 receive_icmp(ip, len, src_ip, et); 1140 return; 1141 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1142 return; 1143 } 1144 1145 debug_cond(DEBUG_DEV_PKT, 1146 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1147 &dst_ip, &src_ip, len); 1148 1149 #ifdef CONFIG_UDP_CHECKSUM 1150 if (ip->udp_xsum != 0) { 1151 ulong xsum; 1152 ushort *sumptr; 1153 ushort sumlen; 1154 1155 xsum = ip->ip_p; 1156 xsum += (ntohs(ip->udp_len)); 1157 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1158 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1159 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1160 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1161 1162 sumlen = ntohs(ip->udp_len); 1163 sumptr = (ushort *)&(ip->udp_src); 1164 1165 while (sumlen > 1) { 1166 ushort sumdata; 1167 1168 sumdata = *sumptr++; 1169 xsum += ntohs(sumdata); 1170 sumlen -= 2; 1171 } 1172 if (sumlen > 0) { 1173 ushort sumdata; 1174 1175 sumdata = *(unsigned char *)sumptr; 1176 sumdata = (sumdata << 8) & 0xff00; 1177 xsum += sumdata; 1178 } 1179 while ((xsum >> 16) != 0) { 1180 xsum = (xsum & 0x0000ffff) + 1181 ((xsum >> 16) & 0x0000ffff); 1182 } 1183 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1184 printf(" UDP wrong checksum %08lx %08x\n", 1185 xsum, ntohs(ip->udp_xsum)); 1186 return; 1187 } 1188 } 1189 #endif 1190 1191 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1192 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1193 src_ip, 1194 ntohs(ip->udp_dst), 1195 ntohs(ip->udp_src), 1196 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1197 #endif 1198 /* 1199 * IP header OK. Pass the packet to the current handler. 1200 */ 1201 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1202 ntohs(ip->udp_dst), 1203 src_ip, 1204 ntohs(ip->udp_src), 1205 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1206 break; 1207 } 1208 } 1209 1210 /**********************************************************************/ 1211 1212 static int net_check_prereq(enum proto_t protocol) 1213 { 1214 switch (protocol) { 1215 /* Fall through */ 1216 #if defined(CONFIG_CMD_PING) 1217 case PING: 1218 if (net_ping_ip.s_addr == 0) { 1219 puts("*** ERROR: ping address not given\n"); 1220 return 1; 1221 } 1222 goto common; 1223 #endif 1224 #if defined(CONFIG_CMD_SNTP) 1225 case SNTP: 1226 if (net_ntp_server.s_addr == 0) { 1227 puts("*** ERROR: NTP server address not given\n"); 1228 return 1; 1229 } 1230 goto common; 1231 #endif 1232 #if defined(CONFIG_CMD_DNS) 1233 case DNS: 1234 if (net_dns_server.s_addr == 0) { 1235 puts("*** ERROR: DNS server address not given\n"); 1236 return 1; 1237 } 1238 goto common; 1239 #endif 1240 #if defined(CONFIG_CMD_NFS) 1241 case NFS: 1242 #endif 1243 /* Fall through */ 1244 case TFTPGET: 1245 case TFTPPUT: 1246 if (net_server_ip.s_addr == 0) { 1247 puts("*** ERROR: `serverip' not set\n"); 1248 return 1; 1249 } 1250 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1251 defined(CONFIG_CMD_DNS) 1252 common: 1253 #endif 1254 /* Fall through */ 1255 1256 case NETCONS: 1257 case TFTPSRV: 1258 if (net_ip.s_addr == 0) { 1259 puts("*** ERROR: `ipaddr' not set\n"); 1260 return 1; 1261 } 1262 /* Fall through */ 1263 1264 #ifdef CONFIG_CMD_RARP 1265 case RARP: 1266 #endif 1267 case BOOTP: 1268 case CDP: 1269 case DHCP: 1270 case LINKLOCAL: 1271 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1272 int num = eth_get_dev_index(); 1273 1274 switch (num) { 1275 case -1: 1276 puts("*** ERROR: No ethernet found.\n"); 1277 return 1; 1278 case 0: 1279 puts("*** ERROR: `ethaddr' not set\n"); 1280 break; 1281 default: 1282 printf("*** ERROR: `eth%daddr' not set\n", 1283 num); 1284 break; 1285 } 1286 1287 net_start_again(); 1288 return 2; 1289 } 1290 /* Fall through */ 1291 default: 1292 return 0; 1293 } 1294 return 0; /* OK */ 1295 } 1296 /**********************************************************************/ 1297 1298 int 1299 net_eth_hdr_size(void) 1300 { 1301 ushort myvlanid; 1302 1303 myvlanid = ntohs(net_our_vlan); 1304 if (myvlanid == (ushort)-1) 1305 myvlanid = VLAN_NONE; 1306 1307 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1308 VLAN_ETHER_HDR_SIZE; 1309 } 1310 1311 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1312 { 1313 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1314 ushort myvlanid; 1315 1316 myvlanid = ntohs(net_our_vlan); 1317 if (myvlanid == (ushort)-1) 1318 myvlanid = VLAN_NONE; 1319 1320 memcpy(et->et_dest, dest_ethaddr, 6); 1321 memcpy(et->et_src, net_ethaddr, 6); 1322 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1323 et->et_protlen = htons(prot); 1324 return ETHER_HDR_SIZE; 1325 } else { 1326 struct vlan_ethernet_hdr *vet = 1327 (struct vlan_ethernet_hdr *)xet; 1328 1329 vet->vet_vlan_type = htons(PROT_VLAN); 1330 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1331 vet->vet_type = htons(prot); 1332 return VLAN_ETHER_HDR_SIZE; 1333 } 1334 } 1335 1336 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1337 { 1338 ushort protlen; 1339 1340 memcpy(et->et_dest, addr, 6); 1341 memcpy(et->et_src, net_ethaddr, 6); 1342 protlen = ntohs(et->et_protlen); 1343 if (protlen == PROT_VLAN) { 1344 struct vlan_ethernet_hdr *vet = 1345 (struct vlan_ethernet_hdr *)et; 1346 vet->vet_type = htons(prot); 1347 return VLAN_ETHER_HDR_SIZE; 1348 } else if (protlen > 1514) { 1349 et->et_protlen = htons(prot); 1350 return ETHER_HDR_SIZE; 1351 } else { 1352 /* 802.2 + SNAP */ 1353 struct e802_hdr *et802 = (struct e802_hdr *)et; 1354 et802->et_prot = htons(prot); 1355 return E802_HDR_SIZE; 1356 } 1357 } 1358 1359 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1360 { 1361 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1362 1363 /* 1364 * Construct an IP header. 1365 */ 1366 /* IP_HDR_SIZE / 4 (not including UDP) */ 1367 ip->ip_hl_v = 0x45; 1368 ip->ip_tos = 0; 1369 ip->ip_len = htons(IP_HDR_SIZE); 1370 ip->ip_id = htons(net_ip_id++); 1371 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1372 ip->ip_ttl = 255; 1373 ip->ip_sum = 0; 1374 /* already in network byte order */ 1375 net_copy_ip((void *)&ip->ip_src, &source); 1376 /* already in network byte order */ 1377 net_copy_ip((void *)&ip->ip_dst, &dest); 1378 } 1379 1380 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1381 int len) 1382 { 1383 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1384 1385 /* 1386 * If the data is an odd number of bytes, zero the 1387 * byte after the last byte so that the checksum 1388 * will work. 1389 */ 1390 if (len & 1) 1391 pkt[IP_UDP_HDR_SIZE + len] = 0; 1392 1393 net_set_ip_header(pkt, dest, net_ip); 1394 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1395 ip->ip_p = IPPROTO_UDP; 1396 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1397 1398 ip->udp_src = htons(sport); 1399 ip->udp_dst = htons(dport); 1400 ip->udp_len = htons(UDP_HDR_SIZE + len); 1401 ip->udp_xsum = 0; 1402 } 1403 1404 void copy_filename(char *dst, const char *src, int size) 1405 { 1406 if (*src && (*src == '"')) { 1407 ++src; 1408 --size; 1409 } 1410 1411 while ((--size > 0) && *src && (*src != '"')) 1412 *dst++ = *src++; 1413 *dst = '\0'; 1414 } 1415 1416 #if defined(CONFIG_CMD_NFS) || \ 1417 defined(CONFIG_CMD_SNTP) || \ 1418 defined(CONFIG_CMD_DNS) 1419 /* 1420 * make port a little random (1024-17407) 1421 * This keeps the math somewhat trivial to compute, and seems to work with 1422 * all supported protocols/clients/servers 1423 */ 1424 unsigned int random_port(void) 1425 { 1426 return 1024 + (get_timer(0) % 0x4000); 1427 } 1428 #endif 1429 1430 void ip_to_string(struct in_addr x, char *s) 1431 { 1432 x.s_addr = ntohl(x.s_addr); 1433 sprintf(s, "%d.%d.%d.%d", 1434 (int) ((x.s_addr >> 24) & 0xff), 1435 (int) ((x.s_addr >> 16) & 0xff), 1436 (int) ((x.s_addr >> 8) & 0xff), 1437 (int) ((x.s_addr >> 0) & 0xff) 1438 ); 1439 } 1440 1441 void vlan_to_string(ushort x, char *s) 1442 { 1443 x = ntohs(x); 1444 1445 if (x == (ushort)-1) 1446 x = VLAN_NONE; 1447 1448 if (x == VLAN_NONE) 1449 strcpy(s, "none"); 1450 else 1451 sprintf(s, "%d", x & VLAN_IDMASK); 1452 } 1453 1454 ushort string_to_vlan(const char *s) 1455 { 1456 ushort id; 1457 1458 if (s == NULL) 1459 return htons(VLAN_NONE); 1460 1461 if (*s < '0' || *s > '9') 1462 id = VLAN_NONE; 1463 else 1464 id = (ushort)simple_strtoul(s, NULL, 10); 1465 1466 return htons(id); 1467 } 1468 1469 ushort getenv_vlan(char *var) 1470 { 1471 return string_to_vlan(getenv(var)); 1472 } 1473