1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copied from Linux Monitor (LiMon) - Networking. 4 * 5 * Copyright 1994 - 2000 Neil Russell. 6 * (See License) 7 * Copyright 2000 Roland Borde 8 * Copyright 2000 Paolo Scaffardi 9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <console.h> 87 #include <environment.h> 88 #include <errno.h> 89 #include <net.h> 90 #include <net/fastboot.h> 91 #include <net/tftp.h> 92 #if defined(CONFIG_LED_STATUS) 93 #include <miiphy.h> 94 #include <status_led.h> 95 #endif 96 #include <watchdog.h> 97 #include <linux/compiler.h> 98 #include "arp.h" 99 #include "bootp.h" 100 #include "cdp.h" 101 #if defined(CONFIG_CMD_DNS) 102 #include "dns.h" 103 #endif 104 #include "link_local.h" 105 #include "nfs.h" 106 #include "ping.h" 107 #include "rarp.h" 108 #if defined(CONFIG_CMD_SNTP) 109 #include "sntp.h" 110 #endif 111 112 /** BOOTP EXTENTIONS **/ 113 114 /* Our subnet mask (0=unknown) */ 115 struct in_addr net_netmask; 116 /* Our gateways IP address */ 117 struct in_addr net_gateway; 118 /* Our DNS IP address */ 119 struct in_addr net_dns_server; 120 #if defined(CONFIG_BOOTP_DNS2) 121 /* Our 2nd DNS IP address */ 122 struct in_addr net_dns_server2; 123 #endif 124 125 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 126 struct in_addr net_mcast_addr; 127 #endif 128 129 /** END OF BOOTP EXTENTIONS **/ 130 131 /* Our ethernet address */ 132 u8 net_ethaddr[6]; 133 /* Boot server enet address */ 134 u8 net_server_ethaddr[6]; 135 /* Our IP addr (0 = unknown) */ 136 struct in_addr net_ip; 137 /* Server IP addr (0 = unknown) */ 138 struct in_addr net_server_ip; 139 /* Current receive packet */ 140 uchar *net_rx_packet; 141 /* Current rx packet length */ 142 int net_rx_packet_len; 143 /* IP packet ID */ 144 static unsigned net_ip_id; 145 /* Ethernet bcast address */ 146 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 147 const u8 net_null_ethaddr[6]; 148 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 149 void (*push_packet)(void *, int len) = 0; 150 #endif 151 /* Network loop state */ 152 enum net_loop_state net_state; 153 /* Tried all network devices */ 154 int net_restart_wrap; 155 /* Network loop restarted */ 156 static int net_restarted; 157 /* At least one device configured */ 158 static int net_dev_exists; 159 160 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 161 /* default is without VLAN */ 162 ushort net_our_vlan = 0xFFFF; 163 /* ditto */ 164 ushort net_native_vlan = 0xFFFF; 165 166 /* Boot File name */ 167 char net_boot_file_name[1024]; 168 /* The actual transferred size of the bootfile (in bytes) */ 169 u32 net_boot_file_size; 170 /* Boot file size in blocks as reported by the DHCP server */ 171 u32 net_boot_file_expected_size_in_blocks; 172 173 #if defined(CONFIG_CMD_SNTP) 174 /* NTP server IP address */ 175 struct in_addr net_ntp_server; 176 /* offset time from UTC */ 177 int net_ntp_time_offset; 178 #endif 179 180 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 181 /* Receive packets */ 182 uchar *net_rx_packets[PKTBUFSRX]; 183 /* Current UDP RX packet handler */ 184 static rxhand_f *udp_packet_handler; 185 /* Current ARP RX packet handler */ 186 static rxhand_f *arp_packet_handler; 187 #ifdef CONFIG_CMD_TFTPPUT 188 /* Current ICMP rx handler */ 189 static rxhand_icmp_f *packet_icmp_handler; 190 #endif 191 /* Current timeout handler */ 192 static thand_f *time_handler; 193 /* Time base value */ 194 static ulong time_start; 195 /* Current timeout value */ 196 static ulong time_delta; 197 /* THE transmit packet */ 198 uchar *net_tx_packet; 199 200 static int net_check_prereq(enum proto_t protocol); 201 202 static int net_try_count; 203 204 int __maybe_unused net_busy_flag; 205 206 /**********************************************************************/ 207 208 static int on_bootfile(const char *name, const char *value, enum env_op op, 209 int flags) 210 { 211 if (flags & H_PROGRAMMATIC) 212 return 0; 213 214 switch (op) { 215 case env_op_create: 216 case env_op_overwrite: 217 copy_filename(net_boot_file_name, value, 218 sizeof(net_boot_file_name)); 219 break; 220 default: 221 break; 222 } 223 224 return 0; 225 } 226 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 227 228 static int on_ipaddr(const char *name, const char *value, enum env_op op, 229 int flags) 230 { 231 if (flags & H_PROGRAMMATIC) 232 return 0; 233 234 net_ip = string_to_ip(value); 235 236 return 0; 237 } 238 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 239 240 static int on_gatewayip(const char *name, const char *value, enum env_op op, 241 int flags) 242 { 243 if (flags & H_PROGRAMMATIC) 244 return 0; 245 246 net_gateway = string_to_ip(value); 247 248 return 0; 249 } 250 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 251 252 static int on_netmask(const char *name, const char *value, enum env_op op, 253 int flags) 254 { 255 if (flags & H_PROGRAMMATIC) 256 return 0; 257 258 net_netmask = string_to_ip(value); 259 260 return 0; 261 } 262 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 263 264 static int on_serverip(const char *name, const char *value, enum env_op op, 265 int flags) 266 { 267 if (flags & H_PROGRAMMATIC) 268 return 0; 269 270 net_server_ip = string_to_ip(value); 271 272 return 0; 273 } 274 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 275 276 static int on_nvlan(const char *name, const char *value, enum env_op op, 277 int flags) 278 { 279 if (flags & H_PROGRAMMATIC) 280 return 0; 281 282 net_native_vlan = string_to_vlan(value); 283 284 return 0; 285 } 286 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 287 288 static int on_vlan(const char *name, const char *value, enum env_op op, 289 int flags) 290 { 291 if (flags & H_PROGRAMMATIC) 292 return 0; 293 294 net_our_vlan = string_to_vlan(value); 295 296 return 0; 297 } 298 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 299 300 #if defined(CONFIG_CMD_DNS) 301 static int on_dnsip(const char *name, const char *value, enum env_op op, 302 int flags) 303 { 304 if (flags & H_PROGRAMMATIC) 305 return 0; 306 307 net_dns_server = string_to_ip(value); 308 309 return 0; 310 } 311 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 312 #endif 313 314 /* 315 * Check if autoload is enabled. If so, use either NFS or TFTP to download 316 * the boot file. 317 */ 318 void net_auto_load(void) 319 { 320 #if defined(CONFIG_CMD_NFS) 321 const char *s = env_get("autoload"); 322 323 if (s != NULL && strcmp(s, "NFS") == 0) { 324 /* 325 * Use NFS to load the bootfile. 326 */ 327 nfs_start(); 328 return; 329 } 330 #endif 331 if (env_get_yesno("autoload") == 0) { 332 /* 333 * Just use BOOTP/RARP to configure system; 334 * Do not use TFTP to load the bootfile. 335 */ 336 net_set_state(NETLOOP_SUCCESS); 337 return; 338 } 339 tftp_start(TFTPGET); 340 } 341 342 static void net_init_loop(void) 343 { 344 if (eth_get_dev()) 345 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 346 347 return; 348 } 349 350 static void net_clear_handlers(void) 351 { 352 net_set_udp_handler(NULL); 353 net_set_arp_handler(NULL); 354 net_set_timeout_handler(0, NULL); 355 } 356 357 static void net_cleanup_loop(void) 358 { 359 net_clear_handlers(); 360 } 361 362 void net_init(void) 363 { 364 static int first_call = 1; 365 366 if (first_call) { 367 /* 368 * Setup packet buffers, aligned correctly. 369 */ 370 int i; 371 372 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 373 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 374 for (i = 0; i < PKTBUFSRX; i++) { 375 net_rx_packets[i] = net_tx_packet + 376 (i + 1) * PKTSIZE_ALIGN; 377 } 378 arp_init(); 379 net_clear_handlers(); 380 381 /* Only need to setup buffer pointers once. */ 382 first_call = 0; 383 } 384 385 net_init_loop(); 386 } 387 388 /**********************************************************************/ 389 /* 390 * Main network processing loop. 391 */ 392 393 int net_loop(enum proto_t protocol) 394 { 395 int ret = -EINVAL; 396 enum net_loop_state prev_net_state = net_state; 397 398 net_restarted = 0; 399 net_dev_exists = 0; 400 net_try_count = 1; 401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 402 403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 404 net_init(); 405 if (eth_is_on_demand_init() || protocol != NETCONS) { 406 eth_halt(); 407 eth_set_current(); 408 ret = eth_init(); 409 if (ret < 0) { 410 eth_halt(); 411 return ret; 412 } 413 } else { 414 eth_init_state_only(); 415 } 416 restart: 417 #ifdef CONFIG_USB_KEYBOARD 418 net_busy_flag = 0; 419 #endif 420 net_set_state(NETLOOP_CONTINUE); 421 422 /* 423 * Start the ball rolling with the given start function. From 424 * here on, this code is a state machine driven by received 425 * packets and timer events. 426 */ 427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 428 net_init_loop(); 429 430 switch (net_check_prereq(protocol)) { 431 case 1: 432 /* network not configured */ 433 eth_halt(); 434 net_set_state(prev_net_state); 435 return -ENODEV; 436 437 case 2: 438 /* network device not configured */ 439 break; 440 441 case 0: 442 net_dev_exists = 1; 443 net_boot_file_size = 0; 444 switch (protocol) { 445 case TFTPGET: 446 #ifdef CONFIG_CMD_TFTPPUT 447 case TFTPPUT: 448 #endif 449 /* always use ARP to get server ethernet address */ 450 tftp_start(protocol); 451 break; 452 #ifdef CONFIG_CMD_TFTPSRV 453 case TFTPSRV: 454 tftp_start_server(); 455 break; 456 #endif 457 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT 458 case FASTBOOT: 459 fastboot_start_server(); 460 break; 461 #endif 462 #if defined(CONFIG_CMD_DHCP) 463 case DHCP: 464 bootp_reset(); 465 net_ip.s_addr = 0; 466 dhcp_request(); /* Basically same as BOOTP */ 467 break; 468 #endif 469 470 case BOOTP: 471 bootp_reset(); 472 net_ip.s_addr = 0; 473 bootp_request(); 474 break; 475 476 #if defined(CONFIG_CMD_RARP) 477 case RARP: 478 rarp_try = 0; 479 net_ip.s_addr = 0; 480 rarp_request(); 481 break; 482 #endif 483 #if defined(CONFIG_CMD_PING) 484 case PING: 485 ping_start(); 486 break; 487 #endif 488 #if defined(CONFIG_CMD_NFS) 489 case NFS: 490 nfs_start(); 491 break; 492 #endif 493 #if defined(CONFIG_CMD_CDP) 494 case CDP: 495 cdp_start(); 496 break; 497 #endif 498 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 499 case NETCONS: 500 nc_start(); 501 break; 502 #endif 503 #if defined(CONFIG_CMD_SNTP) 504 case SNTP: 505 sntp_start(); 506 break; 507 #endif 508 #if defined(CONFIG_CMD_DNS) 509 case DNS: 510 dns_start(); 511 break; 512 #endif 513 #if defined(CONFIG_CMD_LINK_LOCAL) 514 case LINKLOCAL: 515 link_local_start(); 516 break; 517 #endif 518 default: 519 break; 520 } 521 522 break; 523 } 524 525 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 526 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 527 defined(CONFIG_LED_STATUS) && \ 528 defined(CONFIG_LED_STATUS_RED) 529 /* 530 * Echo the inverted link state to the fault LED. 531 */ 532 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 533 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF); 534 else 535 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON); 536 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 537 #endif /* CONFIG_MII, ... */ 538 #ifdef CONFIG_USB_KEYBOARD 539 net_busy_flag = 1; 540 #endif 541 542 /* 543 * Main packet reception loop. Loop receiving packets until 544 * someone sets `net_state' to a state that terminates. 545 */ 546 for (;;) { 547 WATCHDOG_RESET(); 548 #ifdef CONFIG_SHOW_ACTIVITY 549 show_activity(1); 550 #endif 551 if (arp_timeout_check() > 0) 552 time_start = get_timer(0); 553 554 /* 555 * Check the ethernet for a new packet. The ethernet 556 * receive routine will process it. 557 * Most drivers return the most recent packet size, but not 558 * errors that may have happened. 559 */ 560 eth_rx(); 561 562 /* 563 * Abort if ctrl-c was pressed. 564 */ 565 if (ctrlc()) { 566 /* cancel any ARP that may not have completed */ 567 net_arp_wait_packet_ip.s_addr = 0; 568 569 net_cleanup_loop(); 570 eth_halt(); 571 /* Invalidate the last protocol */ 572 eth_set_last_protocol(BOOTP); 573 574 puts("\nAbort\n"); 575 /* include a debug print as well incase the debug 576 messages are directed to stderr */ 577 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 578 ret = -EINTR; 579 goto done; 580 } 581 582 /* 583 * Check for a timeout, and run the timeout handler 584 * if we have one. 585 */ 586 if (time_handler && 587 ((get_timer(0) - time_start) > time_delta)) { 588 thand_f *x; 589 590 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 591 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 592 defined(CONFIG_LED_STATUS) && \ 593 defined(CONFIG_LED_STATUS_RED) 594 /* 595 * Echo the inverted link state to the fault LED. 596 */ 597 if (miiphy_link(eth_get_dev()->name, 598 CONFIG_SYS_FAULT_MII_ADDR)) 599 status_led_set(CONFIG_LED_STATUS_RED, 600 CONFIG_LED_STATUS_OFF); 601 else 602 status_led_set(CONFIG_LED_STATUS_RED, 603 CONFIG_LED_STATUS_ON); 604 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 605 #endif /* CONFIG_MII, ... */ 606 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 607 x = time_handler; 608 time_handler = (thand_f *)0; 609 (*x)(); 610 } 611 612 if (net_state == NETLOOP_FAIL) 613 ret = net_start_again(); 614 615 switch (net_state) { 616 case NETLOOP_RESTART: 617 net_restarted = 1; 618 goto restart; 619 620 case NETLOOP_SUCCESS: 621 net_cleanup_loop(); 622 if (net_boot_file_size > 0) { 623 printf("Bytes transferred = %d (%x hex)\n", 624 net_boot_file_size, net_boot_file_size); 625 env_set_hex("filesize", net_boot_file_size); 626 env_set_hex("fileaddr", load_addr); 627 } 628 if (protocol != NETCONS) 629 eth_halt(); 630 else 631 eth_halt_state_only(); 632 633 eth_set_last_protocol(protocol); 634 635 ret = net_boot_file_size; 636 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 637 goto done; 638 639 case NETLOOP_FAIL: 640 net_cleanup_loop(); 641 /* Invalidate the last protocol */ 642 eth_set_last_protocol(BOOTP); 643 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 644 goto done; 645 646 case NETLOOP_CONTINUE: 647 continue; 648 } 649 } 650 651 done: 652 #ifdef CONFIG_USB_KEYBOARD 653 net_busy_flag = 0; 654 #endif 655 #ifdef CONFIG_CMD_TFTPPUT 656 /* Clear out the handlers */ 657 net_set_udp_handler(NULL); 658 net_set_icmp_handler(NULL); 659 #endif 660 net_set_state(prev_net_state); 661 return ret; 662 } 663 664 /**********************************************************************/ 665 666 static void start_again_timeout_handler(void) 667 { 668 net_set_state(NETLOOP_RESTART); 669 } 670 671 int net_start_again(void) 672 { 673 char *nretry; 674 int retry_forever = 0; 675 unsigned long retrycnt = 0; 676 int ret; 677 678 nretry = env_get("netretry"); 679 if (nretry) { 680 if (!strcmp(nretry, "yes")) 681 retry_forever = 1; 682 else if (!strcmp(nretry, "no")) 683 retrycnt = 0; 684 else if (!strcmp(nretry, "once")) 685 retrycnt = 1; 686 else 687 retrycnt = simple_strtoul(nretry, NULL, 0); 688 } else { 689 retrycnt = 0; 690 retry_forever = 0; 691 } 692 693 if ((!retry_forever) && (net_try_count > retrycnt)) { 694 eth_halt(); 695 net_set_state(NETLOOP_FAIL); 696 /* 697 * We don't provide a way for the protocol to return an error, 698 * but this is almost always the reason. 699 */ 700 return -ETIMEDOUT; 701 } 702 703 net_try_count++; 704 705 eth_halt(); 706 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 707 eth_try_another(!net_restarted); 708 #endif 709 ret = eth_init(); 710 if (net_restart_wrap) { 711 net_restart_wrap = 0; 712 if (net_dev_exists) { 713 net_set_timeout_handler(10000UL, 714 start_again_timeout_handler); 715 net_set_udp_handler(NULL); 716 } else { 717 net_set_state(NETLOOP_FAIL); 718 } 719 } else { 720 net_set_state(NETLOOP_RESTART); 721 } 722 return ret; 723 } 724 725 /**********************************************************************/ 726 /* 727 * Miscelaneous bits. 728 */ 729 730 static void dummy_handler(uchar *pkt, unsigned dport, 731 struct in_addr sip, unsigned sport, 732 unsigned len) 733 { 734 } 735 736 rxhand_f *net_get_udp_handler(void) 737 { 738 return udp_packet_handler; 739 } 740 741 void net_set_udp_handler(rxhand_f *f) 742 { 743 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 744 if (f == NULL) 745 udp_packet_handler = dummy_handler; 746 else 747 udp_packet_handler = f; 748 } 749 750 rxhand_f *net_get_arp_handler(void) 751 { 752 return arp_packet_handler; 753 } 754 755 void net_set_arp_handler(rxhand_f *f) 756 { 757 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 758 if (f == NULL) 759 arp_packet_handler = dummy_handler; 760 else 761 arp_packet_handler = f; 762 } 763 764 #ifdef CONFIG_CMD_TFTPPUT 765 void net_set_icmp_handler(rxhand_icmp_f *f) 766 { 767 packet_icmp_handler = f; 768 } 769 #endif 770 771 void net_set_timeout_handler(ulong iv, thand_f *f) 772 { 773 if (iv == 0) { 774 debug_cond(DEBUG_INT_STATE, 775 "--- net_loop timeout handler cancelled\n"); 776 time_handler = (thand_f *)0; 777 } else { 778 debug_cond(DEBUG_INT_STATE, 779 "--- net_loop timeout handler set (%p)\n", f); 780 time_handler = f; 781 time_start = get_timer(0); 782 time_delta = iv * CONFIG_SYS_HZ / 1000; 783 } 784 } 785 786 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 787 int payload_len) 788 { 789 uchar *pkt; 790 int eth_hdr_size; 791 int pkt_hdr_size; 792 793 /* make sure the net_tx_packet is initialized (net_init() was called) */ 794 assert(net_tx_packet != NULL); 795 if (net_tx_packet == NULL) 796 return -1; 797 798 /* convert to new style broadcast */ 799 if (dest.s_addr == 0) 800 dest.s_addr = 0xFFFFFFFF; 801 802 /* if broadcast, make the ether address a broadcast and don't do ARP */ 803 if (dest.s_addr == 0xFFFFFFFF) 804 ether = (uchar *)net_bcast_ethaddr; 805 806 pkt = (uchar *)net_tx_packet; 807 808 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 809 pkt += eth_hdr_size; 810 net_set_udp_header(pkt, dest, dport, sport, payload_len); 811 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 812 813 /* if MAC address was not discovered yet, do an ARP request */ 814 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 815 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 816 817 /* save the ip and eth addr for the packet to send after arp */ 818 net_arp_wait_packet_ip = dest; 819 arp_wait_packet_ethaddr = ether; 820 821 /* size of the waiting packet */ 822 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 823 824 /* and do the ARP request */ 825 arp_wait_try = 1; 826 arp_wait_timer_start = get_timer(0); 827 arp_request(); 828 return 1; /* waiting */ 829 } else { 830 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 831 &dest, ether); 832 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 833 return 0; /* transmitted */ 834 } 835 } 836 837 #ifdef CONFIG_IP_DEFRAG 838 /* 839 * This function collects fragments in a single packet, according 840 * to the algorithm in RFC815. It returns NULL or the pointer to 841 * a complete packet, in static storage 842 */ 843 #ifndef CONFIG_NET_MAXDEFRAG 844 #define CONFIG_NET_MAXDEFRAG 16384 845 #endif 846 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG) 847 848 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 849 850 /* 851 * this is the packet being assembled, either data or frag control. 852 * Fragments go by 8 bytes, so this union must be 8 bytes long 853 */ 854 struct hole { 855 /* first_byte is address of this structure */ 856 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 857 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 858 u16 prev_hole; /* index of prev, 0 == none */ 859 u16 unused; 860 }; 861 862 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 863 { 864 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 865 static u16 first_hole, total_len; 866 struct hole *payload, *thisfrag, *h, *newh; 867 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 868 uchar *indata = (uchar *)ip; 869 int offset8, start, len, done = 0; 870 u16 ip_off = ntohs(ip->ip_off); 871 872 /* payload starts after IP header, this fragment is in there */ 873 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 874 offset8 = (ip_off & IP_OFFS); 875 thisfrag = payload + offset8; 876 start = offset8 * 8; 877 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 878 879 if (start + len > IP_MAXUDP) /* fragment extends too far */ 880 return NULL; 881 882 if (!total_len || localip->ip_id != ip->ip_id) { 883 /* new (or different) packet, reset structs */ 884 total_len = 0xffff; 885 payload[0].last_byte = ~0; 886 payload[0].next_hole = 0; 887 payload[0].prev_hole = 0; 888 first_hole = 0; 889 /* any IP header will work, copy the first we received */ 890 memcpy(localip, ip, IP_HDR_SIZE); 891 } 892 893 /* 894 * What follows is the reassembly algorithm. We use the payload 895 * array as a linked list of hole descriptors, as each hole starts 896 * at a multiple of 8 bytes. However, last byte can be whatever value, 897 * so it is represented as byte count, not as 8-byte blocks. 898 */ 899 900 h = payload + first_hole; 901 while (h->last_byte < start) { 902 if (!h->next_hole) { 903 /* no hole that far away */ 904 return NULL; 905 } 906 h = payload + h->next_hole; 907 } 908 909 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 910 if (offset8 + ((len + 7) / 8) <= h - payload) { 911 /* no overlap with holes (dup fragment?) */ 912 return NULL; 913 } 914 915 if (!(ip_off & IP_FLAGS_MFRAG)) { 916 /* no more fragmentss: truncate this (last) hole */ 917 total_len = start + len; 918 h->last_byte = start + len; 919 } 920 921 /* 922 * There is some overlap: fix the hole list. This code doesn't 923 * deal with a fragment that overlaps with two different holes 924 * (thus being a superset of a previously-received fragment). 925 */ 926 927 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 928 /* complete overlap with hole: remove hole */ 929 if (!h->prev_hole && !h->next_hole) { 930 /* last remaining hole */ 931 done = 1; 932 } else if (!h->prev_hole) { 933 /* first hole */ 934 first_hole = h->next_hole; 935 payload[h->next_hole].prev_hole = 0; 936 } else if (!h->next_hole) { 937 /* last hole */ 938 payload[h->prev_hole].next_hole = 0; 939 } else { 940 /* in the middle of the list */ 941 payload[h->next_hole].prev_hole = h->prev_hole; 942 payload[h->prev_hole].next_hole = h->next_hole; 943 } 944 945 } else if (h->last_byte <= start + len) { 946 /* overlaps with final part of the hole: shorten this hole */ 947 h->last_byte = start; 948 949 } else if (h >= thisfrag) { 950 /* overlaps with initial part of the hole: move this hole */ 951 newh = thisfrag + (len / 8); 952 *newh = *h; 953 h = newh; 954 if (h->next_hole) 955 payload[h->next_hole].prev_hole = (h - payload); 956 if (h->prev_hole) 957 payload[h->prev_hole].next_hole = (h - payload); 958 else 959 first_hole = (h - payload); 960 961 } else { 962 /* fragment sits in the middle: split the hole */ 963 newh = thisfrag + (len / 8); 964 *newh = *h; 965 h->last_byte = start; 966 h->next_hole = (newh - payload); 967 newh->prev_hole = (h - payload); 968 if (newh->next_hole) 969 payload[newh->next_hole].prev_hole = (newh - payload); 970 } 971 972 /* finally copy this fragment and possibly return whole packet */ 973 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 974 if (!done) 975 return NULL; 976 977 localip->ip_len = htons(total_len); 978 *lenp = total_len + IP_HDR_SIZE; 979 return localip; 980 } 981 982 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 983 int *lenp) 984 { 985 u16 ip_off = ntohs(ip->ip_off); 986 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 987 return ip; /* not a fragment */ 988 return __net_defragment(ip, lenp); 989 } 990 991 #else /* !CONFIG_IP_DEFRAG */ 992 993 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 994 int *lenp) 995 { 996 u16 ip_off = ntohs(ip->ip_off); 997 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 998 return ip; /* not a fragment */ 999 return NULL; 1000 } 1001 #endif 1002 1003 /** 1004 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1005 * drop others. 1006 * 1007 * @parma ip IP packet containing the ICMP 1008 */ 1009 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1010 struct in_addr src_ip, struct ethernet_hdr *et) 1011 { 1012 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1013 1014 switch (icmph->type) { 1015 case ICMP_REDIRECT: 1016 if (icmph->code != ICMP_REDIR_HOST) 1017 return; 1018 printf(" ICMP Host Redirect to %pI4 ", 1019 &icmph->un.gateway); 1020 break; 1021 default: 1022 #if defined(CONFIG_CMD_PING) 1023 ping_receive(et, ip, len); 1024 #endif 1025 #ifdef CONFIG_CMD_TFTPPUT 1026 if (packet_icmp_handler) 1027 packet_icmp_handler(icmph->type, icmph->code, 1028 ntohs(ip->udp_dst), src_ip, 1029 ntohs(ip->udp_src), icmph->un.data, 1030 ntohs(ip->udp_len)); 1031 #endif 1032 break; 1033 } 1034 } 1035 1036 void net_process_received_packet(uchar *in_packet, int len) 1037 { 1038 struct ethernet_hdr *et; 1039 struct ip_udp_hdr *ip; 1040 struct in_addr dst_ip; 1041 struct in_addr src_ip; 1042 int eth_proto; 1043 #if defined(CONFIG_CMD_CDP) 1044 int iscdp; 1045 #endif 1046 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1047 1048 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1049 1050 net_rx_packet = in_packet; 1051 net_rx_packet_len = len; 1052 et = (struct ethernet_hdr *)in_packet; 1053 1054 /* too small packet? */ 1055 if (len < ETHER_HDR_SIZE) 1056 return; 1057 1058 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 1059 if (push_packet) { 1060 (*push_packet)(in_packet, len); 1061 return; 1062 } 1063 #endif 1064 1065 #if defined(CONFIG_CMD_CDP) 1066 /* keep track if packet is CDP */ 1067 iscdp = is_cdp_packet(et->et_dest); 1068 #endif 1069 1070 myvlanid = ntohs(net_our_vlan); 1071 if (myvlanid == (ushort)-1) 1072 myvlanid = VLAN_NONE; 1073 mynvlanid = ntohs(net_native_vlan); 1074 if (mynvlanid == (ushort)-1) 1075 mynvlanid = VLAN_NONE; 1076 1077 eth_proto = ntohs(et->et_protlen); 1078 1079 if (eth_proto < 1514) { 1080 struct e802_hdr *et802 = (struct e802_hdr *)et; 1081 /* 1082 * Got a 802.2 packet. Check the other protocol field. 1083 * XXX VLAN over 802.2+SNAP not implemented! 1084 */ 1085 eth_proto = ntohs(et802->et_prot); 1086 1087 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1088 len -= E802_HDR_SIZE; 1089 1090 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1091 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1092 len -= ETHER_HDR_SIZE; 1093 1094 } else { /* VLAN packet */ 1095 struct vlan_ethernet_hdr *vet = 1096 (struct vlan_ethernet_hdr *)et; 1097 1098 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1099 1100 /* too small packet? */ 1101 if (len < VLAN_ETHER_HDR_SIZE) 1102 return; 1103 1104 /* if no VLAN active */ 1105 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1106 #if defined(CONFIG_CMD_CDP) 1107 && iscdp == 0 1108 #endif 1109 ) 1110 return; 1111 1112 cti = ntohs(vet->vet_tag); 1113 vlanid = cti & VLAN_IDMASK; 1114 eth_proto = ntohs(vet->vet_type); 1115 1116 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1117 len -= VLAN_ETHER_HDR_SIZE; 1118 } 1119 1120 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1121 1122 #if defined(CONFIG_CMD_CDP) 1123 if (iscdp) { 1124 cdp_receive((uchar *)ip, len); 1125 return; 1126 } 1127 #endif 1128 1129 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1130 if (vlanid == VLAN_NONE) 1131 vlanid = (mynvlanid & VLAN_IDMASK); 1132 /* not matched? */ 1133 if (vlanid != (myvlanid & VLAN_IDMASK)) 1134 return; 1135 } 1136 1137 switch (eth_proto) { 1138 case PROT_ARP: 1139 arp_receive(et, ip, len); 1140 break; 1141 1142 #ifdef CONFIG_CMD_RARP 1143 case PROT_RARP: 1144 rarp_receive(ip, len); 1145 break; 1146 #endif 1147 case PROT_IP: 1148 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1149 /* Before we start poking the header, make sure it is there */ 1150 if (len < IP_UDP_HDR_SIZE) { 1151 debug("len bad %d < %lu\n", len, 1152 (ulong)IP_UDP_HDR_SIZE); 1153 return; 1154 } 1155 /* Check the packet length */ 1156 if (len < ntohs(ip->ip_len)) { 1157 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1158 return; 1159 } 1160 len = ntohs(ip->ip_len); 1161 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1162 len, ip->ip_hl_v & 0xff); 1163 1164 /* Can't deal with anything except IPv4 */ 1165 if ((ip->ip_hl_v & 0xf0) != 0x40) 1166 return; 1167 /* Can't deal with IP options (headers != 20 bytes) */ 1168 if ((ip->ip_hl_v & 0x0f) > 0x05) 1169 return; 1170 /* Check the Checksum of the header */ 1171 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1172 debug("checksum bad\n"); 1173 return; 1174 } 1175 /* If it is not for us, ignore it */ 1176 dst_ip = net_read_ip(&ip->ip_dst); 1177 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1178 dst_ip.s_addr != 0xFFFFFFFF) { 1179 #ifdef CONFIG_MCAST_TFTP 1180 if (net_mcast_addr != dst_ip) 1181 #endif 1182 return; 1183 } 1184 /* Read source IP address for later use */ 1185 src_ip = net_read_ip(&ip->ip_src); 1186 /* 1187 * The function returns the unchanged packet if it's not 1188 * a fragment, and either the complete packet or NULL if 1189 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1190 */ 1191 ip = net_defragment(ip, &len); 1192 if (!ip) 1193 return; 1194 /* 1195 * watch for ICMP host redirects 1196 * 1197 * There is no real handler code (yet). We just watch 1198 * for ICMP host redirect messages. In case anybody 1199 * sees these messages: please contact me 1200 * (wd@denx.de), or - even better - send me the 1201 * necessary fixes :-) 1202 * 1203 * Note: in all cases where I have seen this so far 1204 * it was a problem with the router configuration, 1205 * for instance when a router was configured in the 1206 * BOOTP reply, but the TFTP server was on the same 1207 * subnet. So this is probably a warning that your 1208 * configuration might be wrong. But I'm not really 1209 * sure if there aren't any other situations. 1210 * 1211 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1212 * we send a tftp packet to a dead connection, or when 1213 * there is no server at the other end. 1214 */ 1215 if (ip->ip_p == IPPROTO_ICMP) { 1216 receive_icmp(ip, len, src_ip, et); 1217 return; 1218 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1219 return; 1220 } 1221 1222 debug_cond(DEBUG_DEV_PKT, 1223 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1224 &dst_ip, &src_ip, len); 1225 1226 #ifdef CONFIG_UDP_CHECKSUM 1227 if (ip->udp_xsum != 0) { 1228 ulong xsum; 1229 ushort *sumptr; 1230 ushort sumlen; 1231 1232 xsum = ip->ip_p; 1233 xsum += (ntohs(ip->udp_len)); 1234 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1235 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1236 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1237 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1238 1239 sumlen = ntohs(ip->udp_len); 1240 sumptr = (ushort *)&(ip->udp_src); 1241 1242 while (sumlen > 1) { 1243 ushort sumdata; 1244 1245 sumdata = *sumptr++; 1246 xsum += ntohs(sumdata); 1247 sumlen -= 2; 1248 } 1249 if (sumlen > 0) { 1250 ushort sumdata; 1251 1252 sumdata = *(unsigned char *)sumptr; 1253 sumdata = (sumdata << 8) & 0xff00; 1254 xsum += sumdata; 1255 } 1256 while ((xsum >> 16) != 0) { 1257 xsum = (xsum & 0x0000ffff) + 1258 ((xsum >> 16) & 0x0000ffff); 1259 } 1260 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1261 printf(" UDP wrong checksum %08lx %08x\n", 1262 xsum, ntohs(ip->udp_xsum)); 1263 return; 1264 } 1265 } 1266 #endif 1267 1268 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 1269 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1270 src_ip, 1271 ntohs(ip->udp_dst), 1272 ntohs(ip->udp_src), 1273 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1274 #endif 1275 /* 1276 * IP header OK. Pass the packet to the current handler. 1277 */ 1278 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1279 ntohs(ip->udp_dst), 1280 src_ip, 1281 ntohs(ip->udp_src), 1282 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1283 break; 1284 } 1285 } 1286 1287 /**********************************************************************/ 1288 1289 static int net_check_prereq(enum proto_t protocol) 1290 { 1291 switch (protocol) { 1292 /* Fall through */ 1293 #if defined(CONFIG_CMD_PING) 1294 case PING: 1295 if (net_ping_ip.s_addr == 0) { 1296 puts("*** ERROR: ping address not given\n"); 1297 return 1; 1298 } 1299 goto common; 1300 #endif 1301 #if defined(CONFIG_CMD_SNTP) 1302 case SNTP: 1303 if (net_ntp_server.s_addr == 0) { 1304 puts("*** ERROR: NTP server address not given\n"); 1305 return 1; 1306 } 1307 goto common; 1308 #endif 1309 #if defined(CONFIG_CMD_DNS) 1310 case DNS: 1311 if (net_dns_server.s_addr == 0) { 1312 puts("*** ERROR: DNS server address not given\n"); 1313 return 1; 1314 } 1315 goto common; 1316 #endif 1317 #if defined(CONFIG_CMD_NFS) 1318 case NFS: 1319 #endif 1320 /* Fall through */ 1321 case TFTPGET: 1322 case TFTPPUT: 1323 if (net_server_ip.s_addr == 0) { 1324 puts("*** ERROR: `serverip' not set\n"); 1325 return 1; 1326 } 1327 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1328 defined(CONFIG_CMD_DNS) 1329 common: 1330 #endif 1331 /* Fall through */ 1332 1333 case NETCONS: 1334 case FASTBOOT: 1335 case TFTPSRV: 1336 if (net_ip.s_addr == 0) { 1337 puts("*** ERROR: `ipaddr' not set\n"); 1338 return 1; 1339 } 1340 /* Fall through */ 1341 1342 #ifdef CONFIG_CMD_RARP 1343 case RARP: 1344 #endif 1345 case BOOTP: 1346 case CDP: 1347 case DHCP: 1348 case LINKLOCAL: 1349 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1350 int num = eth_get_dev_index(); 1351 1352 switch (num) { 1353 case -1: 1354 puts("*** ERROR: No ethernet found.\n"); 1355 return 1; 1356 case 0: 1357 puts("*** ERROR: `ethaddr' not set\n"); 1358 break; 1359 default: 1360 printf("*** ERROR: `eth%daddr' not set\n", 1361 num); 1362 break; 1363 } 1364 1365 net_start_again(); 1366 return 2; 1367 } 1368 /* Fall through */ 1369 default: 1370 return 0; 1371 } 1372 return 0; /* OK */ 1373 } 1374 /**********************************************************************/ 1375 1376 int 1377 net_eth_hdr_size(void) 1378 { 1379 ushort myvlanid; 1380 1381 myvlanid = ntohs(net_our_vlan); 1382 if (myvlanid == (ushort)-1) 1383 myvlanid = VLAN_NONE; 1384 1385 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1386 VLAN_ETHER_HDR_SIZE; 1387 } 1388 1389 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1390 { 1391 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1392 ushort myvlanid; 1393 1394 myvlanid = ntohs(net_our_vlan); 1395 if (myvlanid == (ushort)-1) 1396 myvlanid = VLAN_NONE; 1397 1398 memcpy(et->et_dest, dest_ethaddr, 6); 1399 memcpy(et->et_src, net_ethaddr, 6); 1400 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1401 et->et_protlen = htons(prot); 1402 return ETHER_HDR_SIZE; 1403 } else { 1404 struct vlan_ethernet_hdr *vet = 1405 (struct vlan_ethernet_hdr *)xet; 1406 1407 vet->vet_vlan_type = htons(PROT_VLAN); 1408 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1409 vet->vet_type = htons(prot); 1410 return VLAN_ETHER_HDR_SIZE; 1411 } 1412 } 1413 1414 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1415 { 1416 ushort protlen; 1417 1418 memcpy(et->et_dest, addr, 6); 1419 memcpy(et->et_src, net_ethaddr, 6); 1420 protlen = ntohs(et->et_protlen); 1421 if (protlen == PROT_VLAN) { 1422 struct vlan_ethernet_hdr *vet = 1423 (struct vlan_ethernet_hdr *)et; 1424 vet->vet_type = htons(prot); 1425 return VLAN_ETHER_HDR_SIZE; 1426 } else if (protlen > 1514) { 1427 et->et_protlen = htons(prot); 1428 return ETHER_HDR_SIZE; 1429 } else { 1430 /* 802.2 + SNAP */ 1431 struct e802_hdr *et802 = (struct e802_hdr *)et; 1432 et802->et_prot = htons(prot); 1433 return E802_HDR_SIZE; 1434 } 1435 } 1436 1437 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1438 { 1439 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1440 1441 /* 1442 * Construct an IP header. 1443 */ 1444 /* IP_HDR_SIZE / 4 (not including UDP) */ 1445 ip->ip_hl_v = 0x45; 1446 ip->ip_tos = 0; 1447 ip->ip_len = htons(IP_HDR_SIZE); 1448 ip->ip_id = htons(net_ip_id++); 1449 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1450 ip->ip_ttl = 255; 1451 ip->ip_sum = 0; 1452 /* already in network byte order */ 1453 net_copy_ip((void *)&ip->ip_src, &source); 1454 /* already in network byte order */ 1455 net_copy_ip((void *)&ip->ip_dst, &dest); 1456 } 1457 1458 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1459 int len) 1460 { 1461 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1462 1463 /* 1464 * If the data is an odd number of bytes, zero the 1465 * byte after the last byte so that the checksum 1466 * will work. 1467 */ 1468 if (len & 1) 1469 pkt[IP_UDP_HDR_SIZE + len] = 0; 1470 1471 net_set_ip_header(pkt, dest, net_ip); 1472 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1473 ip->ip_p = IPPROTO_UDP; 1474 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1475 1476 ip->udp_src = htons(sport); 1477 ip->udp_dst = htons(dport); 1478 ip->udp_len = htons(UDP_HDR_SIZE + len); 1479 ip->udp_xsum = 0; 1480 } 1481 1482 void copy_filename(char *dst, const char *src, int size) 1483 { 1484 if (*src && (*src == '"')) { 1485 ++src; 1486 --size; 1487 } 1488 1489 while ((--size > 0) && *src && (*src != '"')) 1490 *dst++ = *src++; 1491 *dst = '\0'; 1492 } 1493 1494 #if defined(CONFIG_CMD_NFS) || \ 1495 defined(CONFIG_CMD_SNTP) || \ 1496 defined(CONFIG_CMD_DNS) 1497 /* 1498 * make port a little random (1024-17407) 1499 * This keeps the math somewhat trivial to compute, and seems to work with 1500 * all supported protocols/clients/servers 1501 */ 1502 unsigned int random_port(void) 1503 { 1504 return 1024 + (get_timer(0) % 0x4000); 1505 } 1506 #endif 1507 1508 void ip_to_string(struct in_addr x, char *s) 1509 { 1510 x.s_addr = ntohl(x.s_addr); 1511 sprintf(s, "%d.%d.%d.%d", 1512 (int) ((x.s_addr >> 24) & 0xff), 1513 (int) ((x.s_addr >> 16) & 0xff), 1514 (int) ((x.s_addr >> 8) & 0xff), 1515 (int) ((x.s_addr >> 0) & 0xff) 1516 ); 1517 } 1518 1519 void vlan_to_string(ushort x, char *s) 1520 { 1521 x = ntohs(x); 1522 1523 if (x == (ushort)-1) 1524 x = VLAN_NONE; 1525 1526 if (x == VLAN_NONE) 1527 strcpy(s, "none"); 1528 else 1529 sprintf(s, "%d", x & VLAN_IDMASK); 1530 } 1531 1532 ushort string_to_vlan(const char *s) 1533 { 1534 ushort id; 1535 1536 if (s == NULL) 1537 return htons(VLAN_NONE); 1538 1539 if (*s < '0' || *s > '9') 1540 id = VLAN_NONE; 1541 else 1542 id = (ushort)simple_strtoul(s, NULL, 10); 1543 1544 return htons(id); 1545 } 1546 1547 ushort env_get_vlan(char *var) 1548 { 1549 return string_to_vlan(env_get(var)); 1550 } 1551