1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <console.h> 87 #include <environment.h> 88 #include <errno.h> 89 #include <net.h> 90 #include <net/tftp.h> 91 #if defined(CONFIG_STATUS_LED) 92 #include <miiphy.h> 93 #include <status_led.h> 94 #endif 95 #include <watchdog.h> 96 #include <linux/compiler.h> 97 #include "arp.h" 98 #include "bootp.h" 99 #include "cdp.h" 100 #if defined(CONFIG_CMD_DNS) 101 #include "dns.h" 102 #endif 103 #include "link_local.h" 104 #include "nfs.h" 105 #include "ping.h" 106 #include "rarp.h" 107 #if defined(CONFIG_CMD_SNTP) 108 #include "sntp.h" 109 #endif 110 111 DECLARE_GLOBAL_DATA_PTR; 112 113 /** BOOTP EXTENTIONS **/ 114 115 /* Our subnet mask (0=unknown) */ 116 struct in_addr net_netmask; 117 /* Our gateways IP address */ 118 struct in_addr net_gateway; 119 /* Our DNS IP address */ 120 struct in_addr net_dns_server; 121 #if defined(CONFIG_BOOTP_DNS2) 122 /* Our 2nd DNS IP address */ 123 struct in_addr net_dns_server2; 124 #endif 125 126 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 127 struct in_addr net_mcast_addr; 128 #endif 129 130 /** END OF BOOTP EXTENTIONS **/ 131 132 /* Our ethernet address */ 133 u8 net_ethaddr[6]; 134 /* Boot server enet address */ 135 u8 net_server_ethaddr[6]; 136 /* Our IP addr (0 = unknown) */ 137 struct in_addr net_ip; 138 /* Server IP addr (0 = unknown) */ 139 struct in_addr net_server_ip; 140 /* Current receive packet */ 141 uchar *net_rx_packet; 142 /* Current rx packet length */ 143 int net_rx_packet_len; 144 /* IP packet ID */ 145 static unsigned net_ip_id; 146 /* Ethernet bcast address */ 147 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 148 const u8 net_null_ethaddr[6]; 149 #ifdef CONFIG_API 150 void (*push_packet)(void *, int len) = 0; 151 #endif 152 /* Network loop state */ 153 enum net_loop_state net_state; 154 /* Tried all network devices */ 155 int net_restart_wrap; 156 /* Network loop restarted */ 157 static int net_restarted; 158 /* At least one device configured */ 159 static int net_dev_exists; 160 161 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 162 /* default is without VLAN */ 163 ushort net_our_vlan = 0xFFFF; 164 /* ditto */ 165 ushort net_native_vlan = 0xFFFF; 166 167 /* Boot File name */ 168 char net_boot_file_name[1024]; 169 /* The actual transferred size of the bootfile (in bytes) */ 170 u32 net_boot_file_size; 171 /* Boot file size in blocks as reported by the DHCP server */ 172 u32 net_boot_file_expected_size_in_blocks; 173 174 #if defined(CONFIG_CMD_SNTP) 175 /* NTP server IP address */ 176 struct in_addr net_ntp_server; 177 /* offset time from UTC */ 178 int net_ntp_time_offset; 179 #endif 180 181 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 182 /* Receive packets */ 183 uchar *net_rx_packets[PKTBUFSRX]; 184 /* Current UDP RX packet handler */ 185 static rxhand_f *udp_packet_handler; 186 /* Current ARP RX packet handler */ 187 static rxhand_f *arp_packet_handler; 188 #ifdef CONFIG_CMD_TFTPPUT 189 /* Current ICMP rx handler */ 190 static rxhand_icmp_f *packet_icmp_handler; 191 #endif 192 /* Current timeout handler */ 193 static thand_f *time_handler; 194 /* Time base value */ 195 static ulong time_start; 196 /* Current timeout value */ 197 static ulong time_delta; 198 /* THE transmit packet */ 199 uchar *net_tx_packet; 200 201 static int net_check_prereq(enum proto_t protocol); 202 203 static int net_try_count; 204 205 int __maybe_unused net_busy_flag; 206 207 /**********************************************************************/ 208 209 static int on_bootfile(const char *name, const char *value, enum env_op op, 210 int flags) 211 { 212 if (flags & H_PROGRAMMATIC) 213 return 0; 214 215 switch (op) { 216 case env_op_create: 217 case env_op_overwrite: 218 copy_filename(net_boot_file_name, value, 219 sizeof(net_boot_file_name)); 220 break; 221 default: 222 break; 223 } 224 225 return 0; 226 } 227 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 228 229 static int on_ipaddr(const char *name, const char *value, enum env_op op, 230 int flags) 231 { 232 if (flags & H_PROGRAMMATIC) 233 return 0; 234 235 net_ip = string_to_ip(value); 236 237 return 0; 238 } 239 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 240 241 static int on_gatewayip(const char *name, const char *value, enum env_op op, 242 int flags) 243 { 244 if (flags & H_PROGRAMMATIC) 245 return 0; 246 247 net_gateway = string_to_ip(value); 248 249 return 0; 250 } 251 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 252 253 static int on_netmask(const char *name, const char *value, enum env_op op, 254 int flags) 255 { 256 if (flags & H_PROGRAMMATIC) 257 return 0; 258 259 net_netmask = string_to_ip(value); 260 261 return 0; 262 } 263 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 264 265 static int on_serverip(const char *name, const char *value, enum env_op op, 266 int flags) 267 { 268 if (flags & H_PROGRAMMATIC) 269 return 0; 270 271 net_server_ip = string_to_ip(value); 272 273 return 0; 274 } 275 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 276 277 static int on_nvlan(const char *name, const char *value, enum env_op op, 278 int flags) 279 { 280 if (flags & H_PROGRAMMATIC) 281 return 0; 282 283 net_native_vlan = string_to_vlan(value); 284 285 return 0; 286 } 287 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 288 289 static int on_vlan(const char *name, const char *value, enum env_op op, 290 int flags) 291 { 292 if (flags & H_PROGRAMMATIC) 293 return 0; 294 295 net_our_vlan = string_to_vlan(value); 296 297 return 0; 298 } 299 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 300 301 #if defined(CONFIG_CMD_DNS) 302 static int on_dnsip(const char *name, const char *value, enum env_op op, 303 int flags) 304 { 305 if (flags & H_PROGRAMMATIC) 306 return 0; 307 308 net_dns_server = string_to_ip(value); 309 310 return 0; 311 } 312 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 313 #endif 314 315 /* 316 * Check if autoload is enabled. If so, use either NFS or TFTP to download 317 * the boot file. 318 */ 319 void net_auto_load(void) 320 { 321 #if defined(CONFIG_CMD_NFS) 322 const char *s = getenv("autoload"); 323 324 if (s != NULL && strcmp(s, "NFS") == 0) { 325 /* 326 * Use NFS to load the bootfile. 327 */ 328 nfs_start(); 329 return; 330 } 331 #endif 332 if (getenv_yesno("autoload") == 0) { 333 /* 334 * Just use BOOTP/RARP to configure system; 335 * Do not use TFTP to load the bootfile. 336 */ 337 net_set_state(NETLOOP_SUCCESS); 338 return; 339 } 340 tftp_start(TFTPGET); 341 } 342 343 static void net_init_loop(void) 344 { 345 if (eth_get_dev()) 346 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 347 348 return; 349 } 350 351 static void net_clear_handlers(void) 352 { 353 net_set_udp_handler(NULL); 354 net_set_arp_handler(NULL); 355 net_set_timeout_handler(0, NULL); 356 } 357 358 static void net_cleanup_loop(void) 359 { 360 net_clear_handlers(); 361 } 362 363 void net_init(void) 364 { 365 static int first_call = 1; 366 367 if (first_call) { 368 /* 369 * Setup packet buffers, aligned correctly. 370 */ 371 int i; 372 373 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 374 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 375 for (i = 0; i < PKTBUFSRX; i++) { 376 net_rx_packets[i] = net_tx_packet + 377 (i + 1) * PKTSIZE_ALIGN; 378 } 379 arp_init(); 380 net_clear_handlers(); 381 382 /* Only need to setup buffer pointers once. */ 383 first_call = 0; 384 } 385 386 net_init_loop(); 387 } 388 389 /**********************************************************************/ 390 /* 391 * Main network processing loop. 392 */ 393 394 int net_loop(enum proto_t protocol) 395 { 396 int ret = -EINVAL; 397 398 net_restarted = 0; 399 net_dev_exists = 0; 400 net_try_count = 1; 401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 402 403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 404 net_init(); 405 if (eth_is_on_demand_init() || protocol != NETCONS) { 406 eth_halt(); 407 eth_set_current(); 408 ret = eth_init(); 409 if (ret < 0) { 410 eth_halt(); 411 return ret; 412 } 413 } else { 414 eth_init_state_only(); 415 } 416 restart: 417 #ifdef CONFIG_USB_KEYBOARD 418 net_busy_flag = 0; 419 #endif 420 net_set_state(NETLOOP_CONTINUE); 421 422 /* 423 * Start the ball rolling with the given start function. From 424 * here on, this code is a state machine driven by received 425 * packets and timer events. 426 */ 427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 428 net_init_loop(); 429 430 switch (net_check_prereq(protocol)) { 431 case 1: 432 /* network not configured */ 433 eth_halt(); 434 return -ENODEV; 435 436 case 2: 437 /* network device not configured */ 438 break; 439 440 case 0: 441 net_dev_exists = 1; 442 net_boot_file_size = 0; 443 switch (protocol) { 444 case TFTPGET: 445 #ifdef CONFIG_CMD_TFTPPUT 446 case TFTPPUT: 447 #endif 448 /* always use ARP to get server ethernet address */ 449 tftp_start(protocol); 450 break; 451 #ifdef CONFIG_CMD_TFTPSRV 452 case TFTPSRV: 453 tftp_start_server(); 454 break; 455 #endif 456 #if defined(CONFIG_CMD_DHCP) 457 case DHCP: 458 bootp_reset(); 459 net_ip.s_addr = 0; 460 dhcp_request(); /* Basically same as BOOTP */ 461 break; 462 #endif 463 464 case BOOTP: 465 bootp_reset(); 466 net_ip.s_addr = 0; 467 bootp_request(); 468 break; 469 470 #if defined(CONFIG_CMD_RARP) 471 case RARP: 472 rarp_try = 0; 473 net_ip.s_addr = 0; 474 rarp_request(); 475 break; 476 #endif 477 #if defined(CONFIG_CMD_PING) 478 case PING: 479 ping_start(); 480 break; 481 #endif 482 #if defined(CONFIG_CMD_NFS) 483 case NFS: 484 nfs_start(); 485 break; 486 #endif 487 #if defined(CONFIG_CMD_CDP) 488 case CDP: 489 cdp_start(); 490 break; 491 #endif 492 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 493 case NETCONS: 494 nc_start(); 495 break; 496 #endif 497 #if defined(CONFIG_CMD_SNTP) 498 case SNTP: 499 sntp_start(); 500 break; 501 #endif 502 #if defined(CONFIG_CMD_DNS) 503 case DNS: 504 dns_start(); 505 break; 506 #endif 507 #if defined(CONFIG_CMD_LINK_LOCAL) 508 case LINKLOCAL: 509 link_local_start(); 510 break; 511 #endif 512 default: 513 break; 514 } 515 516 break; 517 } 518 519 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 520 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 521 defined(CONFIG_STATUS_LED) && \ 522 defined(STATUS_LED_RED) 523 /* 524 * Echo the inverted link state to the fault LED. 525 */ 526 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 527 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 528 else 529 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 530 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 531 #endif /* CONFIG_MII, ... */ 532 #ifdef CONFIG_USB_KEYBOARD 533 net_busy_flag = 1; 534 #endif 535 536 /* 537 * Main packet reception loop. Loop receiving packets until 538 * someone sets `net_state' to a state that terminates. 539 */ 540 for (;;) { 541 WATCHDOG_RESET(); 542 #ifdef CONFIG_SHOW_ACTIVITY 543 show_activity(1); 544 #endif 545 if (arp_timeout_check() > 0) 546 time_start = get_timer(0); 547 548 /* 549 * Check the ethernet for a new packet. The ethernet 550 * receive routine will process it. 551 * Most drivers return the most recent packet size, but not 552 * errors that may have happened. 553 */ 554 eth_rx(); 555 556 /* 557 * Abort if ctrl-c was pressed. 558 */ 559 if (ctrlc()) { 560 /* cancel any ARP that may not have completed */ 561 net_arp_wait_packet_ip.s_addr = 0; 562 563 net_cleanup_loop(); 564 eth_halt(); 565 /* Invalidate the last protocol */ 566 eth_set_last_protocol(BOOTP); 567 568 puts("\nAbort\n"); 569 /* include a debug print as well incase the debug 570 messages are directed to stderr */ 571 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 572 ret = -EINTR; 573 goto done; 574 } 575 576 /* 577 * Check for a timeout, and run the timeout handler 578 * if we have one. 579 */ 580 if (time_handler && 581 ((get_timer(0) - time_start) > time_delta)) { 582 thand_f *x; 583 584 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 585 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 586 defined(CONFIG_STATUS_LED) && \ 587 defined(STATUS_LED_RED) 588 /* 589 * Echo the inverted link state to the fault LED. 590 */ 591 if (miiphy_link(eth_get_dev()->name, 592 CONFIG_SYS_FAULT_MII_ADDR)) 593 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 594 else 595 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 596 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 597 #endif /* CONFIG_MII, ... */ 598 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 599 x = time_handler; 600 time_handler = (thand_f *)0; 601 (*x)(); 602 } 603 604 if (net_state == NETLOOP_FAIL) 605 ret = net_start_again(); 606 607 switch (net_state) { 608 case NETLOOP_RESTART: 609 net_restarted = 1; 610 goto restart; 611 612 case NETLOOP_SUCCESS: 613 net_cleanup_loop(); 614 if (net_boot_file_size > 0) { 615 printf("Bytes transferred = %d (%x hex)\n", 616 net_boot_file_size, net_boot_file_size); 617 setenv_hex("filesize", net_boot_file_size); 618 setenv_hex("fileaddr", load_addr); 619 } 620 if (protocol != NETCONS) 621 eth_halt(); 622 else 623 eth_halt_state_only(); 624 625 eth_set_last_protocol(protocol); 626 627 ret = net_boot_file_size; 628 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 629 goto done; 630 631 case NETLOOP_FAIL: 632 net_cleanup_loop(); 633 /* Invalidate the last protocol */ 634 eth_set_last_protocol(BOOTP); 635 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 636 goto done; 637 638 case NETLOOP_CONTINUE: 639 continue; 640 } 641 } 642 643 done: 644 #ifdef CONFIG_USB_KEYBOARD 645 net_busy_flag = 0; 646 #endif 647 #ifdef CONFIG_CMD_TFTPPUT 648 /* Clear out the handlers */ 649 net_set_udp_handler(NULL); 650 net_set_icmp_handler(NULL); 651 #endif 652 return ret; 653 } 654 655 /**********************************************************************/ 656 657 static void start_again_timeout_handler(void) 658 { 659 net_set_state(NETLOOP_RESTART); 660 } 661 662 int net_start_again(void) 663 { 664 char *nretry; 665 int retry_forever = 0; 666 unsigned long retrycnt = 0; 667 int ret; 668 669 nretry = getenv("netretry"); 670 if (nretry) { 671 if (!strcmp(nretry, "yes")) 672 retry_forever = 1; 673 else if (!strcmp(nretry, "no")) 674 retrycnt = 0; 675 else if (!strcmp(nretry, "once")) 676 retrycnt = 1; 677 else 678 retrycnt = simple_strtoul(nretry, NULL, 0); 679 } else { 680 retrycnt = 0; 681 retry_forever = 0; 682 } 683 684 if ((!retry_forever) && (net_try_count >= retrycnt)) { 685 eth_halt(); 686 net_set_state(NETLOOP_FAIL); 687 /* 688 * We don't provide a way for the protocol to return an error, 689 * but this is almost always the reason. 690 */ 691 return -ETIMEDOUT; 692 } 693 694 net_try_count++; 695 696 eth_halt(); 697 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 698 eth_try_another(!net_restarted); 699 #endif 700 ret = eth_init(); 701 if (net_restart_wrap) { 702 net_restart_wrap = 0; 703 if (net_dev_exists) { 704 net_set_timeout_handler(10000UL, 705 start_again_timeout_handler); 706 net_set_udp_handler(NULL); 707 } else { 708 net_set_state(NETLOOP_FAIL); 709 } 710 } else { 711 net_set_state(NETLOOP_RESTART); 712 } 713 return ret; 714 } 715 716 /**********************************************************************/ 717 /* 718 * Miscelaneous bits. 719 */ 720 721 static void dummy_handler(uchar *pkt, unsigned dport, 722 struct in_addr sip, unsigned sport, 723 unsigned len) 724 { 725 } 726 727 rxhand_f *net_get_udp_handler(void) 728 { 729 return udp_packet_handler; 730 } 731 732 void net_set_udp_handler(rxhand_f *f) 733 { 734 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 735 if (f == NULL) 736 udp_packet_handler = dummy_handler; 737 else 738 udp_packet_handler = f; 739 } 740 741 rxhand_f *net_get_arp_handler(void) 742 { 743 return arp_packet_handler; 744 } 745 746 void net_set_arp_handler(rxhand_f *f) 747 { 748 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 749 if (f == NULL) 750 arp_packet_handler = dummy_handler; 751 else 752 arp_packet_handler = f; 753 } 754 755 #ifdef CONFIG_CMD_TFTPPUT 756 void net_set_icmp_handler(rxhand_icmp_f *f) 757 { 758 packet_icmp_handler = f; 759 } 760 #endif 761 762 void net_set_timeout_handler(ulong iv, thand_f *f) 763 { 764 if (iv == 0) { 765 debug_cond(DEBUG_INT_STATE, 766 "--- net_loop timeout handler cancelled\n"); 767 time_handler = (thand_f *)0; 768 } else { 769 debug_cond(DEBUG_INT_STATE, 770 "--- net_loop timeout handler set (%p)\n", f); 771 time_handler = f; 772 time_start = get_timer(0); 773 time_delta = iv * CONFIG_SYS_HZ / 1000; 774 } 775 } 776 777 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 778 int payload_len) 779 { 780 uchar *pkt; 781 int eth_hdr_size; 782 int pkt_hdr_size; 783 784 /* make sure the net_tx_packet is initialized (net_init() was called) */ 785 assert(net_tx_packet != NULL); 786 if (net_tx_packet == NULL) 787 return -1; 788 789 /* convert to new style broadcast */ 790 if (dest.s_addr == 0) 791 dest.s_addr = 0xFFFFFFFF; 792 793 /* if broadcast, make the ether address a broadcast and don't do ARP */ 794 if (dest.s_addr == 0xFFFFFFFF) 795 ether = (uchar *)net_bcast_ethaddr; 796 797 pkt = (uchar *)net_tx_packet; 798 799 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 800 pkt += eth_hdr_size; 801 net_set_udp_header(pkt, dest, dport, sport, payload_len); 802 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 803 804 /* if MAC address was not discovered yet, do an ARP request */ 805 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 806 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 807 808 /* save the ip and eth addr for the packet to send after arp */ 809 net_arp_wait_packet_ip = dest; 810 arp_wait_packet_ethaddr = ether; 811 812 /* size of the waiting packet */ 813 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 814 815 /* and do the ARP request */ 816 arp_wait_try = 1; 817 arp_wait_timer_start = get_timer(0); 818 arp_request(); 819 return 1; /* waiting */ 820 } else { 821 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 822 &dest, ether); 823 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 824 return 0; /* transmitted */ 825 } 826 } 827 828 #ifdef CONFIG_IP_DEFRAG 829 /* 830 * This function collects fragments in a single packet, according 831 * to the algorithm in RFC815. It returns NULL or the pointer to 832 * a complete packet, in static storage 833 */ 834 #ifndef CONFIG_NET_MAXDEFRAG 835 #define CONFIG_NET_MAXDEFRAG 16384 836 #endif 837 /* 838 * MAXDEFRAG, above, is chosen in the config file and is real data 839 * so we need to add the NFS overhead, which is more than TFTP. 840 * To use sizeof in the internal unnamed structures, we need a real 841 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately). 842 * The compiler doesn't complain nor allocates the actual structure 843 */ 844 static struct rpc_t rpc_specimen; 845 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply)) 846 847 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 848 849 /* 850 * this is the packet being assembled, either data or frag control. 851 * Fragments go by 8 bytes, so this union must be 8 bytes long 852 */ 853 struct hole { 854 /* first_byte is address of this structure */ 855 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 856 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 857 u16 prev_hole; /* index of prev, 0 == none */ 858 u16 unused; 859 }; 860 861 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 862 { 863 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 864 static u16 first_hole, total_len; 865 struct hole *payload, *thisfrag, *h, *newh; 866 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 867 uchar *indata = (uchar *)ip; 868 int offset8, start, len, done = 0; 869 u16 ip_off = ntohs(ip->ip_off); 870 871 /* payload starts after IP header, this fragment is in there */ 872 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 873 offset8 = (ip_off & IP_OFFS); 874 thisfrag = payload + offset8; 875 start = offset8 * 8; 876 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 877 878 if (start + len > IP_MAXUDP) /* fragment extends too far */ 879 return NULL; 880 881 if (!total_len || localip->ip_id != ip->ip_id) { 882 /* new (or different) packet, reset structs */ 883 total_len = 0xffff; 884 payload[0].last_byte = ~0; 885 payload[0].next_hole = 0; 886 payload[0].prev_hole = 0; 887 first_hole = 0; 888 /* any IP header will work, copy the first we received */ 889 memcpy(localip, ip, IP_HDR_SIZE); 890 } 891 892 /* 893 * What follows is the reassembly algorithm. We use the payload 894 * array as a linked list of hole descriptors, as each hole starts 895 * at a multiple of 8 bytes. However, last byte can be whatever value, 896 * so it is represented as byte count, not as 8-byte blocks. 897 */ 898 899 h = payload + first_hole; 900 while (h->last_byte < start) { 901 if (!h->next_hole) { 902 /* no hole that far away */ 903 return NULL; 904 } 905 h = payload + h->next_hole; 906 } 907 908 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 909 if (offset8 + ((len + 7) / 8) <= h - payload) { 910 /* no overlap with holes (dup fragment?) */ 911 return NULL; 912 } 913 914 if (!(ip_off & IP_FLAGS_MFRAG)) { 915 /* no more fragmentss: truncate this (last) hole */ 916 total_len = start + len; 917 h->last_byte = start + len; 918 } 919 920 /* 921 * There is some overlap: fix the hole list. This code doesn't 922 * deal with a fragment that overlaps with two different holes 923 * (thus being a superset of a previously-received fragment). 924 */ 925 926 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 927 /* complete overlap with hole: remove hole */ 928 if (!h->prev_hole && !h->next_hole) { 929 /* last remaining hole */ 930 done = 1; 931 } else if (!h->prev_hole) { 932 /* first hole */ 933 first_hole = h->next_hole; 934 payload[h->next_hole].prev_hole = 0; 935 } else if (!h->next_hole) { 936 /* last hole */ 937 payload[h->prev_hole].next_hole = 0; 938 } else { 939 /* in the middle of the list */ 940 payload[h->next_hole].prev_hole = h->prev_hole; 941 payload[h->prev_hole].next_hole = h->next_hole; 942 } 943 944 } else if (h->last_byte <= start + len) { 945 /* overlaps with final part of the hole: shorten this hole */ 946 h->last_byte = start; 947 948 } else if (h >= thisfrag) { 949 /* overlaps with initial part of the hole: move this hole */ 950 newh = thisfrag + (len / 8); 951 *newh = *h; 952 h = newh; 953 if (h->next_hole) 954 payload[h->next_hole].prev_hole = (h - payload); 955 if (h->prev_hole) 956 payload[h->prev_hole].next_hole = (h - payload); 957 else 958 first_hole = (h - payload); 959 960 } else { 961 /* fragment sits in the middle: split the hole */ 962 newh = thisfrag + (len / 8); 963 *newh = *h; 964 h->last_byte = start; 965 h->next_hole = (newh - payload); 966 newh->prev_hole = (h - payload); 967 if (newh->next_hole) 968 payload[newh->next_hole].prev_hole = (newh - payload); 969 } 970 971 /* finally copy this fragment and possibly return whole packet */ 972 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 973 if (!done) 974 return NULL; 975 976 localip->ip_len = htons(total_len); 977 *lenp = total_len + IP_HDR_SIZE; 978 return localip; 979 } 980 981 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 982 int *lenp) 983 { 984 u16 ip_off = ntohs(ip->ip_off); 985 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 986 return ip; /* not a fragment */ 987 return __net_defragment(ip, lenp); 988 } 989 990 #else /* !CONFIG_IP_DEFRAG */ 991 992 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 993 int *lenp) 994 { 995 u16 ip_off = ntohs(ip->ip_off); 996 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 997 return ip; /* not a fragment */ 998 return NULL; 999 } 1000 #endif 1001 1002 /** 1003 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1004 * drop others. 1005 * 1006 * @parma ip IP packet containing the ICMP 1007 */ 1008 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1009 struct in_addr src_ip, struct ethernet_hdr *et) 1010 { 1011 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1012 1013 switch (icmph->type) { 1014 case ICMP_REDIRECT: 1015 if (icmph->code != ICMP_REDIR_HOST) 1016 return; 1017 printf(" ICMP Host Redirect to %pI4 ", 1018 &icmph->un.gateway); 1019 break; 1020 default: 1021 #if defined(CONFIG_CMD_PING) 1022 ping_receive(et, ip, len); 1023 #endif 1024 #ifdef CONFIG_CMD_TFTPPUT 1025 if (packet_icmp_handler) 1026 packet_icmp_handler(icmph->type, icmph->code, 1027 ntohs(ip->udp_dst), src_ip, 1028 ntohs(ip->udp_src), icmph->un.data, 1029 ntohs(ip->udp_len)); 1030 #endif 1031 break; 1032 } 1033 } 1034 1035 void net_process_received_packet(uchar *in_packet, int len) 1036 { 1037 struct ethernet_hdr *et; 1038 struct ip_udp_hdr *ip; 1039 struct in_addr dst_ip; 1040 struct in_addr src_ip; 1041 int eth_proto; 1042 #if defined(CONFIG_CMD_CDP) 1043 int iscdp; 1044 #endif 1045 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1046 1047 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1048 1049 net_rx_packet = in_packet; 1050 net_rx_packet_len = len; 1051 et = (struct ethernet_hdr *)in_packet; 1052 1053 /* too small packet? */ 1054 if (len < ETHER_HDR_SIZE) 1055 return; 1056 1057 #ifdef CONFIG_API 1058 if (push_packet) { 1059 (*push_packet)(in_packet, len); 1060 return; 1061 } 1062 #endif 1063 1064 #if defined(CONFIG_CMD_CDP) 1065 /* keep track if packet is CDP */ 1066 iscdp = is_cdp_packet(et->et_dest); 1067 #endif 1068 1069 myvlanid = ntohs(net_our_vlan); 1070 if (myvlanid == (ushort)-1) 1071 myvlanid = VLAN_NONE; 1072 mynvlanid = ntohs(net_native_vlan); 1073 if (mynvlanid == (ushort)-1) 1074 mynvlanid = VLAN_NONE; 1075 1076 eth_proto = ntohs(et->et_protlen); 1077 1078 if (eth_proto < 1514) { 1079 struct e802_hdr *et802 = (struct e802_hdr *)et; 1080 /* 1081 * Got a 802.2 packet. Check the other protocol field. 1082 * XXX VLAN over 802.2+SNAP not implemented! 1083 */ 1084 eth_proto = ntohs(et802->et_prot); 1085 1086 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1087 len -= E802_HDR_SIZE; 1088 1089 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1090 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1091 len -= ETHER_HDR_SIZE; 1092 1093 } else { /* VLAN packet */ 1094 struct vlan_ethernet_hdr *vet = 1095 (struct vlan_ethernet_hdr *)et; 1096 1097 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1098 1099 /* too small packet? */ 1100 if (len < VLAN_ETHER_HDR_SIZE) 1101 return; 1102 1103 /* if no VLAN active */ 1104 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1105 #if defined(CONFIG_CMD_CDP) 1106 && iscdp == 0 1107 #endif 1108 ) 1109 return; 1110 1111 cti = ntohs(vet->vet_tag); 1112 vlanid = cti & VLAN_IDMASK; 1113 eth_proto = ntohs(vet->vet_type); 1114 1115 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1116 len -= VLAN_ETHER_HDR_SIZE; 1117 } 1118 1119 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1120 1121 #if defined(CONFIG_CMD_CDP) 1122 if (iscdp) { 1123 cdp_receive((uchar *)ip, len); 1124 return; 1125 } 1126 #endif 1127 1128 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1129 if (vlanid == VLAN_NONE) 1130 vlanid = (mynvlanid & VLAN_IDMASK); 1131 /* not matched? */ 1132 if (vlanid != (myvlanid & VLAN_IDMASK)) 1133 return; 1134 } 1135 1136 switch (eth_proto) { 1137 case PROT_ARP: 1138 arp_receive(et, ip, len); 1139 break; 1140 1141 #ifdef CONFIG_CMD_RARP 1142 case PROT_RARP: 1143 rarp_receive(ip, len); 1144 break; 1145 #endif 1146 case PROT_IP: 1147 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1148 /* Before we start poking the header, make sure it is there */ 1149 if (len < IP_UDP_HDR_SIZE) { 1150 debug("len bad %d < %lu\n", len, 1151 (ulong)IP_UDP_HDR_SIZE); 1152 return; 1153 } 1154 /* Check the packet length */ 1155 if (len < ntohs(ip->ip_len)) { 1156 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1157 return; 1158 } 1159 len = ntohs(ip->ip_len); 1160 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1161 len, ip->ip_hl_v & 0xff); 1162 1163 /* Can't deal with anything except IPv4 */ 1164 if ((ip->ip_hl_v & 0xf0) != 0x40) 1165 return; 1166 /* Can't deal with IP options (headers != 20 bytes) */ 1167 if ((ip->ip_hl_v & 0x0f) > 0x05) 1168 return; 1169 /* Check the Checksum of the header */ 1170 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1171 debug("checksum bad\n"); 1172 return; 1173 } 1174 /* If it is not for us, ignore it */ 1175 dst_ip = net_read_ip(&ip->ip_dst); 1176 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1177 dst_ip.s_addr != 0xFFFFFFFF) { 1178 #ifdef CONFIG_MCAST_TFTP 1179 if (net_mcast_addr != dst_ip) 1180 #endif 1181 return; 1182 } 1183 /* Read source IP address for later use */ 1184 src_ip = net_read_ip(&ip->ip_src); 1185 /* 1186 * The function returns the unchanged packet if it's not 1187 * a fragment, and either the complete packet or NULL if 1188 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1189 */ 1190 ip = net_defragment(ip, &len); 1191 if (!ip) 1192 return; 1193 /* 1194 * watch for ICMP host redirects 1195 * 1196 * There is no real handler code (yet). We just watch 1197 * for ICMP host redirect messages. In case anybody 1198 * sees these messages: please contact me 1199 * (wd@denx.de), or - even better - send me the 1200 * necessary fixes :-) 1201 * 1202 * Note: in all cases where I have seen this so far 1203 * it was a problem with the router configuration, 1204 * for instance when a router was configured in the 1205 * BOOTP reply, but the TFTP server was on the same 1206 * subnet. So this is probably a warning that your 1207 * configuration might be wrong. But I'm not really 1208 * sure if there aren't any other situations. 1209 * 1210 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1211 * we send a tftp packet to a dead connection, or when 1212 * there is no server at the other end. 1213 */ 1214 if (ip->ip_p == IPPROTO_ICMP) { 1215 receive_icmp(ip, len, src_ip, et); 1216 return; 1217 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1218 return; 1219 } 1220 1221 debug_cond(DEBUG_DEV_PKT, 1222 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1223 &dst_ip, &src_ip, len); 1224 1225 #ifdef CONFIG_UDP_CHECKSUM 1226 if (ip->udp_xsum != 0) { 1227 ulong xsum; 1228 ushort *sumptr; 1229 ushort sumlen; 1230 1231 xsum = ip->ip_p; 1232 xsum += (ntohs(ip->udp_len)); 1233 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1234 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1235 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1236 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1237 1238 sumlen = ntohs(ip->udp_len); 1239 sumptr = (ushort *)&(ip->udp_src); 1240 1241 while (sumlen > 1) { 1242 ushort sumdata; 1243 1244 sumdata = *sumptr++; 1245 xsum += ntohs(sumdata); 1246 sumlen -= 2; 1247 } 1248 if (sumlen > 0) { 1249 ushort sumdata; 1250 1251 sumdata = *(unsigned char *)sumptr; 1252 sumdata = (sumdata << 8) & 0xff00; 1253 xsum += sumdata; 1254 } 1255 while ((xsum >> 16) != 0) { 1256 xsum = (xsum & 0x0000ffff) + 1257 ((xsum >> 16) & 0x0000ffff); 1258 } 1259 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1260 printf(" UDP wrong checksum %08lx %08x\n", 1261 xsum, ntohs(ip->udp_xsum)); 1262 return; 1263 } 1264 } 1265 #endif 1266 1267 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1268 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1269 src_ip, 1270 ntohs(ip->udp_dst), 1271 ntohs(ip->udp_src), 1272 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1273 #endif 1274 /* 1275 * IP header OK. Pass the packet to the current handler. 1276 */ 1277 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1278 ntohs(ip->udp_dst), 1279 src_ip, 1280 ntohs(ip->udp_src), 1281 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1282 break; 1283 } 1284 } 1285 1286 /**********************************************************************/ 1287 1288 static int net_check_prereq(enum proto_t protocol) 1289 { 1290 switch (protocol) { 1291 /* Fall through */ 1292 #if defined(CONFIG_CMD_PING) 1293 case PING: 1294 if (net_ping_ip.s_addr == 0) { 1295 puts("*** ERROR: ping address not given\n"); 1296 return 1; 1297 } 1298 goto common; 1299 #endif 1300 #if defined(CONFIG_CMD_SNTP) 1301 case SNTP: 1302 if (net_ntp_server.s_addr == 0) { 1303 puts("*** ERROR: NTP server address not given\n"); 1304 return 1; 1305 } 1306 goto common; 1307 #endif 1308 #if defined(CONFIG_CMD_DNS) 1309 case DNS: 1310 if (net_dns_server.s_addr == 0) { 1311 puts("*** ERROR: DNS server address not given\n"); 1312 return 1; 1313 } 1314 goto common; 1315 #endif 1316 #if defined(CONFIG_CMD_NFS) 1317 case NFS: 1318 #endif 1319 /* Fall through */ 1320 case TFTPGET: 1321 case TFTPPUT: 1322 if (net_server_ip.s_addr == 0) { 1323 puts("*** ERROR: `serverip' not set\n"); 1324 return 1; 1325 } 1326 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1327 defined(CONFIG_CMD_DNS) 1328 common: 1329 #endif 1330 /* Fall through */ 1331 1332 case NETCONS: 1333 case TFTPSRV: 1334 if (net_ip.s_addr == 0) { 1335 puts("*** ERROR: `ipaddr' not set\n"); 1336 return 1; 1337 } 1338 /* Fall through */ 1339 1340 #ifdef CONFIG_CMD_RARP 1341 case RARP: 1342 #endif 1343 case BOOTP: 1344 case CDP: 1345 case DHCP: 1346 case LINKLOCAL: 1347 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1348 int num = eth_get_dev_index(); 1349 1350 switch (num) { 1351 case -1: 1352 puts("*** ERROR: No ethernet found.\n"); 1353 return 1; 1354 case 0: 1355 puts("*** ERROR: `ethaddr' not set\n"); 1356 break; 1357 default: 1358 printf("*** ERROR: `eth%daddr' not set\n", 1359 num); 1360 break; 1361 } 1362 1363 net_start_again(); 1364 return 2; 1365 } 1366 /* Fall through */ 1367 default: 1368 return 0; 1369 } 1370 return 0; /* OK */ 1371 } 1372 /**********************************************************************/ 1373 1374 int 1375 net_eth_hdr_size(void) 1376 { 1377 ushort myvlanid; 1378 1379 myvlanid = ntohs(net_our_vlan); 1380 if (myvlanid == (ushort)-1) 1381 myvlanid = VLAN_NONE; 1382 1383 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1384 VLAN_ETHER_HDR_SIZE; 1385 } 1386 1387 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1388 { 1389 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1390 ushort myvlanid; 1391 1392 myvlanid = ntohs(net_our_vlan); 1393 if (myvlanid == (ushort)-1) 1394 myvlanid = VLAN_NONE; 1395 1396 memcpy(et->et_dest, dest_ethaddr, 6); 1397 memcpy(et->et_src, net_ethaddr, 6); 1398 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1399 et->et_protlen = htons(prot); 1400 return ETHER_HDR_SIZE; 1401 } else { 1402 struct vlan_ethernet_hdr *vet = 1403 (struct vlan_ethernet_hdr *)xet; 1404 1405 vet->vet_vlan_type = htons(PROT_VLAN); 1406 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1407 vet->vet_type = htons(prot); 1408 return VLAN_ETHER_HDR_SIZE; 1409 } 1410 } 1411 1412 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1413 { 1414 ushort protlen; 1415 1416 memcpy(et->et_dest, addr, 6); 1417 memcpy(et->et_src, net_ethaddr, 6); 1418 protlen = ntohs(et->et_protlen); 1419 if (protlen == PROT_VLAN) { 1420 struct vlan_ethernet_hdr *vet = 1421 (struct vlan_ethernet_hdr *)et; 1422 vet->vet_type = htons(prot); 1423 return VLAN_ETHER_HDR_SIZE; 1424 } else if (protlen > 1514) { 1425 et->et_protlen = htons(prot); 1426 return ETHER_HDR_SIZE; 1427 } else { 1428 /* 802.2 + SNAP */ 1429 struct e802_hdr *et802 = (struct e802_hdr *)et; 1430 et802->et_prot = htons(prot); 1431 return E802_HDR_SIZE; 1432 } 1433 } 1434 1435 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1436 { 1437 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1438 1439 /* 1440 * Construct an IP header. 1441 */ 1442 /* IP_HDR_SIZE / 4 (not including UDP) */ 1443 ip->ip_hl_v = 0x45; 1444 ip->ip_tos = 0; 1445 ip->ip_len = htons(IP_HDR_SIZE); 1446 ip->ip_id = htons(net_ip_id++); 1447 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1448 ip->ip_ttl = 255; 1449 ip->ip_sum = 0; 1450 /* already in network byte order */ 1451 net_copy_ip((void *)&ip->ip_src, &source); 1452 /* already in network byte order */ 1453 net_copy_ip((void *)&ip->ip_dst, &dest); 1454 } 1455 1456 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1457 int len) 1458 { 1459 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1460 1461 /* 1462 * If the data is an odd number of bytes, zero the 1463 * byte after the last byte so that the checksum 1464 * will work. 1465 */ 1466 if (len & 1) 1467 pkt[IP_UDP_HDR_SIZE + len] = 0; 1468 1469 net_set_ip_header(pkt, dest, net_ip); 1470 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1471 ip->ip_p = IPPROTO_UDP; 1472 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1473 1474 ip->udp_src = htons(sport); 1475 ip->udp_dst = htons(dport); 1476 ip->udp_len = htons(UDP_HDR_SIZE + len); 1477 ip->udp_xsum = 0; 1478 } 1479 1480 void copy_filename(char *dst, const char *src, int size) 1481 { 1482 if (*src && (*src == '"')) { 1483 ++src; 1484 --size; 1485 } 1486 1487 while ((--size > 0) && *src && (*src != '"')) 1488 *dst++ = *src++; 1489 *dst = '\0'; 1490 } 1491 1492 #if defined(CONFIG_CMD_NFS) || \ 1493 defined(CONFIG_CMD_SNTP) || \ 1494 defined(CONFIG_CMD_DNS) 1495 /* 1496 * make port a little random (1024-17407) 1497 * This keeps the math somewhat trivial to compute, and seems to work with 1498 * all supported protocols/clients/servers 1499 */ 1500 unsigned int random_port(void) 1501 { 1502 return 1024 + (get_timer(0) % 0x4000); 1503 } 1504 #endif 1505 1506 void ip_to_string(struct in_addr x, char *s) 1507 { 1508 x.s_addr = ntohl(x.s_addr); 1509 sprintf(s, "%d.%d.%d.%d", 1510 (int) ((x.s_addr >> 24) & 0xff), 1511 (int) ((x.s_addr >> 16) & 0xff), 1512 (int) ((x.s_addr >> 8) & 0xff), 1513 (int) ((x.s_addr >> 0) & 0xff) 1514 ); 1515 } 1516 1517 void vlan_to_string(ushort x, char *s) 1518 { 1519 x = ntohs(x); 1520 1521 if (x == (ushort)-1) 1522 x = VLAN_NONE; 1523 1524 if (x == VLAN_NONE) 1525 strcpy(s, "none"); 1526 else 1527 sprintf(s, "%d", x & VLAN_IDMASK); 1528 } 1529 1530 ushort string_to_vlan(const char *s) 1531 { 1532 ushort id; 1533 1534 if (s == NULL) 1535 return htons(VLAN_NONE); 1536 1537 if (*s < '0' || *s > '9') 1538 id = VLAN_NONE; 1539 else 1540 id = (ushort)simple_strtoul(s, NULL, 10); 1541 1542 return htons(id); 1543 } 1544 1545 ushort getenv_vlan(char *var) 1546 { 1547 return string_to_vlan(getenv(var)); 1548 } 1549