xref: /openbmc/u-boot/net/net.c (revision c9bb942e2f91d9f8e5f25ed1961eba2d64f65b8d)
1  /*
2   *	Copied from Linux Monitor (LiMon) - Networking.
3   *
4   *	Copyright 1994 - 2000 Neil Russell.
5   *	(See License)
6   *	Copyright 2000 Roland Borde
7   *	Copyright 2000 Paolo Scaffardi
8   *	Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9   *	SPDX-License-Identifier:	GPL-2.0
10   */
11  
12  /*
13   * General Desription:
14   *
15   * The user interface supports commands for BOOTP, RARP, and TFTP.
16   * Also, we support ARP internally. Depending on available data,
17   * these interact as follows:
18   *
19   * BOOTP:
20   *
21   *	Prerequisites:	- own ethernet address
22   *	We want:	- own IP address
23   *			- TFTP server IP address
24   *			- name of bootfile
25   *	Next step:	ARP
26   *
27   * LINK_LOCAL:
28   *
29   *	Prerequisites:	- own ethernet address
30   *	We want:	- own IP address
31   *	Next step:	ARP
32   *
33   * RARP:
34   *
35   *	Prerequisites:	- own ethernet address
36   *	We want:	- own IP address
37   *			- TFTP server IP address
38   *	Next step:	ARP
39   *
40   * ARP:
41   *
42   *	Prerequisites:	- own ethernet address
43   *			- own IP address
44   *			- TFTP server IP address
45   *	We want:	- TFTP server ethernet address
46   *	Next step:	TFTP
47   *
48   * DHCP:
49   *
50   *     Prerequisites:	- own ethernet address
51   *     We want:		- IP, Netmask, ServerIP, Gateway IP
52   *			- bootfilename, lease time
53   *     Next step:	- TFTP
54   *
55   * TFTP:
56   *
57   *	Prerequisites:	- own ethernet address
58   *			- own IP address
59   *			- TFTP server IP address
60   *			- TFTP server ethernet address
61   *			- name of bootfile (if unknown, we use a default name
62   *			  derived from our own IP address)
63   *	We want:	- load the boot file
64   *	Next step:	none
65   *
66   * NFS:
67   *
68   *	Prerequisites:	- own ethernet address
69   *			- own IP address
70   *			- name of bootfile (if unknown, we use a default name
71   *			  derived from our own IP address)
72   *	We want:	- load the boot file
73   *	Next step:	none
74   *
75   * SNTP:
76   *
77   *	Prerequisites:	- own ethernet address
78   *			- own IP address
79   *	We want:	- network time
80   *	Next step:	none
81   */
82  
83  
84  #include <common.h>
85  #include <command.h>
86  #include <environment.h>
87  #include <errno.h>
88  #include <net.h>
89  #if defined(CONFIG_STATUS_LED)
90  #include <miiphy.h>
91  #include <status_led.h>
92  #endif
93  #include <watchdog.h>
94  #include <linux/compiler.h>
95  #include "arp.h"
96  #include "bootp.h"
97  #include "cdp.h"
98  #if defined(CONFIG_CMD_DNS)
99  #include "dns.h"
100  #endif
101  #include "link_local.h"
102  #include "nfs.h"
103  #include "ping.h"
104  #include "rarp.h"
105  #if defined(CONFIG_CMD_SNTP)
106  #include "sntp.h"
107  #endif
108  #include "tftp.h"
109  
110  DECLARE_GLOBAL_DATA_PTR;
111  
112  /** BOOTP EXTENTIONS **/
113  
114  /* Our subnet mask (0=unknown) */
115  struct in_addr net_netmask;
116  /* Our gateways IP address */
117  struct in_addr net_gateway;
118  /* Our DNS IP address */
119  struct in_addr net_dns_server;
120  #if defined(CONFIG_BOOTP_DNS2)
121  /* Our 2nd DNS IP address */
122  struct in_addr net_dns_server2;
123  #endif
124  
125  #ifdef CONFIG_MCAST_TFTP	/* Multicast TFTP */
126  struct in_addr net_mcast_addr;
127  #endif
128  
129  /** END OF BOOTP EXTENTIONS **/
130  
131  /* Our ethernet address */
132  u8 net_ethaddr[6];
133  /* Boot server enet address */
134  u8 net_server_ethaddr[6];
135  /* Our IP addr (0 = unknown) */
136  struct in_addr	net_ip;
137  /* Server IP addr (0 = unknown) */
138  struct in_addr	net_server_ip;
139  /* Current receive packet */
140  uchar *net_rx_packet;
141  /* Current rx packet length */
142  int		net_rx_packet_len;
143  /* IP packet ID */
144  static unsigned	net_ip_id;
145  /* Ethernet bcast address */
146  const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
147  const u8 net_null_ethaddr[6];
148  #ifdef CONFIG_API
149  void (*push_packet)(void *, int len) = 0;
150  #endif
151  /* Network loop state */
152  enum net_loop_state net_state;
153  /* Tried all network devices */
154  int		net_restart_wrap;
155  /* Network loop restarted */
156  static int	net_restarted;
157  /* At least one device configured */
158  static int	net_dev_exists;
159  
160  /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
161  /* default is without VLAN */
162  ushort		net_our_vlan = 0xFFFF;
163  /* ditto */
164  ushort		net_native_vlan = 0xFFFF;
165  
166  /* Boot File name */
167  char net_boot_file_name[128];
168  /* The actual transferred size of the bootfile (in bytes) */
169  u32 net_boot_file_size;
170  /* Boot file size in blocks as reported by the DHCP server */
171  u32 net_boot_file_expected_size_in_blocks;
172  
173  #if defined(CONFIG_CMD_SNTP)
174  /* NTP server IP address */
175  struct in_addr	net_ntp_server;
176  /* offset time from UTC */
177  int		net_ntp_time_offset;
178  #endif
179  
180  static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
181  /* Receive packets */
182  uchar *net_rx_packets[PKTBUFSRX];
183  /* Current UDP RX packet handler */
184  static rxhand_f *udp_packet_handler;
185  /* Current ARP RX packet handler */
186  static rxhand_f *arp_packet_handler;
187  #ifdef CONFIG_CMD_TFTPPUT
188  /* Current ICMP rx handler */
189  static rxhand_icmp_f *packet_icmp_handler;
190  #endif
191  /* Current timeout handler */
192  static thand_f *time_handler;
193  /* Time base value */
194  static ulong	time_start;
195  /* Current timeout value */
196  static ulong	time_delta;
197  /* THE transmit packet */
198  uchar *net_tx_packet;
199  
200  static int net_check_prereq(enum proto_t protocol);
201  
202  static int net_try_count;
203  
204  int __maybe_unused net_busy_flag;
205  
206  /**********************************************************************/
207  
208  static int on_bootfile(const char *name, const char *value, enum env_op op,
209  	int flags)
210  {
211  	if (flags & H_PROGRAMMATIC)
212  		return 0;
213  
214  	switch (op) {
215  	case env_op_create:
216  	case env_op_overwrite:
217  		copy_filename(net_boot_file_name, value,
218  			      sizeof(net_boot_file_name));
219  		break;
220  	default:
221  		break;
222  	}
223  
224  	return 0;
225  }
226  U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
227  
228  static int on_ipaddr(const char *name, const char *value, enum env_op op,
229  	int flags)
230  {
231  	if (flags & H_PROGRAMMATIC)
232  		return 0;
233  
234  	net_ip = string_to_ip(value);
235  
236  	return 0;
237  }
238  U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
239  
240  static int on_gatewayip(const char *name, const char *value, enum env_op op,
241  	int flags)
242  {
243  	if (flags & H_PROGRAMMATIC)
244  		return 0;
245  
246  	net_gateway = string_to_ip(value);
247  
248  	return 0;
249  }
250  U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
251  
252  static int on_netmask(const char *name, const char *value, enum env_op op,
253  	int flags)
254  {
255  	if (flags & H_PROGRAMMATIC)
256  		return 0;
257  
258  	net_netmask = string_to_ip(value);
259  
260  	return 0;
261  }
262  U_BOOT_ENV_CALLBACK(netmask, on_netmask);
263  
264  static int on_serverip(const char *name, const char *value, enum env_op op,
265  	int flags)
266  {
267  	if (flags & H_PROGRAMMATIC)
268  		return 0;
269  
270  	net_server_ip = string_to_ip(value);
271  
272  	return 0;
273  }
274  U_BOOT_ENV_CALLBACK(serverip, on_serverip);
275  
276  static int on_nvlan(const char *name, const char *value, enum env_op op,
277  	int flags)
278  {
279  	if (flags & H_PROGRAMMATIC)
280  		return 0;
281  
282  	net_native_vlan = string_to_vlan(value);
283  
284  	return 0;
285  }
286  U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
287  
288  static int on_vlan(const char *name, const char *value, enum env_op op,
289  	int flags)
290  {
291  	if (flags & H_PROGRAMMATIC)
292  		return 0;
293  
294  	net_our_vlan = string_to_vlan(value);
295  
296  	return 0;
297  }
298  U_BOOT_ENV_CALLBACK(vlan, on_vlan);
299  
300  #if defined(CONFIG_CMD_DNS)
301  static int on_dnsip(const char *name, const char *value, enum env_op op,
302  	int flags)
303  {
304  	if (flags & H_PROGRAMMATIC)
305  		return 0;
306  
307  	net_dns_server = string_to_ip(value);
308  
309  	return 0;
310  }
311  U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
312  #endif
313  
314  /*
315   * Check if autoload is enabled. If so, use either NFS or TFTP to download
316   * the boot file.
317   */
318  void net_auto_load(void)
319  {
320  #if defined(CONFIG_CMD_NFS)
321  	const char *s = getenv("autoload");
322  
323  	if (s != NULL && strcmp(s, "NFS") == 0) {
324  		/*
325  		 * Use NFS to load the bootfile.
326  		 */
327  		nfs_start();
328  		return;
329  	}
330  #endif
331  	if (getenv_yesno("autoload") == 0) {
332  		/*
333  		 * Just use BOOTP/RARP to configure system;
334  		 * Do not use TFTP to load the bootfile.
335  		 */
336  		net_set_state(NETLOOP_SUCCESS);
337  		return;
338  	}
339  	tftp_start(TFTPGET);
340  }
341  
342  static void net_init_loop(void)
343  {
344  	if (eth_get_dev())
345  		memcpy(net_ethaddr, eth_get_ethaddr(), 6);
346  
347  	return;
348  }
349  
350  static void net_clear_handlers(void)
351  {
352  	net_set_udp_handler(NULL);
353  	net_set_arp_handler(NULL);
354  	net_set_timeout_handler(0, NULL);
355  }
356  
357  static void net_cleanup_loop(void)
358  {
359  	net_clear_handlers();
360  }
361  
362  void net_init(void)
363  {
364  	static int first_call = 1;
365  
366  	if (first_call) {
367  		/*
368  		 *	Setup packet buffers, aligned correctly.
369  		 */
370  		int i;
371  
372  		net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
373  		net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
374  		for (i = 0; i < PKTBUFSRX; i++) {
375  			net_rx_packets[i] = net_tx_packet +
376  				(i + 1) * PKTSIZE_ALIGN;
377  		}
378  		arp_init();
379  		net_clear_handlers();
380  
381  		/* Only need to setup buffer pointers once. */
382  		first_call = 0;
383  	}
384  
385  	net_init_loop();
386  }
387  
388  /**********************************************************************/
389  /*
390   *	Main network processing loop.
391   */
392  
393  int net_loop(enum proto_t protocol)
394  {
395  	int ret = -EINVAL;
396  
397  	net_restarted = 0;
398  	net_dev_exists = 0;
399  	net_try_count = 1;
400  	debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
401  
402  	bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
403  	net_init();
404  	if (eth_is_on_demand_init() || protocol != NETCONS) {
405  		eth_halt();
406  		eth_set_current();
407  		ret = eth_init();
408  		if (ret < 0) {
409  			eth_halt();
410  			return ret;
411  		}
412  	} else {
413  		eth_init_state_only();
414  	}
415  restart:
416  #ifdef CONFIG_USB_KEYBOARD
417  	net_busy_flag = 0;
418  #endif
419  	net_set_state(NETLOOP_CONTINUE);
420  
421  	/*
422  	 *	Start the ball rolling with the given start function.  From
423  	 *	here on, this code is a state machine driven by received
424  	 *	packets and timer events.
425  	 */
426  	debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
427  	net_init_loop();
428  
429  	switch (net_check_prereq(protocol)) {
430  	case 1:
431  		/* network not configured */
432  		eth_halt();
433  		return -ENODEV;
434  
435  	case 2:
436  		/* network device not configured */
437  		break;
438  
439  	case 0:
440  		net_dev_exists = 1;
441  		net_boot_file_size = 0;
442  		switch (protocol) {
443  		case TFTPGET:
444  #ifdef CONFIG_CMD_TFTPPUT
445  		case TFTPPUT:
446  #endif
447  			/* always use ARP to get server ethernet address */
448  			tftp_start(protocol);
449  			break;
450  #ifdef CONFIG_CMD_TFTPSRV
451  		case TFTPSRV:
452  			tftp_start_server();
453  			break;
454  #endif
455  #if defined(CONFIG_CMD_DHCP)
456  		case DHCP:
457  			bootp_reset();
458  			net_ip.s_addr = 0;
459  			dhcp_request();		/* Basically same as BOOTP */
460  			break;
461  #endif
462  
463  		case BOOTP:
464  			bootp_reset();
465  			net_ip.s_addr = 0;
466  			bootp_request();
467  			break;
468  
469  #if defined(CONFIG_CMD_RARP)
470  		case RARP:
471  			rarp_try = 0;
472  			net_ip.s_addr = 0;
473  			rarp_request();
474  			break;
475  #endif
476  #if defined(CONFIG_CMD_PING)
477  		case PING:
478  			ping_start();
479  			break;
480  #endif
481  #if defined(CONFIG_CMD_NFS)
482  		case NFS:
483  			nfs_start();
484  			break;
485  #endif
486  #if defined(CONFIG_CMD_CDP)
487  		case CDP:
488  			cdp_start();
489  			break;
490  #endif
491  #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
492  		case NETCONS:
493  			nc_start();
494  			break;
495  #endif
496  #if defined(CONFIG_CMD_SNTP)
497  		case SNTP:
498  			sntp_start();
499  			break;
500  #endif
501  #if defined(CONFIG_CMD_DNS)
502  		case DNS:
503  			dns_start();
504  			break;
505  #endif
506  #if defined(CONFIG_CMD_LINK_LOCAL)
507  		case LINKLOCAL:
508  			link_local_start();
509  			break;
510  #endif
511  		default:
512  			break;
513  		}
514  
515  		break;
516  	}
517  
518  #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
519  #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
520  	defined(CONFIG_STATUS_LED)			&& \
521  	defined(STATUS_LED_RED)
522  	/*
523  	 * Echo the inverted link state to the fault LED.
524  	 */
525  	if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
526  		status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
527  	else
528  		status_led_set(STATUS_LED_RED, STATUS_LED_ON);
529  #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
530  #endif /* CONFIG_MII, ... */
531  #ifdef CONFIG_USB_KEYBOARD
532  	net_busy_flag = 1;
533  #endif
534  
535  	/*
536  	 *	Main packet reception loop.  Loop receiving packets until
537  	 *	someone sets `net_state' to a state that terminates.
538  	 */
539  	for (;;) {
540  		WATCHDOG_RESET();
541  #ifdef CONFIG_SHOW_ACTIVITY
542  		show_activity(1);
543  #endif
544  		/*
545  		 *	Check the ethernet for a new packet.  The ethernet
546  		 *	receive routine will process it.
547  		 *	Most drivers return the most recent packet size, but not
548  		 *	errors that may have happened.
549  		 */
550  		eth_rx();
551  
552  		/*
553  		 *	Abort if ctrl-c was pressed.
554  		 */
555  		if (ctrlc()) {
556  			/* cancel any ARP that may not have completed */
557  			net_arp_wait_packet_ip.s_addr = 0;
558  
559  			net_cleanup_loop();
560  			eth_halt();
561  			/* Invalidate the last protocol */
562  			eth_set_last_protocol(BOOTP);
563  
564  			puts("\nAbort\n");
565  			/* include a debug print as well incase the debug
566  			   messages are directed to stderr */
567  			debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
568  			goto done;
569  		}
570  
571  		arp_timeout_check();
572  
573  		/*
574  		 *	Check for a timeout, and run the timeout handler
575  		 *	if we have one.
576  		 */
577  		if (time_handler &&
578  		    ((get_timer(0) - time_start) > time_delta)) {
579  			thand_f *x;
580  
581  #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
582  #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
583  	defined(CONFIG_STATUS_LED)			&& \
584  	defined(STATUS_LED_RED)
585  			/*
586  			 * Echo the inverted link state to the fault LED.
587  			 */
588  			if (miiphy_link(eth_get_dev()->name,
589  					CONFIG_SYS_FAULT_MII_ADDR))
590  				status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
591  			else
592  				status_led_set(STATUS_LED_RED, STATUS_LED_ON);
593  #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
594  #endif /* CONFIG_MII, ... */
595  			debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
596  			x = time_handler;
597  			time_handler = (thand_f *)0;
598  			(*x)();
599  		}
600  
601  		if (net_state == NETLOOP_FAIL)
602  			ret = net_start_again();
603  
604  		switch (net_state) {
605  		case NETLOOP_RESTART:
606  			net_restarted = 1;
607  			goto restart;
608  
609  		case NETLOOP_SUCCESS:
610  			net_cleanup_loop();
611  			if (net_boot_file_size > 0) {
612  				printf("Bytes transferred = %d (%x hex)\n",
613  				       net_boot_file_size, net_boot_file_size);
614  				setenv_hex("filesize", net_boot_file_size);
615  				setenv_hex("fileaddr", load_addr);
616  			}
617  			if (protocol != NETCONS)
618  				eth_halt();
619  			else
620  				eth_halt_state_only();
621  
622  			eth_set_last_protocol(protocol);
623  
624  			ret = net_boot_file_size;
625  			debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
626  			goto done;
627  
628  		case NETLOOP_FAIL:
629  			net_cleanup_loop();
630  			/* Invalidate the last protocol */
631  			eth_set_last_protocol(BOOTP);
632  			debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
633  			goto done;
634  
635  		case NETLOOP_CONTINUE:
636  			continue;
637  		}
638  	}
639  
640  done:
641  #ifdef CONFIG_USB_KEYBOARD
642  	net_busy_flag = 0;
643  #endif
644  #ifdef CONFIG_CMD_TFTPPUT
645  	/* Clear out the handlers */
646  	net_set_udp_handler(NULL);
647  	net_set_icmp_handler(NULL);
648  #endif
649  	return ret;
650  }
651  
652  /**********************************************************************/
653  
654  static void start_again_timeout_handler(void)
655  {
656  	net_set_state(NETLOOP_RESTART);
657  }
658  
659  int net_start_again(void)
660  {
661  	char *nretry;
662  	int retry_forever = 0;
663  	unsigned long retrycnt = 0;
664  	int ret;
665  
666  	nretry = getenv("netretry");
667  	if (nretry) {
668  		if (!strcmp(nretry, "yes"))
669  			retry_forever = 1;
670  		else if (!strcmp(nretry, "no"))
671  			retrycnt = 0;
672  		else if (!strcmp(nretry, "once"))
673  			retrycnt = 1;
674  		else
675  			retrycnt = simple_strtoul(nretry, NULL, 0);
676  	} else {
677  		retrycnt = 0;
678  		retry_forever = 0;
679  	}
680  
681  	if ((!retry_forever) && (net_try_count >= retrycnt)) {
682  		eth_halt();
683  		net_set_state(NETLOOP_FAIL);
684  		/*
685  		 * We don't provide a way for the protocol to return an error,
686  		 * but this is almost always the reason.
687  		 */
688  		return -ETIMEDOUT;
689  	}
690  
691  	net_try_count++;
692  
693  	eth_halt();
694  #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
695  	eth_try_another(!net_restarted);
696  #endif
697  	ret = eth_init();
698  	if (net_restart_wrap) {
699  		net_restart_wrap = 0;
700  		if (net_dev_exists) {
701  			net_set_timeout_handler(10000UL,
702  						start_again_timeout_handler);
703  			net_set_udp_handler(NULL);
704  		} else {
705  			net_set_state(NETLOOP_FAIL);
706  		}
707  	} else {
708  		net_set_state(NETLOOP_RESTART);
709  	}
710  	return ret;
711  }
712  
713  /**********************************************************************/
714  /*
715   *	Miscelaneous bits.
716   */
717  
718  static void dummy_handler(uchar *pkt, unsigned dport,
719  			struct in_addr sip, unsigned sport,
720  			unsigned len)
721  {
722  }
723  
724  rxhand_f *net_get_udp_handler(void)
725  {
726  	return udp_packet_handler;
727  }
728  
729  void net_set_udp_handler(rxhand_f *f)
730  {
731  	debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
732  	if (f == NULL)
733  		udp_packet_handler = dummy_handler;
734  	else
735  		udp_packet_handler = f;
736  }
737  
738  rxhand_f *net_get_arp_handler(void)
739  {
740  	return arp_packet_handler;
741  }
742  
743  void net_set_arp_handler(rxhand_f *f)
744  {
745  	debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
746  	if (f == NULL)
747  		arp_packet_handler = dummy_handler;
748  	else
749  		arp_packet_handler = f;
750  }
751  
752  #ifdef CONFIG_CMD_TFTPPUT
753  void net_set_icmp_handler(rxhand_icmp_f *f)
754  {
755  	packet_icmp_handler = f;
756  }
757  #endif
758  
759  void net_set_timeout_handler(ulong iv, thand_f *f)
760  {
761  	if (iv == 0) {
762  		debug_cond(DEBUG_INT_STATE,
763  			   "--- net_loop timeout handler cancelled\n");
764  		time_handler = (thand_f *)0;
765  	} else {
766  		debug_cond(DEBUG_INT_STATE,
767  			   "--- net_loop timeout handler set (%p)\n", f);
768  		time_handler = f;
769  		time_start = get_timer(0);
770  		time_delta = iv * CONFIG_SYS_HZ / 1000;
771  	}
772  }
773  
774  int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
775  		int payload_len)
776  {
777  	uchar *pkt;
778  	int eth_hdr_size;
779  	int pkt_hdr_size;
780  
781  	/* make sure the net_tx_packet is initialized (net_init() was called) */
782  	assert(net_tx_packet != NULL);
783  	if (net_tx_packet == NULL)
784  		return -1;
785  
786  	/* convert to new style broadcast */
787  	if (dest.s_addr == 0)
788  		dest.s_addr = 0xFFFFFFFF;
789  
790  	/* if broadcast, make the ether address a broadcast and don't do ARP */
791  	if (dest.s_addr == 0xFFFFFFFF)
792  		ether = (uchar *)net_bcast_ethaddr;
793  
794  	pkt = (uchar *)net_tx_packet;
795  
796  	eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
797  	pkt += eth_hdr_size;
798  	net_set_udp_header(pkt, dest, dport, sport, payload_len);
799  	pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
800  
801  	/* if MAC address was not discovered yet, do an ARP request */
802  	if (memcmp(ether, net_null_ethaddr, 6) == 0) {
803  		debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
804  
805  		/* save the ip and eth addr for the packet to send after arp */
806  		net_arp_wait_packet_ip = dest;
807  		arp_wait_packet_ethaddr = ether;
808  
809  		/* size of the waiting packet */
810  		arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
811  
812  		/* and do the ARP request */
813  		arp_wait_try = 1;
814  		arp_wait_timer_start = get_timer(0);
815  		arp_request();
816  		return 1;	/* waiting */
817  	} else {
818  		debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
819  			   &dest, ether);
820  		net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
821  		return 0;	/* transmitted */
822  	}
823  }
824  
825  #ifdef CONFIG_IP_DEFRAG
826  /*
827   * This function collects fragments in a single packet, according
828   * to the algorithm in RFC815. It returns NULL or the pointer to
829   * a complete packet, in static storage
830   */
831  #ifndef CONFIG_NET_MAXDEFRAG
832  #define CONFIG_NET_MAXDEFRAG 16384
833  #endif
834  /*
835   * MAXDEFRAG, above, is chosen in the config file and  is real data
836   * so we need to add the NFS overhead, which is more than TFTP.
837   * To use sizeof in the internal unnamed structures, we need a real
838   * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately).
839   * The compiler doesn't complain nor allocates the actual structure
840   */
841  static struct rpc_t rpc_specimen;
842  #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply))
843  
844  #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
845  
846  /*
847   * this is the packet being assembled, either data or frag control.
848   * Fragments go by 8 bytes, so this union must be 8 bytes long
849   */
850  struct hole {
851  	/* first_byte is address of this structure */
852  	u16 last_byte;	/* last byte in this hole + 1 (begin of next hole) */
853  	u16 next_hole;	/* index of next (in 8-b blocks), 0 == none */
854  	u16 prev_hole;	/* index of prev, 0 == none */
855  	u16 unused;
856  };
857  
858  static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
859  {
860  	static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
861  	static u16 first_hole, total_len;
862  	struct hole *payload, *thisfrag, *h, *newh;
863  	struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
864  	uchar *indata = (uchar *)ip;
865  	int offset8, start, len, done = 0;
866  	u16 ip_off = ntohs(ip->ip_off);
867  
868  	/* payload starts after IP header, this fragment is in there */
869  	payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
870  	offset8 =  (ip_off & IP_OFFS);
871  	thisfrag = payload + offset8;
872  	start = offset8 * 8;
873  	len = ntohs(ip->ip_len) - IP_HDR_SIZE;
874  
875  	if (start + len > IP_MAXUDP) /* fragment extends too far */
876  		return NULL;
877  
878  	if (!total_len || localip->ip_id != ip->ip_id) {
879  		/* new (or different) packet, reset structs */
880  		total_len = 0xffff;
881  		payload[0].last_byte = ~0;
882  		payload[0].next_hole = 0;
883  		payload[0].prev_hole = 0;
884  		first_hole = 0;
885  		/* any IP header will work, copy the first we received */
886  		memcpy(localip, ip, IP_HDR_SIZE);
887  	}
888  
889  	/*
890  	 * What follows is the reassembly algorithm. We use the payload
891  	 * array as a linked list of hole descriptors, as each hole starts
892  	 * at a multiple of 8 bytes. However, last byte can be whatever value,
893  	 * so it is represented as byte count, not as 8-byte blocks.
894  	 */
895  
896  	h = payload + first_hole;
897  	while (h->last_byte < start) {
898  		if (!h->next_hole) {
899  			/* no hole that far away */
900  			return NULL;
901  		}
902  		h = payload + h->next_hole;
903  	}
904  
905  	/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
906  	if (offset8 + ((len + 7) / 8) <= h - payload) {
907  		/* no overlap with holes (dup fragment?) */
908  		return NULL;
909  	}
910  
911  	if (!(ip_off & IP_FLAGS_MFRAG)) {
912  		/* no more fragmentss: truncate this (last) hole */
913  		total_len = start + len;
914  		h->last_byte = start + len;
915  	}
916  
917  	/*
918  	 * There is some overlap: fix the hole list. This code doesn't
919  	 * deal with a fragment that overlaps with two different holes
920  	 * (thus being a superset of a previously-received fragment).
921  	 */
922  
923  	if ((h >= thisfrag) && (h->last_byte <= start + len)) {
924  		/* complete overlap with hole: remove hole */
925  		if (!h->prev_hole && !h->next_hole) {
926  			/* last remaining hole */
927  			done = 1;
928  		} else if (!h->prev_hole) {
929  			/* first hole */
930  			first_hole = h->next_hole;
931  			payload[h->next_hole].prev_hole = 0;
932  		} else if (!h->next_hole) {
933  			/* last hole */
934  			payload[h->prev_hole].next_hole = 0;
935  		} else {
936  			/* in the middle of the list */
937  			payload[h->next_hole].prev_hole = h->prev_hole;
938  			payload[h->prev_hole].next_hole = h->next_hole;
939  		}
940  
941  	} else if (h->last_byte <= start + len) {
942  		/* overlaps with final part of the hole: shorten this hole */
943  		h->last_byte = start;
944  
945  	} else if (h >= thisfrag) {
946  		/* overlaps with initial part of the hole: move this hole */
947  		newh = thisfrag + (len / 8);
948  		*newh = *h;
949  		h = newh;
950  		if (h->next_hole)
951  			payload[h->next_hole].prev_hole = (h - payload);
952  		if (h->prev_hole)
953  			payload[h->prev_hole].next_hole = (h - payload);
954  		else
955  			first_hole = (h - payload);
956  
957  	} else {
958  		/* fragment sits in the middle: split the hole */
959  		newh = thisfrag + (len / 8);
960  		*newh = *h;
961  		h->last_byte = start;
962  		h->next_hole = (newh - payload);
963  		newh->prev_hole = (h - payload);
964  		if (newh->next_hole)
965  			payload[newh->next_hole].prev_hole = (newh - payload);
966  	}
967  
968  	/* finally copy this fragment and possibly return whole packet */
969  	memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
970  	if (!done)
971  		return NULL;
972  
973  	localip->ip_len = htons(total_len);
974  	*lenp = total_len + IP_HDR_SIZE;
975  	return localip;
976  }
977  
978  static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
979  	int *lenp)
980  {
981  	u16 ip_off = ntohs(ip->ip_off);
982  	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
983  		return ip; /* not a fragment */
984  	return __net_defragment(ip, lenp);
985  }
986  
987  #else /* !CONFIG_IP_DEFRAG */
988  
989  static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
990  	int *lenp)
991  {
992  	u16 ip_off = ntohs(ip->ip_off);
993  	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
994  		return ip; /* not a fragment */
995  	return NULL;
996  }
997  #endif
998  
999  /**
1000   * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1001   * drop others.
1002   *
1003   * @parma ip	IP packet containing the ICMP
1004   */
1005  static void receive_icmp(struct ip_udp_hdr *ip, int len,
1006  			struct in_addr src_ip, struct ethernet_hdr *et)
1007  {
1008  	struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1009  
1010  	switch (icmph->type) {
1011  	case ICMP_REDIRECT:
1012  		if (icmph->code != ICMP_REDIR_HOST)
1013  			return;
1014  		printf(" ICMP Host Redirect to %pI4 ",
1015  		       &icmph->un.gateway);
1016  		break;
1017  	default:
1018  #if defined(CONFIG_CMD_PING)
1019  		ping_receive(et, ip, len);
1020  #endif
1021  #ifdef CONFIG_CMD_TFTPPUT
1022  		if (packet_icmp_handler)
1023  			packet_icmp_handler(icmph->type, icmph->code,
1024  					    ntohs(ip->udp_dst), src_ip,
1025  					    ntohs(ip->udp_src), icmph->un.data,
1026  					    ntohs(ip->udp_len));
1027  #endif
1028  		break;
1029  	}
1030  }
1031  
1032  void net_process_received_packet(uchar *in_packet, int len)
1033  {
1034  	struct ethernet_hdr *et;
1035  	struct ip_udp_hdr *ip;
1036  	struct in_addr dst_ip;
1037  	struct in_addr src_ip;
1038  	int eth_proto;
1039  #if defined(CONFIG_CMD_CDP)
1040  	int iscdp;
1041  #endif
1042  	ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1043  
1044  	debug_cond(DEBUG_NET_PKT, "packet received\n");
1045  
1046  	net_rx_packet = in_packet;
1047  	net_rx_packet_len = len;
1048  	et = (struct ethernet_hdr *)in_packet;
1049  
1050  	/* too small packet? */
1051  	if (len < ETHER_HDR_SIZE)
1052  		return;
1053  
1054  #ifdef CONFIG_API
1055  	if (push_packet) {
1056  		(*push_packet)(in_packet, len);
1057  		return;
1058  	}
1059  #endif
1060  
1061  #if defined(CONFIG_CMD_CDP)
1062  	/* keep track if packet is CDP */
1063  	iscdp = is_cdp_packet(et->et_dest);
1064  #endif
1065  
1066  	myvlanid = ntohs(net_our_vlan);
1067  	if (myvlanid == (ushort)-1)
1068  		myvlanid = VLAN_NONE;
1069  	mynvlanid = ntohs(net_native_vlan);
1070  	if (mynvlanid == (ushort)-1)
1071  		mynvlanid = VLAN_NONE;
1072  
1073  	eth_proto = ntohs(et->et_protlen);
1074  
1075  	if (eth_proto < 1514) {
1076  		struct e802_hdr *et802 = (struct e802_hdr *)et;
1077  		/*
1078  		 *	Got a 802.2 packet.  Check the other protocol field.
1079  		 *	XXX VLAN over 802.2+SNAP not implemented!
1080  		 */
1081  		eth_proto = ntohs(et802->et_prot);
1082  
1083  		ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1084  		len -= E802_HDR_SIZE;
1085  
1086  	} else if (eth_proto != PROT_VLAN) {	/* normal packet */
1087  		ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1088  		len -= ETHER_HDR_SIZE;
1089  
1090  	} else {			/* VLAN packet */
1091  		struct vlan_ethernet_hdr *vet =
1092  			(struct vlan_ethernet_hdr *)et;
1093  
1094  		debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1095  
1096  		/* too small packet? */
1097  		if (len < VLAN_ETHER_HDR_SIZE)
1098  			return;
1099  
1100  		/* if no VLAN active */
1101  		if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1102  #if defined(CONFIG_CMD_CDP)
1103  				&& iscdp == 0
1104  #endif
1105  				)
1106  			return;
1107  
1108  		cti = ntohs(vet->vet_tag);
1109  		vlanid = cti & VLAN_IDMASK;
1110  		eth_proto = ntohs(vet->vet_type);
1111  
1112  		ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1113  		len -= VLAN_ETHER_HDR_SIZE;
1114  	}
1115  
1116  	debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1117  
1118  #if defined(CONFIG_CMD_CDP)
1119  	if (iscdp) {
1120  		cdp_receive((uchar *)ip, len);
1121  		return;
1122  	}
1123  #endif
1124  
1125  	if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1126  		if (vlanid == VLAN_NONE)
1127  			vlanid = (mynvlanid & VLAN_IDMASK);
1128  		/* not matched? */
1129  		if (vlanid != (myvlanid & VLAN_IDMASK))
1130  			return;
1131  	}
1132  
1133  	switch (eth_proto) {
1134  	case PROT_ARP:
1135  		arp_receive(et, ip, len);
1136  		break;
1137  
1138  #ifdef CONFIG_CMD_RARP
1139  	case PROT_RARP:
1140  		rarp_receive(ip, len);
1141  		break;
1142  #endif
1143  	case PROT_IP:
1144  		debug_cond(DEBUG_NET_PKT, "Got IP\n");
1145  		/* Before we start poking the header, make sure it is there */
1146  		if (len < IP_UDP_HDR_SIZE) {
1147  			debug("len bad %d < %lu\n", len,
1148  			      (ulong)IP_UDP_HDR_SIZE);
1149  			return;
1150  		}
1151  		/* Check the packet length */
1152  		if (len < ntohs(ip->ip_len)) {
1153  			debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1154  			return;
1155  		}
1156  		len = ntohs(ip->ip_len);
1157  		debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1158  			   len, ip->ip_hl_v & 0xff);
1159  
1160  		/* Can't deal with anything except IPv4 */
1161  		if ((ip->ip_hl_v & 0xf0) != 0x40)
1162  			return;
1163  		/* Can't deal with IP options (headers != 20 bytes) */
1164  		if ((ip->ip_hl_v & 0x0f) > 0x05)
1165  			return;
1166  		/* Check the Checksum of the header */
1167  		if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1168  			debug("checksum bad\n");
1169  			return;
1170  		}
1171  		/* If it is not for us, ignore it */
1172  		dst_ip = net_read_ip(&ip->ip_dst);
1173  		if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1174  		    dst_ip.s_addr != 0xFFFFFFFF) {
1175  #ifdef CONFIG_MCAST_TFTP
1176  			if (net_mcast_addr != dst_ip)
1177  #endif
1178  				return;
1179  		}
1180  		/* Read source IP address for later use */
1181  		src_ip = net_read_ip(&ip->ip_src);
1182  		/*
1183  		 * The function returns the unchanged packet if it's not
1184  		 * a fragment, and either the complete packet or NULL if
1185  		 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1186  		 */
1187  		ip = net_defragment(ip, &len);
1188  		if (!ip)
1189  			return;
1190  		/*
1191  		 * watch for ICMP host redirects
1192  		 *
1193  		 * There is no real handler code (yet). We just watch
1194  		 * for ICMP host redirect messages. In case anybody
1195  		 * sees these messages: please contact me
1196  		 * (wd@denx.de), or - even better - send me the
1197  		 * necessary fixes :-)
1198  		 *
1199  		 * Note: in all cases where I have seen this so far
1200  		 * it was a problem with the router configuration,
1201  		 * for instance when a router was configured in the
1202  		 * BOOTP reply, but the TFTP server was on the same
1203  		 * subnet. So this is probably a warning that your
1204  		 * configuration might be wrong. But I'm not really
1205  		 * sure if there aren't any other situations.
1206  		 *
1207  		 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1208  		 * we send a tftp packet to a dead connection, or when
1209  		 * there is no server at the other end.
1210  		 */
1211  		if (ip->ip_p == IPPROTO_ICMP) {
1212  			receive_icmp(ip, len, src_ip, et);
1213  			return;
1214  		} else if (ip->ip_p != IPPROTO_UDP) {	/* Only UDP packets */
1215  			return;
1216  		}
1217  
1218  		debug_cond(DEBUG_DEV_PKT,
1219  			   "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1220  			   &dst_ip, &src_ip, len);
1221  
1222  #ifdef CONFIG_UDP_CHECKSUM
1223  		if (ip->udp_xsum != 0) {
1224  			ulong   xsum;
1225  			ushort *sumptr;
1226  			ushort  sumlen;
1227  
1228  			xsum  = ip->ip_p;
1229  			xsum += (ntohs(ip->udp_len));
1230  			xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1231  			xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1232  			xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1233  			xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1234  
1235  			sumlen = ntohs(ip->udp_len);
1236  			sumptr = (ushort *)&(ip->udp_src);
1237  
1238  			while (sumlen > 1) {
1239  				ushort sumdata;
1240  
1241  				sumdata = *sumptr++;
1242  				xsum += ntohs(sumdata);
1243  				sumlen -= 2;
1244  			}
1245  			if (sumlen > 0) {
1246  				ushort sumdata;
1247  
1248  				sumdata = *(unsigned char *)sumptr;
1249  				sumdata = (sumdata << 8) & 0xff00;
1250  				xsum += sumdata;
1251  			}
1252  			while ((xsum >> 16) != 0) {
1253  				xsum = (xsum & 0x0000ffff) +
1254  				       ((xsum >> 16) & 0x0000ffff);
1255  			}
1256  			if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1257  				printf(" UDP wrong checksum %08lx %08x\n",
1258  				       xsum, ntohs(ip->udp_xsum));
1259  				return;
1260  			}
1261  		}
1262  #endif
1263  
1264  #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD)
1265  		nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1266  				src_ip,
1267  				ntohs(ip->udp_dst),
1268  				ntohs(ip->udp_src),
1269  				ntohs(ip->udp_len) - UDP_HDR_SIZE);
1270  #endif
1271  		/*
1272  		 * IP header OK.  Pass the packet to the current handler.
1273  		 */
1274  		(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1275  				      ntohs(ip->udp_dst),
1276  				      src_ip,
1277  				      ntohs(ip->udp_src),
1278  				      ntohs(ip->udp_len) - UDP_HDR_SIZE);
1279  		break;
1280  	}
1281  }
1282  
1283  /**********************************************************************/
1284  
1285  static int net_check_prereq(enum proto_t protocol)
1286  {
1287  	switch (protocol) {
1288  		/* Fall through */
1289  #if defined(CONFIG_CMD_PING)
1290  	case PING:
1291  		if (net_ping_ip.s_addr == 0) {
1292  			puts("*** ERROR: ping address not given\n");
1293  			return 1;
1294  		}
1295  		goto common;
1296  #endif
1297  #if defined(CONFIG_CMD_SNTP)
1298  	case SNTP:
1299  		if (net_ntp_server.s_addr == 0) {
1300  			puts("*** ERROR: NTP server address not given\n");
1301  			return 1;
1302  		}
1303  		goto common;
1304  #endif
1305  #if defined(CONFIG_CMD_DNS)
1306  	case DNS:
1307  		if (net_dns_server.s_addr == 0) {
1308  			puts("*** ERROR: DNS server address not given\n");
1309  			return 1;
1310  		}
1311  		goto common;
1312  #endif
1313  #if defined(CONFIG_CMD_NFS)
1314  	case NFS:
1315  #endif
1316  		/* Fall through */
1317  	case TFTPGET:
1318  	case TFTPPUT:
1319  		if (net_server_ip.s_addr == 0) {
1320  			puts("*** ERROR: `serverip' not set\n");
1321  			return 1;
1322  		}
1323  #if	defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1324  	defined(CONFIG_CMD_DNS)
1325  common:
1326  #endif
1327  		/* Fall through */
1328  
1329  	case NETCONS:
1330  	case TFTPSRV:
1331  		if (net_ip.s_addr == 0) {
1332  			puts("*** ERROR: `ipaddr' not set\n");
1333  			return 1;
1334  		}
1335  		/* Fall through */
1336  
1337  #ifdef CONFIG_CMD_RARP
1338  	case RARP:
1339  #endif
1340  	case BOOTP:
1341  	case CDP:
1342  	case DHCP:
1343  	case LINKLOCAL:
1344  		if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1345  			int num = eth_get_dev_index();
1346  
1347  			switch (num) {
1348  			case -1:
1349  				puts("*** ERROR: No ethernet found.\n");
1350  				return 1;
1351  			case 0:
1352  				puts("*** ERROR: `ethaddr' not set\n");
1353  				break;
1354  			default:
1355  				printf("*** ERROR: `eth%daddr' not set\n",
1356  				       num);
1357  				break;
1358  			}
1359  
1360  			net_start_again();
1361  			return 2;
1362  		}
1363  		/* Fall through */
1364  	default:
1365  		return 0;
1366  	}
1367  	return 0;		/* OK */
1368  }
1369  /**********************************************************************/
1370  
1371  int
1372  net_eth_hdr_size(void)
1373  {
1374  	ushort myvlanid;
1375  
1376  	myvlanid = ntohs(net_our_vlan);
1377  	if (myvlanid == (ushort)-1)
1378  		myvlanid = VLAN_NONE;
1379  
1380  	return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1381  		VLAN_ETHER_HDR_SIZE;
1382  }
1383  
1384  int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1385  {
1386  	struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1387  	ushort myvlanid;
1388  
1389  	myvlanid = ntohs(net_our_vlan);
1390  	if (myvlanid == (ushort)-1)
1391  		myvlanid = VLAN_NONE;
1392  
1393  	memcpy(et->et_dest, dest_ethaddr, 6);
1394  	memcpy(et->et_src, net_ethaddr, 6);
1395  	if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1396  		et->et_protlen = htons(prot);
1397  		return ETHER_HDR_SIZE;
1398  	} else {
1399  		struct vlan_ethernet_hdr *vet =
1400  			(struct vlan_ethernet_hdr *)xet;
1401  
1402  		vet->vet_vlan_type = htons(PROT_VLAN);
1403  		vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1404  		vet->vet_type = htons(prot);
1405  		return VLAN_ETHER_HDR_SIZE;
1406  	}
1407  }
1408  
1409  int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1410  {
1411  	ushort protlen;
1412  
1413  	memcpy(et->et_dest, addr, 6);
1414  	memcpy(et->et_src, net_ethaddr, 6);
1415  	protlen = ntohs(et->et_protlen);
1416  	if (protlen == PROT_VLAN) {
1417  		struct vlan_ethernet_hdr *vet =
1418  			(struct vlan_ethernet_hdr *)et;
1419  		vet->vet_type = htons(prot);
1420  		return VLAN_ETHER_HDR_SIZE;
1421  	} else if (protlen > 1514) {
1422  		et->et_protlen = htons(prot);
1423  		return ETHER_HDR_SIZE;
1424  	} else {
1425  		/* 802.2 + SNAP */
1426  		struct e802_hdr *et802 = (struct e802_hdr *)et;
1427  		et802->et_prot = htons(prot);
1428  		return E802_HDR_SIZE;
1429  	}
1430  }
1431  
1432  void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1433  {
1434  	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1435  
1436  	/*
1437  	 *	Construct an IP header.
1438  	 */
1439  	/* IP_HDR_SIZE / 4 (not including UDP) */
1440  	ip->ip_hl_v  = 0x45;
1441  	ip->ip_tos   = 0;
1442  	ip->ip_len   = htons(IP_HDR_SIZE);
1443  	ip->ip_id    = htons(net_ip_id++);
1444  	ip->ip_off   = htons(IP_FLAGS_DFRAG);	/* Don't fragment */
1445  	ip->ip_ttl   = 255;
1446  	ip->ip_sum   = 0;
1447  	/* already in network byte order */
1448  	net_copy_ip((void *)&ip->ip_src, &source);
1449  	/* already in network byte order */
1450  	net_copy_ip((void *)&ip->ip_dst, &dest);
1451  }
1452  
1453  void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1454  			int len)
1455  {
1456  	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1457  
1458  	/*
1459  	 *	If the data is an odd number of bytes, zero the
1460  	 *	byte after the last byte so that the checksum
1461  	 *	will work.
1462  	 */
1463  	if (len & 1)
1464  		pkt[IP_UDP_HDR_SIZE + len] = 0;
1465  
1466  	net_set_ip_header(pkt, dest, net_ip);
1467  	ip->ip_len   = htons(IP_UDP_HDR_SIZE + len);
1468  	ip->ip_p     = IPPROTO_UDP;
1469  	ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1470  
1471  	ip->udp_src  = htons(sport);
1472  	ip->udp_dst  = htons(dport);
1473  	ip->udp_len  = htons(UDP_HDR_SIZE + len);
1474  	ip->udp_xsum = 0;
1475  }
1476  
1477  void copy_filename(char *dst, const char *src, int size)
1478  {
1479  	if (*src && (*src == '"')) {
1480  		++src;
1481  		--size;
1482  	}
1483  
1484  	while ((--size > 0) && *src && (*src != '"'))
1485  		*dst++ = *src++;
1486  	*dst = '\0';
1487  }
1488  
1489  #if	defined(CONFIG_CMD_NFS)		|| \
1490  	defined(CONFIG_CMD_SNTP)	|| \
1491  	defined(CONFIG_CMD_DNS)
1492  /*
1493   * make port a little random (1024-17407)
1494   * This keeps the math somewhat trivial to compute, and seems to work with
1495   * all supported protocols/clients/servers
1496   */
1497  unsigned int random_port(void)
1498  {
1499  	return 1024 + (get_timer(0) % 0x4000);
1500  }
1501  #endif
1502  
1503  void ip_to_string(struct in_addr x, char *s)
1504  {
1505  	x.s_addr = ntohl(x.s_addr);
1506  	sprintf(s, "%d.%d.%d.%d",
1507  		(int) ((x.s_addr >> 24) & 0xff),
1508  		(int) ((x.s_addr >> 16) & 0xff),
1509  		(int) ((x.s_addr >> 8) & 0xff),
1510  		(int) ((x.s_addr >> 0) & 0xff)
1511  	);
1512  }
1513  
1514  void vlan_to_string(ushort x, char *s)
1515  {
1516  	x = ntohs(x);
1517  
1518  	if (x == (ushort)-1)
1519  		x = VLAN_NONE;
1520  
1521  	if (x == VLAN_NONE)
1522  		strcpy(s, "none");
1523  	else
1524  		sprintf(s, "%d", x & VLAN_IDMASK);
1525  }
1526  
1527  ushort string_to_vlan(const char *s)
1528  {
1529  	ushort id;
1530  
1531  	if (s == NULL)
1532  		return htons(VLAN_NONE);
1533  
1534  	if (*s < '0' || *s > '9')
1535  		id = VLAN_NONE;
1536  	else
1537  		id = (ushort)simple_strtoul(s, NULL, 10);
1538  
1539  	return htons(id);
1540  }
1541  
1542  ushort getenv_vlan(char *var)
1543  {
1544  	return string_to_vlan(getenv(var));
1545  }
1546