1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <console.h> 87 #include <environment.h> 88 #include <errno.h> 89 #include <net.h> 90 #include <net/tftp.h> 91 #if defined(CONFIG_LED_STATUS) 92 #include <miiphy.h> 93 #include <status_led.h> 94 #endif 95 #include <watchdog.h> 96 #include <linux/compiler.h> 97 #include "arp.h" 98 #include "bootp.h" 99 #include "cdp.h" 100 #if defined(CONFIG_CMD_DNS) 101 #include "dns.h" 102 #endif 103 #include "link_local.h" 104 #include "nfs.h" 105 #include "ping.h" 106 #include "rarp.h" 107 #if defined(CONFIG_CMD_SNTP) 108 #include "sntp.h" 109 #endif 110 111 DECLARE_GLOBAL_DATA_PTR; 112 113 /** BOOTP EXTENTIONS **/ 114 115 /* Our subnet mask (0=unknown) */ 116 struct in_addr net_netmask; 117 /* Our gateways IP address */ 118 struct in_addr net_gateway; 119 /* Our DNS IP address */ 120 struct in_addr net_dns_server; 121 #if defined(CONFIG_BOOTP_DNS2) 122 /* Our 2nd DNS IP address */ 123 struct in_addr net_dns_server2; 124 #endif 125 126 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 127 struct in_addr net_mcast_addr; 128 #endif 129 130 /** END OF BOOTP EXTENTIONS **/ 131 132 /* Our ethernet address */ 133 u8 net_ethaddr[6]; 134 /* Boot server enet address */ 135 u8 net_server_ethaddr[6]; 136 /* Our IP addr (0 = unknown) */ 137 struct in_addr net_ip; 138 /* Server IP addr (0 = unknown) */ 139 struct in_addr net_server_ip; 140 /* Current receive packet */ 141 uchar *net_rx_packet; 142 /* Current rx packet length */ 143 int net_rx_packet_len; 144 /* IP packet ID */ 145 static unsigned net_ip_id; 146 /* Ethernet bcast address */ 147 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 148 const u8 net_null_ethaddr[6]; 149 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 150 void (*push_packet)(void *, int len) = 0; 151 #endif 152 /* Network loop state */ 153 enum net_loop_state net_state; 154 /* Tried all network devices */ 155 int net_restart_wrap; 156 /* Network loop restarted */ 157 static int net_restarted; 158 /* At least one device configured */ 159 static int net_dev_exists; 160 161 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 162 /* default is without VLAN */ 163 ushort net_our_vlan = 0xFFFF; 164 /* ditto */ 165 ushort net_native_vlan = 0xFFFF; 166 167 /* Boot File name */ 168 char net_boot_file_name[1024]; 169 /* The actual transferred size of the bootfile (in bytes) */ 170 u32 net_boot_file_size; 171 /* Boot file size in blocks as reported by the DHCP server */ 172 u32 net_boot_file_expected_size_in_blocks; 173 174 #if defined(CONFIG_CMD_SNTP) 175 /* NTP server IP address */ 176 struct in_addr net_ntp_server; 177 /* offset time from UTC */ 178 int net_ntp_time_offset; 179 #endif 180 181 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 182 /* Receive packets */ 183 uchar *net_rx_packets[PKTBUFSRX]; 184 /* Current UDP RX packet handler */ 185 static rxhand_f *udp_packet_handler; 186 /* Current ARP RX packet handler */ 187 static rxhand_f *arp_packet_handler; 188 #ifdef CONFIG_CMD_TFTPPUT 189 /* Current ICMP rx handler */ 190 static rxhand_icmp_f *packet_icmp_handler; 191 #endif 192 /* Current timeout handler */ 193 static thand_f *time_handler; 194 /* Time base value */ 195 static ulong time_start; 196 /* Current timeout value */ 197 static ulong time_delta; 198 /* THE transmit packet */ 199 uchar *net_tx_packet; 200 201 static int net_check_prereq(enum proto_t protocol); 202 203 static int net_try_count; 204 205 int __maybe_unused net_busy_flag; 206 207 /**********************************************************************/ 208 209 static int on_bootfile(const char *name, const char *value, enum env_op op, 210 int flags) 211 { 212 if (flags & H_PROGRAMMATIC) 213 return 0; 214 215 switch (op) { 216 case env_op_create: 217 case env_op_overwrite: 218 copy_filename(net_boot_file_name, value, 219 sizeof(net_boot_file_name)); 220 break; 221 default: 222 break; 223 } 224 225 return 0; 226 } 227 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 228 229 static int on_ipaddr(const char *name, const char *value, enum env_op op, 230 int flags) 231 { 232 if (flags & H_PROGRAMMATIC) 233 return 0; 234 235 net_ip = string_to_ip(value); 236 237 return 0; 238 } 239 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 240 241 static int on_gatewayip(const char *name, const char *value, enum env_op op, 242 int flags) 243 { 244 if (flags & H_PROGRAMMATIC) 245 return 0; 246 247 net_gateway = string_to_ip(value); 248 249 return 0; 250 } 251 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 252 253 static int on_netmask(const char *name, const char *value, enum env_op op, 254 int flags) 255 { 256 if (flags & H_PROGRAMMATIC) 257 return 0; 258 259 net_netmask = string_to_ip(value); 260 261 return 0; 262 } 263 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 264 265 static int on_serverip(const char *name, const char *value, enum env_op op, 266 int flags) 267 { 268 if (flags & H_PROGRAMMATIC) 269 return 0; 270 271 net_server_ip = string_to_ip(value); 272 273 return 0; 274 } 275 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 276 277 static int on_nvlan(const char *name, const char *value, enum env_op op, 278 int flags) 279 { 280 if (flags & H_PROGRAMMATIC) 281 return 0; 282 283 net_native_vlan = string_to_vlan(value); 284 285 return 0; 286 } 287 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 288 289 static int on_vlan(const char *name, const char *value, enum env_op op, 290 int flags) 291 { 292 if (flags & H_PROGRAMMATIC) 293 return 0; 294 295 net_our_vlan = string_to_vlan(value); 296 297 return 0; 298 } 299 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 300 301 #if defined(CONFIG_CMD_DNS) 302 static int on_dnsip(const char *name, const char *value, enum env_op op, 303 int flags) 304 { 305 if (flags & H_PROGRAMMATIC) 306 return 0; 307 308 net_dns_server = string_to_ip(value); 309 310 return 0; 311 } 312 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 313 #endif 314 315 /* 316 * Check if autoload is enabled. If so, use either NFS or TFTP to download 317 * the boot file. 318 */ 319 void net_auto_load(void) 320 { 321 #if defined(CONFIG_CMD_NFS) 322 const char *s = getenv("autoload"); 323 324 if (s != NULL && strcmp(s, "NFS") == 0) { 325 /* 326 * Use NFS to load the bootfile. 327 */ 328 nfs_start(); 329 return; 330 } 331 #endif 332 if (getenv_yesno("autoload") == 0) { 333 /* 334 * Just use BOOTP/RARP to configure system; 335 * Do not use TFTP to load the bootfile. 336 */ 337 net_set_state(NETLOOP_SUCCESS); 338 return; 339 } 340 tftp_start(TFTPGET); 341 } 342 343 static void net_init_loop(void) 344 { 345 if (eth_get_dev()) 346 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 347 348 return; 349 } 350 351 static void net_clear_handlers(void) 352 { 353 net_set_udp_handler(NULL); 354 net_set_arp_handler(NULL); 355 net_set_timeout_handler(0, NULL); 356 } 357 358 static void net_cleanup_loop(void) 359 { 360 net_clear_handlers(); 361 } 362 363 void net_init(void) 364 { 365 static int first_call = 1; 366 367 if (first_call) { 368 /* 369 * Setup packet buffers, aligned correctly. 370 */ 371 int i; 372 373 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 374 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 375 for (i = 0; i < PKTBUFSRX; i++) { 376 net_rx_packets[i] = net_tx_packet + 377 (i + 1) * PKTSIZE_ALIGN; 378 } 379 arp_init(); 380 net_clear_handlers(); 381 382 /* Only need to setup buffer pointers once. */ 383 first_call = 0; 384 } 385 386 net_init_loop(); 387 } 388 389 /**********************************************************************/ 390 /* 391 * Main network processing loop. 392 */ 393 394 int net_loop(enum proto_t protocol) 395 { 396 int ret = -EINVAL; 397 398 net_restarted = 0; 399 net_dev_exists = 0; 400 net_try_count = 1; 401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 402 403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 404 net_init(); 405 if (eth_is_on_demand_init() || protocol != NETCONS) { 406 eth_halt(); 407 eth_set_current(); 408 ret = eth_init(); 409 if (ret < 0) { 410 eth_halt(); 411 return ret; 412 } 413 } else { 414 eth_init_state_only(); 415 } 416 restart: 417 #ifdef CONFIG_USB_KEYBOARD 418 net_busy_flag = 0; 419 #endif 420 net_set_state(NETLOOP_CONTINUE); 421 422 /* 423 * Start the ball rolling with the given start function. From 424 * here on, this code is a state machine driven by received 425 * packets and timer events. 426 */ 427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 428 net_init_loop(); 429 430 switch (net_check_prereq(protocol)) { 431 case 1: 432 /* network not configured */ 433 eth_halt(); 434 return -ENODEV; 435 436 case 2: 437 /* network device not configured */ 438 break; 439 440 case 0: 441 net_dev_exists = 1; 442 net_boot_file_size = 0; 443 switch (protocol) { 444 case TFTPGET: 445 #ifdef CONFIG_CMD_TFTPPUT 446 case TFTPPUT: 447 #endif 448 /* always use ARP to get server ethernet address */ 449 tftp_start(protocol); 450 break; 451 #ifdef CONFIG_CMD_TFTPSRV 452 case TFTPSRV: 453 tftp_start_server(); 454 break; 455 #endif 456 #if defined(CONFIG_CMD_DHCP) 457 case DHCP: 458 bootp_reset(); 459 net_ip.s_addr = 0; 460 dhcp_request(); /* Basically same as BOOTP */ 461 break; 462 #endif 463 464 case BOOTP: 465 bootp_reset(); 466 net_ip.s_addr = 0; 467 bootp_request(); 468 break; 469 470 #if defined(CONFIG_CMD_RARP) 471 case RARP: 472 rarp_try = 0; 473 net_ip.s_addr = 0; 474 rarp_request(); 475 break; 476 #endif 477 #if defined(CONFIG_CMD_PING) 478 case PING: 479 ping_start(); 480 break; 481 #endif 482 #if defined(CONFIG_CMD_NFS) 483 case NFS: 484 nfs_start(); 485 break; 486 #endif 487 #if defined(CONFIG_CMD_CDP) 488 case CDP: 489 cdp_start(); 490 break; 491 #endif 492 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 493 case NETCONS: 494 nc_start(); 495 break; 496 #endif 497 #if defined(CONFIG_CMD_SNTP) 498 case SNTP: 499 sntp_start(); 500 break; 501 #endif 502 #if defined(CONFIG_CMD_DNS) 503 case DNS: 504 dns_start(); 505 break; 506 #endif 507 #if defined(CONFIG_CMD_LINK_LOCAL) 508 case LINKLOCAL: 509 link_local_start(); 510 break; 511 #endif 512 default: 513 break; 514 } 515 516 break; 517 } 518 519 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 520 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 521 defined(CONFIG_LED_STATUS) && \ 522 defined(CONFIG_LED_STATUS_RED) 523 /* 524 * Echo the inverted link state to the fault LED. 525 */ 526 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 527 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF); 528 else 529 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON); 530 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 531 #endif /* CONFIG_MII, ... */ 532 #ifdef CONFIG_USB_KEYBOARD 533 net_busy_flag = 1; 534 #endif 535 536 /* 537 * Main packet reception loop. Loop receiving packets until 538 * someone sets `net_state' to a state that terminates. 539 */ 540 for (;;) { 541 WATCHDOG_RESET(); 542 #ifdef CONFIG_SHOW_ACTIVITY 543 show_activity(1); 544 #endif 545 if (arp_timeout_check() > 0) 546 time_start = get_timer(0); 547 548 /* 549 * Check the ethernet for a new packet. The ethernet 550 * receive routine will process it. 551 * Most drivers return the most recent packet size, but not 552 * errors that may have happened. 553 */ 554 eth_rx(); 555 556 /* 557 * Abort if ctrl-c was pressed. 558 */ 559 if (ctrlc()) { 560 /* cancel any ARP that may not have completed */ 561 net_arp_wait_packet_ip.s_addr = 0; 562 563 net_cleanup_loop(); 564 eth_halt(); 565 /* Invalidate the last protocol */ 566 eth_set_last_protocol(BOOTP); 567 568 puts("\nAbort\n"); 569 /* include a debug print as well incase the debug 570 messages are directed to stderr */ 571 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 572 ret = -EINTR; 573 goto done; 574 } 575 576 /* 577 * Check for a timeout, and run the timeout handler 578 * if we have one. 579 */ 580 if (time_handler && 581 ((get_timer(0) - time_start) > time_delta)) { 582 thand_f *x; 583 584 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 585 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 586 defined(CONFIG_LED_STATUS) && \ 587 defined(CONFIG_LED_STATUS_RED) 588 /* 589 * Echo the inverted link state to the fault LED. 590 */ 591 if (miiphy_link(eth_get_dev()->name, 592 CONFIG_SYS_FAULT_MII_ADDR)) 593 status_led_set(CONFIG_LED_STATUS_RED, 594 CONFIG_LED_STATUS_OFF); 595 else 596 status_led_set(CONFIG_LED_STATUS_RED, 597 CONFIG_LED_STATUS_ON); 598 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 599 #endif /* CONFIG_MII, ... */ 600 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 601 x = time_handler; 602 time_handler = (thand_f *)0; 603 (*x)(); 604 } 605 606 if (net_state == NETLOOP_FAIL) 607 ret = net_start_again(); 608 609 switch (net_state) { 610 case NETLOOP_RESTART: 611 net_restarted = 1; 612 goto restart; 613 614 case NETLOOP_SUCCESS: 615 net_cleanup_loop(); 616 if (net_boot_file_size > 0) { 617 printf("Bytes transferred = %d (%x hex)\n", 618 net_boot_file_size, net_boot_file_size); 619 setenv_hex("filesize", net_boot_file_size); 620 setenv_hex("fileaddr", load_addr); 621 } 622 if (protocol != NETCONS) 623 eth_halt(); 624 else 625 eth_halt_state_only(); 626 627 eth_set_last_protocol(protocol); 628 629 ret = net_boot_file_size; 630 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 631 goto done; 632 633 case NETLOOP_FAIL: 634 net_cleanup_loop(); 635 /* Invalidate the last protocol */ 636 eth_set_last_protocol(BOOTP); 637 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 638 goto done; 639 640 case NETLOOP_CONTINUE: 641 continue; 642 } 643 } 644 645 done: 646 #ifdef CONFIG_USB_KEYBOARD 647 net_busy_flag = 0; 648 #endif 649 #ifdef CONFIG_CMD_TFTPPUT 650 /* Clear out the handlers */ 651 net_set_udp_handler(NULL); 652 net_set_icmp_handler(NULL); 653 #endif 654 return ret; 655 } 656 657 /**********************************************************************/ 658 659 static void start_again_timeout_handler(void) 660 { 661 net_set_state(NETLOOP_RESTART); 662 } 663 664 int net_start_again(void) 665 { 666 char *nretry; 667 int retry_forever = 0; 668 unsigned long retrycnt = 0; 669 int ret; 670 671 nretry = getenv("netretry"); 672 if (nretry) { 673 if (!strcmp(nretry, "yes")) 674 retry_forever = 1; 675 else if (!strcmp(nretry, "no")) 676 retrycnt = 0; 677 else if (!strcmp(nretry, "once")) 678 retrycnt = 1; 679 else 680 retrycnt = simple_strtoul(nretry, NULL, 0); 681 } else { 682 retrycnt = 0; 683 retry_forever = 0; 684 } 685 686 if ((!retry_forever) && (net_try_count >= retrycnt)) { 687 eth_halt(); 688 net_set_state(NETLOOP_FAIL); 689 /* 690 * We don't provide a way for the protocol to return an error, 691 * but this is almost always the reason. 692 */ 693 return -ETIMEDOUT; 694 } 695 696 net_try_count++; 697 698 eth_halt(); 699 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 700 eth_try_another(!net_restarted); 701 #endif 702 ret = eth_init(); 703 if (net_restart_wrap) { 704 net_restart_wrap = 0; 705 if (net_dev_exists) { 706 net_set_timeout_handler(10000UL, 707 start_again_timeout_handler); 708 net_set_udp_handler(NULL); 709 } else { 710 net_set_state(NETLOOP_FAIL); 711 } 712 } else { 713 net_set_state(NETLOOP_RESTART); 714 } 715 return ret; 716 } 717 718 /**********************************************************************/ 719 /* 720 * Miscelaneous bits. 721 */ 722 723 static void dummy_handler(uchar *pkt, unsigned dport, 724 struct in_addr sip, unsigned sport, 725 unsigned len) 726 { 727 } 728 729 rxhand_f *net_get_udp_handler(void) 730 { 731 return udp_packet_handler; 732 } 733 734 void net_set_udp_handler(rxhand_f *f) 735 { 736 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 737 if (f == NULL) 738 udp_packet_handler = dummy_handler; 739 else 740 udp_packet_handler = f; 741 } 742 743 rxhand_f *net_get_arp_handler(void) 744 { 745 return arp_packet_handler; 746 } 747 748 void net_set_arp_handler(rxhand_f *f) 749 { 750 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 751 if (f == NULL) 752 arp_packet_handler = dummy_handler; 753 else 754 arp_packet_handler = f; 755 } 756 757 #ifdef CONFIG_CMD_TFTPPUT 758 void net_set_icmp_handler(rxhand_icmp_f *f) 759 { 760 packet_icmp_handler = f; 761 } 762 #endif 763 764 void net_set_timeout_handler(ulong iv, thand_f *f) 765 { 766 if (iv == 0) { 767 debug_cond(DEBUG_INT_STATE, 768 "--- net_loop timeout handler cancelled\n"); 769 time_handler = (thand_f *)0; 770 } else { 771 debug_cond(DEBUG_INT_STATE, 772 "--- net_loop timeout handler set (%p)\n", f); 773 time_handler = f; 774 time_start = get_timer(0); 775 time_delta = iv * CONFIG_SYS_HZ / 1000; 776 } 777 } 778 779 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 780 int payload_len) 781 { 782 uchar *pkt; 783 int eth_hdr_size; 784 int pkt_hdr_size; 785 786 /* make sure the net_tx_packet is initialized (net_init() was called) */ 787 assert(net_tx_packet != NULL); 788 if (net_tx_packet == NULL) 789 return -1; 790 791 /* convert to new style broadcast */ 792 if (dest.s_addr == 0) 793 dest.s_addr = 0xFFFFFFFF; 794 795 /* if broadcast, make the ether address a broadcast and don't do ARP */ 796 if (dest.s_addr == 0xFFFFFFFF) 797 ether = (uchar *)net_bcast_ethaddr; 798 799 pkt = (uchar *)net_tx_packet; 800 801 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 802 pkt += eth_hdr_size; 803 net_set_udp_header(pkt, dest, dport, sport, payload_len); 804 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 805 806 /* if MAC address was not discovered yet, do an ARP request */ 807 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 808 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 809 810 /* save the ip and eth addr for the packet to send after arp */ 811 net_arp_wait_packet_ip = dest; 812 arp_wait_packet_ethaddr = ether; 813 814 /* size of the waiting packet */ 815 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 816 817 /* and do the ARP request */ 818 arp_wait_try = 1; 819 arp_wait_timer_start = get_timer(0); 820 arp_request(); 821 return 1; /* waiting */ 822 } else { 823 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 824 &dest, ether); 825 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 826 return 0; /* transmitted */ 827 } 828 } 829 830 #ifdef CONFIG_IP_DEFRAG 831 /* 832 * This function collects fragments in a single packet, according 833 * to the algorithm in RFC815. It returns NULL or the pointer to 834 * a complete packet, in static storage 835 */ 836 #ifndef CONFIG_NET_MAXDEFRAG 837 #define CONFIG_NET_MAXDEFRAG 16384 838 #endif 839 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG) 840 841 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 842 843 /* 844 * this is the packet being assembled, either data or frag control. 845 * Fragments go by 8 bytes, so this union must be 8 bytes long 846 */ 847 struct hole { 848 /* first_byte is address of this structure */ 849 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 850 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 851 u16 prev_hole; /* index of prev, 0 == none */ 852 u16 unused; 853 }; 854 855 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 856 { 857 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 858 static u16 first_hole, total_len; 859 struct hole *payload, *thisfrag, *h, *newh; 860 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 861 uchar *indata = (uchar *)ip; 862 int offset8, start, len, done = 0; 863 u16 ip_off = ntohs(ip->ip_off); 864 865 /* payload starts after IP header, this fragment is in there */ 866 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 867 offset8 = (ip_off & IP_OFFS); 868 thisfrag = payload + offset8; 869 start = offset8 * 8; 870 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 871 872 if (start + len > IP_MAXUDP) /* fragment extends too far */ 873 return NULL; 874 875 if (!total_len || localip->ip_id != ip->ip_id) { 876 /* new (or different) packet, reset structs */ 877 total_len = 0xffff; 878 payload[0].last_byte = ~0; 879 payload[0].next_hole = 0; 880 payload[0].prev_hole = 0; 881 first_hole = 0; 882 /* any IP header will work, copy the first we received */ 883 memcpy(localip, ip, IP_HDR_SIZE); 884 } 885 886 /* 887 * What follows is the reassembly algorithm. We use the payload 888 * array as a linked list of hole descriptors, as each hole starts 889 * at a multiple of 8 bytes. However, last byte can be whatever value, 890 * so it is represented as byte count, not as 8-byte blocks. 891 */ 892 893 h = payload + first_hole; 894 while (h->last_byte < start) { 895 if (!h->next_hole) { 896 /* no hole that far away */ 897 return NULL; 898 } 899 h = payload + h->next_hole; 900 } 901 902 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 903 if (offset8 + ((len + 7) / 8) <= h - payload) { 904 /* no overlap with holes (dup fragment?) */ 905 return NULL; 906 } 907 908 if (!(ip_off & IP_FLAGS_MFRAG)) { 909 /* no more fragmentss: truncate this (last) hole */ 910 total_len = start + len; 911 h->last_byte = start + len; 912 } 913 914 /* 915 * There is some overlap: fix the hole list. This code doesn't 916 * deal with a fragment that overlaps with two different holes 917 * (thus being a superset of a previously-received fragment). 918 */ 919 920 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 921 /* complete overlap with hole: remove hole */ 922 if (!h->prev_hole && !h->next_hole) { 923 /* last remaining hole */ 924 done = 1; 925 } else if (!h->prev_hole) { 926 /* first hole */ 927 first_hole = h->next_hole; 928 payload[h->next_hole].prev_hole = 0; 929 } else if (!h->next_hole) { 930 /* last hole */ 931 payload[h->prev_hole].next_hole = 0; 932 } else { 933 /* in the middle of the list */ 934 payload[h->next_hole].prev_hole = h->prev_hole; 935 payload[h->prev_hole].next_hole = h->next_hole; 936 } 937 938 } else if (h->last_byte <= start + len) { 939 /* overlaps with final part of the hole: shorten this hole */ 940 h->last_byte = start; 941 942 } else if (h >= thisfrag) { 943 /* overlaps with initial part of the hole: move this hole */ 944 newh = thisfrag + (len / 8); 945 *newh = *h; 946 h = newh; 947 if (h->next_hole) 948 payload[h->next_hole].prev_hole = (h - payload); 949 if (h->prev_hole) 950 payload[h->prev_hole].next_hole = (h - payload); 951 else 952 first_hole = (h - payload); 953 954 } else { 955 /* fragment sits in the middle: split the hole */ 956 newh = thisfrag + (len / 8); 957 *newh = *h; 958 h->last_byte = start; 959 h->next_hole = (newh - payload); 960 newh->prev_hole = (h - payload); 961 if (newh->next_hole) 962 payload[newh->next_hole].prev_hole = (newh - payload); 963 } 964 965 /* finally copy this fragment and possibly return whole packet */ 966 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 967 if (!done) 968 return NULL; 969 970 localip->ip_len = htons(total_len); 971 *lenp = total_len + IP_HDR_SIZE; 972 return localip; 973 } 974 975 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 976 int *lenp) 977 { 978 u16 ip_off = ntohs(ip->ip_off); 979 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 980 return ip; /* not a fragment */ 981 return __net_defragment(ip, lenp); 982 } 983 984 #else /* !CONFIG_IP_DEFRAG */ 985 986 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 987 int *lenp) 988 { 989 u16 ip_off = ntohs(ip->ip_off); 990 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 991 return ip; /* not a fragment */ 992 return NULL; 993 } 994 #endif 995 996 /** 997 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 998 * drop others. 999 * 1000 * @parma ip IP packet containing the ICMP 1001 */ 1002 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1003 struct in_addr src_ip, struct ethernet_hdr *et) 1004 { 1005 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1006 1007 switch (icmph->type) { 1008 case ICMP_REDIRECT: 1009 if (icmph->code != ICMP_REDIR_HOST) 1010 return; 1011 printf(" ICMP Host Redirect to %pI4 ", 1012 &icmph->un.gateway); 1013 break; 1014 default: 1015 #if defined(CONFIG_CMD_PING) 1016 ping_receive(et, ip, len); 1017 #endif 1018 #ifdef CONFIG_CMD_TFTPPUT 1019 if (packet_icmp_handler) 1020 packet_icmp_handler(icmph->type, icmph->code, 1021 ntohs(ip->udp_dst), src_ip, 1022 ntohs(ip->udp_src), icmph->un.data, 1023 ntohs(ip->udp_len)); 1024 #endif 1025 break; 1026 } 1027 } 1028 1029 void net_process_received_packet(uchar *in_packet, int len) 1030 { 1031 struct ethernet_hdr *et; 1032 struct ip_udp_hdr *ip; 1033 struct in_addr dst_ip; 1034 struct in_addr src_ip; 1035 int eth_proto; 1036 #if defined(CONFIG_CMD_CDP) 1037 int iscdp; 1038 #endif 1039 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1040 1041 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1042 1043 net_rx_packet = in_packet; 1044 net_rx_packet_len = len; 1045 et = (struct ethernet_hdr *)in_packet; 1046 1047 /* too small packet? */ 1048 if (len < ETHER_HDR_SIZE) 1049 return; 1050 1051 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 1052 if (push_packet) { 1053 (*push_packet)(in_packet, len); 1054 return; 1055 } 1056 #endif 1057 1058 #if defined(CONFIG_CMD_CDP) 1059 /* keep track if packet is CDP */ 1060 iscdp = is_cdp_packet(et->et_dest); 1061 #endif 1062 1063 myvlanid = ntohs(net_our_vlan); 1064 if (myvlanid == (ushort)-1) 1065 myvlanid = VLAN_NONE; 1066 mynvlanid = ntohs(net_native_vlan); 1067 if (mynvlanid == (ushort)-1) 1068 mynvlanid = VLAN_NONE; 1069 1070 eth_proto = ntohs(et->et_protlen); 1071 1072 if (eth_proto < 1514) { 1073 struct e802_hdr *et802 = (struct e802_hdr *)et; 1074 /* 1075 * Got a 802.2 packet. Check the other protocol field. 1076 * XXX VLAN over 802.2+SNAP not implemented! 1077 */ 1078 eth_proto = ntohs(et802->et_prot); 1079 1080 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1081 len -= E802_HDR_SIZE; 1082 1083 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1084 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1085 len -= ETHER_HDR_SIZE; 1086 1087 } else { /* VLAN packet */ 1088 struct vlan_ethernet_hdr *vet = 1089 (struct vlan_ethernet_hdr *)et; 1090 1091 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1092 1093 /* too small packet? */ 1094 if (len < VLAN_ETHER_HDR_SIZE) 1095 return; 1096 1097 /* if no VLAN active */ 1098 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1099 #if defined(CONFIG_CMD_CDP) 1100 && iscdp == 0 1101 #endif 1102 ) 1103 return; 1104 1105 cti = ntohs(vet->vet_tag); 1106 vlanid = cti & VLAN_IDMASK; 1107 eth_proto = ntohs(vet->vet_type); 1108 1109 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1110 len -= VLAN_ETHER_HDR_SIZE; 1111 } 1112 1113 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1114 1115 #if defined(CONFIG_CMD_CDP) 1116 if (iscdp) { 1117 cdp_receive((uchar *)ip, len); 1118 return; 1119 } 1120 #endif 1121 1122 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1123 if (vlanid == VLAN_NONE) 1124 vlanid = (mynvlanid & VLAN_IDMASK); 1125 /* not matched? */ 1126 if (vlanid != (myvlanid & VLAN_IDMASK)) 1127 return; 1128 } 1129 1130 switch (eth_proto) { 1131 case PROT_ARP: 1132 arp_receive(et, ip, len); 1133 break; 1134 1135 #ifdef CONFIG_CMD_RARP 1136 case PROT_RARP: 1137 rarp_receive(ip, len); 1138 break; 1139 #endif 1140 case PROT_IP: 1141 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1142 /* Before we start poking the header, make sure it is there */ 1143 if (len < IP_UDP_HDR_SIZE) { 1144 debug("len bad %d < %lu\n", len, 1145 (ulong)IP_UDP_HDR_SIZE); 1146 return; 1147 } 1148 /* Check the packet length */ 1149 if (len < ntohs(ip->ip_len)) { 1150 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1151 return; 1152 } 1153 len = ntohs(ip->ip_len); 1154 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1155 len, ip->ip_hl_v & 0xff); 1156 1157 /* Can't deal with anything except IPv4 */ 1158 if ((ip->ip_hl_v & 0xf0) != 0x40) 1159 return; 1160 /* Can't deal with IP options (headers != 20 bytes) */ 1161 if ((ip->ip_hl_v & 0x0f) > 0x05) 1162 return; 1163 /* Check the Checksum of the header */ 1164 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1165 debug("checksum bad\n"); 1166 return; 1167 } 1168 /* If it is not for us, ignore it */ 1169 dst_ip = net_read_ip(&ip->ip_dst); 1170 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1171 dst_ip.s_addr != 0xFFFFFFFF) { 1172 #ifdef CONFIG_MCAST_TFTP 1173 if (net_mcast_addr != dst_ip) 1174 #endif 1175 return; 1176 } 1177 /* Read source IP address for later use */ 1178 src_ip = net_read_ip(&ip->ip_src); 1179 /* 1180 * The function returns the unchanged packet if it's not 1181 * a fragment, and either the complete packet or NULL if 1182 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1183 */ 1184 ip = net_defragment(ip, &len); 1185 if (!ip) 1186 return; 1187 /* 1188 * watch for ICMP host redirects 1189 * 1190 * There is no real handler code (yet). We just watch 1191 * for ICMP host redirect messages. In case anybody 1192 * sees these messages: please contact me 1193 * (wd@denx.de), or - even better - send me the 1194 * necessary fixes :-) 1195 * 1196 * Note: in all cases where I have seen this so far 1197 * it was a problem with the router configuration, 1198 * for instance when a router was configured in the 1199 * BOOTP reply, but the TFTP server was on the same 1200 * subnet. So this is probably a warning that your 1201 * configuration might be wrong. But I'm not really 1202 * sure if there aren't any other situations. 1203 * 1204 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1205 * we send a tftp packet to a dead connection, or when 1206 * there is no server at the other end. 1207 */ 1208 if (ip->ip_p == IPPROTO_ICMP) { 1209 receive_icmp(ip, len, src_ip, et); 1210 return; 1211 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1212 return; 1213 } 1214 1215 debug_cond(DEBUG_DEV_PKT, 1216 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1217 &dst_ip, &src_ip, len); 1218 1219 #ifdef CONFIG_UDP_CHECKSUM 1220 if (ip->udp_xsum != 0) { 1221 ulong xsum; 1222 ushort *sumptr; 1223 ushort sumlen; 1224 1225 xsum = ip->ip_p; 1226 xsum += (ntohs(ip->udp_len)); 1227 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1228 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1229 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1230 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1231 1232 sumlen = ntohs(ip->udp_len); 1233 sumptr = (ushort *)&(ip->udp_src); 1234 1235 while (sumlen > 1) { 1236 ushort sumdata; 1237 1238 sumdata = *sumptr++; 1239 xsum += ntohs(sumdata); 1240 sumlen -= 2; 1241 } 1242 if (sumlen > 0) { 1243 ushort sumdata; 1244 1245 sumdata = *(unsigned char *)sumptr; 1246 sumdata = (sumdata << 8) & 0xff00; 1247 xsum += sumdata; 1248 } 1249 while ((xsum >> 16) != 0) { 1250 xsum = (xsum & 0x0000ffff) + 1251 ((xsum >> 16) & 0x0000ffff); 1252 } 1253 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1254 printf(" UDP wrong checksum %08lx %08x\n", 1255 xsum, ntohs(ip->udp_xsum)); 1256 return; 1257 } 1258 } 1259 #endif 1260 1261 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1262 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1263 src_ip, 1264 ntohs(ip->udp_dst), 1265 ntohs(ip->udp_src), 1266 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1267 #endif 1268 /* 1269 * IP header OK. Pass the packet to the current handler. 1270 */ 1271 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1272 ntohs(ip->udp_dst), 1273 src_ip, 1274 ntohs(ip->udp_src), 1275 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1276 break; 1277 } 1278 } 1279 1280 /**********************************************************************/ 1281 1282 static int net_check_prereq(enum proto_t protocol) 1283 { 1284 switch (protocol) { 1285 /* Fall through */ 1286 #if defined(CONFIG_CMD_PING) 1287 case PING: 1288 if (net_ping_ip.s_addr == 0) { 1289 puts("*** ERROR: ping address not given\n"); 1290 return 1; 1291 } 1292 goto common; 1293 #endif 1294 #if defined(CONFIG_CMD_SNTP) 1295 case SNTP: 1296 if (net_ntp_server.s_addr == 0) { 1297 puts("*** ERROR: NTP server address not given\n"); 1298 return 1; 1299 } 1300 goto common; 1301 #endif 1302 #if defined(CONFIG_CMD_DNS) 1303 case DNS: 1304 if (net_dns_server.s_addr == 0) { 1305 puts("*** ERROR: DNS server address not given\n"); 1306 return 1; 1307 } 1308 goto common; 1309 #endif 1310 #if defined(CONFIG_CMD_NFS) 1311 case NFS: 1312 #endif 1313 /* Fall through */ 1314 case TFTPGET: 1315 case TFTPPUT: 1316 if (net_server_ip.s_addr == 0) { 1317 puts("*** ERROR: `serverip' not set\n"); 1318 return 1; 1319 } 1320 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1321 defined(CONFIG_CMD_DNS) 1322 common: 1323 #endif 1324 /* Fall through */ 1325 1326 case NETCONS: 1327 case TFTPSRV: 1328 if (net_ip.s_addr == 0) { 1329 puts("*** ERROR: `ipaddr' not set\n"); 1330 return 1; 1331 } 1332 /* Fall through */ 1333 1334 #ifdef CONFIG_CMD_RARP 1335 case RARP: 1336 #endif 1337 case BOOTP: 1338 case CDP: 1339 case DHCP: 1340 case LINKLOCAL: 1341 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1342 int num = eth_get_dev_index(); 1343 1344 switch (num) { 1345 case -1: 1346 puts("*** ERROR: No ethernet found.\n"); 1347 return 1; 1348 case 0: 1349 puts("*** ERROR: `ethaddr' not set\n"); 1350 break; 1351 default: 1352 printf("*** ERROR: `eth%daddr' not set\n", 1353 num); 1354 break; 1355 } 1356 1357 net_start_again(); 1358 return 2; 1359 } 1360 /* Fall through */ 1361 default: 1362 return 0; 1363 } 1364 return 0; /* OK */ 1365 } 1366 /**********************************************************************/ 1367 1368 int 1369 net_eth_hdr_size(void) 1370 { 1371 ushort myvlanid; 1372 1373 myvlanid = ntohs(net_our_vlan); 1374 if (myvlanid == (ushort)-1) 1375 myvlanid = VLAN_NONE; 1376 1377 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1378 VLAN_ETHER_HDR_SIZE; 1379 } 1380 1381 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1382 { 1383 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1384 ushort myvlanid; 1385 1386 myvlanid = ntohs(net_our_vlan); 1387 if (myvlanid == (ushort)-1) 1388 myvlanid = VLAN_NONE; 1389 1390 memcpy(et->et_dest, dest_ethaddr, 6); 1391 memcpy(et->et_src, net_ethaddr, 6); 1392 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1393 et->et_protlen = htons(prot); 1394 return ETHER_HDR_SIZE; 1395 } else { 1396 struct vlan_ethernet_hdr *vet = 1397 (struct vlan_ethernet_hdr *)xet; 1398 1399 vet->vet_vlan_type = htons(PROT_VLAN); 1400 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1401 vet->vet_type = htons(prot); 1402 return VLAN_ETHER_HDR_SIZE; 1403 } 1404 } 1405 1406 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1407 { 1408 ushort protlen; 1409 1410 memcpy(et->et_dest, addr, 6); 1411 memcpy(et->et_src, net_ethaddr, 6); 1412 protlen = ntohs(et->et_protlen); 1413 if (protlen == PROT_VLAN) { 1414 struct vlan_ethernet_hdr *vet = 1415 (struct vlan_ethernet_hdr *)et; 1416 vet->vet_type = htons(prot); 1417 return VLAN_ETHER_HDR_SIZE; 1418 } else if (protlen > 1514) { 1419 et->et_protlen = htons(prot); 1420 return ETHER_HDR_SIZE; 1421 } else { 1422 /* 802.2 + SNAP */ 1423 struct e802_hdr *et802 = (struct e802_hdr *)et; 1424 et802->et_prot = htons(prot); 1425 return E802_HDR_SIZE; 1426 } 1427 } 1428 1429 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1430 { 1431 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1432 1433 /* 1434 * Construct an IP header. 1435 */ 1436 /* IP_HDR_SIZE / 4 (not including UDP) */ 1437 ip->ip_hl_v = 0x45; 1438 ip->ip_tos = 0; 1439 ip->ip_len = htons(IP_HDR_SIZE); 1440 ip->ip_id = htons(net_ip_id++); 1441 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1442 ip->ip_ttl = 255; 1443 ip->ip_sum = 0; 1444 /* already in network byte order */ 1445 net_copy_ip((void *)&ip->ip_src, &source); 1446 /* already in network byte order */ 1447 net_copy_ip((void *)&ip->ip_dst, &dest); 1448 } 1449 1450 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1451 int len) 1452 { 1453 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1454 1455 /* 1456 * If the data is an odd number of bytes, zero the 1457 * byte after the last byte so that the checksum 1458 * will work. 1459 */ 1460 if (len & 1) 1461 pkt[IP_UDP_HDR_SIZE + len] = 0; 1462 1463 net_set_ip_header(pkt, dest, net_ip); 1464 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1465 ip->ip_p = IPPROTO_UDP; 1466 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1467 1468 ip->udp_src = htons(sport); 1469 ip->udp_dst = htons(dport); 1470 ip->udp_len = htons(UDP_HDR_SIZE + len); 1471 ip->udp_xsum = 0; 1472 } 1473 1474 void copy_filename(char *dst, const char *src, int size) 1475 { 1476 if (*src && (*src == '"')) { 1477 ++src; 1478 --size; 1479 } 1480 1481 while ((--size > 0) && *src && (*src != '"')) 1482 *dst++ = *src++; 1483 *dst = '\0'; 1484 } 1485 1486 #if defined(CONFIG_CMD_NFS) || \ 1487 defined(CONFIG_CMD_SNTP) || \ 1488 defined(CONFIG_CMD_DNS) 1489 /* 1490 * make port a little random (1024-17407) 1491 * This keeps the math somewhat trivial to compute, and seems to work with 1492 * all supported protocols/clients/servers 1493 */ 1494 unsigned int random_port(void) 1495 { 1496 return 1024 + (get_timer(0) % 0x4000); 1497 } 1498 #endif 1499 1500 void ip_to_string(struct in_addr x, char *s) 1501 { 1502 x.s_addr = ntohl(x.s_addr); 1503 sprintf(s, "%d.%d.%d.%d", 1504 (int) ((x.s_addr >> 24) & 0xff), 1505 (int) ((x.s_addr >> 16) & 0xff), 1506 (int) ((x.s_addr >> 8) & 0xff), 1507 (int) ((x.s_addr >> 0) & 0xff) 1508 ); 1509 } 1510 1511 void vlan_to_string(ushort x, char *s) 1512 { 1513 x = ntohs(x); 1514 1515 if (x == (ushort)-1) 1516 x = VLAN_NONE; 1517 1518 if (x == VLAN_NONE) 1519 strcpy(s, "none"); 1520 else 1521 sprintf(s, "%d", x & VLAN_IDMASK); 1522 } 1523 1524 ushort string_to_vlan(const char *s) 1525 { 1526 ushort id; 1527 1528 if (s == NULL) 1529 return htons(VLAN_NONE); 1530 1531 if (*s < '0' || *s > '9') 1532 id = VLAN_NONE; 1533 else 1534 id = (ushort)simple_strtoul(s, NULL, 10); 1535 1536 return htons(id); 1537 } 1538 1539 ushort getenv_vlan(char *var) 1540 { 1541 return string_to_vlan(getenv(var)); 1542 } 1543