1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copied from Linux Monitor (LiMon) - Networking. 4 * 5 * Copyright 1994 - 2000 Neil Russell. 6 * (See License) 7 * Copyright 2000 Roland Borde 8 * Copyright 2000 Paolo Scaffardi 9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 * 82 * WOL: 83 * 84 * Prerequisites: - own ethernet address 85 * We want: - magic packet or timeout 86 * Next step: none 87 */ 88 89 90 #include <common.h> 91 #include <command.h> 92 #include <console.h> 93 #include <environment.h> 94 #include <errno.h> 95 #include <net.h> 96 #include <net/fastboot.h> 97 #include <net/tftp.h> 98 #if defined(CONFIG_LED_STATUS) 99 #include <miiphy.h> 100 #include <status_led.h> 101 #endif 102 #include <watchdog.h> 103 #include <linux/compiler.h> 104 #include "arp.h" 105 #include "bootp.h" 106 #include "cdp.h" 107 #if defined(CONFIG_CMD_DNS) 108 #include "dns.h" 109 #endif 110 #include "link_local.h" 111 #include "nfs.h" 112 #include "ping.h" 113 #include "rarp.h" 114 #if defined(CONFIG_CMD_SNTP) 115 #include "sntp.h" 116 #endif 117 #if defined(CONFIG_CMD_WOL) 118 #include "wol.h" 119 #endif 120 121 /** BOOTP EXTENTIONS **/ 122 123 /* Our subnet mask (0=unknown) */ 124 struct in_addr net_netmask; 125 /* Our gateways IP address */ 126 struct in_addr net_gateway; 127 /* Our DNS IP address */ 128 struct in_addr net_dns_server; 129 #if defined(CONFIG_BOOTP_DNS2) 130 /* Our 2nd DNS IP address */ 131 struct in_addr net_dns_server2; 132 #endif 133 134 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 135 struct in_addr net_mcast_addr; 136 #endif 137 138 /** END OF BOOTP EXTENTIONS **/ 139 140 /* Our ethernet address */ 141 u8 net_ethaddr[6]; 142 /* Boot server enet address */ 143 u8 net_server_ethaddr[6]; 144 /* Our IP addr (0 = unknown) */ 145 struct in_addr net_ip; 146 /* Server IP addr (0 = unknown) */ 147 struct in_addr net_server_ip; 148 /* Current receive packet */ 149 uchar *net_rx_packet; 150 /* Current rx packet length */ 151 int net_rx_packet_len; 152 /* IP packet ID */ 153 static unsigned net_ip_id; 154 /* Ethernet bcast address */ 155 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 156 const u8 net_null_ethaddr[6]; 157 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 158 void (*push_packet)(void *, int len) = 0; 159 #endif 160 /* Network loop state */ 161 enum net_loop_state net_state; 162 /* Tried all network devices */ 163 int net_restart_wrap; 164 /* Network loop restarted */ 165 static int net_restarted; 166 /* At least one device configured */ 167 static int net_dev_exists; 168 169 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 170 /* default is without VLAN */ 171 ushort net_our_vlan = 0xFFFF; 172 /* ditto */ 173 ushort net_native_vlan = 0xFFFF; 174 175 /* Boot File name */ 176 char net_boot_file_name[1024]; 177 /* Indicates whether the file name was specified on the command line */ 178 bool net_boot_file_name_explicit; 179 /* The actual transferred size of the bootfile (in bytes) */ 180 u32 net_boot_file_size; 181 /* Boot file size in blocks as reported by the DHCP server */ 182 u32 net_boot_file_expected_size_in_blocks; 183 184 #if defined(CONFIG_CMD_SNTP) 185 /* NTP server IP address */ 186 struct in_addr net_ntp_server; 187 /* offset time from UTC */ 188 int net_ntp_time_offset; 189 #endif 190 191 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 192 /* Receive packets */ 193 uchar *net_rx_packets[PKTBUFSRX]; 194 /* Current UDP RX packet handler */ 195 static rxhand_f *udp_packet_handler; 196 /* Current ARP RX packet handler */ 197 static rxhand_f *arp_packet_handler; 198 #ifdef CONFIG_CMD_TFTPPUT 199 /* Current ICMP rx handler */ 200 static rxhand_icmp_f *packet_icmp_handler; 201 #endif 202 /* Current timeout handler */ 203 static thand_f *time_handler; 204 /* Time base value */ 205 static ulong time_start; 206 /* Current timeout value */ 207 static ulong time_delta; 208 /* THE transmit packet */ 209 uchar *net_tx_packet; 210 211 static int net_check_prereq(enum proto_t protocol); 212 213 static int net_try_count; 214 215 int __maybe_unused net_busy_flag; 216 217 /**********************************************************************/ 218 219 static int on_ipaddr(const char *name, const char *value, enum env_op op, 220 int flags) 221 { 222 if (flags & H_PROGRAMMATIC) 223 return 0; 224 225 net_ip = string_to_ip(value); 226 227 return 0; 228 } 229 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 230 231 static int on_gatewayip(const char *name, const char *value, enum env_op op, 232 int flags) 233 { 234 if (flags & H_PROGRAMMATIC) 235 return 0; 236 237 net_gateway = string_to_ip(value); 238 239 return 0; 240 } 241 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 242 243 static int on_netmask(const char *name, const char *value, enum env_op op, 244 int flags) 245 { 246 if (flags & H_PROGRAMMATIC) 247 return 0; 248 249 net_netmask = string_to_ip(value); 250 251 return 0; 252 } 253 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 254 255 static int on_serverip(const char *name, const char *value, enum env_op op, 256 int flags) 257 { 258 if (flags & H_PROGRAMMATIC) 259 return 0; 260 261 net_server_ip = string_to_ip(value); 262 263 return 0; 264 } 265 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 266 267 static int on_nvlan(const char *name, const char *value, enum env_op op, 268 int flags) 269 { 270 if (flags & H_PROGRAMMATIC) 271 return 0; 272 273 net_native_vlan = string_to_vlan(value); 274 275 return 0; 276 } 277 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 278 279 static int on_vlan(const char *name, const char *value, enum env_op op, 280 int flags) 281 { 282 if (flags & H_PROGRAMMATIC) 283 return 0; 284 285 net_our_vlan = string_to_vlan(value); 286 287 return 0; 288 } 289 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 290 291 #if defined(CONFIG_CMD_DNS) 292 static int on_dnsip(const char *name, const char *value, enum env_op op, 293 int flags) 294 { 295 if (flags & H_PROGRAMMATIC) 296 return 0; 297 298 net_dns_server = string_to_ip(value); 299 300 return 0; 301 } 302 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 303 #endif 304 305 /* 306 * Check if autoload is enabled. If so, use either NFS or TFTP to download 307 * the boot file. 308 */ 309 void net_auto_load(void) 310 { 311 #if defined(CONFIG_CMD_NFS) 312 const char *s = env_get("autoload"); 313 314 if (s != NULL && strcmp(s, "NFS") == 0) { 315 if (net_check_prereq(NFS)) { 316 /* We aren't expecting to get a serverip, so just accept the assigned IP */ 317 #ifdef CONFIG_BOOTP_SERVERIP 318 net_set_state(NETLOOP_SUCCESS); 319 #else 320 printf("Cannot autoload with NFS\n"); 321 net_set_state(NETLOOP_FAIL); 322 #endif 323 return; 324 } 325 /* 326 * Use NFS to load the bootfile. 327 */ 328 nfs_start(); 329 return; 330 } 331 #endif 332 if (env_get_yesno("autoload") == 0) { 333 /* 334 * Just use BOOTP/RARP to configure system; 335 * Do not use TFTP to load the bootfile. 336 */ 337 net_set_state(NETLOOP_SUCCESS); 338 return; 339 } 340 if (net_check_prereq(TFTPGET)) { 341 /* We aren't expecting to get a serverip, so just accept the assigned IP */ 342 #ifdef CONFIG_BOOTP_SERVERIP 343 net_set_state(NETLOOP_SUCCESS); 344 #else 345 printf("Cannot autoload with TFTPGET\n"); 346 net_set_state(NETLOOP_FAIL); 347 #endif 348 return; 349 } 350 tftp_start(TFTPGET); 351 } 352 353 static void net_init_loop(void) 354 { 355 if (eth_get_dev()) 356 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 357 358 return; 359 } 360 361 static void net_clear_handlers(void) 362 { 363 net_set_udp_handler(NULL); 364 net_set_arp_handler(NULL); 365 net_set_timeout_handler(0, NULL); 366 } 367 368 static void net_cleanup_loop(void) 369 { 370 net_clear_handlers(); 371 } 372 373 void net_init(void) 374 { 375 static int first_call = 1; 376 377 if (first_call) { 378 /* 379 * Setup packet buffers, aligned correctly. 380 */ 381 int i; 382 383 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 384 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 385 for (i = 0; i < PKTBUFSRX; i++) { 386 net_rx_packets[i] = net_tx_packet + 387 (i + 1) * PKTSIZE_ALIGN; 388 } 389 arp_init(); 390 net_clear_handlers(); 391 392 /* Only need to setup buffer pointers once. */ 393 first_call = 0; 394 } 395 396 net_init_loop(); 397 } 398 399 /**********************************************************************/ 400 /* 401 * Main network processing loop. 402 */ 403 404 int net_loop(enum proto_t protocol) 405 { 406 int ret = -EINVAL; 407 enum net_loop_state prev_net_state = net_state; 408 409 net_restarted = 0; 410 net_dev_exists = 0; 411 net_try_count = 1; 412 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 413 414 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 415 net_init(); 416 if (eth_is_on_demand_init() || protocol != NETCONS) { 417 eth_halt(); 418 eth_set_current(); 419 ret = eth_init(); 420 if (ret < 0) { 421 eth_halt(); 422 return ret; 423 } 424 } else { 425 eth_init_state_only(); 426 } 427 restart: 428 #ifdef CONFIG_USB_KEYBOARD 429 net_busy_flag = 0; 430 #endif 431 net_set_state(NETLOOP_CONTINUE); 432 433 /* 434 * Start the ball rolling with the given start function. From 435 * here on, this code is a state machine driven by received 436 * packets and timer events. 437 */ 438 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 439 net_init_loop(); 440 441 switch (net_check_prereq(protocol)) { 442 case 1: 443 /* network not configured */ 444 eth_halt(); 445 net_set_state(prev_net_state); 446 return -ENODEV; 447 448 case 2: 449 /* network device not configured */ 450 break; 451 452 case 0: 453 net_dev_exists = 1; 454 net_boot_file_size = 0; 455 switch (protocol) { 456 case TFTPGET: 457 #ifdef CONFIG_CMD_TFTPPUT 458 case TFTPPUT: 459 #endif 460 /* always use ARP to get server ethernet address */ 461 tftp_start(protocol); 462 break; 463 #ifdef CONFIG_CMD_TFTPSRV 464 case TFTPSRV: 465 tftp_start_server(); 466 break; 467 #endif 468 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT 469 case FASTBOOT: 470 fastboot_start_server(); 471 break; 472 #endif 473 #if defined(CONFIG_CMD_DHCP) 474 case DHCP: 475 bootp_reset(); 476 net_ip.s_addr = 0; 477 dhcp_request(); /* Basically same as BOOTP */ 478 break; 479 #endif 480 481 case BOOTP: 482 bootp_reset(); 483 net_ip.s_addr = 0; 484 bootp_request(); 485 break; 486 487 #if defined(CONFIG_CMD_RARP) 488 case RARP: 489 rarp_try = 0; 490 net_ip.s_addr = 0; 491 rarp_request(); 492 break; 493 #endif 494 #if defined(CONFIG_CMD_PING) 495 case PING: 496 ping_start(); 497 break; 498 #endif 499 #if defined(CONFIG_CMD_NFS) 500 case NFS: 501 nfs_start(); 502 break; 503 #endif 504 #if defined(CONFIG_CMD_CDP) 505 case CDP: 506 cdp_start(); 507 break; 508 #endif 509 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 510 case NETCONS: 511 nc_start(); 512 break; 513 #endif 514 #if defined(CONFIG_CMD_SNTP) 515 case SNTP: 516 sntp_start(); 517 break; 518 #endif 519 #if defined(CONFIG_CMD_DNS) 520 case DNS: 521 dns_start(); 522 break; 523 #endif 524 #if defined(CONFIG_CMD_LINK_LOCAL) 525 case LINKLOCAL: 526 link_local_start(); 527 break; 528 #endif 529 #if defined(CONFIG_CMD_WOL) 530 case WOL: 531 wol_start(); 532 break; 533 #endif 534 default: 535 break; 536 } 537 538 break; 539 } 540 541 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 542 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 543 defined(CONFIG_LED_STATUS) && \ 544 defined(CONFIG_LED_STATUS_RED) 545 /* 546 * Echo the inverted link state to the fault LED. 547 */ 548 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 549 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF); 550 else 551 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON); 552 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 553 #endif /* CONFIG_MII, ... */ 554 #ifdef CONFIG_USB_KEYBOARD 555 net_busy_flag = 1; 556 #endif 557 558 /* 559 * Main packet reception loop. Loop receiving packets until 560 * someone sets `net_state' to a state that terminates. 561 */ 562 for (;;) { 563 WATCHDOG_RESET(); 564 #ifdef CONFIG_SHOW_ACTIVITY 565 show_activity(1); 566 #endif 567 if (arp_timeout_check() > 0) 568 time_start = get_timer(0); 569 570 /* 571 * Check the ethernet for a new packet. The ethernet 572 * receive routine will process it. 573 * Most drivers return the most recent packet size, but not 574 * errors that may have happened. 575 */ 576 eth_rx(); 577 578 /* 579 * Abort if ctrl-c was pressed. 580 */ 581 if (ctrlc()) { 582 /* cancel any ARP that may not have completed */ 583 net_arp_wait_packet_ip.s_addr = 0; 584 585 net_cleanup_loop(); 586 eth_halt(); 587 /* Invalidate the last protocol */ 588 eth_set_last_protocol(BOOTP); 589 590 puts("\nAbort\n"); 591 /* include a debug print as well incase the debug 592 messages are directed to stderr */ 593 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 594 ret = -EINTR; 595 goto done; 596 } 597 598 /* 599 * Check for a timeout, and run the timeout handler 600 * if we have one. 601 */ 602 if (time_handler && 603 ((get_timer(0) - time_start) > time_delta)) { 604 thand_f *x; 605 606 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 607 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 608 defined(CONFIG_LED_STATUS) && \ 609 defined(CONFIG_LED_STATUS_RED) 610 /* 611 * Echo the inverted link state to the fault LED. 612 */ 613 if (miiphy_link(eth_get_dev()->name, 614 CONFIG_SYS_FAULT_MII_ADDR)) 615 status_led_set(CONFIG_LED_STATUS_RED, 616 CONFIG_LED_STATUS_OFF); 617 else 618 status_led_set(CONFIG_LED_STATUS_RED, 619 CONFIG_LED_STATUS_ON); 620 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 621 #endif /* CONFIG_MII, ... */ 622 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 623 x = time_handler; 624 time_handler = (thand_f *)0; 625 (*x)(); 626 } 627 628 if (net_state == NETLOOP_FAIL) 629 ret = net_start_again(); 630 631 switch (net_state) { 632 case NETLOOP_RESTART: 633 net_restarted = 1; 634 goto restart; 635 636 case NETLOOP_SUCCESS: 637 net_cleanup_loop(); 638 if (net_boot_file_size > 0) { 639 printf("Bytes transferred = %d (%x hex)\n", 640 net_boot_file_size, net_boot_file_size); 641 env_set_hex("filesize", net_boot_file_size); 642 env_set_hex("fileaddr", load_addr); 643 } 644 if (protocol != NETCONS) 645 eth_halt(); 646 else 647 eth_halt_state_only(); 648 649 eth_set_last_protocol(protocol); 650 651 ret = net_boot_file_size; 652 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 653 goto done; 654 655 case NETLOOP_FAIL: 656 net_cleanup_loop(); 657 /* Invalidate the last protocol */ 658 eth_set_last_protocol(BOOTP); 659 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 660 goto done; 661 662 case NETLOOP_CONTINUE: 663 continue; 664 } 665 } 666 667 done: 668 #ifdef CONFIG_USB_KEYBOARD 669 net_busy_flag = 0; 670 #endif 671 #ifdef CONFIG_CMD_TFTPPUT 672 /* Clear out the handlers */ 673 net_set_udp_handler(NULL); 674 net_set_icmp_handler(NULL); 675 #endif 676 net_set_state(prev_net_state); 677 return ret; 678 } 679 680 /**********************************************************************/ 681 682 static void start_again_timeout_handler(void) 683 { 684 net_set_state(NETLOOP_RESTART); 685 } 686 687 int net_start_again(void) 688 { 689 char *nretry; 690 int retry_forever = 0; 691 unsigned long retrycnt = 0; 692 int ret; 693 694 nretry = env_get("netretry"); 695 if (nretry) { 696 if (!strcmp(nretry, "yes")) 697 retry_forever = 1; 698 else if (!strcmp(nretry, "no")) 699 retrycnt = 0; 700 else if (!strcmp(nretry, "once")) 701 retrycnt = 1; 702 else 703 retrycnt = simple_strtoul(nretry, NULL, 0); 704 } else { 705 retrycnt = 0; 706 retry_forever = 0; 707 } 708 709 if ((!retry_forever) && (net_try_count > retrycnt)) { 710 eth_halt(); 711 net_set_state(NETLOOP_FAIL); 712 /* 713 * We don't provide a way for the protocol to return an error, 714 * but this is almost always the reason. 715 */ 716 return -ETIMEDOUT; 717 } 718 719 net_try_count++; 720 721 eth_halt(); 722 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 723 eth_try_another(!net_restarted); 724 #endif 725 ret = eth_init(); 726 if (net_restart_wrap) { 727 net_restart_wrap = 0; 728 if (net_dev_exists) { 729 net_set_timeout_handler(10000UL, 730 start_again_timeout_handler); 731 net_set_udp_handler(NULL); 732 } else { 733 net_set_state(NETLOOP_FAIL); 734 } 735 } else { 736 net_set_state(NETLOOP_RESTART); 737 } 738 return ret; 739 } 740 741 /**********************************************************************/ 742 /* 743 * Miscelaneous bits. 744 */ 745 746 static void dummy_handler(uchar *pkt, unsigned dport, 747 struct in_addr sip, unsigned sport, 748 unsigned len) 749 { 750 } 751 752 rxhand_f *net_get_udp_handler(void) 753 { 754 return udp_packet_handler; 755 } 756 757 void net_set_udp_handler(rxhand_f *f) 758 { 759 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 760 if (f == NULL) 761 udp_packet_handler = dummy_handler; 762 else 763 udp_packet_handler = f; 764 } 765 766 rxhand_f *net_get_arp_handler(void) 767 { 768 return arp_packet_handler; 769 } 770 771 void net_set_arp_handler(rxhand_f *f) 772 { 773 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 774 if (f == NULL) 775 arp_packet_handler = dummy_handler; 776 else 777 arp_packet_handler = f; 778 } 779 780 #ifdef CONFIG_CMD_TFTPPUT 781 void net_set_icmp_handler(rxhand_icmp_f *f) 782 { 783 packet_icmp_handler = f; 784 } 785 #endif 786 787 void net_set_timeout_handler(ulong iv, thand_f *f) 788 { 789 if (iv == 0) { 790 debug_cond(DEBUG_INT_STATE, 791 "--- net_loop timeout handler cancelled\n"); 792 time_handler = (thand_f *)0; 793 } else { 794 debug_cond(DEBUG_INT_STATE, 795 "--- net_loop timeout handler set (%p)\n", f); 796 time_handler = f; 797 time_start = get_timer(0); 798 time_delta = iv * CONFIG_SYS_HZ / 1000; 799 } 800 } 801 802 uchar *net_get_async_tx_pkt_buf(void) 803 { 804 if (arp_is_waiting()) 805 return arp_tx_packet; /* If we are waiting, we already sent */ 806 else 807 return net_tx_packet; 808 } 809 810 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 811 int payload_len) 812 { 813 return net_send_ip_packet(ether, dest, dport, sport, payload_len, 814 IPPROTO_UDP, 0, 0, 0); 815 } 816 817 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport, 818 int payload_len, int proto, u8 action, u32 tcp_seq_num, 819 u32 tcp_ack_num) 820 { 821 uchar *pkt; 822 int eth_hdr_size; 823 int pkt_hdr_size; 824 825 /* make sure the net_tx_packet is initialized (net_init() was called) */ 826 assert(net_tx_packet != NULL); 827 if (net_tx_packet == NULL) 828 return -1; 829 830 /* convert to new style broadcast */ 831 if (dest.s_addr == 0) 832 dest.s_addr = 0xFFFFFFFF; 833 834 /* if broadcast, make the ether address a broadcast and don't do ARP */ 835 if (dest.s_addr == 0xFFFFFFFF) 836 ether = (uchar *)net_bcast_ethaddr; 837 838 pkt = (uchar *)net_tx_packet; 839 840 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 841 842 switch (proto) { 843 case IPPROTO_UDP: 844 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport, 845 payload_len); 846 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 847 break; 848 default: 849 return -EINVAL; 850 } 851 852 /* if MAC address was not discovered yet, do an ARP request */ 853 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 854 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 855 856 /* save the ip and eth addr for the packet to send after arp */ 857 net_arp_wait_packet_ip = dest; 858 arp_wait_packet_ethaddr = ether; 859 860 /* size of the waiting packet */ 861 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 862 863 /* and do the ARP request */ 864 arp_wait_try = 1; 865 arp_wait_timer_start = get_timer(0); 866 arp_request(); 867 return 1; /* waiting */ 868 } else { 869 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 870 &dest, ether); 871 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 872 return 0; /* transmitted */ 873 } 874 } 875 876 #ifdef CONFIG_IP_DEFRAG 877 /* 878 * This function collects fragments in a single packet, according 879 * to the algorithm in RFC815. It returns NULL or the pointer to 880 * a complete packet, in static storage 881 */ 882 #ifndef CONFIG_NET_MAXDEFRAG 883 #define CONFIG_NET_MAXDEFRAG 16384 884 #endif 885 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG) 886 887 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 888 889 /* 890 * this is the packet being assembled, either data or frag control. 891 * Fragments go by 8 bytes, so this union must be 8 bytes long 892 */ 893 struct hole { 894 /* first_byte is address of this structure */ 895 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 896 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 897 u16 prev_hole; /* index of prev, 0 == none */ 898 u16 unused; 899 }; 900 901 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 902 { 903 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 904 static u16 first_hole, total_len; 905 struct hole *payload, *thisfrag, *h, *newh; 906 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 907 uchar *indata = (uchar *)ip; 908 int offset8, start, len, done = 0; 909 u16 ip_off = ntohs(ip->ip_off); 910 911 /* payload starts after IP header, this fragment is in there */ 912 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 913 offset8 = (ip_off & IP_OFFS); 914 thisfrag = payload + offset8; 915 start = offset8 * 8; 916 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 917 918 if (start + len > IP_MAXUDP) /* fragment extends too far */ 919 return NULL; 920 921 if (!total_len || localip->ip_id != ip->ip_id) { 922 /* new (or different) packet, reset structs */ 923 total_len = 0xffff; 924 payload[0].last_byte = ~0; 925 payload[0].next_hole = 0; 926 payload[0].prev_hole = 0; 927 first_hole = 0; 928 /* any IP header will work, copy the first we received */ 929 memcpy(localip, ip, IP_HDR_SIZE); 930 } 931 932 /* 933 * What follows is the reassembly algorithm. We use the payload 934 * array as a linked list of hole descriptors, as each hole starts 935 * at a multiple of 8 bytes. However, last byte can be whatever value, 936 * so it is represented as byte count, not as 8-byte blocks. 937 */ 938 939 h = payload + first_hole; 940 while (h->last_byte < start) { 941 if (!h->next_hole) { 942 /* no hole that far away */ 943 return NULL; 944 } 945 h = payload + h->next_hole; 946 } 947 948 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 949 if (offset8 + ((len + 7) / 8) <= h - payload) { 950 /* no overlap with holes (dup fragment?) */ 951 return NULL; 952 } 953 954 if (!(ip_off & IP_FLAGS_MFRAG)) { 955 /* no more fragmentss: truncate this (last) hole */ 956 total_len = start + len; 957 h->last_byte = start + len; 958 } 959 960 /* 961 * There is some overlap: fix the hole list. This code doesn't 962 * deal with a fragment that overlaps with two different holes 963 * (thus being a superset of a previously-received fragment). 964 */ 965 966 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 967 /* complete overlap with hole: remove hole */ 968 if (!h->prev_hole && !h->next_hole) { 969 /* last remaining hole */ 970 done = 1; 971 } else if (!h->prev_hole) { 972 /* first hole */ 973 first_hole = h->next_hole; 974 payload[h->next_hole].prev_hole = 0; 975 } else if (!h->next_hole) { 976 /* last hole */ 977 payload[h->prev_hole].next_hole = 0; 978 } else { 979 /* in the middle of the list */ 980 payload[h->next_hole].prev_hole = h->prev_hole; 981 payload[h->prev_hole].next_hole = h->next_hole; 982 } 983 984 } else if (h->last_byte <= start + len) { 985 /* overlaps with final part of the hole: shorten this hole */ 986 h->last_byte = start; 987 988 } else if (h >= thisfrag) { 989 /* overlaps with initial part of the hole: move this hole */ 990 newh = thisfrag + (len / 8); 991 *newh = *h; 992 h = newh; 993 if (h->next_hole) 994 payload[h->next_hole].prev_hole = (h - payload); 995 if (h->prev_hole) 996 payload[h->prev_hole].next_hole = (h - payload); 997 else 998 first_hole = (h - payload); 999 1000 } else { 1001 /* fragment sits in the middle: split the hole */ 1002 newh = thisfrag + (len / 8); 1003 *newh = *h; 1004 h->last_byte = start; 1005 h->next_hole = (newh - payload); 1006 newh->prev_hole = (h - payload); 1007 if (newh->next_hole) 1008 payload[newh->next_hole].prev_hole = (newh - payload); 1009 } 1010 1011 /* finally copy this fragment and possibly return whole packet */ 1012 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 1013 if (!done) 1014 return NULL; 1015 1016 localip->ip_len = htons(total_len); 1017 *lenp = total_len + IP_HDR_SIZE; 1018 return localip; 1019 } 1020 1021 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 1022 int *lenp) 1023 { 1024 u16 ip_off = ntohs(ip->ip_off); 1025 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 1026 return ip; /* not a fragment */ 1027 return __net_defragment(ip, lenp); 1028 } 1029 1030 #else /* !CONFIG_IP_DEFRAG */ 1031 1032 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 1033 int *lenp) 1034 { 1035 u16 ip_off = ntohs(ip->ip_off); 1036 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 1037 return ip; /* not a fragment */ 1038 return NULL; 1039 } 1040 #endif 1041 1042 /** 1043 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1044 * drop others. 1045 * 1046 * @parma ip IP packet containing the ICMP 1047 */ 1048 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1049 struct in_addr src_ip, struct ethernet_hdr *et) 1050 { 1051 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1052 1053 switch (icmph->type) { 1054 case ICMP_REDIRECT: 1055 if (icmph->code != ICMP_REDIR_HOST) 1056 return; 1057 printf(" ICMP Host Redirect to %pI4 ", 1058 &icmph->un.gateway); 1059 break; 1060 default: 1061 #if defined(CONFIG_CMD_PING) 1062 ping_receive(et, ip, len); 1063 #endif 1064 #ifdef CONFIG_CMD_TFTPPUT 1065 if (packet_icmp_handler) 1066 packet_icmp_handler(icmph->type, icmph->code, 1067 ntohs(ip->udp_dst), src_ip, 1068 ntohs(ip->udp_src), icmph->un.data, 1069 ntohs(ip->udp_len)); 1070 #endif 1071 break; 1072 } 1073 } 1074 1075 void net_process_received_packet(uchar *in_packet, int len) 1076 { 1077 struct ethernet_hdr *et; 1078 struct ip_udp_hdr *ip; 1079 struct in_addr dst_ip; 1080 struct in_addr src_ip; 1081 int eth_proto; 1082 #if defined(CONFIG_CMD_CDP) 1083 int iscdp; 1084 #endif 1085 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1086 1087 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1088 1089 net_rx_packet = in_packet; 1090 net_rx_packet_len = len; 1091 et = (struct ethernet_hdr *)in_packet; 1092 1093 /* too small packet? */ 1094 if (len < ETHER_HDR_SIZE) 1095 return; 1096 1097 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 1098 if (push_packet) { 1099 (*push_packet)(in_packet, len); 1100 return; 1101 } 1102 #endif 1103 1104 #if defined(CONFIG_CMD_CDP) 1105 /* keep track if packet is CDP */ 1106 iscdp = is_cdp_packet(et->et_dest); 1107 #endif 1108 1109 myvlanid = ntohs(net_our_vlan); 1110 if (myvlanid == (ushort)-1) 1111 myvlanid = VLAN_NONE; 1112 mynvlanid = ntohs(net_native_vlan); 1113 if (mynvlanid == (ushort)-1) 1114 mynvlanid = VLAN_NONE; 1115 1116 eth_proto = ntohs(et->et_protlen); 1117 1118 if (eth_proto < 1514) { 1119 struct e802_hdr *et802 = (struct e802_hdr *)et; 1120 /* 1121 * Got a 802.2 packet. Check the other protocol field. 1122 * XXX VLAN over 802.2+SNAP not implemented! 1123 */ 1124 eth_proto = ntohs(et802->et_prot); 1125 1126 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1127 len -= E802_HDR_SIZE; 1128 1129 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1130 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1131 len -= ETHER_HDR_SIZE; 1132 1133 } else { /* VLAN packet */ 1134 struct vlan_ethernet_hdr *vet = 1135 (struct vlan_ethernet_hdr *)et; 1136 1137 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1138 1139 /* too small packet? */ 1140 if (len < VLAN_ETHER_HDR_SIZE) 1141 return; 1142 1143 /* if no VLAN active */ 1144 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1145 #if defined(CONFIG_CMD_CDP) 1146 && iscdp == 0 1147 #endif 1148 ) 1149 return; 1150 1151 cti = ntohs(vet->vet_tag); 1152 vlanid = cti & VLAN_IDMASK; 1153 eth_proto = ntohs(vet->vet_type); 1154 1155 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1156 len -= VLAN_ETHER_HDR_SIZE; 1157 } 1158 1159 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1160 1161 #if defined(CONFIG_CMD_CDP) 1162 if (iscdp) { 1163 cdp_receive((uchar *)ip, len); 1164 return; 1165 } 1166 #endif 1167 1168 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1169 if (vlanid == VLAN_NONE) 1170 vlanid = (mynvlanid & VLAN_IDMASK); 1171 /* not matched? */ 1172 if (vlanid != (myvlanid & VLAN_IDMASK)) 1173 return; 1174 } 1175 1176 switch (eth_proto) { 1177 case PROT_ARP: 1178 arp_receive(et, ip, len); 1179 break; 1180 1181 #ifdef CONFIG_CMD_RARP 1182 case PROT_RARP: 1183 rarp_receive(ip, len); 1184 break; 1185 #endif 1186 case PROT_IP: 1187 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1188 /* Before we start poking the header, make sure it is there */ 1189 if (len < IP_UDP_HDR_SIZE) { 1190 debug("len bad %d < %lu\n", len, 1191 (ulong)IP_UDP_HDR_SIZE); 1192 return; 1193 } 1194 /* Check the packet length */ 1195 if (len < ntohs(ip->ip_len)) { 1196 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1197 return; 1198 } 1199 len = ntohs(ip->ip_len); 1200 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1201 len, ip->ip_hl_v & 0xff); 1202 1203 /* Can't deal with anything except IPv4 */ 1204 if ((ip->ip_hl_v & 0xf0) != 0x40) 1205 return; 1206 /* Can't deal with IP options (headers != 20 bytes) */ 1207 if ((ip->ip_hl_v & 0x0f) > 0x05) 1208 return; 1209 /* Check the Checksum of the header */ 1210 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1211 debug("checksum bad\n"); 1212 return; 1213 } 1214 /* If it is not for us, ignore it */ 1215 dst_ip = net_read_ip(&ip->ip_dst); 1216 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1217 dst_ip.s_addr != 0xFFFFFFFF) { 1218 #ifdef CONFIG_MCAST_TFTP 1219 if (net_mcast_addr != dst_ip) 1220 #endif 1221 return; 1222 } 1223 /* Read source IP address for later use */ 1224 src_ip = net_read_ip(&ip->ip_src); 1225 /* 1226 * The function returns the unchanged packet if it's not 1227 * a fragment, and either the complete packet or NULL if 1228 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1229 */ 1230 ip = net_defragment(ip, &len); 1231 if (!ip) 1232 return; 1233 /* 1234 * watch for ICMP host redirects 1235 * 1236 * There is no real handler code (yet). We just watch 1237 * for ICMP host redirect messages. In case anybody 1238 * sees these messages: please contact me 1239 * (wd@denx.de), or - even better - send me the 1240 * necessary fixes :-) 1241 * 1242 * Note: in all cases where I have seen this so far 1243 * it was a problem with the router configuration, 1244 * for instance when a router was configured in the 1245 * BOOTP reply, but the TFTP server was on the same 1246 * subnet. So this is probably a warning that your 1247 * configuration might be wrong. But I'm not really 1248 * sure if there aren't any other situations. 1249 * 1250 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1251 * we send a tftp packet to a dead connection, or when 1252 * there is no server at the other end. 1253 */ 1254 if (ip->ip_p == IPPROTO_ICMP) { 1255 receive_icmp(ip, len, src_ip, et); 1256 return; 1257 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1258 return; 1259 } 1260 1261 debug_cond(DEBUG_DEV_PKT, 1262 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1263 &dst_ip, &src_ip, len); 1264 1265 #ifdef CONFIG_UDP_CHECKSUM 1266 if (ip->udp_xsum != 0) { 1267 ulong xsum; 1268 ushort *sumptr; 1269 ushort sumlen; 1270 1271 xsum = ip->ip_p; 1272 xsum += (ntohs(ip->udp_len)); 1273 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1274 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1275 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1276 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1277 1278 sumlen = ntohs(ip->udp_len); 1279 sumptr = (ushort *)&(ip->udp_src); 1280 1281 while (sumlen > 1) { 1282 ushort sumdata; 1283 1284 sumdata = *sumptr++; 1285 xsum += ntohs(sumdata); 1286 sumlen -= 2; 1287 } 1288 if (sumlen > 0) { 1289 ushort sumdata; 1290 1291 sumdata = *(unsigned char *)sumptr; 1292 sumdata = (sumdata << 8) & 0xff00; 1293 xsum += sumdata; 1294 } 1295 while ((xsum >> 16) != 0) { 1296 xsum = (xsum & 0x0000ffff) + 1297 ((xsum >> 16) & 0x0000ffff); 1298 } 1299 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1300 printf(" UDP wrong checksum %08lx %08x\n", 1301 xsum, ntohs(ip->udp_xsum)); 1302 return; 1303 } 1304 } 1305 #endif 1306 1307 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 1308 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1309 src_ip, 1310 ntohs(ip->udp_dst), 1311 ntohs(ip->udp_src), 1312 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1313 #endif 1314 /* 1315 * IP header OK. Pass the packet to the current handler. 1316 */ 1317 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1318 ntohs(ip->udp_dst), 1319 src_ip, 1320 ntohs(ip->udp_src), 1321 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1322 break; 1323 #ifdef CONFIG_CMD_WOL 1324 case PROT_WOL: 1325 wol_receive(ip, len); 1326 break; 1327 #endif 1328 } 1329 } 1330 1331 /**********************************************************************/ 1332 1333 static int net_check_prereq(enum proto_t protocol) 1334 { 1335 switch (protocol) { 1336 /* Fall through */ 1337 #if defined(CONFIG_CMD_PING) 1338 case PING: 1339 if (net_ping_ip.s_addr == 0) { 1340 puts("*** ERROR: ping address not given\n"); 1341 return 1; 1342 } 1343 goto common; 1344 #endif 1345 #if defined(CONFIG_CMD_SNTP) 1346 case SNTP: 1347 if (net_ntp_server.s_addr == 0) { 1348 puts("*** ERROR: NTP server address not given\n"); 1349 return 1; 1350 } 1351 goto common; 1352 #endif 1353 #if defined(CONFIG_CMD_DNS) 1354 case DNS: 1355 if (net_dns_server.s_addr == 0) { 1356 puts("*** ERROR: DNS server address not given\n"); 1357 return 1; 1358 } 1359 goto common; 1360 #endif 1361 #if defined(CONFIG_CMD_NFS) 1362 case NFS: 1363 #endif 1364 /* Fall through */ 1365 case TFTPGET: 1366 case TFTPPUT: 1367 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) { 1368 puts("*** ERROR: `serverip' not set\n"); 1369 return 1; 1370 } 1371 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1372 defined(CONFIG_CMD_DNS) 1373 common: 1374 #endif 1375 /* Fall through */ 1376 1377 case NETCONS: 1378 case FASTBOOT: 1379 case TFTPSRV: 1380 if (net_ip.s_addr == 0) { 1381 puts("*** ERROR: `ipaddr' not set\n"); 1382 return 1; 1383 } 1384 /* Fall through */ 1385 1386 #ifdef CONFIG_CMD_RARP 1387 case RARP: 1388 #endif 1389 case BOOTP: 1390 case CDP: 1391 case DHCP: 1392 case LINKLOCAL: 1393 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1394 int num = eth_get_dev_index(); 1395 1396 switch (num) { 1397 case -1: 1398 puts("*** ERROR: No ethernet found.\n"); 1399 return 1; 1400 case 0: 1401 puts("*** ERROR: `ethaddr' not set\n"); 1402 break; 1403 default: 1404 printf("*** ERROR: `eth%daddr' not set\n", 1405 num); 1406 break; 1407 } 1408 1409 net_start_again(); 1410 return 2; 1411 } 1412 /* Fall through */ 1413 default: 1414 return 0; 1415 } 1416 return 0; /* OK */ 1417 } 1418 /**********************************************************************/ 1419 1420 int 1421 net_eth_hdr_size(void) 1422 { 1423 ushort myvlanid; 1424 1425 myvlanid = ntohs(net_our_vlan); 1426 if (myvlanid == (ushort)-1) 1427 myvlanid = VLAN_NONE; 1428 1429 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1430 VLAN_ETHER_HDR_SIZE; 1431 } 1432 1433 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1434 { 1435 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1436 ushort myvlanid; 1437 1438 myvlanid = ntohs(net_our_vlan); 1439 if (myvlanid == (ushort)-1) 1440 myvlanid = VLAN_NONE; 1441 1442 memcpy(et->et_dest, dest_ethaddr, 6); 1443 memcpy(et->et_src, net_ethaddr, 6); 1444 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1445 et->et_protlen = htons(prot); 1446 return ETHER_HDR_SIZE; 1447 } else { 1448 struct vlan_ethernet_hdr *vet = 1449 (struct vlan_ethernet_hdr *)xet; 1450 1451 vet->vet_vlan_type = htons(PROT_VLAN); 1452 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1453 vet->vet_type = htons(prot); 1454 return VLAN_ETHER_HDR_SIZE; 1455 } 1456 } 1457 1458 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1459 { 1460 ushort protlen; 1461 1462 memcpy(et->et_dest, addr, 6); 1463 memcpy(et->et_src, net_ethaddr, 6); 1464 protlen = ntohs(et->et_protlen); 1465 if (protlen == PROT_VLAN) { 1466 struct vlan_ethernet_hdr *vet = 1467 (struct vlan_ethernet_hdr *)et; 1468 vet->vet_type = htons(prot); 1469 return VLAN_ETHER_HDR_SIZE; 1470 } else if (protlen > 1514) { 1471 et->et_protlen = htons(prot); 1472 return ETHER_HDR_SIZE; 1473 } else { 1474 /* 802.2 + SNAP */ 1475 struct e802_hdr *et802 = (struct e802_hdr *)et; 1476 et802->et_prot = htons(prot); 1477 return E802_HDR_SIZE; 1478 } 1479 } 1480 1481 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source, 1482 u16 pkt_len, u8 proto) 1483 { 1484 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1485 1486 /* 1487 * Construct an IP header. 1488 */ 1489 /* IP_HDR_SIZE / 4 (not including UDP) */ 1490 ip->ip_hl_v = 0x45; 1491 ip->ip_tos = 0; 1492 ip->ip_len = htons(pkt_len); 1493 ip->ip_p = proto; 1494 ip->ip_id = htons(net_ip_id++); 1495 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1496 ip->ip_ttl = 255; 1497 ip->ip_sum = 0; 1498 /* already in network byte order */ 1499 net_copy_ip((void *)&ip->ip_src, &source); 1500 /* already in network byte order */ 1501 net_copy_ip((void *)&ip->ip_dst, &dest); 1502 1503 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1504 } 1505 1506 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1507 int len) 1508 { 1509 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1510 1511 /* 1512 * If the data is an odd number of bytes, zero the 1513 * byte after the last byte so that the checksum 1514 * will work. 1515 */ 1516 if (len & 1) 1517 pkt[IP_UDP_HDR_SIZE + len] = 0; 1518 1519 net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len, 1520 IPPROTO_UDP); 1521 1522 ip->udp_src = htons(sport); 1523 ip->udp_dst = htons(dport); 1524 ip->udp_len = htons(UDP_HDR_SIZE + len); 1525 ip->udp_xsum = 0; 1526 } 1527 1528 void copy_filename(char *dst, const char *src, int size) 1529 { 1530 if (src && *src && (*src == '"')) { 1531 ++src; 1532 --size; 1533 } 1534 1535 while ((--size > 0) && src && *src && (*src != '"')) 1536 *dst++ = *src++; 1537 *dst = '\0'; 1538 } 1539 1540 int is_serverip_in_cmd(void) 1541 { 1542 return !!strchr(net_boot_file_name, ':'); 1543 } 1544 1545 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len) 1546 { 1547 char *colon; 1548 1549 if (net_boot_file_name[0] == '\0') 1550 return 0; 1551 1552 colon = strchr(net_boot_file_name, ':'); 1553 if (colon) { 1554 if (ipaddr) 1555 *ipaddr = string_to_ip(net_boot_file_name); 1556 strncpy(filename, colon + 1, max_len); 1557 } else { 1558 strncpy(filename, net_boot_file_name, max_len); 1559 } 1560 filename[max_len - 1] = '\0'; 1561 1562 return 1; 1563 } 1564 1565 #if defined(CONFIG_CMD_NFS) || \ 1566 defined(CONFIG_CMD_SNTP) || \ 1567 defined(CONFIG_CMD_DNS) 1568 /* 1569 * make port a little random (1024-17407) 1570 * This keeps the math somewhat trivial to compute, and seems to work with 1571 * all supported protocols/clients/servers 1572 */ 1573 unsigned int random_port(void) 1574 { 1575 return 1024 + (get_timer(0) % 0x4000); 1576 } 1577 #endif 1578 1579 void ip_to_string(struct in_addr x, char *s) 1580 { 1581 x.s_addr = ntohl(x.s_addr); 1582 sprintf(s, "%d.%d.%d.%d", 1583 (int) ((x.s_addr >> 24) & 0xff), 1584 (int) ((x.s_addr >> 16) & 0xff), 1585 (int) ((x.s_addr >> 8) & 0xff), 1586 (int) ((x.s_addr >> 0) & 0xff) 1587 ); 1588 } 1589 1590 void vlan_to_string(ushort x, char *s) 1591 { 1592 x = ntohs(x); 1593 1594 if (x == (ushort)-1) 1595 x = VLAN_NONE; 1596 1597 if (x == VLAN_NONE) 1598 strcpy(s, "none"); 1599 else 1600 sprintf(s, "%d", x & VLAN_IDMASK); 1601 } 1602 1603 ushort string_to_vlan(const char *s) 1604 { 1605 ushort id; 1606 1607 if (s == NULL) 1608 return htons(VLAN_NONE); 1609 1610 if (*s < '0' || *s > '9') 1611 id = VLAN_NONE; 1612 else 1613 id = (ushort)simple_strtoul(s, NULL, 10); 1614 1615 return htons(id); 1616 } 1617 1618 ushort env_get_vlan(char *var) 1619 { 1620 return string_to_vlan(env_get(var)); 1621 } 1622